JPH0670393B2 - Engine fuel controller - Google Patents
Engine fuel controllerInfo
- Publication number
- JPH0670393B2 JPH0670393B2 JP60182701A JP18270185A JPH0670393B2 JP H0670393 B2 JPH0670393 B2 JP H0670393B2 JP 60182701 A JP60182701 A JP 60182701A JP 18270185 A JP18270185 A JP 18270185A JP H0670393 B2 JPH0670393 B2 JP H0670393B2
- Authority
- JP
- Japan
- Prior art keywords
- engine
- atmospheric pressure
- air flow
- flow sensor
- upper limit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
- F02D41/187—Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
- F02D41/28—Interface circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/72—Devices for measuring pulsing fluid flows
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料を最適空燃比で燃焼させるようにした車
両等におけるエンジンの燃料制御装置に関する。Description: TECHNICAL FIELD The present invention relates to a fuel control device for an engine in a vehicle or the like that burns fuel at an optimum air-fuel ratio.
第5図は従来のエンジンの燃料制御装置を示す概略構成
図であり、図において、1はエンジン、2は吸気マニホ
ールド、3はエンジン1の吸気口近傍に臨むように、上
記吸気マニホールド2に取り付けられた燃料噴射弁、4
は吸気マニホールド3と吸気管5との間に設けられた吸
気圧のサージタンク、6は吸気管5内に設けられた絞り
弁、7は吸気管5の上流端付近に設けられたエアフロー
センサで、例えばリング状のエアダクトの内部に位置す
るように設けられている。このエアフローセンサ7は熱
放散原理にもとづく空気流量測定器で、これが吸入空気
の温度および密度を含む空気重量のデータを出力として
得る。8はエンジン1の回転数を検出する回転センサ9
の出力および上記エアフローセンサ7の出力のそれぞれ
にもとづき、最適の燃料噴射量を演算して決定する制御
装置である。FIG. 5 is a schematic configuration diagram showing a conventional fuel control device for an engine, in which 1 is an engine, 2 is an intake manifold, and 3 is attached to the intake manifold 2 so as to face the vicinity of an intake port of the engine 1. Fuel injection valve, 4
Is a surge tank for intake pressure provided between the intake manifold 3 and the intake pipe 5, 6 is a throttle valve provided in the intake pipe 5, and 7 is an air flow sensor provided near the upstream end of the intake pipe 5. , So as to be located inside a ring-shaped air duct, for example. The air flow sensor 7 is an air flow rate measuring device based on the principle of heat dissipation, which obtains data of air weight including temperature and density of intake air as an output. 8 is a rotation sensor 9 for detecting the rotation speed of the engine 1.
Is a control device that calculates and determines the optimum fuel injection amount based on each of the output of the air flow sensor 7 and the output of the air flow sensor 7.
この制御装置8は第6図に示すコンピュータ構成をな
す。すなわち、81はエアフローセンサ7のアナログ出力
を演算処理に都合のよいデイジタル信号に変換するアナ
ログ・デイジタル変換器(以下A/D変換器という)、82
は回転センサ9のデイジタル出力を取り込むインタフエ
ース回路、83は上記A/D変換器81およびインタフエース
回路82の各出力にもとづいて最適の供給量を演算するマ
イクロプロセツサ(以下CPUという)、84は演算時に用
いられる各種データ(上記各出力を含む)を一時格納す
るメモリ(以下RAMという)、85は演算手順などのデー
タを格納するメモリ(以下ROMという)、86はマイクロ
プロセツサ83が出力する燃料供給量信号を増巾するアン
プである。The control device 8 has a computer configuration shown in FIG. That is, 81 is an analog / digital converter (hereinafter referred to as an A / D converter) that converts the analog output of the air flow sensor 7 into a digital signal that is convenient for arithmetic processing.
Reference numeral 83 is an interface circuit for taking in the digital output of the rotation sensor 9, reference numeral 83 is a microprocessor (hereinafter referred to as CPU) for calculating an optimum supply amount based on the outputs of the A / D converter 81 and the interface circuit 82, 84 Is a memory (hereinafter referred to as RAM) for temporarily storing various data (including the above outputs) used during calculation, 85 is a memory for storing data such as calculation procedure (hereinafter referred to as ROM), and 86 is output from the microprocessor 83. This is an amplifier that widens the fuel supply amount signal to be used.
