JPH0645694A - Top emission-type vcsel provided with injected substance - Google Patents
Top emission-type vcsel provided with injected substanceInfo
- Publication number
- JPH0645694A JPH0645694A JP5087758A JP8775893A JPH0645694A JP H0645694 A JPH0645694 A JP H0645694A JP 5087758 A JP5087758 A JP 5087758A JP 8775893 A JP8775893 A JP 8775893A JP H0645694 A JPH0645694 A JP H0645694A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- laser
- trench
- active layer
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000126 substance Substances 0.000 title 1
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 238000002310 reflectometry Methods 0.000 claims abstract description 8
- 239000007943 implant Substances 0.000 claims description 35
- 239000012535 impurity Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 10
- 239000002184 metal Substances 0.000 abstract description 10
- 229910052790 beryllium Inorganic materials 0.000 abstract description 4
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 abstract description 4
- 238000009826 distribution Methods 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 2
- 238000002347 injection Methods 0.000 abstract description 2
- 239000007924 injection Substances 0.000 abstract description 2
- 238000010030 laminating Methods 0.000 abstract 4
- 238000003475 lamination Methods 0.000 abstract 1
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000002513 implantation Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 101150117735 sel-10 gene Proteins 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2054—Methods of obtaining the confinement
- H01S5/2059—Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
- H01S5/2063—Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、縦型空洞表面放出レー
ザ(VCSEL)に関する。さらに詳しくは、より高い
電力とより大きな効率とを有する頂部放出型(top emit
ting)VCSELに関する。FIELD OF THE INVENTION This invention relates to vertical cavity surface emitting lasers (VCSELs). More specifically, top emit with higher power and greater efficiency.
ting) VCSEL.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】最近
では、縦型空洞表面放出レーザ(VCSEL)と呼ばれ
る新型のレーザ装置に対する関心が大きくなって来てい
る。VCSEL装置の利点は、装置がより小型であるこ
と、より高い性能を有する可能性を持つこと、およびよ
り生産性が高い可能性があることである。これらの利点
は、一部は、金属有機気相エピタキシ(MOVPE)お
よび分子線エピタキシ(MBE)などのエピタキシャル
付着技術の発展によるものである。2. Description of the Related Art Recently, there has been an increasing interest in a new type of laser device called a vertical cavity surface emitting laser (VCSEL). The advantages of VCSEL devices are that they are smaller, have the potential to have higher performance, and may be more productive. These advantages are due, in part, to the development of epitaxial deposition techniques such as metal organic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE).
【0003】しかし、付着技術のこのような発展があっ
ても、製造中にレーザの動作のモードを制御することお
よびレーザ内の電流の分布を制御することは難しい。一
般にVCSELは、基板上に複数の層を付着させ、その
後VCSELを形成する深さの基板までその層をエッチ
ングすることによりVCSELが作成される。たとえ
ば、1991年7月23日発行の本件と同一の譲受人に
譲渡され、本出願書にも参考として含まれている米国特
許第5,034,092号「Plasma Etching ofSemicon
ductor Substrates」を参照されたい。However, with these advances in deposition technology, it is difficult to control the mode of operation of the laser during manufacture and to control the current distribution within the laser. Generally, a VCSEL is created by depositing multiple layers on a substrate and then etching the layers down to the depth of the substrate that will form the VCSEL. For example, US Pat. No. 5,034,092 “Plasma Etching of Semicon,” which was assigned to the same assignee as the subject matter of July 23, 1991 and is also incorporated herein by reference.
See ductor Substrates ”.
【0004】メサをエッチングしてVCSELを作成す
ることは2つの欠点をもつ。エッチングの過程が、表面
の結晶に損傷を与えて、そのために閾値電流が上がり、
信頼性が低くなることである。メサは屈折率に大きな不
連続性をもつ導波管を形成して、それによりきわめて寸
法の小さい装置を作らずに光学的モードを制御すること
が難しくなり、それが直列抵抗を増大させ、最大出力電
力を減少させる。一般的に、このために、より効率が低
く安定性の小さい装置になる。Etching the mesas to make a VCSEL has two drawbacks. The etching process damages the surface crystals, which increases the threshold current,
It is less reliable. The mesas form a waveguide with a large discontinuity in the index of refraction, which makes it difficult to control the optical modes without making very small devices, which increases series resistance and Reduce output power. In general, this results in less efficient and less stable devices.
【0005】[0005]
【課題を解決するための手段】本発明の目的は、製造が
より簡単な新規の改善された頂部放出型VCSELを提
供することである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a new and improved top emitting VCSEL which is easier to manufacture.
【0006】本発明の別の目的は、より高い出力電力を
生み出し、より高い効率性を有する新規の改善された頂
部放出型VCSELを提供することである。Another object of the present invention is to provide a new and improved top emitting VCSEL that produces higher output power and has higher efficiency.
【0007】能動層の両面に付着された第1および第2
のミラー積層部を含む頂部放出型VCSELを作成する
方法により、上記およびその他の問題は解決され、目的
が実現される。この方法は、第2ミラー積層部に放出領
域を規定する段階と、第2ミラー積層部をエッチングし
て、放出領域を囲むトレンチを形成する段階と、そのト
レンチの深さを充分に延長して、トレンチと能動層との
間のレーザの非レーザ照射体積におけるレーザ照射に対
応するために必要な量よりも反射率を小さくする段階
と、第1および第2ミラー積層部のうちのいずれか1つ
の非レーザ照射体積内に不純物を注入して、注入物が形
成された第1および第2積層部のうちの1つとは異なる
導電型を有する注入物体積を形成する段階と、放出領域
と全体的に軸方向に整合されるレーザ照射体積を規定す
るようにその注入物体積を形成する段階とによって構成
される。First and second layers deposited on both sides of the active layer
The above and other problems are solved and the objectives achieved by a method of making a top-emitting VCSEL that includes a mirror stack of. The method comprises the steps of defining an emission region in the second mirror stack, etching the second mirror stack to form a trench surrounding the emission region, and extending the depth of the trench sufficiently. , A step of reducing the reflectivity below the amount required to accommodate laser irradiation in a non-laser irradiated volume of the laser between the trench and the active layer, and one of the first and second mirror stacks. Implanting impurities into the two non-laser-irradiated volumes to form an implant volume having a conductivity type different than one of the first and second stacks in which the implant was formed; Forming the implant volume to define a laser irradiation volume that is axially aligned.
【0008】さらに、頂部放出型VCSELにより上記
およびその他の問題が解決され、目的が実現される。こ
のVCSELは、対向する主表面をもつ能動領域と、1
つの主表面上の第1ミラー積層部と、もう一方の主表面
上の第2ミラー積層部とを含み、第2ミラー積層部の少
なくとも一部には全体として円形の断面を有するメサ
と、第1および第2ミラー積層部に対して実質的に垂直
の軸とが形成され、このメサはそれと全体的に軸方向に
整合するレーザ照射体積を規定し、さらに第1および第
2ミラー積層部のうちの1つの不純物注入物が注入物が
形成された第1および第2積層部のうちの1つとは異な
る導電型を有する注入物体積を形成して、その注入物体
積は、レーザ照射体積と全体的に軸方向に整合されレー
ザ照射体積と実質的に同延する(coextensive )電流経
路を規定するように形成される。Further, a top-emitting VCSEL solves the above and other problems and achieves the objectives. The VCSEL has an active area with opposing major surfaces and 1
A first mirror stack on one major surface and a second mirror stack on the other major surface, at least a portion of the second mirror stack having a generally circular cross section; An axis that is substantially perpendicular to the first and second mirror stacks is formed, and the mesa defines a laser irradiation volume that is generally axially aligned therewith, and further comprises a first and second mirror stacks. One of the impurity implants forms an implant volume having a conductivity type different from one of the first and second stacks in which the implant is formed, the implant volume being the laser irradiation volume. It is formed to be generally axially aligned and define a current path that is substantially coextensive with the laser irradiation volume.
【0009】[0009]
【実施例】特に図1には、頂部放出型縦型空洞表面放出
レーザ(VCSEL)10の製造の中間構造が断面図で
示されている。レーザ10は、基板12上に形成され、
この基板はこの例ではp型にドーピングされたヒ化ガリ
ウムで作られている。n型にドーピングされたヒ化アル
ミニウム・ガリウム(または異なるアルミニウム・モル
分率をもつヒ化アルミニウム・ガリウム)とヒ化アルミ
ニウムの交互層を付着することにより、レーザ10のた
めの反射装置すなわちミラーの第1積層部14が形成さ
れる。能動層16上に反射装置すなわちミラーの第2積
層部(18)が付着される。第1ミラー積層部14,能
動領域16および第2ミラー積層部18の詳細な構造
は、1991年7月23日に発行され、本件と同一の譲
受人に譲渡され、本出願書にも参考として含まれる米国
特許第5,032,092号「Plasma Etching of Semi
conductor Substrates」に示されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT In particular, FIG. 1 shows an intermediate structure in cross-section in the manufacture of a top emitting vertical cavity surface emitting laser (VCSEL) 10. The laser 10 is formed on the substrate 12,
This substrate is made of p-type doped gallium arsenide in this example. By depositing alternating layers of n-doped aluminum gallium arsenide (or aluminum gallium arsenide with different aluminum mole fractions) and aluminum arsenide, a reflector or mirror for laser 10 The first stacked unit 14 is formed. A second stack (18) of reflectors or mirrors is deposited on the active layer 16. The detailed structure of the first mirror stacking section 14, the active region 16 and the second mirror stacking section 18 was issued on July 23, 1991 and assigned to the same assignee as the present case. Included US Pat. No. 5,032,092 “Plasma Etching of Semi
Conductor Substrates ”.
【0010】第1ミラー積層部14,能動層16および
第2ミラー積層部18が完成したら、この構造をパター
ン化して、1個以上の個々のVCSELを形成しなけれ
ばならない。この特定の実施例においては、パターニン
グは、以下のように実行される。第2ミラー積層部18
の上面には、任意の既知の方法でフォトレジスト材料の
層が単独であるいは酸窒化物(oxynitride)材料と組み
合わせて設けられる。フォトレジスト層が露出され、材
料が除去されて、トレンチ20の位置と寸法とが規定さ
れる。次に、イオン・ミリングまたは上記に示された特
許’092に開示されるエッチング過程によりミラー積
層部18をエッチングすることにより、トレンチ20が
形成される。一般に、トレンチ20は動作領域すなわち
メサ25の周囲を完全に囲み、それを規定する。メサ2
5はこの特定の実施例においては、全体に円形の断面を
有する。Once the first mirror stack 14, active layer 16 and second mirror stack 18 are complete, the structure must be patterned to form one or more individual VCSELs. In this particular embodiment, patterning is performed as follows. Second mirror stacking section 18
A layer of photoresist material, either alone or in combination with an oxynitride material, is provided on the top surface of the substrate in any known manner. The photoresist layer is exposed and the material is removed to define the location and dimensions of trench 20. A trench 20 is then formed by etching the mirror stack 18 by ion milling or the etching process disclosed in the '092 patent shown above. In general, the trench 20 completely surrounds and defines the operating area or mesa 25. Mesa 2
5 has a generally circular cross section in this particular embodiment.
【0011】この特定の実施例においては、トレンチ2
0はミラー積層部18の上面からその内部に、第1ミラ
ー積層部14全体の寸法の約1/2の深さまで延在す
る。この深さは、以下に明らかにされる理由により便宜
なものであるが、トレンチ20は、トレンチ20の底部
と能動層16との間の体積内のミラー積層部18の反射
率を減ずるために充分に深くして、トレンチ20下方に
非レーザ照射体積が発生されるようにしさえすればよ
い。非レーザ照射体積は、メサ25下のレーザ照射体積
を囲み、このレーザ照射体積は実質的にメサ25と同軸
である。少なくともいくつかの用途においては、反射率
が約98%未満まで下がると、レーザ照射は行われな
い。メサ25を持つレーザ10の構造の完全な開示は、
本件と同日に出願され同一の譲受人に譲渡された同時出
願「Patterned Mirror Vertical CavitySurface Emitti
ng Laser (パターン化されたミラー縦型空洞表面放出
レーザ)」になされる。In this particular embodiment, trench 2
0 extends from the upper surface of the mirror laminated portion 18 to the inside thereof to a depth of about ½ of the size of the entire first mirror laminated portion 14. This depth is convenient for reasons that will become apparent below, but the trench 20 reduces the reflectivity of the mirror stack 18 in the volume between the bottom of the trench 20 and the active layer 16. It need only be deep enough to generate a non-laser illuminated volume below the trench 20. The non-laser illuminated volume surrounds the laser illuminated volume below the mesa 25, which is substantially coaxial with the mesa 25. In at least some applications, laser irradiation will not occur once the reflectivity drops below about 98%. A complete disclosure of the structure of laser 10 with mesas 25 is
Simultaneous application “Patterned Mirror Vertical Cavity Surface Emitti” filed on the same day as this case and assigned to the same assignee
ng Laser ”(patterned mirror vertical cavity surface emitting laser).
【0012】トレンチ20を所望の深さまで形成し、ベ
リリウムなどの不純物またはドーピング材料を第2ミラ
ー積層部18内に深く注入し、第2ミラー積層部18の
非レーザ照射体積内に埋込注入物層27を形成する。通
常は、厚いフォトレジストまたは酸窒化シリコン層30
が、トレンチ20をエッチングするためのマスクと、不
純物を注入するためのマスクの両方として用いられる。
不純物は、第2ミラー積層部18の導電型とは異なる導
電型を発生するように選択される。図示された特定の実
施例においては、第2ミラー積層部18はn型導電型を
有し、注入層27はp型導電型を有する。さらにこの特
定の実施例においては、ベリリウムが不純物として用い
られ、最も深い埋込注入物を実現している。ベリリウム
は最も軽い広く用いられる不純物でためである。しか
し、半導体産業でよく利用される任意の既知の注入材料
を注入物27として用いることができる点を理解された
い。また、所望の深さに不純物を注入することが困難で
あるために、トレンチ20は所望の反射率減少を得るた
めに通常必要とされる深さよりも深く形成してもよい。
このように、第2ミラー積層部18内の非レーザ照射体
積内に埋込pnpn構造が形成され、これは反転半導体
接合を示して、そこに電流が流れることを阻止する。A trench 20 is formed to a desired depth, impurities or a doping material such as beryllium are deeply implanted into the second mirror laminated portion 18, and a buried implant is formed in the non-laser-irradiated volume of the second mirror laminated portion 18. Form the layer 27. Typically, a thick photoresist or silicon oxynitride layer 30
Are used as both a mask for etching the trench 20 and a mask for implanting impurities.
The impurities are selected to generate a conductivity type different from that of the second mirror stack 18. In the particular embodiment illustrated, the second mirror stack 18 has n-type conductivity and the injection layer 27 has p-type conductivity. Further, in this particular embodiment, beryllium is used as an impurity to achieve the deepest buried implant. This is because beryllium is the lightest and widely used impurity. However, it should be understood that any known implant material commonly used in the semiconductor industry can be used as implant 27. Also, because of the difficulty in implanting impurities to the desired depth, trench 20 may be formed deeper than would normally be required to obtain the desired reflectance reduction.
Thus, a buried pnpn structure is formed in the non-laser illuminated volume in the second mirror stack 18, which represents an inverted semiconductor junction and prevents current from flowing there.
【0013】注入物層27は、実質的にレーザ10内の
電流の流れを、メサ25と全体的に同軸でその下にある
レーザ照射体積に閉じ込める。またメサ25下の体積は
一般に、トレンチ20により生み出される反射率の低下
のために、レーザ照射が起こるレーザが10の体積を規
定する。電流の分布を所望のレーザ照射体積のみに制御
することにより、無駄になる電流が最小限に抑えられ、
レーザ10の効率が最大になる。さらに、動作領域が大
きいと、閾値電流は増大するが、直列抵抗が小さくなり
出力電力はさらに増加する。トレンチ20の深さを大き
くして所望の深さの注入物層27を得ることは有用であ
るが、注入物層27は、トレンチ20の深さに関係なく
電流の広がりを制御する。The implant layer 27 substantially confines the current flow within the laser 10 to the laser irradiation volume beneath it, generally coaxial with the mesa 25. Also, the volume under the mesa 25 generally defines a volume of 10 lasers at which laser irradiation occurs due to the reduced reflectivity created by the trench 20. By controlling the current distribution to the desired laser irradiation volume only, the wasted current is minimized,
The efficiency of the laser 10 is maximized. Further, when the operating region is large, the threshold current increases, but the series resistance decreases and the output power further increases. Although it is useful to increase the depth of the trench 20 to obtain the desired depth of the implant layer 27, the implant layer 27 controls the current spread regardless of the depth of the trench 20.
【0014】本件の作成方法においては、最低オーダー
のモードのためのモード寸法は、あらかじめ決められて
おり、メサ25の直径はそれに等しく設定されている。
レーザ照射は、メサ25下方でそれと軸方向に整合され
ている体積内でしか起こらないので、トレンチ(または
トレンチ群)20のエッチングのために構造をマスキン
グすることは重要ではない。一般に、トレンチ20の深
さは、能動層16と接触しない程度で、それにより信頼
性が向上される。また、トレンチ20の幅は重要ではな
く、用途と以下の製造段階とに依存して任意の便宜な幅
でよい。In the manufacturing method of the present invention, the mode size for the lowest order mode is predetermined, and the diameter of the mesa 25 is set to be the same.
Masking the structure for etching the trench (or trenches) 20 is not critical, as the laser irradiation only occurs within the volume below and axially aligned with the mesa 25. Generally, the depth of the trench 20 is such that it does not contact the active layer 16, thereby improving reliability. Also, the width of the trench 20 is not critical and may be any convenient width depending on the application and the manufacturing steps below.
【0015】図2では、注入の後でマスク層30が除去
され、Si注入物の任意の層32がレーザ10の上面に
形成され表面の変換を阻止している。次にレーザ10は
アニールされて、注入物を活性化して埋込注入物層27
を形成する。n型金属層34がレーザ10の表面のメサ
25の外側に付着されて、第1電気接触として動作しそ
こに閾値電流を印加する。p型金属層36が、基板12
の裏(下)面に付着されて、第2電気接触として機能
し、閾値電流を印加する。通常、金属層34,36はそ
れぞれニッケル,ゲルマニウム,金およびチタン,プラ
チナ,金で作られる。金属層34,36は、共通のリフ
トオフ過程を用いることにより幾何学的パターンが形成
されるように作成される。他のマスキング構造および方
法を用いてもフォトレジスト,誘電体などの幾何学的パ
ターンを作成することができることを理解されたい。In FIG. 2, the mask layer 30 is removed after implantation and an optional layer 32 of Si implant is formed on the top surface of the laser 10 to prevent surface conversion. The laser 10 is then annealed to activate the implant and fill the buried implant layer 27.
To form. An n-type metal layer 34 is deposited on the surface of the laser 10 outside the mesa 25 and acts as a first electrical contact to apply a threshold current thereto. The p-type metal layer 36 is the substrate 12
Is attached to the back (lower) surface of the to function as a second electrical contact and applies a threshold current. Typically, the metal layers 34, 36 are made of nickel, germanium, gold and titanium, platinum, gold, respectively. The metal layers 34, 36 are made such that a geometric pattern is formed by using a common lift-off process. It should be appreciated that other masking structures and methods can be used to create geometric patterns of photoresist, dielectrics, etc.
【0016】図3は、本発明を組み込む頂部放出型VC
SEL50の別の実施例の断面図である。一般的に、V
CSEL50のミラー積層部と能動部分とは図1のVC
SEL10と同じに構築されるが、異なるのはこれらが
n型基板52上に形成され、注入物層57がこれもn型
材料である下側のすなわち第1ミラー積層部54内に注
入されることである。この実施例においては、注入物層
57にはp型材料が含まれる。第2ミラー積層部58は
p型材料なので、注入物57はpnpn接合を形成し
て、そこに電流が流れることを阻止し、それによって電
流をメサ55の下にありそれと全体的に同軸のレーザ照
射体積に流す。この例から、さまざまな異なる種類の導
電型材料を利用して、VCSELを形成することができ
ることがわかる。唯一の条件は、電流がレーザ照射体積
に流れて、VCSELの非レーザ照射部分に拡散しない
ように注入物層を配置することである。FIG. 3 is a top emission VC incorporating the present invention.
It is sectional drawing of another Example of SEL50. Generally, V
The mirror laminated portion and the active portion of the CSEL 50 are the VC of FIG.
Constructed the same as the SEL 10, except that they are formed on the n-type substrate 52 and an implant layer 57 is implanted in the lower or first mirror stack 54, which is also an n-type material. That is. In this example, the implant layer 57 comprises p-type material. Since the second mirror stack 58 is a p-type material, the implant 57 forms a pnpn junction to prevent current flow therethrough, thereby allowing the current to be below the mesa 55 and generally coaxial therewith. Pour into irradiated volume. From this example, it can be seen that a variety of different types of conductivity type materials can be utilized to form a VCSEL. The only requirement is that the implant layer be positioned so that current does not flow into the laser-irradiated volume and diffuse into the non-laser-irradiated portion of the VCSEL.
【0017】VCSEL50の上部電気接触を形成する
ために、透明金属のp型接触材料をメサ55の上面に付
着させ、第1電気接触を形成する。透明金属として利用
される典型的な金属は、酸化インジウム・スズ(IT
O)である。層60が光学的に透明であるので、光放出
領域(メサ55)上に直接付着することができ、光の放
出を妨げない。第2金属層64は、この実施例ではn型
材料であるが、基板52の裏(下)面に付着されて、第
2電気接触を形成する。この特定の構造の別の利点は、
メサ55が、実線の矢印62により示されるレーザ照射
体積に電流を制限する助けをすることである。メサのエ
ッチングをより深くして、メサの外側に絶縁層を付着す
ると、電流の制限に役立つ。このようにVCSEL50
には、二重の電流制限構造、すなわちメサ55と注入物
層57とが含まれる。To form the top electrical contact of the VCSEL 50, a transparent metal p-type contact material is deposited on the top surface of the mesa 55 to form a first electrical contact. A typical metal used as a transparent metal is indium tin oxide (IT).
O). Since layer 60 is optically transparent, it can be deposited directly on the light emitting area (mesa 55) and does not interfere with light emission. The second metal layer 64, which in this example is an n-type material, is deposited on the back (lower) surface of the substrate 52 to form a second electrical contact. Another advantage of this particular structure is that
The mesas 55 help to limit the current to the laser illuminated volume indicated by the solid arrow 62. Deeper etching of the mesas and deposition of an insulating layer on the outside of the mesas helps to limit the current. In this way VCSEL50
Includes a dual current limiting structure, a mesa 55 and an implant layer 57.
【0018】以上、ミラー・エッチと不純物注入の自己
整合および、事実上自己整合される金属被覆によって製
造が簡単な新規の改善された頂部放出型VCSELが開
示される。さらに、トレンチにより行われる光学モード
制御と、不純物注入により行われる電流分布の制御のた
めに、レーザの電力出力と効率とが最大になる。最後
に、ここでは単独のレーザの作成が論じられているが、
個々のレーザ,レーザのアレイ,レーザの半導体ウェー
ハなどを、開示された方法により容易に製造できる点を
理解されたい。Thus, a novel and improved top-emission VCSEL is disclosed that is simple to manufacture due to the self-alignment of mirror etch and impurity implantation, and the virtually self-aligned metallization. Furthermore, the power output and efficiency of the laser are maximized due to the optical mode control performed by the trench and the current distribution control performed by the impurity implantation. Finally, although the discussion of making a single laser is discussed here,
It should be understood that individual lasers, arrays of lasers, semiconductor wafers of lasers, etc. can be readily manufactured by the disclosed method.
【図1】本発明を組み込む頂部放出型VCSELの中間
の簡単な断面図である。FIG. 1 is a simplified, cross-sectional view of the middle of a top emitting VCSEL incorporating the present invention.
【図2】完成された構造の図1と同様の図である。FIG. 2 is a view similar to FIG. 1 of the completed structure.
【図3】本発明を組み込む頂部放出型VCSELの別の
実施例の断面図である。FIG. 3 is a cross-sectional view of another embodiment of a top emitting VCSEL incorporating the present invention.
10 レーザ 12 基板 14,18 ミラー積層部 20 トレンチ 25 放出領域 27 不純物注入物層 30 マスク層 10 Laser 12 Substrate 14, 18 Mirror Stack 20 Trench 25 Emission Area 27 Impurity Implant Layer 30 Mask Layer
Claims (3)
れた第1(14)および第2(18)ミラー積層部を含
む頂部放出型VCSELの作成方法であって:前記第2
ミラー積層部(18)内に放出領域(25)を規定する
段階;前記第2ミラー積層部(18)をエッチングし
て、前記放出領域(25)を囲むトレンチ(20)を形
成し、前記トレンチ領域(20)と前記能動層(16)
との間のレーザ(10)の非レーザ照射体積内でのレー
ザ照射を行うために必要な量より低く反射率を充分に下
げるために前記トレンチ(20)の深さを延長する段
階;および前記第1(14)および第2(18)ミラー
積層部のいずれか一方の非レーザ照射体積内に不純物
(27,57)を注入して、前記注入物が形成されてい
る前記第1および第2積層部の1つとは異なる導電型を
有する注入物体積(27,57)を形成して、前記放出
領域に全体として軸方向に整合されたレーザ照射体積を
規定するように前記注入体積(27,57)を形成する
段階;によって構成されることを特徴とする方法。1. A method of making a top emitting VCSEL comprising first (14) and second (18) mirror stacks deposited on each side of an active layer (16), the method comprising:
Defining an emission area (25) in the mirror stack (18); etching the second mirror stack (18) to form a trench (20) surrounding the emission area (25), Region (20) and said active layer (16)
Extending the depth of the trench (20) to sufficiently lower the reflectivity below the amount required to effect laser irradiation within the non-laser irradiated volume of the laser (10) between and. Impurities (27, 57) are implanted into the non-laser-irradiated volume of either one of the first (14) and second (18) mirror laminated portions to form the implants. An implant volume (27, 57) having a conductivity type different than one of the stacks is formed to define an implant volume (27, 57) that is generally axially aligned with the emission region. 57) to form 57).
あって:第1および第2の対向する主表面を持つ基板
(12)を設ける段階;前記基板(12)の前記第1主
表面上に第1ミラー積層部(14)を付着する段階;前
記第1ミラー積層部(14)上に能動層(16)を付着
する段階;前記能動層(16)上に第2ミラー積層部
(18)を付着する段階;前記第2ミラー積層部(1
8)内に放出領域(25)を規定する段階;前記第2ミ
ラー積層部(18)をエッチングして、前記放出領域
(25)を囲むトレンチ(20)を形成し、前記トレン
チ領域(20)と前記能動層(16)との間のレーザ
(10)の非レーザ照射体積内でのレーザ照射を行うた
めに必要な量よりも低く反射率を充分に下げるために前
記トレンチ(20)の深さを延長する段階;および前記
第1および第2ミラー積層部のいずれか一方の非レーザ
照射体積内に不純物(27,57)を注入して、前記注
入物が形成されている前記第1および第2積層部の1つ
とは異なる導電型を有する注入物体積を形成して、前記
放出領域(25)に全体として軸方向に整合されたレー
ザ照射体積を規定するように前記注入体積を形成する段
階;によって構成されることを特徴とする方法。2. A method of making a top emitting VCSEL comprising: providing a substrate (12) having first and second opposing major surfaces; on the first major surface of the substrate (12). Depositing a first mirror stack (14); depositing an active layer (16) on the first mirror stack (14); second mirror stack (18) on the active layer (16) Attaching the second mirror stacking portion (1
8) defining an emission region (25) within the second mirror stack (18) to form a trench (20) surrounding the emission region (25), and the trench region (20). The depth of the trench (20) in order to reduce the reflectivity sufficiently below the amount required for laser irradiation within the non-laser irradiated volume of the laser (10) between the active layer (16) and the active layer (16). The length of the first and second mirror laminated portions, and impurities (27, 57) are injected into the non-laser-irradiated volume of either one of the first and second mirror laminated portions to form the first and second implants. Forming an implant volume having a conductivity type different from that of one of the second stacks to form the implant volume to define a generally axially aligned laser irradiation volume in the emitting region (25). Stage; Wherein the.
る主表面をもつ能動層(16);前記能動層の1つの主
表面上の第1ミラー積層部(14);前記能動層(1
6)のもう一方の主表面上の第2ミラー積層部(18)
であって、前記第2ミラー積層部(18)は、前記第2
ミラー積層部(18)の主表面から前記能動層(16)
に向かって延在するトレンチ(20)により規定される
放出領域(25)を有し、前記トレンチ(20)が前記
放出領域(25)を囲み、充分な深さまで延在して、前
記トレンチ(20)と前記能動層(16)との間のレー
ザの非レーザ照射体積内でのレーザ照射を行うために必
要な量よりも低く反射率を下げる第2ミラー積層部(1
8);および前記第1(14)および第2(18)ミラ
ー積層部のいずれか一方の中の不純物注入物(27,5
7)であって、この注入物は、前記注入物(27,5
7)が形成された前記第1(14)および第2(18)
積層部の1つの導電型とは異なる導電型を有する注入物
体積を形成し、この注入物体積は前記放出領域(25)
と全体的に軸方向に整合される電流経路(62)を規定
するように形成される不純物注入物(27,57);に
よって構成されることを特徴とする頂部放出型VCSE
L。3. A top-emission VCSEL comprising: an active layer (16) having opposing major surfaces; a first mirror stack (14) on one major surface of the active layer; the active layer (1).
Second mirror stack (18) on the other major surface of 6)
And the second mirror stacking part (18) is
From the main surface of the mirror stacking part (18) to the active layer (16)
Has an emission region (25) defined by a trench (20) extending toward, the trench (20) surrounding the emission region (25) and extending to a sufficient depth to provide the trench (20). 20) and the second mirror stack (1) which reduces the reflectivity below the amount required for laser irradiation within the non-laser irradiated volume of the laser between said active layer (16).
8); and the impurity implants (27, 5) in one of the first (14) and second (18) mirror stacks.
7), wherein the implant is the implant (27,5)
7) formed with the first (14) and second (18)
Forming an implant volume having a conductivity type different from one conductivity type of the stack, the implant volume being the emission region (25).
And a top-emission VCSE characterized by an impurity implant (27, 57) formed to define a current path (62) generally axially aligned therewith.
L.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/857,877 US5256596A (en) | 1992-03-26 | 1992-03-26 | Top emitting VCSEL with implant |
US857877 | 1992-03-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0645694A true JPH0645694A (en) | 1994-02-18 |
JP3306161B2 JP3306161B2 (en) | 2002-07-24 |
Family
ID=25326923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08775893A Expired - Lifetime JP3306161B2 (en) | 1992-03-26 | 1993-03-24 | Top emission VCSEL with injection |
Country Status (2)
Country | Link |
---|---|
US (1) | US5256596A (en) |
JP (1) | JP3306161B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01132633A (en) * | 1987-09-29 | 1989-05-25 | Phillips Petroleum Co | Production of aromatic sulfide/sulfone polymer |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3244529B2 (en) * | 1992-04-16 | 2002-01-07 | アジレント・テクノロジーズ・インク | Surface-emitting type second harmonic generation device |
US5567646A (en) * | 1992-12-28 | 1996-10-22 | Philips Electronics North America Corporation | Method of making a stripe-geometry II/VI semiconductor gain-guided injection laser structure using ion implantation |
EP0674367B1 (en) * | 1993-02-22 | 1997-12-29 | Motorola, Inc. | Vertical cavity surface emitting laser with lateral index waveguide |
US5337327A (en) * | 1993-02-22 | 1994-08-09 | Motorola, Inc. | VCSEL with lateral index guide |
US5416044A (en) * | 1993-03-12 | 1995-05-16 | Matsushita Electric Industrial Co., Ltd. | Method for producing a surface-emitting laser |
US5397739A (en) * | 1993-07-26 | 1995-03-14 | Sandia Corporation | Method for accurate growth of vertical-cavity surface-emitting lasers |
US5478774A (en) * | 1994-06-15 | 1995-12-26 | Motorola | Method of fabricating patterned-mirror VCSELs using selective growth |
JPH0878776A (en) * | 1994-09-06 | 1996-03-22 | Fuji Xerox Co Ltd | Semiconductor laser device |
US5491712A (en) * | 1994-10-31 | 1996-02-13 | Lin; Hong | Integration of surface emitting laser and photodiode for monitoring power output of surface emitting laser |
GB2295270A (en) * | 1994-11-14 | 1996-05-22 | Sharp Kk | Surface-emitting laser with profiled active region |
US5468656A (en) * | 1994-11-29 | 1995-11-21 | Motorola | Method of making a VCSEL |
US5482891A (en) * | 1995-03-17 | 1996-01-09 | Motorola, Inc. | VCSEL with an intergrated heat sink and method of making |
US5659568A (en) * | 1995-05-23 | 1997-08-19 | Hewlett-Packard Company | Low noise surface emitting laser for multimode optical link applications |
US5594751A (en) * | 1995-06-26 | 1997-01-14 | Optical Concepts, Inc. | Current-apertured vertical cavity laser |
KR970031126A (en) * | 1995-11-13 | 1997-06-26 | 빈센트 비. 인그라시아 | Low resistance p-down top radial ridge vertical. Low resistance p-down top emitting ridge VCSEL and method of fabrication |
US5831295A (en) * | 1995-12-01 | 1998-11-03 | Motorola, Inc. | Current confinement via defect generator and hetero-interface interaction |
KR0178492B1 (en) * | 1995-12-21 | 1999-04-15 | 양승택 | Fabrication method of polarization controlled surface emitting lasers tilted cavity |
US5719892A (en) * | 1996-04-23 | 1998-02-17 | Motorola, Inc. | Hybrid mirror structure for a visible emitting VCSEL |
US5903590A (en) * | 1996-05-20 | 1999-05-11 | Sandia Corporation | Vertical-cavity surface-emitting laser device |
US5764674A (en) * | 1996-06-28 | 1998-06-09 | Honeywell Inc. | Current confinement for a vertical cavity surface emitting laser |
KR100224877B1 (en) * | 1996-07-18 | 1999-10-15 | 윤종용 | Vertical cavity surface emitting laser |
GB9901961D0 (en) * | 1999-01-29 | 1999-03-17 | Univ Sheffield | Optical device and method of manufacture |
US6577658B1 (en) | 1999-09-20 | 2003-06-10 | E20 Corporation, Inc. | Method and apparatus for planar index guided vertical cavity surface emitting lasers |
DE10038235A1 (en) * | 2000-08-04 | 2002-02-21 | Osram Opto Semiconductors Gmbh | Surface emitting laser with side current injection |
DE10105722B4 (en) * | 2001-02-08 | 2006-12-14 | Osram Opto Semiconductors Gmbh | Semiconductor laser with vertical resonator and mode-selective areas |
US6589805B2 (en) | 2001-03-26 | 2003-07-08 | Gazillion Bits, Inc. | Current confinement structure for vertical cavity surface emitting laser |
US6680963B2 (en) | 2001-07-24 | 2004-01-20 | Lux Net Corporation | Vertical-cavity surface emitting laser utilizing a reversed biased diode for improved current confinement |
US6534331B2 (en) | 2001-07-24 | 2003-03-18 | Luxnet Corporation | Method for making a vertical-cavity surface emitting laser with improved current confinement |
US6553053B2 (en) | 2001-07-25 | 2003-04-22 | Luxnet Corporation | Vertical cavity surface emitting laser having improved light output function |
US7026178B2 (en) | 2001-11-13 | 2006-04-11 | Applied Optoelectronics, Inc. | Method for fabricating a VCSEL with ion-implanted current-confinement structure |
US6738409B2 (en) * | 2001-12-28 | 2004-05-18 | Honeywell International Inc. | Current confinement, capacitance reduction and isolation of VCSELs using deep elemental traps |
US6717974B2 (en) * | 2002-04-01 | 2004-04-06 | Lumei Optoelectronics Corporation | Apparatus and method for improving electrical conduction structure of a vertical cavity surface emitting laser |
TW567292B (en) | 2002-07-31 | 2003-12-21 | Benq Corp | Lamp module and back light device having the same |
JP3729263B2 (en) * | 2002-09-25 | 2005-12-21 | セイコーエプソン株式会社 | Surface emitting semiconductor laser and method for manufacturing the same, optical module, and optical transmission device |
EP1496583B1 (en) * | 2003-07-07 | 2016-05-18 | II-VI Laser Enterprise GmbH | A vertical cavity surface emitting laser having improved transverse mode control and a method of forming the same |
US7218660B2 (en) * | 2003-10-27 | 2007-05-15 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Single-mode vertical cavity surface emitting lasers and methods of making the same |
US7564887B2 (en) * | 2004-06-30 | 2009-07-21 | Finisar Corporation | Long wavelength vertical cavity surface emitting lasers |
US7339666B2 (en) * | 2004-09-14 | 2008-03-04 | Hewlett-Packard Development Company, L.P. | Light-amplifying structures and methods for surface-enhanced Raman spectroscopy |
US7307719B2 (en) * | 2004-09-14 | 2007-12-11 | Hewlett-Packard Development Company, L.P. | Wavelength-tunable excitation radiation amplifying structure and method |
US7177021B2 (en) * | 2004-09-14 | 2007-02-13 | Hewlett-Packard Development Company, L.P. | Integrated radiation sources and amplifying structures, and methods of using the same |
US7327774B2 (en) * | 2004-12-17 | 2008-02-05 | Palo Alto Research Center Incorporated | Self-forming microlenses for VCSEL arrays |
US7511808B2 (en) * | 2006-04-27 | 2009-03-31 | Hewlett-Packard Development Company, L.P. | Analyte stages including tunable resonant cavities and Raman signal-enhancing structures |
WO2011142760A1 (en) * | 2010-05-13 | 2011-11-17 | The Regents Of The University Of California | High contrast grating integrated vcsel using ion implantation |
US9070851B2 (en) | 2010-09-24 | 2015-06-30 | Seoul Semiconductor Co., Ltd. | Wafer-level light emitting diode package and method of fabricating the same |
CN205944139U (en) | 2016-03-30 | 2017-02-08 | 首尔伟傲世有限公司 | Ultraviolet ray light -emitting diode spare and contain this emitting diode module |
US11283240B2 (en) * | 2018-01-09 | 2022-03-22 | Oepic Semiconductors, Inc. | Pillar confined backside emitting VCSEL |
TWI826050B (en) * | 2022-10-19 | 2023-12-11 | 華立捷科技股份有限公司 | Surface emitting laser apparatus and method of manufacturing the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2742539B2 (en) * | 1989-06-16 | 1998-04-22 | 科学技術振興事業団 | Surface emitting semiconductor laser |
JP2799328B2 (en) * | 1989-06-16 | 1998-09-17 | 科学技術振興事業団 | Surface emitting semiconductor laser |
US4949350A (en) * | 1989-07-17 | 1990-08-14 | Bell Communications Research, Inc. | Surface emitting semiconductor laser |
US5034958A (en) * | 1990-04-19 | 1991-07-23 | Bell Communications Research, Inc. | Front-surface emitting diode laser |
US5088099A (en) * | 1990-12-20 | 1992-02-11 | At&T Bell Laboratories | Apparatus comprising a laser adapted for emission of single mode radiation having low transverse divergence |
US5115441A (en) * | 1991-01-03 | 1992-05-19 | At&T Bell Laboratories | Vertical cavity surface emmitting lasers with transparent electrodes |
US5132982A (en) * | 1991-05-09 | 1992-07-21 | Bell Communications Research, Inc. | Optically controlled surface-emitting lasers |
US5206871A (en) * | 1991-12-27 | 1993-04-27 | At&T Bell Laboratories | Optical devices with electron-beam evaporated multilayer mirror |
-
1992
- 1992-03-26 US US07/857,877 patent/US5256596A/en not_active Expired - Lifetime
-
1993
- 1993-03-24 JP JP08775893A patent/JP3306161B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01132633A (en) * | 1987-09-29 | 1989-05-25 | Phillips Petroleum Co | Production of aromatic sulfide/sulfone polymer |
Also Published As
Publication number | Publication date |
---|---|
US5256596A (en) | 1993-10-26 |
JP3306161B2 (en) | 2002-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3306161B2 (en) | Top emission VCSEL with injection | |
US5258316A (en) | Patterened mirror vertical cavity surface emitting laser | |
JP3162333B2 (en) | Surface emitting laser and method of manufacturing the same | |
US6222866B1 (en) | Surface emitting semiconductor laser, its producing method and surface emitting semiconductor laser array | |
US11482835B2 (en) | VCSEL device with multiple stacked active regions | |
US5337327A (en) | VCSEL with lateral index guide | |
US3978428A (en) | Buried-heterostructure diode injection laser | |
KR102518449B1 (en) | Indium Phosphide VCSEL with Dielectric DBR | |
JP2001237497A (en) | Passive semiconductor structure and manufacturing method therefor | |
JPH07507183A (en) | Vertical cavity surface emitting laser with internal cavity structure | |
JPH09186400A (en) | Fabrication of surface emission semiconductor laser | |
TW200803091A (en) | Diode laser device | |
JP2710171B2 (en) | Surface input / output photoelectric fusion device | |
KR100381984B1 (en) | Method of manufacturing patterned mirrors for vertical common surface emitting lasers (VCSEL) and vertical common surface emitting lasers (VCSELs) | |
US20070153863A1 (en) | Surface-emitting type semiconductor laser and method for manufacturing the same | |
JP3700307B2 (en) | Lateral current injection type surface emitting semiconductor laser device and method of manufacturing semiconductor laser array | |
JPH09237937A (en) | Low-resistance vcsel with p-type lower part and upper part as luminous ridge and manufacture thereof | |
CN113872046B (en) | VCSEL device with multiple stacked active regions | |
US6829282B2 (en) | Vertical resonator laser diode containing coplanar electrical connecting contacts | |
AU2021103713B4 (en) | Indium-phosphide VCSEL with dielectric DBR | |
US20050135448A1 (en) | Densely-packed light emitters with layered semiconductor structure and methods of making the light emitters | |
US6621844B1 (en) | Buried oxide photonic device with large contact and precise aperture | |
EP0674367B1 (en) | Vertical cavity surface emitting laser with lateral index waveguide | |
EP1564855A2 (en) | Surface emitting laser devices and method of manufacture | |
JPH0284785A (en) | Semiconductor light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090510 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090510 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100510 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110510 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110510 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120510 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120510 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130510 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130510 Year of fee payment: 11 |