Nothing Special   »   [go: up one dir, main page]

JPH0653578B2 - Optical glass element molding method - Google Patents

Optical glass element molding method

Info

Publication number
JPH0653578B2
JPH0653578B2 JP63081557A JP8155788A JPH0653578B2 JP H0653578 B2 JPH0653578 B2 JP H0653578B2 JP 63081557 A JP63081557 A JP 63081557A JP 8155788 A JP8155788 A JP 8155788A JP H0653578 B2 JPH0653578 B2 JP H0653578B2
Authority
JP
Japan
Prior art keywords
optical glass
glass element
glass material
optical
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63081557A
Other languages
Japanese (ja)
Other versions
JPH01252542A (en
Inventor
奈保子 島村
敏明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63081557A priority Critical patent/JPH0653578B2/en
Publication of JPH01252542A publication Critical patent/JPH01252542A/en
Publication of JPH0653578B2 publication Critical patent/JPH0653578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガラス素材をプレスしてなる光学ガラス素子の
成形方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for molding an optical glass element formed by pressing a glass material.

従来の技術 近年、光学ガラスレンズ等の光学ガラス素子は、光学機
器のレンズ構成の簡略化、軽量化及び光学特性の高性能
化を同時に達成するために非球面化の方向にある。この
非球面ガラス素子の製造にあたっては、従来の製造方法
である研磨法では加工および量産化が困難であり、イー
ストマン・コダック・カンパニーから提案されているダ
イレクトプレス成形法(特公昭54−38126号公
報)が有望視されている。
2. Description of the Related Art In recent years, optical glass elements such as optical glass lenses have been aspherical in order to achieve simplification of lens configuration of optical devices, weight reduction, and high performance of optical characteristics at the same time. In manufacturing this aspherical glass element, it is difficult to process and mass-produce by a conventional polishing method, and a direct press molding method proposed by Eastman Kodak Company (Japanese Patent Publication No. 54-38126). Gazette) is considered promising.

発明が解決しようとする課題 上記のガラス素子の製造において、光学ガラス素子の性
能は従来の研磨法による光学ガラス素子のそれに比較し
て優れている必要があり、非常に高い面精度及び面粗度
が要求される。例えば、高精度カメラレンズの場合、面
精度はニュートンリング5本,アス1本以内、面粗度は
0.02μm以下であることが要求される。また光学機
器の小型化に伴なって光学部品を小型化・軽量化するこ
とが望まれており、従来の研磨法ではコンパクトな光学
部品を多量かつ安価に製造することは極めて困難であ
る。そこで、高精度な光学ガラス素子を製造する方法と
して、ダイレクトプレス法が注目されている。ダイレク
トプレス法の中でもとりわけ高精度な光学ガラス素子を
製造するのには、リヒートプレス法が適している。リヒ
ートプレス法とは所望の光学ガラス素子に近い面形状を
有したガラス素材を作り、前記ガラス素材を金型で加
熱,加圧,冷却して,成形した光学ガラス素子を取り出
す方法である。このリヒートプレス法では、ガラス素材
の形状,重量,面品質が重要であり、これらが成形した
光学ガラス素子の特性に大きな影響を及ぼす。ガラス素
材の成形方法としては、ガラス材をカーブジェネレータ
により研削加工し、さらに研磨加工して表面を円滑にす
る方法が一般的である。ところが研磨加工は良好な面精
度に仕上げることができるが、極率半径の小さなガラス
素材を量産性良く加工することが困難であり、コスト高
にもなる。そこでガラス材をカーブジェネレータによっ
て研削加工したガラス素材を弗化水素酸水溶液に浸漬す
る工程と、水洗する工程及び水分を除去する工程とから
なるエッチング処理を施こしてから、前記ガラス素材を
プレスして光学ガラス素子を成形している。しかしなが
らこのような方法で成形された光学ガラス素子の表面に
は、研削加工時の微細な表面欠陥が消滅せずに残るため
に、その光学ガラス素子は光学特性すなわち透過率の低
減,及び外観の表面不良が生じやすくまた成形後ガラス
素子表面へ形成した反射防止膜は密着性,耐久性が劣る
という問題点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the production of the above glass element, the performance of the optical glass element needs to be superior to that of the optical glass element by the conventional polishing method, and the surface precision and surface roughness are very high. Is required. For example, in the case of a high-precision camera lens, it is required that the surface accuracy is 5 Newton rings, 1 ass or less, and the surface roughness is 0.02 μm or less. Further, it is desired to reduce the size and weight of the optical parts as the size of the optical equipment becomes smaller, and it is extremely difficult to manufacture a large amount of compact optical parts at low cost by the conventional polishing method. Therefore, the direct pressing method has been attracting attention as a method for manufacturing a highly accurate optical glass element. Among the direct pressing methods, the reheat pressing method is suitable for producing a highly accurate optical glass element. The reheat press method is a method in which a glass material having a surface shape close to that of a desired optical glass element is produced, and the glass material is heated, pressed and cooled by a mold and the molded optical glass element is taken out. In this reheat press method, the shape, weight and surface quality of the glass material are important, and these have a great influence on the characteristics of the molded optical glass element. As a method of forming a glass material, a method of grinding a glass material with a curve generator and further polishing it to smooth the surface is generally used. However, although the polishing process can be finished with good surface accuracy, it is difficult to process a glass material having a small radius of curvature with high mass productivity, and the cost also increases. Therefore, the glass material ground by a curve generator is immersed in a hydrofluoric acid aqueous solution, followed by an etching process comprising a step of washing with water and a step of removing water, and then the glass material is pressed. To form an optical glass element. However, on the surface of the optical glass element molded by such a method, fine surface defects during grinding remain without disappearing, so that the optical glass element has a reduced optical characteristic, that is, a reduced transmittance, and an appearance. There is a problem that surface defects are likely to occur and the antireflection film formed on the surface of the glass element after molding has poor adhesion and durability.

本発明は上記問題点に鑑み、光の透過率及び表面外観の
向上、さらには前記光学ガラス素子に形成した反射防止
膜の密着性・耐久性に優れた面精度を持つ光学ガラス素
子の成形方法を提供するものである。
In view of the above problems, the present invention is a method for molding an optical glass element having an improved light transmittance and a surface appearance, and further having a surface precision excellent in adhesion and durability of an antireflection film formed on the optical glass element. Is provided.

課題を解決するための手段 本発明は前記ガラス素材にエッチングを施こした後、前
記ガラス素材にイオンビーム処理を施こすことを特徴と
するものである。
Means for Solving the Problems The present invention is characterized in that after the glass material is etched, the glass material is subjected to an ion beam treatment.

作用 前述したように、高精度な光学ガラス素子を多量かつ安
価に製造する方法として、ダイレクトプレス法が注目さ
れている。さらに高精度な光学ガラス素子を製造するた
めにはリヒートプレス法が適していると言われている。
リヒートプレス法で重要なことは、ガラス素材の形状,
重量および面品質の管理であり、特に面品質は光学ガラ
ス素子の光学特性すなわち光の透過率に大きな影響を及
ぼす。
Action As described above, the direct press method has been attracting attention as a method for manufacturing a highly accurate optical glass element in a large amount at low cost. It is said that the reheat press method is suitable for producing a highly accurate optical glass element.
What is important in the reheat press method is the shape of the glass material,
Control of weight and surface quality, and in particular, surface quality has a great influence on optical characteristics of the optical glass element, that is, light transmittance.

本発明は研削加工したままのガラス素材にあらかじめエ
ッチング処理を施こした後、前記ガラス素材を光学ガラ
ス素子にプレス成形する方法を提供するものであり、そ
の結果、光学特性すなわち光の透過率及び表面外観の向
上、さらには反射防止膜の密着性・耐久性に優れたもの
を成形可能にする。
The present invention provides a method of subjecting an as-ground glass material to an etching treatment in advance, and then press-molding the glass material into an optical glass element. As a result, optical characteristics, that is, light transmittance and It improves the appearance of the surface and makes it possible to mold products with excellent adhesion and durability of the antireflection film.

実施例 以下本発明の一実施例の光学ガラス素子の形成方法につ
いて、図面を参照にしながら説明する。
Example A method for forming an optical glass element according to an example of the present invention will be described below with reference to the drawings.

第1図は実施例に使用したガラス素材を示す図であり、
ガラス材質は鉛ガラスSF−8である。ガラス素材の曲
率半径はr1 =2.8mmおよびr2 =3.4mm、全長は、l=
4.3mm、ガラス素材の直径はd=5mmであり両凸形状に
研削加工した。このガラス素材を液温40℃の10%弗
化水素酸に10秒間浸漬した後、蒸留水で3分間洗浄
し、さらに200℃に保った乾燥機で15分間乾燥し
た。このような浸漬工程を繰り返して得たガラス素材に
イオンビーム処理を施こす。
FIG. 1 is a diagram showing a glass material used in Examples,
The glass material is lead glass SF-8. The radius of curvature of the glass material is r 1 = 2.8 mm and r 2 = 3.4 mm, and the total length is l =
The diameter of the glass material was 4.3 mm, and the diameter of the glass material was d = 5 mm. This glass material was immersed in 10% hydrofluoric acid at a liquid temperature of 40 ° C. for 10 seconds, washed with distilled water for 3 minutes, and then dried for 15 minutes in a dryer kept at 200 ° C. Ion beam treatment is applied to the glass material obtained by repeating such an immersion process.

第2図はイオンビーム処理に用いた真空装置の概略図で
あり、20は真空槽、21はエッチング処理後のガラス
素材、22は基板支持ドーム、23はイオンビームガ
ン、24はイオンビーム、25はガス排気口である。
FIG. 2 is a schematic view of a vacuum apparatus used for the ion beam processing. 20 is a vacuum chamber, 21 is a glass material after etching, 22 is a substrate supporting dome, 23 is an ion beam gun, 24 is an ion beam, and 25 is an ion beam. It is a gas exhaust port.

まず、真空槽20内を1×10-5Torrまで排気し、
基板支持ドーム22上のエッチング処理後のガラス素材
21の温度を約300℃に加熱し、そしてイオンビーム
ガン23内に真空槽内4×10-5Torr程度になるよ
うにアルゴン(Ar)ガスを導入し、イオンビームの電
極に1KVの電圧を加えイオンビームを発生させ、エッ
チング処理後のガラス素材21に照射してやる。
First, the vacuum chamber 20 is evacuated to 1 × 10 −5 Torr,
The temperature of the glass material 21 after the etching treatment on the substrate supporting dome 22 is heated to about 300 ° C., and argon (Ar) gas is introduced into the ion beam gun 23 so as to be about 4 × 10 −5 Torr in the vacuum chamber. Then, a voltage of 1 KV is applied to the electrode of the ion beam to generate the ion beam, and the glass material 21 after the etching process is irradiated with the ion beam.

第3図は成形に使用した金型とガラス素材の組み図を示
す。
FIG. 3 shows an assembly diagram of the mold used for molding and the glass material.

まず前記の処理を施こしたガラス素材30を、一方が3.
4mm、他方が6.08mmの曲率半径を有した一対の鏡面加工
した金型31,32の間に供給し、適当な方法でガラス
軟化点近傍の温度まで加熱した後、図示されていない加
圧機構により、31,32の型に圧力を加え、加圧成形
する。33は光学ガラス素子のティルト・ディセンタ
ー,中心厚等を制御する胴型である。変形終了後の冷却
過程において、ガラス歪点以下まで加圧状態を推持し、
あらかじめ設定した温度に達した時加圧の停止を行い、
正確な転写成形を行う。
First, the glass material 30 that has been subjected to the above treatment, one side is 3.
4 mm, the other is supplied between a pair of mirror-finished molds 31 and 32 having a radius of curvature of 6.08 mm, and after being heated to a temperature near the glass softening point by an appropriate method, a pressing mechanism (not shown) Thus, pressure is applied to the molds 31 and 32 to perform pressure molding. Reference numeral 33 is a barrel type for controlling the tilt / decenter, center thickness and the like of the optical glass element. In the cooling process after the completion of deformation, pressurization is maintained below the glass strain point,
Pressurization is stopped when the temperature reaches a preset value,
Perform accurate transfer molding.

比較例 上記本発明の実施例の光学ガラス素子と、イオンビーム
を照射する処理を行なわずに成形を行った光学ガラス素
子との中心波長780nmにおける光の透過率は、イオ
ンビーム照射処理なしでは82%であったが、本発明に
よる平均88%以上あった。(測定数各20回)また光
学ガラス素子の外観表面不良数の減少が認められた。
Comparative Example The optical transmittance at the center wavelength of 780 nm between the optical glass element of the above-mentioned example of the present invention and the optical glass element molded without performing the ion beam irradiation treatment was 82 without the ion beam irradiation treatment. %, But the average was 88% or more according to the present invention. (Measurement number: 20 times) A decrease in the number of appearance surface defects of the optical glass element was also observed.

さらに本発明光学ガラス素子表面に形成した反射防止膜
の密着性・耐久性を比較するために、粘着テープ剥離試
験(温度摂氏80度,相対温度90%の高温・高湿度雰
囲気中に300時間放置した後、粘着テープを光学ガラ
ス素子表面に密着させ引きはがす)を行なったところ従
来例のものは剥離が発生したが本発明によるものは全く
異常がなかった。
Further, in order to compare the adhesion and durability of the antireflection film formed on the surface of the optical glass element of the present invention, an adhesive tape peeling test (temperature: 80 ° C., relative temperature: 90%, left in high temperature / high humidity atmosphere for 300 hours) After that, the adhesive tape was adhered to the surface of the optical glass element and peeled off. As a result, peeling occurred in the conventional example, but there was no abnormality in the case of the present invention.

以上のように、従来例に比べて本発明によるものが、光
学特性すなわち透過率および反射防止膜の密着性・耐久
性に優れているのは明らかであった。
As described above, it is apparent that the optical element according to the present invention is superior to the conventional example in optical characteristics, that is, the transmittance and the adhesion and durability of the antireflection film.

発明の効果 以上の説明から明らかなように、本発明の光学ガラス素
子成形法は、あらかじめエッチング処理を施こしたガラ
ス素材をプレスして、光学ガラス素子を成形する方法で
あって、前記ガラス素材にイオンビームを照射する処理
を施こすことを特徴としているものであり、光学特性す
なわち透過率および表面外観の向上、さらには反射防止
膜の密着性・耐久性に優れた面精度を得ることができ、
その実用上の価値は大なるものがある。
EFFECTS OF THE INVENTION As is clear from the above description, the optical glass element molding method of the present invention is a method of molding an optical glass element by pressing a glass material that has been subjected to an etching treatment in advance. It is characterized in that it is subjected to a treatment of irradiating with an ion beam, and it is possible to improve the optical characteristics, that is, the transmittance and the surface appearance, and to obtain the surface accuracy with excellent adhesion and durability of the antireflection film. You can
Its practical value is enormous.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に用いた両凸形状に研削処理
したガラス素材の図、第2図は本発明の一実施例のイオ
ンビーム処理に用いた真空装置の概略図、第3図は成形
時の金型とガラス素材の組み図である。 20……真空槽、21……ガラス素材(エッチング処理
済)、22……基板支持ドーム、23……イオンビーム
ガン、24……イオンビーム、25……ガス排気口、3
0……ガラス素材(エッチング,イオンビーム処理
済)、31,32……金型、33……胴型。
FIG. 1 is a diagram of a glass material that has been ground into a biconvex shape used in one embodiment of the present invention, and FIG. 2 is a schematic view of a vacuum device used in the ion beam treatment of one embodiment of the present invention. The figure is an assembly drawing of the mold and glass material during molding. 20 ... Vacuum tank, 21 ... Glass material (etched), 22 ... Substrate support dome, 23 ... Ion beam gun, 24 ... Ion beam, 25 ... Gas exhaust port, 3
0 …… Glass material (etched, ion beam treated), 31, 32 …… Mold, 33 …… Cylinder mold.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】あらかじめエッチング処理を施こしたガラ
ス素材をプレスして、光学ガラス素子を成形する方法で
あって、プレス前に前記エッチング処理を施した前記光
学ガラス素材の表面に、イオンビームを照射することに
より、前記光学ガラス素材の面精度を向上させることを
特徴とする光学ガラス素子の成形方法。
1. A method of molding an optical glass element by pressing a glass material that has been subjected to etching treatment in advance, wherein an ion beam is applied to the surface of the optical glass material that has been subjected to the etching treatment before pressing. A method for molding an optical glass element, characterized by improving the surface accuracy of the optical glass material by irradiation.
【請求項2】エッチング処理は、ガラス素材を弗化水素
酸水溶液に浸漬する工程と、水洗する工程及び水分を除
去する工程からなることを特徴とする請求項1記載の光
学ガラス素子の成形方法。
2. The method for molding an optical glass element according to claim 1, wherein the etching treatment comprises a step of immersing the glass material in a hydrofluoric acid aqueous solution, a step of washing with water and a step of removing water. .
【請求項3】イオンビーム処理は、1×10-4Torr
以下の真空中で行われることを特徴とする請求項1記載
の光学ガラス素子の成形方法。
3. The ion beam treatment is 1 × 10 −4 Torr.
The method for molding an optical glass element according to claim 1, wherein the method is performed in a vacuum below.
JP63081557A 1988-04-01 1988-04-01 Optical glass element molding method Expired - Lifetime JPH0653578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63081557A JPH0653578B2 (en) 1988-04-01 1988-04-01 Optical glass element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63081557A JPH0653578B2 (en) 1988-04-01 1988-04-01 Optical glass element molding method

Publications (2)

Publication Number Publication Date
JPH01252542A JPH01252542A (en) 1989-10-09
JPH0653578B2 true JPH0653578B2 (en) 1994-07-20

Family

ID=13749591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63081557A Expired - Lifetime JPH0653578B2 (en) 1988-04-01 1988-04-01 Optical glass element molding method

Country Status (1)

Country Link
JP (1) JPH0653578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9881823B2 (en) 2002-06-19 2018-01-30 Murata Machinery Ltd. Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207727A (en) * 1986-03-07 1987-09-12 Matsushita Electric Ind Co Ltd Production of glass article
JPS62284089A (en) * 1986-05-31 1987-12-09 Fujitsu Ltd Method for processing minute aspherical reflecting surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9881823B2 (en) 2002-06-19 2018-01-30 Murata Machinery Ltd. Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists

Also Published As

Publication number Publication date
JPH01252542A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
KR100272885B1 (en) Method for manufactuaring refklecting element and appatatus therefor
JP2577055B2 (en) Glass mold
JPH0653578B2 (en) Optical glass element molding method
JPH09286625A (en) Formation of release film
JPH0643259B2 (en) Method of forming antireflection film
JPS58216222A (en) Manufacture of contact lens superior in transparency and hydrophilic property
JPH0643260B2 (en) Method of forming antireflection film
JPS6361201A (en) Formation of antireflection film
JPH01102401A (en) Formation of antireflecting film
JPH0659104A (en) Production of aspherical optical element
JPH0543649B2 (en)
JPH0237301A (en) Antireflection film
JP4345123B2 (en) Resin bonded optical element and manufacturing method thereof
JPH01102402A (en) Formation of reflection preventing film
JPH0421606B2 (en)
JPH01166002A (en) Formation of antireflection film
JP2621956B2 (en) Optical element molding method
JP3382415B2 (en) Optical element manufacturing method
JPS62241833A (en) Forming glass raw material and production thereof
JPH0693042B2 (en) Anti-reflection film
JPH05330832A (en) Method for molding calchogenide glass lens
JPH04349149A (en) Method and device for producing optical element
JPH0755839B2 (en) Molding glass material
JPH09159803A (en) Antireflection film
JPH06347620A (en) Production of replica mirror and mold for production