次に動作について説明する。Next, the operation will be described.
エンジン1を絞り弁6が全開(WOT)近傍以外の運転状
態で運転している状態では、エアフローセンサ7から得
られる出力は、第7図の(a)に示すように正常なリツプ
ルを含んだ波形となり、この波形が囲む面積を計算すれ
ば、真の吸入空気重が得られるので、マイクロプロセツ
サ83で吸入空気量をエンジン回転数で除算した値にもと
づいて燃料噴射弁3の駆動パルス幅を制御すれば、所望
の空燃比が得られる。The output obtained from the air flow sensor 7 includes the normal ripples as shown in (a) of FIG. 7 when the engine 1 is operating in a state other than the vicinity where the throttle valve 6 is fully open (WOT). Since a true intake air weight can be obtained by calculating the area surrounded by this waveform, the drive pulse width of the fuel injection valve 3 is calculated based on the value obtained by dividing the intake air amount by the microprocessor 83 by the engine speed. Is controlled to obtain a desired air-fuel ratio.
しかし4気筒以下のエンジンにおいては、WOT近傍の特
定回転数領域(一般的には、1000〜3000ppm)におい
て、エンジン1からの吹返しによつてエアフローセンサ
7の出力波形は第7図の(b)に示すようになり、斜線で
表した部分が真の吸入空気量に対して余分に加算されて
しまう。However, in an engine with four or less cylinders, the output waveform of the air flow sensor 7 due to the blowback from the engine 1 in a specific rotation speed region (generally 1000 to 3000 ppm) near WOT is shown in FIG. ), The shaded portion is added to the true intake air amount.
これは熱線式のエアフローセンサ7が空気の流れ方向に
かかわらず、吸気量として検出して出力することに起因
している。This is because the hot-wire type air flow sensor 7 detects and outputs the intake air amount regardless of the flow direction of the air.
この吹返しによる検出誤差は第8図に示すごとく、回転
数によつて異なり、通常は吸気管負圧が−50mmHg近傍か
ら生じ、WOT領域では最大50%にも達する。As shown in FIG. 8, the detection error due to this blowback differs depending on the rotational speed, and normally the intake pipe negative pressure occurs from around −50 mmHg and reaches a maximum of 50% in the WOT region.
このような大きな誤差を含む値を用いて燃料供給量を算
出して噴射すると、空燃比は大幅にリツチとなり、燃料
が不安定になつて実用に供し得ないので、従来は第9図
に示すごとく、吹返しによつて誤差を生ずる領域aに対
して、エンジンに対応して決まる最大空気量を上限値
(破線で示した値)として、この上限値をROM85に記憶
しておき、第7図の(b)に示すように、この値を越えた
エアフローセンサ7の検出値を上限値でクリップするこ
とにより、空燃比が過濃になるのを抑制している。When the fuel supply amount is calculated and injected using a value including such a large error, the air-fuel ratio becomes significantly rich, and the fuel becomes unstable and cannot be put to practical use. As described above, for the region a in which an error is caused by blowback, the maximum air amount determined corresponding to the engine is set as the upper limit value (the value shown by the broken line), and the upper limit value is stored in the ROM 85. As shown in (b) of the figure, the detection value of the air flow sensor 7 that exceeds this value is clipped at the upper limit value to prevent the air-fuel ratio from becoming excessively rich.
従来のエンジンの燃料制御装置は以上のように構成され
ているので、吸入空気量の上限値は低地において対象と
なるエンジンの吸入空気量特性に合わせて設定せざるを
得ないため、必然的に低地のおける質量流量の上限値と
なる。Since the conventional engine fuel control device is configured as described above, the upper limit value of the intake air amount must be set in accordance with the intake air amount characteristic of the target engine in the lowland, and therefore it is inevitable. It is the upper limit of the mass flow rate in the lowlands.
しかるに、たとえば、大気圧が低い高地において高負荷
運転されると、空気密度の減少によりエアフローセンサ
7の出力レベルは第7図の(c)に示すように平均値が予
め定めた上限値に達しないため吹き返しを含む出力レベ
ルの平均値がそのまま燃料演算に用いられ、この結果、
空燃比がリツチ側にシフトする。従つて、大気圧に対し
て空燃比は第10図に示すように変動する。つまり、吸入
空気量の上限値を大気圧で決定すると、大気圧が低い高
地と高い低地とでは、空燃比の誤差が大きくなるという
問題点があつた。However, for example, when a high load operation is performed in a high altitude where the atmospheric pressure is low, the average value of the output level of the air flow sensor 7 reaches a predetermined upper limit value as shown in (c) of Fig. 7 due to the decrease of the air density. Therefore, the average value of the output level including blowback is used as it is for fuel calculation.
The air-fuel ratio shifts to the latch side. Therefore, the air-fuel ratio fluctuates with respect to the atmospheric pressure as shown in FIG. That is, if the upper limit value of the intake air amount is determined by the atmospheric pressure, there is a problem that the error of the air-fuel ratio becomes large between the highland where the atmospheric pressure is low and the highland where the atmospheric pressure is high.
この発明は上記のような問題点を解消するためになされ
たもので、大気圧の変化による空燃比の誤差を除去し、
エンジンのあらゆる運転条件においても、安定した燃焼
状態を確保できるエンジンの燃料制御装置を得ることを
目的とする。The present invention has been made to solve the above problems, and eliminates the error of the air-fuel ratio due to the change in atmospheric pressure,
An object of the present invention is to obtain an engine fuel control device that can ensure a stable combustion state under all engine operating conditions.
この発明にかかるエンジンの燃料供給装置は、エンジン
付近の大気圧を検出する大気圧センサと、絞り弁全開時
においてエンジンの回転数にほぼ比例して変化する最大
吸入空気量に対応するように予めエンジンの回転数に応
じて吸入空気量の上限値が設定されている上限値設定手
段と、該上限値を大気圧センサにより検出した大気圧に
よって補正する補正手段と、エアフローセンサの出力が
補正された上限値を越えたとき該補正された上限値をエ
アフローセンサの出力として用いる制限手段とを備えた
ものである。The engine fuel supply device according to the present invention is configured such that an atmospheric pressure sensor that detects the atmospheric pressure near the engine and a maximum intake air amount that changes substantially in proportion to the engine speed when the throttle valve is fully opened are provided in advance. An upper limit value setting unit that sets an upper limit value of the intake air amount according to the engine speed, a correction unit that corrects the upper limit value by the atmospheric pressure detected by the atmospheric pressure sensor, and an output of the air flow sensor is corrected. And a limiter that uses the corrected upper limit value as the output of the air flow sensor when the upper limit value is exceeded.
この発明におけるエンジンの燃料制御装置においては、
大気圧の違いによつて異る空燃比の誤差を、その大気圧
の違いに応じて打ち消し合う補正値データを用いること
によつて修正し、この補正値データを加味したマイクロ
プロセツサの演算出力データにより、燃焼噴射弁による
燃焼噴射量を制御する。このため、この大気圧の変化い
かんに拘わらず、エンジンの吹き返しによる吸入空気量
の測定誤差をなくし、常に安定した一定の空燃比が得ら
れ、混合気の燃焼を安定化し、エンジン出力も安定化す
るように作用する。In the engine fuel control device according to the present invention,
The error in the air-fuel ratio that differs due to the difference in atmospheric pressure is corrected by using the correction value data that cancels out according to the difference in atmospheric pressure, and the arithmetic output of the microprocessor that takes this correction value data into account The data controls the amount of combustion injection by the combustion injection valve. Therefore, regardless of this change in atmospheric pressure, the measurement error of the intake air amount due to the blowback of the engine is eliminated, a stable and constant air-fuel ratio is always obtained, the combustion of the air-fuel mixture is stabilized, and the engine output is also stabilized. Act as you do.
以下、この発明の−実施例を図について説明する。第1
図において、10は車両が搭載したエンジン1周辺の大気
圧を検出する大気圧センサで、例えば大気圧の変化をダ
イアフラム手段等に一体の半導体歪ゲージを組み付けた
ものなどからなる。この大気圧センサ10は既述の制御装
置8に対して検出した大気圧データを入力する。なお、
このほかの第5図に示したものと同一の構成部分には同
一符号を付して、その重複する説明を省略する。Embodiments of the present invention will be described below with reference to the drawings. First
In the figure, reference numeral 10 is an atmospheric pressure sensor for detecting the atmospheric pressure around the engine 1 mounted on the vehicle, and is composed of, for example, a semiconductor strain gauge in which a change in the atmospheric pressure is attached to a diaphragm means or the like. The atmospheric pressure sensor 10 inputs the detected atmospheric pressure data to the control device 8 described above. In addition,
Other than that, the same components as those shown in FIG. 5 are designated by the same reference numerals, and the duplicate description thereof will be omitted.
次に動作について説明する。Next, the operation will be described.
エンジン1が運転されると、エアクリーナおよび吸気管
5を介して吸入空気が吸気マニホールド2内に送り込ま
れ、続いて各気筒ごとの吸気マニホールド2内に設けら
れた燃焼噴射弁3が一定のタイミングで燃料を噴射し、
予じめ設定した空燃比の混合気を気筒の燃焼室に送り込
む。このとき、大気圧が大気圧センサ10により検出さ
れ、その出力が制御装置8内のA/D変換器81に入力さ
れ、ここでデイジタル信号に変換され、さらにマイクロ
プロセツサ83に入力される。When the engine 1 is operated, intake air is sent into the intake manifold 2 via the air cleaner and the intake pipe 5, and then the combustion injection valve 3 provided in the intake manifold 2 for each cylinder is kept at a constant timing. Inject fuel,
The air-fuel mixture with the preset air-fuel ratio is sent to the combustion chamber of the cylinder. At this time, the atmospheric pressure is detected by the atmospheric pressure sensor 10, and its output is input to the A / D converter 81 in the control device 8, where it is converted into a digital signal and further input to the microprocessor 83.
次に、上記のように検出した大気圧データを用いて、マ
イクロプロセツサ83が実行する演算処理を、第4図のフ
ローチヤートに従つて述べる。Next, the arithmetic processing executed by the microprocessor 83 using the atmospheric pressure data detected as described above will be described according to the flow chart of FIG.
まず、エアフローセンサ7は吸入空気量Qaを読み取り
(ステツプ100)、続いて大気圧センサ10からエンジン
1の周辺の大気圧Bpを読み取る(ステツプ101)。次
に、低地にて、エンジン回転数に応じて定めた吸入空気
量のクリツプ値Qu(CLIP)に、予めメモリに設定してお
いた第3図の大気圧補正係数C(BP)を乗算し、クリツ
プ補正値Qcを求める(ステツプ102)。続いて計測した
吸入空気量Qaがクリツプ補正値Qcより大きいか否かを判
定し(ステツプ103)、QaQcならばQ=Qaとし(ステ
ツプ104)、Qa>QcならばQ=Qcとする(ステツプ10
5)。次に、回転センサ9から回転数Neを読み込み(ス
テツプ106)、Q/Neを計算して、燃焼噴射弁3のパルス
幅τのデータとする(ステツプ107)。First, the air flow sensor 7 reads the intake air amount Qa (step 100), and then reads the atmospheric pressure Bp around the engine 1 from the atmospheric pressure sensor 10 (step 101). Next, at low altitude, the clip value Qu (CLIP) of the intake air amount determined according to the engine speed is multiplied by the atmospheric pressure correction coefficient C (BP) of FIG. , Clip correction value Qc is obtained (step 102). Subsequently, it is determined whether or not the measured intake air amount Qa is larger than the clip correction value Qc (step 103), and if QaQc, set Q = Qa (step 104), and if Qa> Qc, set Q = Qc (step). Ten
Five). Next, the rotation speed Ne is read from the rotation sensor 9 (step 106), Q / Ne is calculated and used as the data of the pulse width τ of the combustion injection valve 3 (step 107).
このような演算処理動作によつて、吸入空気量の上限値
が常に大気圧で補正した値となるので、絞り弁6の全開
付近の運転領域における走行地における大気圧の違いに
よる空燃比誤差を無くすることができ、混合気の安定的
燃焼、エンジンの安定運転を実現できるものとなる。By such an arithmetic processing operation, the upper limit value of the intake air amount is always a value corrected by the atmospheric pressure, so that the air-fuel ratio error due to the difference in the atmospheric pressure in the traveling area in the operating region near the full opening of the throttle valve 6 is eliminated. Therefore, stable combustion of the air-fuel mixture and stable operation of the engine can be realized.
以上のように、この発明によれば、エンジン周辺の大気
圧を検出する大気圧センサを設け、エアフローセンサが
吸入空気量の真価を示さなくなつたエンジンの運転領域
において、吸入空気量の上限値を上記大気圧センサの出
力により補正するように構成したので、走行地の高低の
いかんに拘わらず、エンジンの吹き返しによる吸入空気
量の測定誤差をなくし、安定した空燃比を得ることがで
き、安定した混合気の形成および燃焼状態の確保が可能
なものが得られる効果がある。As described above, according to the present invention, the atmospheric pressure sensor for detecting the atmospheric pressure around the engine is provided, and the upper limit value of the intake air amount is set in the operating region of the engine in which the air flow sensor does not show the true value of the intake air amount. Since it is configured to be corrected by the output of the atmospheric pressure sensor, regardless of whether the place is high or low, it is possible to eliminate the measurement error of the intake air amount due to engine blowback and obtain a stable air-fuel ratio. There is an effect that a mixture capable of forming the above-mentioned air-fuel mixture and ensuring the combustion state can be obtained.
第1図はこの発明の−実施例によるエンジンの燃料制御
装置の概略構成図、第2図は制御装置の要部を示すブロ
ツク接続図、第3図はこの発明において用いられる大気
圧補正係数の特性図、第4図はマイクロプロセツサによ
る演算処理を示すフローチヤート、第5図は従来の燃料
供給制御装置の概略構成図、第6図は第5図における制
御装置のブロツク接続図、第7図はエアフローセンサの
出力特性図、第8図はエアフローセンサの検出誤差特性
図、第9図はエアフローセンサ出力のエンジン回転数に
対する特性図、第10図は空燃比誤差の特性図である。 1はエンジン、3は燃料噴射弁、7はエアフローセン
サ、8は制御装置、10は大気圧センサ。FIG. 1 is a schematic configuration diagram of an engine fuel control apparatus according to a first embodiment of the present invention, FIG. 2 is a block connection diagram showing a main portion of the control apparatus, and FIG. 3 is an atmospheric pressure correction coefficient used in the present invention. FIG. 4 is a characteristic diagram, FIG. 4 is a flow chart showing arithmetic processing by a microprocessor, FIG. 5 is a schematic configuration diagram of a conventional fuel supply control device, FIG. 6 is a block connection diagram of the control device in FIG. 5, and FIG. FIG. 8 is an output characteristic diagram of the air flow sensor, FIG. 8 is a detection error characteristic diagram of the air flow sensor, FIG. 9 is a characteristic diagram of the output of the air flow sensor with respect to the engine speed, and FIG. 10 is an air-fuel ratio error characteristic diagram. 1 is an engine, 3 is a fuel injection valve, 7 is an air flow sensor, 8 is a control device, and 10 is an atmospheric pressure sensor.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 幸信 兵庫県姫路市千代田町840番地 三菱電機 株式会社姫路製作所内 (56)参考文献 特開 昭59−190431(JP,A) 特開 昭58−131329(JP,A) 特開 昭55−43292(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukinobu Nishimura 840 Chiyoda-cho, Himeji City, Hyogo Prefecture Mitsubishi Electric Corporation Himeji Plant (56) References JP-A-59-190431 (JP, A) JP-A-58- 131329 (JP, A) JP-A-55-43292 (JP, A)
Claims (3)
って検出したエンジンの吸入空気量および回転センサに
よって検出したエンジン回転数に基づいて、基本燃料供
給量を決定するエンジンの燃料制御装置において、上記
エンジン付近の大気圧を検出する大気圧センサと、絞り
弁全開時においてエンジンの回転数にほぼ比例して変化
する最大吸入空気量に対応するように予めエンジンの回
転数に応じて吸入空気量の上限値が設定されている上限
値設定手段と、該上限値を上記大気圧センサにより検出
した大気圧によって補正する補正手段と、上記エアフロ
ーセンサの出力が上記補正された上限値を越えたとき該
補正された上限値をエアフローセンサの出力として用い
る制限手段とを備えたエンジンの燃料制御装置。1. A fuel control device for an engine for determining a basic fuel supply amount based on an intake air amount of an engine detected by an air flow sensor for detecting a mass flow rate and an engine speed detected by a rotation sensor. The atmospheric pressure sensor that detects the atmospheric pressure of the engine and the upper limit of the intake air amount that corresponds to the engine speed in advance so as to correspond to the maximum intake air amount that changes substantially in proportion to the engine speed when the throttle valve is fully opened. Is set, correction means for correcting the upper limit value by the atmospheric pressure detected by the atmospheric pressure sensor, and the correction is made when the output of the air flow sensor exceeds the corrected upper limit value. And a limiter that uses the upper limit value as the output of the air flow sensor.
サとしたことを特徴とする特許請求の範囲第1項記載の
エンジンの燃料制御装置。2. The fuel control device for an engine according to claim 1, wherein the air flow sensor is a hot wire type air flow sensor.
を特徴とする特許請求の範囲第1項記載のエンジンの燃
料制御装置。3. The fuel control device for an engine according to claim 1, wherein the atmospheric pressure sensor is a semiconductor strain gauge.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60182701A JPH0670393B2 (en) | 1985-08-20 | 1985-08-20 | Engine fuel controller |
KR1019860001787A KR900001446B1 (en) | 1985-08-20 | 1986-03-12 | Fuel control apparatus for engine |
US06/897,334 US4694806A (en) | 1985-08-20 | 1986-08-18 | Fuel control apparatus for engine |
DE8686306469T DE3679499D1 (en) | 1985-08-20 | 1986-08-20 | FUEL CONTROL UNIT FOR ENGINE. |
EP86306469A EP0219942B1 (en) | 1985-08-20 | 1986-08-20 | Fuel control apparatus for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60182701A JPH0670393B2 (en) | 1985-08-20 | 1985-08-20 | Engine fuel controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6241948A JPS6241948A (en) | 1987-02-23 |
JPH0670393B2 true JPH0670393B2 (en) | 1994-09-07 |
Family
ID=16122921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60182701A Expired - Lifetime JPH0670393B2 (en) | 1985-08-20 | 1985-08-20 | Engine fuel controller |
Country Status (5)
Country | Link |
---|---|
US (1) | US4694806A (en) |
EP (1) | EP0219942B1 (en) |
JP (1) | JPH0670393B2 (en) |
KR (1) | KR900001446B1 (en) |
DE (1) | DE3679499D1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62165538A (en) * | 1986-01-17 | 1987-07-22 | Mitsubishi Electric Corp | Fuel supply control device for internal combustion engine |
JPS62265438A (en) * | 1986-05-09 | 1987-11-18 | Mitsubishi Electric Corp | Fuel controlling device for internal combustion engine |
KR900001627B1 (en) * | 1986-05-12 | 1990-03-17 | 미쓰비시전기 주식회사 | Device for controlling the idle r.p.m. for internal combustion engine |
KR900002316B1 (en) * | 1986-05-13 | 1990-04-11 | 미쓰비시전기 주식회사 | Ignition timing control apparatus for internal combustion engine |
JPS6388244A (en) * | 1986-09-30 | 1988-04-19 | Mitsubishi Electric Corp | Air-fuel ratio control device |
US4753204A (en) * | 1986-09-30 | 1988-06-28 | Mitsubishi Denki Kabushiki Kaisha | Air-fuel ratio control system for internal combustion engines |
KR940008272B1 (en) * | 1987-02-18 | 1994-09-09 | 미쯔비시지도오샤고오교오 가부시기가이샤 | Fuel feeding quantity controlling apparatus for internal combusition engine |
JP2536881B2 (en) * | 1987-10-14 | 1996-09-25 | マツダ株式会社 | Fuel injection device for internal combustion engine |
US5029569A (en) * | 1990-09-12 | 1991-07-09 | Ford Motor Company | Method and apparatus for controlling an internal combustion engine |
DE4410789A1 (en) * | 1994-03-28 | 1995-10-05 | Bosch Gmbh Robert | Method for correcting the output signal of an air mass meter |
EP0695928A3 (en) * | 1994-08-02 | 1996-11-27 | Hitachi Ltd | Intake air flow measuring apparatus for internal combustion engine |
DE19846311A1 (en) * | 1998-10-08 | 2000-04-13 | Dolmar Gmbh | Internal combustion engine, especially fast-running 2-stroke engine, has induction pressure sensor for detecting load signal connected to induction path before choke flap in air flow direction |
JP4884782B2 (en) * | 2006-01-18 | 2012-02-29 | 不二ラテックス株式会社 | shock absorber |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3818877A (en) * | 1972-08-24 | 1974-06-25 | Ford Motor Co | Signal generating process for use in engine control |
DE2507917C2 (en) * | 1975-02-24 | 1986-01-02 | Robert Bosch Gmbh, 7000 Stuttgart | Device for regulating the optimal operating behavior of an internal combustion engine |
DE2840793C3 (en) * | 1978-09-20 | 1995-08-03 | Bosch Gmbh Robert | Method and device for determining the amount of air sucked in by an internal combustion engine |
JPS5651050U (en) * | 1979-09-27 | 1981-05-07 | ||
JPS56108909A (en) * | 1980-01-31 | 1981-08-28 | Hitachi Ltd | Air flow rate detector |
JPS58131329A (en) * | 1982-01-29 | 1983-08-05 | Nippon Denso Co Ltd | Fuel injection controlling method |
JPS58174129A (en) * | 1982-04-07 | 1983-10-13 | Toyota Motor Corp | Fuel injection control method of internal-combustion engine |
DE3230829A1 (en) * | 1982-08-19 | 1984-02-23 | Bosch Gmbh Robert | METHOD FOR MEASURING THE FLOW OF A PULSATING MEDIUM WITH BACKFLOW |
JPS59103930A (en) * | 1982-12-07 | 1984-06-15 | Nippon Denso Co Ltd | Control method of internal-combustion engine |
JPS59190431A (en) * | 1983-04-11 | 1984-10-29 | Toyota Motor Corp | Fuel injection quantity control method of internal- combustion engine |
JPS60145438A (en) * | 1983-09-07 | 1985-07-31 | Hitachi Ltd | Fuel controller for internal-combustion engine |
JPS60178952A (en) * | 1984-02-27 | 1985-09-12 | Mitsubishi Electric Corp | Fuel injection controller for internal-combustion engine |
-
1985
- 1985-08-20 JP JP60182701A patent/JPH0670393B2/en not_active Expired - Lifetime
-
1986
- 1986-03-12 KR KR1019860001787A patent/KR900001446B1/en not_active IP Right Cessation
- 1986-08-18 US US06/897,334 patent/US4694806A/en not_active Expired - Lifetime
- 1986-08-20 EP EP86306469A patent/EP0219942B1/en not_active Expired - Lifetime
- 1986-08-20 DE DE8686306469T patent/DE3679499D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
KR870002364A (en) | 1987-03-31 |
US4694806A (en) | 1987-09-22 |
KR900001446B1 (en) | 1990-03-10 |
JPS6241948A (en) | 1987-02-23 |
DE3679499D1 (en) | 1991-07-04 |
EP0219942B1 (en) | 1991-05-29 |
EP0219942A1 (en) | 1987-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0670393B2 (en) | Engine fuel controller | |
JPS6155607B2 (en) | ||
EP0400529B1 (en) | Air-fuel ratio control device for internal combustion engine | |
US5251599A (en) | Internal combustion engine control device having exhaust gas recycle system | |
JPH0670394B2 (en) | Engine fuel controller | |
JPS59103930A (en) | Control method of internal-combustion engine | |
JPS6278449A (en) | Fuel injection controller of internal combustion engine | |
JP3356799B2 (en) | Engine intake air amount detection device | |
JP2550145B2 (en) | Air amount detection device for internal combustion engine | |
JP2825920B2 (en) | Air-fuel ratio control device | |
JPH0480226B2 (en) | ||
JP3599378B2 (en) | Throttle valve control device for internal combustion engine | |
JP3639882B2 (en) | Control device for internal combustion engine | |
JPS6385239A (en) | Fuel injection quantity and ignition timing control method for internal combustion engine | |
JPH02308960A (en) | Exhaust gas recirculation quantity control method for internal combustion engine | |
JPH0526083A (en) | Electronic control fuel injection system | |
JPH02291464A (en) | Intake air amount detection for internal combustion engine | |
JPS6153432A (en) | Method of controlling air-fuel ratio of electronic fuel injection engine for automatic speed change vehicle | |
JPH03141835A (en) | Fuel injection controller | |
JPH0245636A (en) | Air-fuel ratio controller | |
JPH04342844A (en) | Air fuel ratio control device for internal combustion engine | |
JPH06346773A (en) | Air-fuel ratio control device for internal combustion engine | |
JPS6361736A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0475381B2 (en) | ||
JPS63314336A (en) | Acceleration fuel addition controller of electronic control fuel injector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |