Nothing Special   »   [go: up one dir, main page]

JPH0690071A - Metal substrate for circuit - Google Patents

Metal substrate for circuit

Info

Publication number
JPH0690071A
JPH0690071A JP34092391A JP34092391A JPH0690071A JP H0690071 A JPH0690071 A JP H0690071A JP 34092391 A JP34092391 A JP 34092391A JP 34092391 A JP34092391 A JP 34092391A JP H0690071 A JPH0690071 A JP H0690071A
Authority
JP
Japan
Prior art keywords
insulating layer
weight
parts
metal substrate
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34092391A
Other languages
Japanese (ja)
Other versions
JP2733401B2 (en
Inventor
Sumio Nishizaki
純夫 西崎
Makoto Kobayashi
誠 小林
Yukio Nakajima
幸男 中嶋
Kazuhiko Imamura
一彦 今村
Ryozo Karatsu
了三 唐津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nippon Rika Kogyosho Co Ltd
Original Assignee
Fuji Electric Co Ltd
Nippon Rika Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nippon Rika Kogyosho Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3340923A priority Critical patent/JP2733401B2/en
Priority to GB9209708A priority patent/GB2255676B/en
Priority to US07/879,009 priority patent/US5316831A/en
Priority to DE4215084A priority patent/DE4215084A1/en
Publication of JPH0690071A publication Critical patent/JPH0690071A/en
Application granted granted Critical
Publication of JP2733401B2 publication Critical patent/JP2733401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PURPOSE:To obtain a metal substrate for an electronic equipment circuit with improved cooling property and withstand voltage property by providing an insulator which is provided between a metal base and a conductive layer on the same plane as a plurality of insulation layers where a thermal conductivity and a composition differ. CONSTITUTION:An insulator 12 which is provided between a metal base 11 and a conductive layer 13 is formed in a multilayer structure. Namely, an inorganic filler mixed resin where aluminum oxide 50-70 pts.wt. silicon dioxide 1-10 pts.wt. magnesium silicate 1-10 pts.wt. and thermosetting resin 20-50 pts.wt. are blended is applied to a glass fiber non-woven cloth in a first insulation layer 14. Also, an inorganic filler mixed resin where aluminum hydroxide 10-20 pts.wt. magnesium silicate 10-20 pts.wt. silicon dioxide 1-5 pts.wt. and thermosetting resin 60-80 pts.wt are blended is applied to the glass non-woven cloth in a second insulation layer 15 (a, b). Further, the thermosetting resin is applied to aromatic series polyamide fiber non-woven cloth in a third insulation layer 16 (a, b).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回路用金属基板に関し、
特に放熱性,耐電圧性,耐熱性を要求する電子機器回路
に有用な回路用金属基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal substrate for a circuit,
In particular, the present invention relates to a circuit metal substrate useful for electronic device circuits that require heat dissipation, voltage resistance, and heat resistance.

【0002】[0002]

【従来の技術】従来、電子機器回路に用いられる回路用
金属基板として、紙フェノール銅張積層板,ガラス銅張
積層板等が知られている。紙フェノール銅張積層板は片
面銅張積層板として,ガラス銅張積層板は両面銅張積層
板あるいは多層銅張積層板として、用途に応じて使用さ
れている。
2. Description of the Related Art Paper phenolic copper-clad laminates, glass-copper-clad laminates and the like have been known as circuit metal substrates used in electronic equipment circuits. The paper phenol copper-clad laminate is used as a single-sided copper-clad laminate, and the glass copper-clad laminate is used as a double-sided copper-clad laminate or a multi-layered copper-clad laminate depending on the application.

【0003】最近では、部品の小型化,軽量化,信頼性
向上、更に表面実装技術が進歩した結果、部品,特にイ
ンバータ等のパワーモジュールからの発熱を放熱するこ
とが信頼性と小型化に対して欠かせない要素となってき
た。この要求を満たす金属基板としては、金属ベースと
導電層の間に介在される絶縁層が、無機充填材を含むエ
ポキシ樹脂を0.05mm〜0.15mmの範囲で一様に塗布する方
式が主流である。
Recently, as a result of miniaturization of components, weight reduction, improvement of reliability, and progress of surface mounting technology, it is necessary to radiate heat generated from components, especially power modules such as inverters, for reliability and miniaturization. Has become an indispensable element. As a metal substrate that meets this requirement, a method in which an insulating layer interposed between a metal base and a conductive layer is uniformly coated with an epoxy resin containing an inorganic filler within a range of 0.05 mm to 0.15 mm is the mainstream. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
金属基板によれば、絶縁層が薄い為、ピンホール等の欠
陥個所を皆無にすることは難しく、かつ樹脂層が熱硬化
に際して生ずる硬化歪の影響を受けて導電層側に反りが
発生する。この影響は回路形成後の部品実装とその信頼
性に大きく影響を受ける。特に、パワーモジュール等か
ら発生する局部的な発熱を同一基板上で放熱すること
は、部分的な熱膨脹の差異を生じ、この歪の助長によ
り、絶縁破壊に至らしめる。そこで、放熱性と耐電圧性
の両機能を兼備えた金属基板が求められていた。
However, according to the conventional metal substrate, since the insulating layer is thin, it is difficult to eliminate defects such as pinholes, and the curing distortion of the resin layer caused by heat curing is eliminated. As a result, the conductive layer is warped. This effect is greatly affected by the component mounting after circuit formation and its reliability. In particular, radiating local heat generated from a power module or the like on the same substrate causes a partial difference in thermal expansion, and this acceleration of the distortion leads to dielectric breakdown. Therefore, there has been a demand for a metal substrate having both heat dissipation and withstand voltage functions.

【0005】本発明は上記事情に鑑みてなされたもの
で、金属ベースと導電層間の絶縁層を同一平面上で熱伝
導率の異なる複数の絶縁体から構成することにより、放
熱性と耐電圧性に優れた回路用金属基板を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and by forming the insulating layer between the metal base and the conductive layers from a plurality of insulators having different thermal conductivities on the same plane, the heat dissipation and the withstand voltage can be improved. It is an object of the present invention to provide an excellent metal substrate for a circuit.

【0006】[0006]

【課題を解決するための手段】耐電圧性を考慮した絶縁
は、絶縁層を厚くするか、あるいは絶縁層中の空隙(気
泡)を除去するかのいずれかである。放熱性を考慮した
絶縁は、絶縁層を薄くするか,あるいは絶縁層中の樹脂
成分に熱伝導性の優れた無機充填材を混合する方法があ
る。
Insulation considering the withstand voltage is either to thicken the insulating layer or to remove voids (air bubbles) in the insulating layer. For insulation considering heat dissipation, there is a method in which the insulating layer is thinned or a resin component in the insulating layer is mixed with an inorganic filler having excellent thermal conductivity.

【0007】ところで、金属ベース上の絶縁層,銅箔を
順次形成した回路基板を考えた場合、例えば、金属ベー
スの材料としてAI(アルミニウム)を用いて、その厚
みを1.0mm、銅箔の厚みを0.035mmとした場合、
絶縁層の厚み(mm)を0.25mm、0.41mm、0.44
mm、0.59mmと順次変化させると、金属基板の熱伝導
率(kcal/m・h・℃)は夫々2.57、1.96、
1.76、1.44と変化する。
When considering a circuit board in which an insulating layer on a metal base and a copper foil are sequentially formed, for example, AI (aluminum) is used as the material of the metal base and the thickness thereof is 1.0 mm. When the thickness is 0.035 mm,
The thickness (mm) of the insulating layer is 0.25mm, 0.41mm, 0.44
mm, 0.59 mm, the thermal conductivity (kcal / m · h · ° C) of the metal substrate is 2.57, 1.96,
It changes to 1.76 and 1.44.

【0008】一方、絶縁層の厚みを0.45mm、銅箔の
厚みを0.035mmとして、(金属ベースの(種類,厚
み(mm))を(銅,1.2 )、(銅,1.5 )、(AI,1.0)、
(AI,1.5)、(AI,2.0)と変化させると、金属基板の熱
伝導率(kcal/m・h・℃)は夫々6.24、6.9
5、1.70、3.37、4.34と変化する。こうし
たデータから、本発明者らは、放熱性を改善するために
は金属ベースが絶縁厚さが特性改善に有効であることを
究明した。
On the other hand, when the thickness of the insulating layer is 0.45 mm and the thickness of the copper foil is 0.035 mm, (type of metal base, thickness (mm)) is (copper, 1.2), (copper, 1.5), ( AI, 1.0),
When changed to (AI, 1.5) and (AI, 2.0), the thermal conductivity (kcal / m · h · ° C) of the metal substrate is 6.24 and 6.9, respectively.
It changes to 5, 1.70, 3.37, 4.34. From such data, the present inventors have determined that the insulating thickness of the metal base is effective for improving the characteristics in order to improve heat dissipation.

【0009】即ち、本願第1の発明は、放熱用金属ベー
スと、この金属ベースの少なくとも片面に絶縁体を介し
て設けられた導電層とを具備する回路用金属基板におい
て、前記絶縁体が第1絶縁層と、この第1絶縁層に近接
して形成されかつ第1の絶縁層より高さが低い第2絶縁
層と、前記第2絶縁層上に前記第1の絶縁層と同一面に
なるように形成された第3絶縁層とからなり、前記第1
絶縁層がガラス繊維不織布に酸化アルミニウム50〜7
0重量部,二酸化硅素1〜10重量部,珪酸マグネシウ
ム1〜10重量部,熱硬化性樹脂20〜50重量部から
なる無機充填材混合樹脂を塗布したものであり、前記第
2絶縁層がガラス不織布に水酸化アルミニウム10〜2
0重量部,硅酸マグネシウム10〜20重量部,二酸化
珪素1〜5重量部,熱硬化性樹脂60〜80重量部から
なる無機充填材混合樹脂を塗布したものであり、前記第
3絶縁層が芳香族ポリアミド繊維不織布に熱硬化性樹脂
を塗布したものであることを特徴とする回路用金属基板
である。
That is, the first invention of the present application provides a circuit metal substrate comprising a heat-dissipating metal base and a conductive layer provided on at least one surface of the metal base via an insulator, wherein the insulator is A first insulating layer, a second insulating layer formed adjacent to the first insulating layer and having a height lower than that of the first insulating layer, and on the second insulating layer on the same surface as the first insulating layer And a third insulating layer formed so that
Insulating layer is glass fiber non-woven fabric with aluminum oxide 50 to 7
An inorganic filler mixed resin consisting of 0 parts by weight, 1 to 10 parts by weight of silicon dioxide, 1 to 10 parts by weight of magnesium silicate, and 20 to 50 parts by weight of a thermosetting resin is applied, and the second insulating layer is glass. Nonwoven fabric with aluminum hydroxide 10-2
0 parts by weight, 10 to 20 parts by weight of magnesium silicate, 1 to 5 parts by weight of silicon dioxide, and 60 to 80 parts by weight of a thermosetting resin are applied as an inorganic filler mixed resin, and the third insulating layer is A metal substrate for a circuit, characterized in that an aromatic polyamide fiber nonwoven fabric is coated with a thermosetting resin.

【0010】本願第2の発明は、放熱用金属ベースと、
この金属ベースの少なくとも片面に絶縁体を介して設け
られた導電層とを具備する回路用金属基板において、前
記絶縁体が第1絶縁層と、この第1絶縁層と同一面とな
るように形成された第2絶縁層と、前記第1・第2絶縁
層の同一面に形成された第3絶縁層とからなり、前記第
1絶縁層がガラス繊維不織布に酸化アルミニウム50〜
70重量部,二酸化硅素1〜10重量部,珪酸マグネシ
ウム1〜10重量部,熱硬化性樹脂20〜50重量部か
らなる無機充填材混合樹脂を塗布したものであり、前記
第2絶縁層がガラス不織布に水酸化アルミニウム10〜
20重量部,硅酸マグネシウム10〜20重量部,二酸
化珪素1〜5重量部,熱硬化性樹脂60〜80重量部か
らなる無機充填材混合樹脂を塗布したものであり、前記
第3絶縁層が、芳香族ポリアミド繊維不織布に熱硬化性
樹脂を塗布したものであることを特徴とする回路用金属
基板である。
A second aspect of the present invention is a metal base for heat dissipation,
In a metal substrate for a circuit, comprising a conductive layer provided on at least one surface of the metal base via an insulator, the insulator is formed on the same surface as the first insulating layer. And a third insulating layer formed on the same surface of the first and second insulating layers, the first insulating layer being a glass fiber non-woven fabric and aluminum oxide 50-
70 parts by weight, 1 to 10 parts by weight of silicon dioxide, 1 to 10 parts by weight of magnesium silicate, and 20 to 50 parts by weight of a thermosetting resin are applied as an inorganic filler mixed resin, and the second insulating layer is glass. Aluminum hydroxide 10 to non-woven fabric
20 parts by weight, 10 to 20 parts by weight of magnesium silicate, 1 to 5 parts by weight of silicon dioxide, and 60 to 80 parts by weight of a thermosetting resin are applied as an inorganic filler mixed resin, and the third insulating layer is A metal substrate for a circuit, comprising a non-woven aromatic polyamide fiber coated with a thermosetting resin.

【0011】本発明において、熱硬化性樹脂の配合割合
を60〜80重量部としたのは、樹脂比率が60重量部
未満の場合十分な耐電圧性が得られず、80重量部を越
えると、十分な放熱性が得られないからである。従っ
て、十分な耐電圧性を必要とする場合、前記耐電圧性絶
縁体中の樹脂の割合を60〜80重量部とする。勿論,
樹脂比率が高ければ耐電圧性はより一層向上するが、本
発明で求める高熱伝導性絶縁体と接する同一平面上に形
成された耐電圧性絶縁層は、絶縁体中の熱硬化性樹脂と
充填剤の比率を、60〜80重量部に保つ。その理由
は、十分な放熱性と耐電圧性を保つ為には、必要不可欠
な条件である。
In the present invention, the mixing ratio of the thermosetting resin is set to 60 to 80 parts by weight because the withstanding voltage cannot be obtained sufficiently when the resin ratio is less than 60 parts by weight and exceeds 80 parts by weight. This is because sufficient heat dissipation cannot be obtained. Therefore, when sufficient withstand voltage is required, the ratio of the resin in the withstand voltage insulator is 60 to 80 parts by weight. Of course,
When the resin ratio is high, the withstand voltage property is further improved, but the withstand voltage insulating layer formed on the same plane in contact with the high thermal conductive insulator required in the present invention is filled with the thermosetting resin in the insulator. The ratio of agents is kept at 60-80 parts by weight. The reason is an indispensable condition for maintaining sufficient heat dissipation and withstand voltage.

【0012】一方、放熱性を必要とするエリアは耐電圧
性をある程度犠牲にして、絶縁体の主成分である樹脂と
充填剤の比率のうち、充填剤の割合を60重量部以上に
保つ。その理由は、充填剤の割合が60重量部未満の場
合、十分な放熱性が得られないからである。従って、十
分な放熱性を望む場合は、前記高熱伝導性絶縁体中の充
填剤の割合を60重量部以上とする。
On the other hand, in an area requiring heat dissipation, the withstanding voltage is sacrificed to some extent, and the proportion of the filler in the proportion of the resin as the main component of the insulator and the filler is kept at 60 parts by weight or more. The reason is that if the proportion of the filler is less than 60 parts by weight, sufficient heat dissipation cannot be obtained. Therefore, when a sufficient heat dissipation property is desired, the proportion of the filler in the high thermal conductive insulator is 60 parts by weight or more.

【0013】本発明において、無機充填材混合樹脂中の
各充填材,即ち酸化アルミニウム,二酸化珪素,珪酸マ
グネシウムを,熱硬化性樹脂を上記のように限定したの
は、下記の理由による。
In the present invention, each filler in the inorganic filler mixed resin, that is, aluminum oxide, silicon dioxide, magnesium silicate, and the thermosetting resin are limited as described above for the following reason.

【0014】(1) 絶縁体の一部を構成する第1絶縁層の
引張弾性率は1100〜1800Kgf/mm2 、高熱伝導率の元
で、十分な剛性と低い膨脹係数,高いガラス転移点(T
g)が必要とされている。ここで、膨脹係数,Tgは、
金属ベースとして1.5mmのアルミニウム板を用い、導
電層として0.035mm の厚さの銅箔を用い、この間に絶縁
体を構成する第1〜第3絶縁層を介在させた金属基板に
ついて測定した結果、第1絶縁層についてはTgは140
℃、膨脹係数(Tg以下の温度)は1.61〜5.9 ×10-5
℃であり、また第2・第3絶縁層の引張弾性率は600 〜
900 Kgf/mm2 で第1絶縁層に比べてTgは100 ℃,線
膨脹係数は1.5 〜3.8 ×10-5/℃で柔軟性に富んで構成
されている。
(1) of the first insulating layer forming a part of the insulator
Tensile elastic modulus is 1100-1800Kgf / mm2 , The source of high thermal conductivity
With sufficient rigidity, low expansion coefficient and high glass transition point (T
g) is needed. Here, the expansion coefficient, Tg is
Using a 1.5 mm aluminum plate as the metal base,
Use 0.035mm thick copper foil as an electric layer, and insulate between them.
On a metal substrate with first to third insulating layers that form the body interposed
As a result of measurement, Tg of the first insulating layer is 140.
C, expansion coefficient (temperature below Tg) is 1.61 to 5.9 × 10-Five/
And the tensile modulus of elasticity of the second and third insulating layers is 600-
900 Kgf / mm2 And Tg is 100 ° C compared to the first insulation layer, wire
Expansion coefficient is 1.5 to 3.8 × 10-FiveFlexible configuration at / ° C
Has been done.

【0015】(2) 上記第1〜第3絶縁層を同一平面上に
構成する場合、第1絶縁層が異常にオーバーヒートされ
たとき、高いTg(140 ℃)と低い線膨脹係数1.61〜5.
9 ×10-5/℃が基板の反り,ねじれを吸収し、第2・第
3絶縁層のガラス転移点100℃,線膨脹係数は3.8 ×10
-5/℃でこれに接する第1絶縁層の線膨脹係数は2.7
7×10−5/℃である。金属ベースのアルミニウムは
2.4 ×10-5/℃で、お互いの材料がバランスに富む点が
本発明の無機充填材を選択した理由である。
(2) When the first to third insulating layers are formed on the same plane, when the first insulating layer is abnormally overheated, high Tg (140 ° C.) and low linear expansion coefficient 1.61 to 5.
9 × 10 -5 / ℃ absorbs the warp and twist of the substrate, the glass transition point of the second and third insulating layers is 100 ℃, the linear expansion coefficient is 3.8 × 10
The linear expansion coefficient of the first insulating layer in contact with it at -5 / ° C is 2.7.
It is 7 * 10 < -5 > / degreeC . Metal based aluminum
The reason for selecting the inorganic filler of the present invention is that the materials are well balanced at 2.4 × 10 −5 / ° C.

【0016】(3) 第1絶縁層に含まれる酸化アルミニウ
ムは、上述したように50〜70重量部に設定すると十分な
熱伝導性が得られる。しかし、酸化アルミニウムは樹脂
に対して硬さが増し、引張弾性率が高く、金属基板の絶
縁体としては単独では充填率を高くすることが困難であ
る。従って、酸化アルミニウム以外に、前記二酸化硅
素,硅酸マグネシウムを夫々1〜10重量部配合して柔軟
性と剛性を兼ね備えるようにした。また、これら無機充
填材の熱硬化性樹脂に対する比率を、最大で80:20を上
限とすることが各無機充填材の特性を生かす上で効果的
である。
(3) The aluminum oxide contained in the first insulating layer has sufficient thermal conductivity when it is set to 50 to 70 parts by weight as described above. However, the hardness of aluminum oxide is higher than that of resin, and the tensile elastic modulus is high, and it is difficult to increase the filling rate by itself as an insulator of a metal substrate. Therefore, in addition to aluminum oxide, 1 to 10 parts by weight of each of the above-mentioned silicon dioxide and magnesium silicate is blended so as to have both flexibility and rigidity. In addition, it is effective to maximize the characteristics of each inorganic filler that the upper limit of the ratio of these inorganic fillers to the thermosetting resin is 80:20.

【0017】(4) 第2・第3絶縁層の場合も、第1絶縁
層の場合と同様に考える。但し、第2絶縁層において、
水酸化アルミニウムは難燃性を、珪酸マグネシウムは柔
軟性を、二酸化珪素は電気特性と剛性を保つために必要
であり、各無機充填材を上記のような配合割合にするこ
とにより、それらの各特性を十分に生かすことができ
る。なお、これら無機充填材の熱硬化性樹脂に対する比
率を、最大で80:20を上限とすることが電気特性と熱伝
導率を維持する上で効果的である。
(4) The same applies to the case of the second and third insulating layers as in the case of the first insulating layer. However, in the second insulating layer,
Aluminum hydroxide is required to maintain flame resistance, magnesium silicate is required to maintain flexibility, and silicon dioxide is required to maintain electrical properties and rigidity. The characteristics can be fully utilized. It should be noted that it is effective to keep the ratio of these inorganic fillers to the thermosetting resin to 80:20 at the maximum in order to maintain the electrical characteristics and the thermal conductivity.

【0018】[0018]

【作用】本発明において、放熱用金属ベースと導電層間
絶縁体は、熱伝導率の異なる複数の絶縁層、具体的には
高熱伝導性絶縁層と耐電圧性絶縁層を適宜組み合わせて
なる。従って、両特性をもつ優れた回路用金属基板を得
ることができる。
In the present invention, the heat dissipation metal base and the conductive interlayer insulator are formed by appropriately combining a plurality of insulating layers having different thermal conductivities, specifically, a high thermal conductive insulating layer and a withstand voltage insulating layer. Therefore, an excellent circuit metal substrate having both characteristics can be obtained.

【0019】[0019]

【実施例】以下、本発明の実施例について説明する。 (実施例1)図1(A),(B)を参照する。ここで、
図1(A)は回路用金属基板の断面図、図1(B)は図
1(A)の絶縁層の平面図を示す。
EXAMPLES Examples of the present invention will be described below. (Embodiment 1) Reference will be made to FIGS. here,
1A is a cross-sectional view of the circuit metal substrate, and FIG. 1B is a plan view of the insulating layer of FIG. 1A.

【0020】図中の11は、厚さ1.5mmで銅製の放熱用
金属ベースである。この金属ベース11上には、厚さ0.
25mmの絶縁体12を介して厚さ0.035mmの銅箔パタ
ーン(導電層)13が設けられている。ここで、前記絶縁
体12は、中央部の厚み0.25mmの第1絶縁層(高熱伝
導性絶縁層)14と、この第1絶縁層14の両サイドに設け
られ,第1絶縁層14より高さの低い第2絶縁層(耐電圧
性絶縁層)15a,15bと、前記第1・第2絶縁層15a,
15b上に夫々形成された厚み0.05mmの第3絶縁層16
a,16bからなる。
Reference numeral 11 in the figure denotes a heat-dissipating metal base made of copper and having a thickness of 1.5 mm. A thickness of 0.
A copper foil pattern (conductive layer) 13 having a thickness of 0.035 mm is provided via a 25 mm insulator 12. Here, the insulator 12 is provided on both sides of the first insulating layer (high thermal conductive insulating layer) 14 having a thickness of 0.25 mm in the central portion, and the first insulating layer 14 Second insulating layers (voltage resistant insulating layers) 15a and 15b having a low height, and the first and second insulating layers 15a and 15a,
Third insulating layer 16 having a thickness of 0.05 mm formed on each of 15b
It consists of a and 16b.

【0021】前記第1絶縁層14は、ガラス繊維不織布
(50g/m2 )に、下記エポキシ樹脂A(熱硬化性樹
脂)100重量部に対して各充填材,即ち酸化アルミニ
ウム200重量部,二酸化硅素15重量部及び珪酸マグ
ネシウム15重量部を混練りした無機充填材混合樹脂
(混合物)を塗布したものである。前記第2絶縁層15
a,15bは、ガラス不織布(50g/m2 )に、下記エ
ポキシ樹脂B(熱硬化性樹脂)100重量部に対して各
充填材,水酸化アルミニウム20重量部,硅酸マグネシ
ウム10重量部及び二酸化硅素10重量部を混練りした
混合物を塗布したものである。前記第3絶縁層16a,16
bは、芳香族ポリアミド繊維不織布にエポキシ樹脂を塗
布したものである。なお、このエポキシ樹脂の代わりに
第1絶縁層14の形成に使用した充填材入りエポキシ樹脂
Bを用いてもよい。ここで、前記混合物の付着量は絶縁
層の厚さによって異なるが、例えば0.25mmの厚さを
確保する為には350〜450g/m2 の塗布が必要で
ある。
The first insulating layer 14 is made of glass fiber non-woven fabric (50 g / m 2 In addition, 100 parts by weight of the following epoxy resin A (thermosetting resin) is mixed with each filler, that is, 200 parts by weight of aluminum oxide, 15 parts by weight of silicon dioxide and 15 parts by weight of magnesium silicate, and an inorganic filler mixed resin. (Mixture) is applied. The second insulating layer 15
a and 15b are non-woven glass (50 g / m 2 ), A mixture prepared by kneading 100 parts by weight of the following epoxy resin B (thermosetting resin) with each filler, 20 parts by weight of aluminum hydroxide, 10 parts by weight of magnesium silicate and 10 parts by weight of silicon dioxide is applied. It is a thing. The third insulating layers 16a, 16
In b, an aromatic polyamide fiber nonwoven fabric is coated with an epoxy resin. Instead of this epoxy resin, the filled epoxy resin B used for forming the first insulating layer 14 may be used. Here, the adhering amount of the mixture varies depending on the thickness of the insulating layer, but in order to secure a thickness of 0.25 mm, for example, 350 to 450 g / m 2 Need to be applied.

【0022】前記エポキシ樹脂Aは耐熱性と熱電導性に
重点をおいている。つまり、エポキシ樹脂Aの一部を構
成するビスマレイミドトリアジン樹脂は、ビスフェノー
ル型エポキシ樹脂に対して20〜60%の範囲がガラス
転位点の上昇,耐熱性の向上に寄与する点で好ましい。
また、水酸化アルミニウム等の各充填材の添加により、
熱膨脹率の低下,放熱性の向上をもたらす。一方、エポ
キシ樹脂Bは、難燃性と電気特性(誘電率,絶縁抵抗,
耐電圧性)が優れ、本発明の同一平面上の異種絶縁層夫
々の機能を十分果たすために必要な特性である。 (エポキシ樹脂A) ビスフェノール型エポキシ樹脂 …100重量部 ビスマレイミドトリアジン樹脂 … 30重量部 ジシアンジアミド(硬化剤) … 6重量部 イミダゾール(促進剤) …0.2重量部 アセトン(溶剤) … 90重量部 メチルエチルケトン(溶剤) …100重量部 (エポキシ樹脂B) 臭素化エポキシ樹脂 …100重量部 ジシアンジアミド … 6重量部 イミダゾール …0.2重量部 アセトン … 90重量部 メチルエチルケトン … 10重量部
The epoxy resin A focuses on heat resistance and thermal conductivity. That is, the bismaleimide triazine resin that constitutes a part of the epoxy resin A is preferably in the range of 20 to 60% with respect to the bisphenol type epoxy resin because it contributes to the increase of the glass transition point and the improvement of heat resistance.
Also, by adding each filler such as aluminum hydroxide,
It lowers the coefficient of thermal expansion and improves heat dissipation. On the other hand, epoxy resin B has flame retardancy and electrical characteristics (dielectric constant, insulation resistance,
This is a characteristic required for excellent withstand voltage) and sufficiently fulfilling the functions of the different insulating layers on the same plane of the present invention. (Epoxy resin A) Bisphenol type epoxy resin: 100 parts by weight Bismaleimide triazine resin: 30 parts by weight Dicyandiamide (curing agent): 6 parts by weight Imidazole (accelerator): 0.2 parts by weight Acetone (solvent): 90 parts by weight Methyl ethyl ketone (Solvent) ... 100 parts by weight (Epoxy resin B) Brominated epoxy resin ... 100 parts by weight Dicyandiamide ... 6 parts by weight Imidazole ... 0.2 parts by weight Acetone ... 90 parts by weight Methyl ethyl ketone ... 10 parts by weight

【0023】事実、図1の金属基板において、第1絶縁
層14の領域、第2絶縁層15a,15b及び第3絶縁層16
a,16bの領域の熱伝導率(Kcal /m・h・℃),絶
縁破壊電圧(KV)は、各々下記表1に示す通りであっ
た。 表1 熱伝導率 絶縁破壊電圧 第1絶縁層の領域 10.1 10.6 第2・第3絶縁層の領域 7.25 13.60 (実施例2)
In fact, in the metal substrate of FIG. 1, the region of the first insulating layer 14, the second insulating layers 15a and 15b and the third insulating layer 16 are formed.
The thermal conductivity (Kcal / m · h · ° C) and the dielectric breakdown voltage (KV) in the regions a and 16b were as shown in Table 1 below. Table 1 Thermal conductivity Dielectric breakdown voltage Region of first insulating layer 10.1 10.6 Region of second and third insulating layers 7.25 13.60 (Example 2)

【0024】図2(A),(B)を参照する。ここで、
図2(A)は回路用金属基板の断面図、図2(B)は図
2(A)の絶縁層の平面図を示す。なお、図1と同部材
は同符号を付して説明を省略する。
Reference will be made to FIGS. 2A and 2B. here,
2A is a cross-sectional view of the circuit metal substrate, and FIG. 2B is a plan view of the insulating layer of FIG. 2A. The same members as those in FIG. 1 are designated by the same reference numerals and the description thereof is omitted.

【0025】図中の21は、厚さ0.30mmの絶縁体12と
銅箔パターン13間に形成された第3絶縁層である。この
第3絶縁層21は、秤量20g/m2 ,厚さは0.05m
mの芳香族ポリアミド繊維不織布に上記エポキシド樹脂
Bを塗布してなる。
Reference numeral 21 in the drawing denotes a third insulating layer formed between the insulator 12 having a thickness of 0.30 mm and the copper foil pattern 13. This third insulating layer 21 has a basis weight of 20 g / m 2. , The thickness is 0.05m
m of aromatic polyamide fiber nonwoven fabric is coated with the epoxide resin B.

【0026】図2の金属基板において、第1絶縁層14の
領域,第2絶縁層15a,15b及び第3絶縁層21の領域の
熱伝導率(Kcal /m・h・℃),絶縁破壊電圧(K
V)は、各々下記表2に示す通りであった。 表2 熱伝導率 絶縁破壊電圧 第1絶縁層の領域 8.90 12.5 第2・第3絶縁層の領域 7.10 14.7 なお、第3絶縁層に使用する絶縁部材には、上記エポキ
シ樹脂Bの他に、エポキシ樹脂Aもしくはこれら樹脂の
充填材入りが使用できる。(実施例3)
In the metal substrate of FIG. 2, the thermal conductivity (Kcal / m · h · ° C.) and the dielectric breakdown voltage of the regions of the first insulating layer 14, the second insulating layers 15a and 15b, and the third insulating layer 21. (K
V) was as shown in Table 2 below. Table 2 Thermal conductivity Dielectric breakdown voltage Region of the first insulating layer 8.90 12.5 Region of the second and third insulating layers 7.10 14.7 Note that the insulating member used for the third insulating layer is the above-mentioned. Besides the epoxy resin B, the epoxy resin A or a filler containing these resins can be used. (Example 3)

【0027】図3(A),(B)を参照する。ここで、
図3(A)は回路用金属基板の断面図、図3(B)は図
3(A)の絶縁層の平面図を示す。なお、図1と同部材
は同符号を付して説明を省略する。
Reference will be made to FIGS. 3 (A) and 3 (B). here,
3A is a cross-sectional view of the circuit metal substrate, and FIG. 3B is a plan view of the insulating layer of FIG. 3A. The same members as those in FIG. 1 are designated by the same reference numerals and the description thereof is omitted.

【0028】実施例3に係る回路用金属基板は、図1の
回路用金属基板と比べて、第1絶縁層14が丸形(図1の
場合は矩形)であり、第2絶縁層15a,15b及び第3絶
縁層16a,16bの形状が第1絶縁層の形状と相対的形状
を持つ点を除いて、全く同様である。
In the circuit metal board according to the third embodiment, the first insulating layer 14 has a round shape (rectangular shape in FIG. 1) and the second insulating layer 15a, as compared with the circuit metal board of FIG. The shapes are the same except that the shapes of 15b and the third insulating layers 16a and 16b have a relative shape to the shape of the first insulating layer.

【0029】図3の金属基板において、第1絶縁層14の
領域,第2絶縁層15a,15b及び第3の絶縁層16a,16
bの領域の熱伝導率(Kcal /m・h・℃),絶縁破壊
電圧(KV)は、各々下記表3に示す通りであった。 表3 熱伝導率 絶縁破壊電圧 第1絶縁層の領域 10.5 10.55 第2・第3絶縁層の領域 7.25 14.0 (実施例4)図4を参照する。
In the metal substrate of FIG. 3, the region of the first insulating layer 14, the second insulating layers 15a and 15b, and the third insulating layers 16a and 16b.
The thermal conductivity (Kcal / m · h · ° C) and the dielectric breakdown voltage (KV) in the region b were as shown in Table 3 below. Table 3 Thermal conductivity Dielectric breakdown voltage Region of first insulating layer 10.5 10.55 Region of second and third insulating layers 7.25 14.0 (Example 4) Reference is made to FIG.

【0030】図中の41は、中央部の第1絶縁層(高熱伝
導性絶縁層)14の下方に位置する金属ベース11の裏面に
形成された凹凸面である。なお、前記第1絶縁層14の両
サイドに設けられた第2絶縁層(耐電圧性絶縁体)15
a,15bの裏面は平滑になっている。図4において、第
1絶縁層14は、第2絶縁層15a,15bに比べてガラス転
移点が5℃以上高く、熱膨脹係数が90%以下の特性を
もつ。
Reference numeral 41 in the figure denotes an uneven surface formed on the back surface of the metal base 11 located below the first insulating layer (high thermal conductive insulating layer) 14 in the central portion. It should be noted that the second insulating layer (voltage resistant insulator) 15 provided on both sides of the first insulating layer 14
The back surfaces of a and 15b are smooth. In FIG. 4, the first insulating layer 14 has a glass transition point higher by 5 ° C. or more and a thermal expansion coefficient of 90% or less than the second insulating layers 15a and 15b.

【0031】実施例4に係る回路用金属基板によれば、
第1絶縁層14の下方に位置する金属ベース11の裏面が凹
凸面41になっているため、金属ベース11の裏面の面積を
大きくとることができ、もって実施例1と比べ放熱性を
一層改善できる。 (実施例5)図5を参照する。
According to the circuit metal substrate of the fourth embodiment,
Since the back surface of the metal base 11 located below the first insulating layer 14 is the uneven surface 41, the area of the back surface of the metal base 11 can be made large, and thus the heat dissipation is further improved as compared with the first embodiment. it can. (Example 5) Referring to FIG.

【0032】この実施例5の絶縁層12のうち、第1絶縁
層14の厚さは0.26mmであり、第2絶縁層15a,15b
の厚さは0.3mmである。なお、第1絶縁層14の厚さ
は、第2絶縁層15a,15bの厚さに比べて、90%以下
とする。また、実施例4の場合と同様、第1絶縁層14の
下方に位置する金属ベース11の裏面には、凹凸面41が形
成されている。
In the insulating layer 12 of the fifth embodiment, the thickness of the first insulating layer 14 is 0.26 mm, and the second insulating layers 15a and 15b.
Has a thickness of 0.3 mm. The thickness of the first insulating layer 14 is 90% or less of the thickness of the second insulating layers 15a and 15b. Further, as in the case of the fourth embodiment, the uneven surface 41 is formed on the back surface of the metal base 11 located below the first insulating layer 14.

【0033】実施例5に係る回路用金属基板によれば、
第1絶縁層14の厚さが第2絶縁層15a,15bの厚さより
薄く形成されているため、実施例4の場合と比べ、放熱
性を一層改善できる。 (比較例)実施例1に比べ、ガラス繊維不織布に充填材
を含まない前記エポキシ樹脂を含浸した絶縁体を用い
た。
According to the circuit metal substrate of the fifth embodiment,
Since the thickness of the first insulating layer 14 is formed thinner than the thickness of the second insulating layers 15a and 15b, the heat dissipation can be further improved as compared with the case of the fourth embodiment. (Comparative Example) As compared with Example 1, an insulator obtained by impregnating a glass fiber non-woven fabric with the epoxy resin containing no filler was used.

【0034】この場合の第1絶縁層の領域の熱伝導率
(Kcal /m・h・℃)は、夫々5.85であった。ま
た、第1絶縁層の領域の絶縁破壊電圧(KV)は、夫々
14.8であった。
In this case, the thermal conductivity (Kcal / m · h · ° C.) in the region of the first insulating layer was 5.85, respectively. The dielectric breakdown voltage (KV) in the region of the first insulating layer was 14.8, respectively.

【0035】上記試験結果により、本願発明の場合、従
来に比べて熱伝導率が高く即ち金属ベースを介しての放
熱性に優れ、かつ耐電圧性が優れていることが確認でき
た。また、上記実施例では、絶縁体の基材としてガラス
繊維不織布と芳香族ポリアミド繊維不織布の夫々に合成
樹脂単独及びその無機充填材を塗布してなる絶縁体を組
み合わせた場合について述べたが、これに限らず、芳香
族ポリアミド繊維不織布を用いても良い。なお、不織布
の代わりに織布でもよい。
From the above test results, it was confirmed that in the case of the present invention, the thermal conductivity is higher than that in the prior art, that is, the heat dissipation through the metal base is excellent and the withstand voltage is excellent. Further, in the above embodiment, the case where the synthetic resin alone and the insulator formed by applying the inorganic filler to the glass fiber non-woven fabric and the aromatic polyamide fiber non-woven fabric are combined as the base material of the insulator is described. Not limited to this, an aromatic polyamide fiber nonwoven fabric may be used. A woven fabric may be used instead of the non-woven fabric.

【0036】[0036]

【発明の効果】以上詳述した如く本発明によれば、金属
ベースと導電層間の絶縁層を同一平面上で熱伝導率の異
なる複数の絶縁体から構成することにより、放熱性と耐
電圧性に優れた回路用金属基板を提供できる。
As described in detail above, according to the present invention, by disposing the insulating layer between the metal base and the conductive layer from a plurality of insulators having different thermal conductivities on the same plane, the heat dissipation and the withstand voltage can be improved. An excellent metal substrate for a circuit can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る3層構造と4層構造を
同一平面上に形成した回路用金属基板の説明図。
FIG. 1 is an explanatory diagram of a metal substrate for circuits in which a three-layer structure and a four-layer structure according to a first embodiment of the present invention are formed on the same plane.

【図2】本発明の実施例2に係る4層構造の回路用金属
基板の説明図。
FIG. 2 is an explanatory diagram of a circuit metal substrate having a four-layer structure according to a second embodiment of the present invention.

【図3】本発明の実施例3に係る絶縁層の態様を変えた
3層構造と4層構造を同一平面上に形成した回路用金属
基板の説明図。
FIG. 3 is an explanatory diagram of a metal substrate for a circuit in which a three-layer structure and a four-layer structure in which the mode of the insulating layer according to the third embodiment of the present invention is changed are formed on the same plane.

【図4】本発明の実施例4に係る凹凸面を設けた回路用
金属基板の断面図。
FIG. 4 is a cross-sectional view of a circuit metal substrate provided with an uneven surface according to a fourth embodiment of the present invention.

【図5】本発明の実施例5に係る凹凸面を設けかつ絶縁
層の厚さを変えた回路路用金属基板の断面図。
FIG. 5 is a cross-sectional view of a circuit path metal substrate according to a fifth embodiment of the present invention, in which an uneven surface is provided and an insulating layer has a different thickness.

【符号の説明】[Explanation of symbols]

11…放熱用金属ベース、12…絶縁体、13…銅箔パター
ン、14,15a,15b,16a,16b,21…絶縁層、41…凹
凸面。
11 ... Heat dissipation metal base, 12 ... Insulator, 13 ... Copper foil pattern, 14, 15a, 15b, 16a, 16b, 21 ... Insulating layer, 41 ... Uneven surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中嶋 幸男 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 今村 一彦 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 唐津 了三 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yukio Nakajima 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. No. 1 in Fuji Electric Co., Ltd. (72) Inventor Ryozo Karatsu 1-1 No. 1 Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Fuji Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 放熱用金属ベースと、この金属ベースの
少なくとも片面に絶縁体を介して設けられた導電層とを
具備する回路用金属基板において、前記絶縁体が第1絶
縁層と、この第1絶縁層に近接して形成されかつ第1の
絶縁層より高さが低い第2絶縁層と、前記第2絶縁層上
に前記第1の絶縁層と同一面になるように形成された第
3絶縁層とからなり、 前記第1絶縁層がガラス繊維不織布に酸化アルミニウム
50〜70重量部,二酸化硅素1〜10重量部,珪酸マ
グネシウム1〜10重量部,熱硬化性樹脂20〜50重
量部からなる無機充填剤混合樹脂を塗布したものであ
り、 前記第2絶縁層が、ガラス不織布に水酸化アルミニウム
10〜20重量部,硅酸マグネシウム10〜20重量
部,二酸化珪素1〜5重量部,熱硬化性樹脂60〜80
重量部からなる無機充填材混合樹脂を塗布したものであ
り、 前記第3絶縁層が、芳香族ポリアミド繊維不織布に熱硬
化性樹脂を塗布したものである、 ことを特徴とする回路用金属基板。
1. A circuit metal substrate comprising a heat-dissipating metal base and a conductive layer provided on at least one surface of the metal base via an insulator, wherein the insulator is a first insulating layer, and A second insulating layer formed adjacent to the first insulating layer and having a height lower than that of the first insulating layer; and a second insulating layer formed on the second insulating layer so as to be flush with the first insulating layer. 3 insulating layers, wherein the first insulating layer is a glass fiber non-woven fabric 50-70 parts by weight aluminum oxide, 1-10 parts by weight silicon dioxide, 1-10 parts by weight magnesium silicate, 20-50 parts by weight thermosetting resin. Wherein the second insulating layer is a glass nonwoven fabric containing 10 to 20 parts by weight of aluminum hydroxide, 10 to 20 parts by weight of magnesium silicate, and 1 to 5 parts by weight of silicon dioxide. Thermosetting resin 60- 0
A metal substrate for a circuit, characterized in that an inorganic filler mixed resin composed of parts by weight is applied, and the third insulating layer is an aromatic polyamide fiber nonwoven fabric applied with a thermosetting resin.
【請求項2】 放熱性をもたせるための領域に対応した
前記放熱用金属ベースの裏面が凹凸面である請求項1記
載の回路用金属基板。
2. The metal substrate for a circuit according to claim 1, wherein the back surface of the heat-dissipating metal base corresponding to the area for providing heat dissipation is an uneven surface.
【請求項3】 放熱性をもたせるための領域に対応した
前記放熱用金属ベースの裏面が凹凸面であり、かつ前記
凹凸面に対応した前記絶縁層の厚みがその他の領域の絶
縁層の厚みに比べて小さい請求項1記載の回路用金属基
板。
3. The back surface of the heat-dissipating metal base corresponding to the area for providing heat dissipation is an uneven surface, and the thickness of the insulating layer corresponding to the uneven surface is the same as the thickness of the insulating layer in other areas. The metal substrate for a circuit according to claim 1, which is smaller than the metal substrate.
【請求項4】 放熱用金属ベースと、この金属ベースの
少なくとも片面に絶縁体を介して設けられた導電層とを
具備する回路用金属基板において、前記絶縁体が第1絶
縁層と、この第1絶縁層と同一面となるように形成され
た第2絶縁層と、前記第1・第2絶縁層の同一面に形成
された第3絶縁層とからなり、 前記第1絶縁層がガラス繊維不織布に酸化アルミニウム
50〜70重量部,二酸化硅素1〜10重量部,珪酸マ
グネシウム1〜10重量部,熱硬化性樹脂20〜50重
量部からなる無機充填材混合樹脂を塗布したものであ
り、 前記第2絶縁層が、ガラス不織布に水酸化アルミニウム
10〜20重量部,硅酸マグネシウム10〜20重量
部,二酸化珪素1〜5重量部,熱硬化性樹脂60〜80
重量部からなる無機充填材混合樹脂を塗布したものであ
り、 前記第3絶縁層が、芳香族ポリアミド繊維不織布に熱硬
化性樹脂を塗布したものである、 ことを特徴とする回路用金属基板。
4. A circuit metal substrate comprising a heat-dissipating metal base and a conductive layer provided on at least one surface of the metal base via an insulator, wherein the insulator comprises a first insulating layer and a first insulating layer. A second insulating layer formed on the same surface as the first insulating layer; and a third insulating layer formed on the same surface of the first and second insulating layers, wherein the first insulating layer is glass fiber A non-woven fabric is coated with an inorganic filler mixed resin comprising 50 to 70 parts by weight of aluminum oxide, 1 to 10 parts by weight of silicon dioxide, 1 to 10 parts by weight of magnesium silicate, and 20 to 50 parts by weight of a thermosetting resin. The second insulating layer is a glass nonwoven fabric containing 10 to 20 parts by weight of aluminum hydroxide, 10 to 20 parts by weight of magnesium silicate, 1 to 5 parts by weight of silicon dioxide, and 60 to 80 thermosetting resins.
A metal substrate for a circuit, characterized in that an inorganic filler mixed resin composed of parts by weight is applied, and the third insulating layer is an aromatic polyamide fiber nonwoven fabric applied with a thermosetting resin.
JP3340923A 1991-05-08 1991-12-24 Metal substrates for circuits Expired - Fee Related JP2733401B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3340923A JP2733401B2 (en) 1991-12-24 1991-12-24 Metal substrates for circuits
GB9209708A GB2255676B (en) 1991-05-08 1992-05-06 Metallic printed board
US07/879,009 US5316831A (en) 1991-05-08 1992-05-06 Metallic printed board
DE4215084A DE4215084A1 (en) 1991-05-08 1992-05-07 METALLIC PRINTPLATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3340923A JP2733401B2 (en) 1991-12-24 1991-12-24 Metal substrates for circuits

Publications (2)

Publication Number Publication Date
JPH0690071A true JPH0690071A (en) 1994-03-29
JP2733401B2 JP2733401B2 (en) 1998-03-30

Family

ID=18341546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3340923A Expired - Fee Related JP2733401B2 (en) 1991-05-08 1991-12-24 Metal substrates for circuits

Country Status (1)

Country Link
JP (1) JP2733401B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103897A (en) * 2002-09-11 2004-04-02 Matsushita Electric Ind Co Ltd Circuit board and its manufacturing method
JP2004515610A (en) * 2000-12-12 2004-05-27 シュリ ディクシャ コーポレイション Lightweight circuit board including conductive constrained core
JP2013256039A (en) * 2012-06-12 2013-12-26 Risho Kogyo Co Ltd Laminated sheet and prepreg used for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162530A (en) * 1986-01-13 1987-07-18 松下電工株式会社 Manufacture of metallic base laminated board
JPS62199437A (en) * 1986-02-28 1987-09-03 昭和電工株式会社 Printed substrate
JPH01102988A (en) * 1987-10-16 1989-04-20 Tokyo Electric Co Ltd Metal substrate for circuit
JPH02129989A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Metal base substrate with compound insulating layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162530A (en) * 1986-01-13 1987-07-18 松下電工株式会社 Manufacture of metallic base laminated board
JPS62199437A (en) * 1986-02-28 1987-09-03 昭和電工株式会社 Printed substrate
JPH01102988A (en) * 1987-10-16 1989-04-20 Tokyo Electric Co Ltd Metal substrate for circuit
JPH02129989A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Metal base substrate with compound insulating layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515610A (en) * 2000-12-12 2004-05-27 シュリ ディクシャ コーポレイション Lightweight circuit board including conductive constrained core
JP2004103897A (en) * 2002-09-11 2004-04-02 Matsushita Electric Ind Co Ltd Circuit board and its manufacturing method
JP2013256039A (en) * 2012-06-12 2013-12-26 Risho Kogyo Co Ltd Laminated sheet and prepreg used for the same

Also Published As

Publication number Publication date
JP2733401B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
JP2756075B2 (en) Metal base substrate and electronic device using the same
US6863962B2 (en) Sheet for a thermal conductive substrate, a method for manufacturing the same, a thermal conductive substrate using the sheet and a method for manufacturing the same
JPH1154939A (en) Wiring board
JPH09234831A (en) Laminate
US7038310B1 (en) Power module with improved heat dissipation
JP3429594B2 (en) Metal substrates for circuits
US3259805A (en) Metallic based printed circuits
JP2003246849A (en) Epoxy resin composition, and prepreg, laminate board and printed wiring board using the same
JP2733401B2 (en) Metal substrates for circuits
JPH11298153A (en) Multilayered printed circuit board
JPH0786704A (en) Wiring board for power circuit and manufacturing method thereof
CN116606604A (en) Adhesive film and adhesive film laminate comprising same
JPH08236886A (en) Metal base copper-clad laminate
JPH11298152A (en) Multilayered printed circuit board
JPH08151462A (en) Production of laminate
JPH0529490A (en) Circuit board for mounting semiconductor
JP6183743B2 (en) Prepreg, metal-clad laminate, printed wiring board
JP3343443B2 (en) Resin composition and prepreg
JP3199599B2 (en) Metal-based multilayer circuit board
JPH07154068A (en) Adhesive sheet and production thereof, metal based wiring board employing adhesive sheet and production thereof
JPH0936553A (en) Metal base multilayer wiring board
TWI799128B (en) Metal clad substrate
JP2708821B2 (en) Electric laminate
JP2001044581A (en) Semiconductor device and manufacture thereof
JPS60171792A (en) Metal base multilayer circuit board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees