Nothing Special   »   [go: up one dir, main page]

JPH06296869A - Catalyst for exhaust gas purification - Google Patents

Catalyst for exhaust gas purification

Info

Publication number
JPH06296869A
JPH06296869A JP5086270A JP8627093A JPH06296869A JP H06296869 A JPH06296869 A JP H06296869A JP 5086270 A JP5086270 A JP 5086270A JP 8627093 A JP8627093 A JP 8627093A JP H06296869 A JPH06296869 A JP H06296869A
Authority
JP
Japan
Prior art keywords
catalyst
zirconium
powder
mol
cerium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5086270A
Other languages
Japanese (ja)
Inventor
Katsuo Suga
克雄 菅
Toru Sekiba
徹 関場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5086270A priority Critical patent/JPH06296869A/en
Publication of JPH06296869A publication Critical patent/JPH06296869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance the purification performance of the catalyst for purification of an exhaust gas, which is discharged from an internal combustion engine of an automobile, including palladium as a catalytic component. CONSTITUTION:The subject catalyst for exhaust gas purification is of a monolithic structure with a catalytic component-carrying layer which contains at least, at least, palladium as a precious metal, and activated alumina powder and cerium oxide powder as catalytic components. In addition, the cerium oxide contains, at least, one kinds selected from the group of iron, cobalt and nickel, and zirconium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車などの内燃機関
から排出される排ガス中の炭化水素(HC)、一酸化炭
素(CO)および窒素酸化物(NOx )を浄化する排ガ
ス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NO x ) in exhaust gas discharged from internal combustion engines such as automobiles. Regarding

【0002】[0002]

【従来の技術】従来の排ガス浄化用触媒としては、触媒
成分として、白金(Pt)、パラジウム(Pd)、ロジ
ウム(Rh)等の貴金属を組合せ、これら貴金属と活性
アルミナ、酸化セリウム等とを含み、炭化水素(H
C)、一酸化炭素(CO)及び窒素酸化物(NOx )を
一度に除去する3元触媒が多用されてきた。
2. Description of the Related Art A conventional exhaust gas purifying catalyst is a combination of noble metals such as platinum (Pt), palladium (Pd) and rhodium (Rh) as a catalyst component, and these noble metals and activated alumina, cerium oxide and the like are contained. , Hydrocarbon (H
A three-way catalyst that removes C), carbon monoxide (CO), and nitrogen oxides (NO x ) at once has been widely used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
貴金属のうち特にロジウムは資源的に豊富でなく、価格
も高価である。このため排ガス浄化を目的とする三元触
媒としてロジウムを用いない触媒、特にパラジウムのみ
で充分な浄化能力を有する触媒の開発が望まれている。
However, among these precious metals, rhodium is not particularly abundant in terms of resources and the price is expensive. Therefore, there is a demand for the development of a catalyst that does not use rhodium as a three-way catalyst for the purpose of purifying exhaust gas, particularly a catalyst having a sufficient purifying ability only with palladium.

【0004】ところがパラジウムを単独で使用する場
合、排ガスが還元雰囲気となった場合の浄化能力が不十
分であるという問題点があった。これは炭化水素の浄化
に対し酸素濃度が十分でない還元雰囲気では、炭化水素
の一部が浄化されずに残り、残った炭化水素がパラジウ
ム上に強吸着して活性が低下あるいは活性点が減少し、
その結果浄化性能が低下するためと考えられている。
However, when palladium is used alone, there is a problem that the purification capacity is insufficient when the exhaust gas is in a reducing atmosphere. This is because in a reducing atmosphere where the oxygen concentration is insufficient for purification of hydrocarbons, some of the hydrocarbons remain unpurified, and the remaining hydrocarbons are strongly adsorbed on the palladium and the activity decreases or the active sites decrease. ,
As a result, it is considered that the purification performance decreases.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記問題点
を解決すべく鋭意研究した結果、触媒中に鉄、コバル
ト、ニッケルといった鉄族金属とジルコニウムとセリウ
ムとが共存した場合に、還元雰囲気でのパラジウムの触
媒活性が向上することを見出し、本発明を達成するに至
った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that when an iron group metal such as iron, cobalt, or nickel, zirconium, and cerium coexist in the catalyst, reduction is achieved. The inventors have found that the catalytic activity of palladium in the atmosphere is improved, and have accomplished the present invention.

【0006】すなわち本発明の排ガス浄化用触媒は、触
媒活性成分として貴金属のうち少なくともパラジウムを
含み、さらに鉄、コバルトおよびニッケルよりなる群か
ら選ばれた少なくとも一種とジルコニウムとを含有した
セリウム酸化物粉末を含むことを特徴とする。
That is, the exhaust gas-purifying catalyst of the present invention contains a cerium oxide powder containing zirconium and at least one palladium selected from the group consisting of iron, cobalt and nickel as a catalytically active component. It is characterized by including.

【0007】本発明は、鉄、コバルトおよびニッケルよ
りなる群から選ばれた少なくとも一種とジルコニウムと
セリウムとが密に接することに特徴がある。これらが密
に接することにより浄化性能向上効果が得られ、目的に
合致したものとなる。
The present invention is characterized in that at least one selected from the group consisting of iron, cobalt and nickel is in close contact with zirconium and cerium. When these are in close contact with each other, the purification performance improving effect can be obtained, which is suitable for the purpose.

【0008】以下に本発明の触媒の製造方法を述べる。The method for producing the catalyst of the present invention will be described below.

【0009】本発明における鉄、コバルトおよびニッケ
ルよりなる群から選ばれた少なくとも一種とジルコニウ
ムとを含有したセリウム酸化物の製造方法としては、例
えば鉄、コバルトおよびニッケルのうち少なくとも一種
とジルコニウムとの塩を含む溶液を酸化セリウムに含浸
担持し、乾燥、焼成する方法がある。
The method for producing a cerium oxide containing zirconium and at least one selected from the group consisting of iron, cobalt and nickel in the present invention is, for example, a salt of at least one of iron, cobalt and nickel and zirconium. There is a method in which a solution containing is impregnated and supported on cerium oxide, and dried and baked.

【0010】また別の方法としては、あらかじめセリウ
ムとジルコニウムの塩を含む酸性水溶液にアンモニア、
炭酸アンモニウム、炭酸ナトリウム、水酸化ナトリウム
等のアルカリ水溶液を加えて沈澱生成反応を行なうこと
により沈澱物を得、この沈澱物あるいはこの沈澱物を一
旦焼成したものに鉄、コバルトおよびニッケルの少なく
とも一種の塩を含む溶液を含浸担持し、乾燥、焼成する
方法がある。
As another method, ammonia is previously added to an acidic aqueous solution containing salts of cerium and zirconium.
A precipitate is obtained by adding an alkaline aqueous solution of ammonium carbonate, sodium carbonate, sodium hydroxide or the like to carry out a precipitation forming reaction. This precipitate or a product obtained by once calcining the precipitate is used for at least one of iron, cobalt and nickel. There is a method of impregnating and supporting a solution containing a salt, drying and firing.

【0011】また別の方法としては、上記と同様の方法
でそれぞれ別々に得たセリウム沈澱物と、ジルコニウム
沈澱物と、鉄、コバルトおよびニッケルのうち少なくと
も一種を含む沈澱物とを混合し、乾燥、焼成する方法が
ある。
As another method, a cerium precipitate, a zirconium precipitate, and a precipitate containing at least one of iron, cobalt and nickel obtained separately by the same method as above are mixed and dried. , There is a method of firing.

【0012】上記酸化物粉末を用いた本発明の触媒の製
造方法としては、例えば活性アルミナ粉末と、該酸化物
粉末とを湿式にて粉砕、混合して水溶性スラリーを調製
し、セラミック製または金属製のモノリス担体にコート
し、乾燥、焼成後さらにパラジウムを含む水溶液に浸漬
し、再び乾燥、焼成して得る方法がある。
As a method for producing the catalyst of the present invention using the above-mentioned oxide powder, for example, activated alumina powder and the oxide powder are pulverized and mixed by a wet method to prepare a water-soluble slurry. There is a method in which a monolithic carrier made of metal is coated, dried, calcined, further immersed in an aqueous solution containing palladium, and dried and calcined again.

【0013】また別の触媒の製造方法としては、予めパ
ラジウムを担持したアルミナ粉末と該酸化物粉末とを湿
式にて混合して水溶性スラリーを調製し、セラミックま
たは金属製のモノリス担体にコートし、乾燥、焼成する
方法がある。
As another method for producing the catalyst, an alumina powder carrying palladium in advance and the oxide powder are wet mixed to prepare a water-soluble slurry, which is coated on a ceramic or metal monolith carrier. There is a method of drying, baking.

【0014】また本発明の触媒は、還元雰囲気での活性
をさらに向上させるために、リチウム、ナトリウム、カ
リウム、セシウム、ストロンチウム、バリウム等のアル
カリ金属およびアルカリ土類金属からなる群から選ばれ
た少なくとも一種をさらに含んでもよい。これは、一般
にアルカリ金属、アルカリ土類金属が炭化水素の吸着緩
和能を有するとして知られていることによる。これらの
添加方法としては、例えば上記金属の酸化物、水酸化
物、硝酸塩、炭酸塩等の化合物を、ウオッシュコート成
分を含むスラリーに同時に添加し混合して、モノリス担
体にコートする方法がある。また別の製造方法として
は、例えばウオッシュコート成分粉末のいずれかに、あ
らかじめ上記金属の塩を含む水溶液を含浸担持して添加
する方法がある。また別の製造方法としては、例えばウ
オッシュコート成分をモノリス担体にコートした後、こ
れを上記金属塩を含む水溶液に浸漬して担持する方法が
ある。上記アルカリ金属、アルカリ土類金属を触媒コー
ト層中に含有させる場合は触媒1L当り1〜30重量%
の範囲とする。この範囲で還元雰囲気での活性を更に向
上させることができる。
Further, the catalyst of the present invention is at least selected from the group consisting of alkali metals and alkaline earth metals such as lithium, sodium, potassium, cesium, strontium and barium in order to further improve the activity in a reducing atmosphere. You may further include 1 type. This is because alkali metals and alkaline earth metals are generally known to have the ability to absorb and absorb hydrocarbons. As a method for adding these, for example, there is a method in which compounds such as oxides, hydroxides, nitrates and carbonates of the above-mentioned metals are simultaneously added to and mixed with a slurry containing a washcoat component to coat the monolith carrier. As another manufacturing method, for example, there is a method in which an aqueous solution containing the salt of the above metal is impregnated and supported in advance on any of the washcoat component powders. Another manufacturing method is, for example, a method in which a washcoat component is coated on a monolith carrier and then the monolith carrier is dipped in an aqueous solution containing the above metal salt to carry it. When the above-mentioned alkali metal or alkaline earth metal is contained in the catalyst coating layer, it is 1 to 30% by weight per 1 L of the catalyst.
The range is. Within this range, the activity in the reducing atmosphere can be further improved.

【0015】本発明における鉄、コバルトおよびニッケ
ルよりなる群から選ばれた少なくとも一種とジルコニウ
ムとを含有したセリウム酸化物粉末は、触媒1L当り1
0〜100gである。10g未満では浄化性能向上効果
が十分に得られず、また100gを超えると添加しても
有為な増量効果は認められない。
The cerium oxide powder containing zirconium and at least one selected from the group consisting of iron, cobalt and nickel in the present invention is 1 per 1 L of the catalyst.
It is 0 to 100 g. If it is less than 10 g, the effect of improving the purification performance cannot be sufficiently obtained, and if it exceeds 100 g, no significant amount increasing effect is observed even if it is added.

【0016】また該酸化物は、鉄、コバルトおよびニッ
ケルよりなる群から選ばれた少なくとも一種を1〜20
モル%、ジルコニウムを1〜20モル%、セリウムを6
0〜98モル%含む。鉄、コバルトおよびニッケルより
なる群から選ばれた少なくとも一種およびジルコニウム
ともに、上記数値未満では浄化性能向上効果が十分に得
られず、また上記数値より多く添加しても有為な増量効
果は認められない。
The oxide contains 1 to 20 of at least one selected from the group consisting of iron, cobalt and nickel.
Mol%, zirconium 1 to 20 mol%, cerium 6
Contains 0 to 98 mol%. With at least one selected from the group consisting of iron, cobalt and nickel and zirconium, if the amount is less than the above value, the effect of improving the purification performance is not sufficiently obtained, and if added more than the above value, a significant amount increasing effect is recognized. Absent.

【0017】また該酸化物は、鉄、コバルトおよびニッ
ケルよりなる群から選ばれた少なくとも一種とジルコニ
ウムとセリウムの他に、セリウム原料にわずかに含まれ
るランタン、ネオジウム等の他の希土類や、ジルコニウ
ム原料にわずかに含まれるハフニウムを含んでもよい。
The oxide is, in addition to at least one selected from the group consisting of iron, cobalt and nickel, zirconium and cerium, other rare earth elements such as lanthanum and neodymium slightly contained in the cerium raw material, and zirconium raw material. Hafnium, which is contained in a small amount, may be included.

【0018】[0018]

【作用】排気ガス浄化用触媒は、幅広く組成が変動する
排気ガスを処理しなければならないが、パラジウムによ
り排ガス浄化においては、炭化水素濃度が高く酸素濃度
が低い雰囲気で大きく低下するという欠点があった。
The exhaust gas purifying catalyst has to treat exhaust gas whose composition varies widely, but palladium has a drawback that it greatly reduces in an exhaust gas purifying atmosphere in which the hydrocarbon concentration is high and the oxygen concentration is low. It was

【0019】本発明によると、鉄、コバルトおよびニッ
ケルよりなる群から選ばれた少なくとも一種とジルコニ
ウムとを含有したセリウム酸化物粉末は酸素および電子
をパラジウムに供与し、その結果酸素不足雰囲気におい
てもパラジウムの酸化状態が排ガス浄化に適したものと
なり、従来から報告されているようなパラジウムの還元
に起因する触媒性能の低下が抑えられることとなり、更
にアルカリ金属および/またはアルカリ土類金属を含有
することにより還元雰囲気での活性がさらに向上する。
このような作用により本発明は目的に合致したものとな
る。
According to the present invention, the cerium oxide powder containing zirconium and at least one selected from the group consisting of iron, cobalt and nickel donates oxygen and electrons to palladium, and as a result, palladium is obtained even in an oxygen-deficient atmosphere. The oxidation state of is suitable for exhaust gas purification, and the deterioration of catalytic performance due to the reduction of palladium, which has been reported so far, can be suppressed, and further contains an alkali metal and / or an alkaline earth metal. This further improves the activity in the reducing atmosphere.
With such an action, the present invention meets the purpose.

【0020】[0020]

【実施例】以下、本発明を実施例、比較例および試験例
により説明する。
EXAMPLES The present invention will be described below with reference to Examples, Comparative Examples and Test Examples.

【0021】実施例1 活性アルミナ粉末に硝酸パラジウム水溶液を含浸し、乾
燥後400℃で1時間焼成して、パラジウム担持活性ア
ルミナ粉末(粉末A)を得た。粉末Aのパラジウム濃度
は2.0重量%であった。
Example 1 Activated alumina powder was impregnated with an aqueous palladium nitrate solution, dried and calcined at 400 ° C. for 1 hour to obtain palladium-supported activated alumina powder (powder A). The palladium concentration of powder A was 2.0% by weight.

【0022】酸化セリウム粉末に硝酸鉄水溶液と硝酸ジ
ルコニウム水溶液との混合水溶液を含浸し、150℃で
12時間空気中で乾燥した後、600℃で2時間、空気
中で焼成し、鉄、ジルコニウム含有酸化セリウム粉末
(粉末B)を得た。この粉末は、金属換算で鉄を10モ
ル%(Fe2 3 として5.0重量%)、ジルコニウム
を5モル%(ZrO2 として3.8重量%)含んでい
た。
Cerium oxide powder was impregnated with a mixed aqueous solution of an aqueous solution of iron nitrate and an aqueous solution of zirconium nitrate, dried in air at 150 ° C. for 12 hours, and then calcined in air at 600 ° C. for 2 hours to contain iron and zirconium. Cerium oxide powder (powder B) was obtained. This powder contained 10 mol% of iron (5.0 wt% as Fe 2 O 3 ) and 5 mol% of zirconium (3.8 wt% as ZrO 2 ) in terms of metal.

【0023】粉末A630g、上記粉末B270g、硝
酸水溶液900gを磁性ボールミルに投入し、混合粉砕
してスラリ液を得た。このスラリ液をコーディライト質
モノリス担体(1.3L,400セル)に付着させ、空
気流にてセル内の余剰のスラリを取り除いて乾燥し、4
00℃で1時間焼成した。この作業を2度行い、コート
層重量200g/L−担体の触媒を得た。
A magnetic ball mill was charged with 630 g of powder A, 270 g of powder B, and 900 g of an aqueous nitric acid solution, and the mixture was pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (1.3 L, 400 cells), excess slurry in the cells was removed by an air flow, and the slurry was dried.
It was baked at 00 ° C. for 1 hour. This operation was performed twice to obtain a catalyst having a coat layer weight of 200 g / L-support.

【0024】実施例2 実施例1における硝酸鉄の代わりに、硝酸コバルト水溶
液を用い、金属換算でコバルトを10モル%(Co3
4 として5.0重量%)、ジルコニウムを5モル%(Z
rO2 として3.8重量%)含むセリウム酸化物粉末を
用いた以外は、実施例1と同様の方法で触媒を得た。
Example 2 Instead of iron nitrate in Example 1, an aqueous solution of cobalt nitrate was used, and 10 mol% of cobalt (Co 3 O) in terms of metal was used.
4 , 5.0% by weight) and 5 mol% zirconium (Z
A catalyst was obtained in the same manner as in Example 1 except that a cerium oxide powder containing 3.8% by weight as rO 2 ) was used.

【0025】実施例3 実施例1における硝酸鉄の代わりに、硝酸ニッケル水溶
液を用い、金属換算でニッケルを10モル%(NiOと
して4.6重量%)、ジルコニウムを5モル%(ZrO
2 として3.8重量%)含むセリウム酸化物粉末を用い
た以外は、実施例1と同様の方法で触媒を得た。
Example 3 In place of iron nitrate in Example 1, an aqueous solution of nickel nitrate was used, and nickel was 10 mol% (4.6% by weight as NiO) and zirconium was 5 mol% (ZrO in terms of metal).
A catalyst was obtained in the same manner as in Example 1 except that cerium oxide powder containing 3.8% by weight as 2 ) was used.

【0026】実施例4 硝酸セリウム水溶液と硝酸ジルコニウム水溶液の混合水
溶液(水溶液1L当りセリウムを0.400モル、ジル
コニウムを0.024モル含む)に1Nのアンモニア水
溶液を徐々に滴下し、溶液のPHを9.0とし、1時間
攪拌した。生成した水酸化物の沈澱をろ過し、沈澱物を
150℃で12時間空気中にて乾燥した後、300℃で
12時間焼成した。この粉末に硝酸鉄水溶液を含浸担持
(粉末1kgにFe2 3 を53g担持)し、150℃
で12時間空気中で乾燥した後、600℃で2時間空気
中で焼成し、鉄、ジルコニウムを含むセリウム酸化物粉
末を得た。この粉末は、金属換算で鉄を10モル%、ジ
ルコニウムを5モル%含んでいた。この粉末を実施例1
における粉末Bの代わりに用いた以外は、実施例1と同
様の方法で触媒を得た。
Example 4 A 1N aqueous ammonia solution was gradually added dropwise to a mixed aqueous solution of cerium nitrate aqueous solution and zirconium nitrate aqueous solution (containing 0.400 mol of cerium and 0.024 mol of zirconium per 1 L of aqueous solution) to adjust the pH of the solution. It was set to 9.0 and stirred for 1 hour. The formed hydroxide precipitate was filtered, and the precipitate was dried in air at 150 ° C. for 12 hours and then calcined at 300 ° C. for 12 hours. This powder was impregnated with an aqueous iron nitrate solution (1 kg of powder was loaded with 53 g of Fe 2 O 3 ) and was heated to 150 ° C.
After being dried in air for 12 hours, it was baked in air at 600 ° C. for 2 hours to obtain a cerium oxide powder containing iron and zirconium. This powder contained 10 mol% of iron and 5 mol% of zirconium in terms of metal. This powder was used in Example 1.
A catalyst was obtained in the same manner as in Example 1, except that the powder B was used instead of the powder B.

【0027】実施例5 実施例4における硝酸鉄の代わりに、硝酸コバルト水溶
液を用い、金属換算でコバルトを10モル%、ジルコニ
ウムを5モル%含むセリウム酸化物粉末を用いた以外
は、実施例4と同様の方法で触媒を得た。
Example 5 Example 4 was repeated except that an aqueous solution of cobalt nitrate was used in place of the iron nitrate in Example 4, and a cerium oxide powder containing 10 mol% of cobalt and 5 mol% of zirconium in terms of metal was used. A catalyst was obtained in the same manner as in.

【0028】実施例6 実施例4における硝酸鉄の代わりに、硝酸ニッケル水溶
液を用い、金属換算でニッケルを10モル%、ジルコニ
ウムを5モル%含むセリウム酸化物粉末を用いた以外
は、実施例4と同様の方法で触媒を得た。
Example 6 Example 4 was repeated, except that an aqueous solution of nickel nitrate was used in place of iron nitrate in Example 4, and a cerium oxide powder containing 10 mol% of nickel and 5 mol% of zirconium in terms of metal was used. A catalyst was obtained in the same manner as in.

【0029】実施例7 硝酸セリウム水溶液と硝酸ジルコニウム水溶液と硝酸鉄
水溶液の混合水溶液(水溶液1L当りセリウムを0.4
00モル、ジルコニウムを0.024モル、鉄を0.0
47モル含む)に1Nのアンモニア水溶液を徐々に滴下
し、溶液のPHを9.0とし、1時間攪拌した。生成し
た水酸化物の沈澱をろ過し、セリウムとジルコニウムと
鉄の水酸化物の沈澱を得た。得られた沈澱を150℃で
12時間空気中で乾燥し、その後300℃で12時間焼
成し、鉄、ジルコニウムを含む酸化セリウム粉末を得
た。この粉末は金属換算で鉄を10モル%、ジルコニウ
ムを5モル%含んでいた。
Example 7 A mixed aqueous solution of an aqueous cerium nitrate solution, an aqueous zirconium nitrate solution and an aqueous iron nitrate solution (0.4 cerium was added per 1 L of the aqueous solution).
00 mol, zirconium 0.024 mol, iron 0.0
(Containing 47 mol), a 1N aqueous ammonia solution was gradually added dropwise to adjust the pH of the solution to 9.0, and the mixture was stirred for 1 hour. The generated hydroxide precipitate was filtered to obtain a hydroxide precipitate of cerium, zirconium and iron. The obtained precipitate was dried in air at 150 ° C. for 12 hours and then calcined at 300 ° C. for 12 hours to obtain a cerium oxide powder containing iron and zirconium. This powder contained 10 mol% of iron and 5 mol% of zirconium in terms of metal.

【0030】この粉末を実施例1における粉末Bの代わ
りに用いた以外は、実施例1と同様の方法で触媒を得
た。
A catalyst was obtained in the same manner as in Example 1 except that this powder was used instead of the powder B in Example 1.

【0031】実施例8 実施例7における硝酸鉄水溶液の代わりに硝酸コバルト
水溶液を用い、また実施例7におけるアンモニア水溶液
の代わりに重炭酸アンモニア水溶液を用い、金属換算で
コバルトを10モル%、ジルコニウムを5モル%含むセ
リウム酸化物粉末を得た。これを実施例7における酸化
セリウム粉末の代わりに用いた以外は実施例7と同様の
方法で触媒を得た。
Example 8 An aqueous solution of cobalt nitrate was used in place of the aqueous solution of iron nitrate in Example 7, an aqueous solution of ammonia bicarbonate was used in place of the aqueous solution of ammonia in Example 7, and 10 mol% of cobalt and zirconium in terms of metal were used. A cerium oxide powder containing 5 mol% was obtained. A catalyst was obtained in the same manner as in Example 7, except that this was used instead of the cerium oxide powder in Example 7.

【0032】実施例9 実施例7における硝酸鉄水溶液の代わりに硝酸ニッケル
水溶液を用い、また実施例7におけるアンモニア水溶液
の代わりに蓚酸水溶液を用い、金属換算でニッケルを1
0モル%、ジルコニウムを5モル%含むセリウム酸化物
粉末を得た。これを実施例7における酸化セリウム粉末
の代わりに用いた以外は実施例7と同様の方法で触媒を
得た。
Example 9 An aqueous solution of nickel nitrate was used in place of the aqueous solution of iron nitrate in Example 7, an aqueous solution of oxalic acid was used in place of the aqueous solution of ammonia in Example 7, and nickel was converted to 1 in terms of metal.
Cerium oxide powder containing 0 mol% and zirconium of 5 mol% was obtained. A catalyst was obtained in the same manner as in Example 7, except that this was used instead of the cerium oxide powder in Example 7.

【0033】比較例1 実施例1における粉末Bの代わりに、酸化セリウム粉末
を用いた以外は実施例1と同様の方法で触媒を得た。
Comparative Example 1 A catalyst was obtained in the same manner as in Example 1 except that cerium oxide powder was used instead of powder B in Example 1.

【0034】比較例2 硝酸ジルコニウム水溶液を酸化セリウムに含浸担持し、
150℃で12時間空気中で乾燥した後、600℃で2
時間空気中で焼成し、ジルコニウム含有セリウム酸化物
粉末を得た。この粉末はジルコニウムを金属換算で5モ
ル%(3.6重量%)含んでいた。実施例1における粉
末Bの代わりに上記粉末を用いた以外は実施例1と同様
の方法で触媒を得た。
Comparative Example 2 An aqueous zirconium nitrate solution was impregnated and supported on cerium oxide,
Dry in air at 150 ° C for 12 hours and then at 600 ° C for 2 hours.
The powder was calcined in air for a period of time to obtain a zirconium-containing cerium oxide powder. This powder contained 5 mol% (3.6% by weight) of zirconium in terms of metal. A catalyst was obtained in the same manner as in Example 1 except that the above powder was used instead of the powder B in Example 1.

【0035】比較例3 硝酸鉄水溶液を酸化セリウムに含浸担持し、150℃で
12時間空気中で乾燥した後、600℃で2時間空気中
で焼成し、鉄含有セリウム酸化物粉末を得た。この粉末
は鉄を金属換算で10モル%(Fe2 3 として5.0
重量%)含んでいた。実施例1における粉末Bの代わり
に上記粉末を用いた以外は実施例1と同様の方法で触媒
を得た。
Comparative Example 3 An aqueous iron nitrate solution was impregnated and supported on cerium oxide, dried in air at 150 ° C. for 12 hours, and then calcined in air at 600 ° C. for 2 hours to obtain an iron-containing cerium oxide powder. This powder contains 10 mol% of iron in terms of metal (5.0% as Fe 2 O 3).
% By weight). A catalyst was obtained in the same manner as in Example 1 except that the above powder was used instead of the powder B in Example 1.

【0036】比較例4 硝酸コバルト水溶液を酸化セリウムに含浸担持し、15
0℃で12時間空気中で乾燥した後、600℃で2時間
空気中で焼成し、コバルト含有セリウム酸化物粉末を得
た。この粉末はコバルトを金属換算で10モル%(Co
3 4 として4.9重量%)含んでいた。実施例1にお
ける粉末Bの代わりに上記粉末を用いた以外は実施例1
と同様の方法で触媒を得た。
Comparative Example 4 An aqueous cobalt nitrate solution was impregnated and supported on cerium oxide to give 15
After drying in air at 0 ° C. for 12 hours, it was baked in air at 600 ° C. for 2 hours to obtain a cobalt-containing cerium oxide powder. This powder contains 10 mol% of cobalt (Co
3 O 4 as a 4.9 wt%) was contained at. Example 1 except that the above powder was used instead of the powder B in Example 1.
A catalyst was obtained in the same manner as in.

【0037】比較例5 硝酸ニッケル水溶液を酸化セリウムに含浸担持し、15
0℃で12時間空気中で乾燥した後、600℃で2時間
空気中で焼成し、ニッケル含有セリウム酸化物粉末を得
た。この粉末はニッケルを金属換算で10モル%(Ni
Oとして4.6重量%)含んでいた。実施例1における
粉末Bの代わりに上記粉末を用いた以外は実施例1と同
様の方法で触媒を得た。
Comparative Example 5 An aqueous solution of nickel nitrate was impregnated and supported on cerium oxide to obtain 15
After drying in air at 0 ° C. for 12 hours, it was baked in air at 600 ° C. for 2 hours to obtain a nickel-containing cerium oxide powder. This powder contains nickel in an amount of 10 mol% (Ni
O was 4.6% by weight). A catalyst was obtained in the same manner as in Example 1 except that the above powder was used instead of the powder B in Example 1.

【0038】比較例6 実施例1における鉄、ジルコニウム含有酸化セリウム粉
末の組成を、鉄30モル%(Fe2 3 として18.5
重量%)、ジルコニウム30モル%(ZrO2として2
8.5重量%)としたセリウム酸化物粉末を用いた以外
は実施例1と同様の方法で触媒を得た。
Comparative Example 6 The composition of the cerium oxide powder containing iron and zirconium in Example 1 was 30 mol% iron (18.5 as Fe 2 O 3).
% By weight), 30 mol% zirconium ( 2 as ZrO 2
A catalyst was obtained in the same manner as in Example 1 except that the cerium oxide powder of 8.5% by weight) was used.

【0039】比較例7 実施例2におけるコバルト、ジルコニウム含有セリウム
酸化物粉末の組成を、コバルト30モル%(Co3 4
として18.5重量%)、ジルコニウム30モル%(Z
rO2 として28.5重量%)としたセリウム酸化物粉
末を用いた以外は実施例2と同様の方法で触媒を得た。
Comparative Example 7 The composition of the cerium oxide powder containing cobalt and zirconium in Example 2 was changed to 30 mol% of cobalt (Co 3 O 4
18.5% by weight), zirconium 30 mol% (Z
A catalyst was obtained in the same manner as in Example 2 except that the cerium oxide powder having rO 2 of 28.5% by weight) was used.

【0040】比較例8 実施例3におけるニッケル、ジルコニウム含有セリウム
酸化物粉末の組成を、ニッケル30モル%(17.4重
量%)、ジルコニウム30モル%(ZrO2 として2
8.9重量%)としたセリウム酸化物粉末を用いた以外
は実施例3と同様の方法で触媒を得た。
Comparative Example 8 The composition of the cerium oxide powder containing nickel and zirconium in Example 3 was changed to 30 mol% of nickel (17.4% by weight) and 30 mol% of zirconium ( 2 as ZrO 2 ).
A catalyst was obtained in the same manner as in Example 3 except that the cerium oxide powder (8.9% by weight) was used.

【0041】比較例9 酸化鉄粉末と酸化ジルコニウム粉末と酸化セリウム粉末
の混合物(金属換算で鉄10モル%、ジルコニウム5モ
ル%相当)を粉末Bの代わりに用いた以外は実施例1と
同様の方法で触媒を得た。
Comparative Example 9 The same as Example 1 except that a mixture of iron oxide powder, zirconium oxide powder and cerium oxide powder (equivalent to 10 mol% of iron and 5 mol% of zirconium in terms of metal) was used in place of powder B. The method gave the catalyst.

【0042】比較例10 酸化コバルト粉末と酸化ジルコニウム粉末と酸化セリウ
ム粉末の混合物(金属換算でコバルト10モル%、ジル
コニウム5モル%相当)を粉末Bの代わりに用いた以外
は実施例1と同様の方法で触媒を得た。
Comparative Example 10 Same as Example 1 except that a mixture of cobalt oxide powder, zirconium oxide powder and cerium oxide powder (corresponding to 10 mol% of cobalt and 5 mol% of zirconium in terms of metal) was used in place of powder B. The method gave the catalyst.

【0043】比較例11 酸化ニッケル粉末と酸化ジルコニウム粉末と酸化セリウ
ム粉末の混合物(金属換算でニッケル10モル%、ジル
コニウム5モル%相当)を粉末Bの代わりに用いた以外
は実施例1と同様の方法で触媒を得た。
Comparative Example 11 Same as Example 1 except that a mixture of nickel oxide powder, zirconium oxide powder and cerium oxide powder (corresponding to 10 mol% of nickel and 5 mol% of zirconium in terms of metal) was used in place of powder B. The method gave the catalyst.

【0044】実施例10 実施例9で得た触媒をさらに硝酸リチウム水溶液に浸漬
し、空気流にて余剰分を取り除いて乾燥し、400℃で
1時間焼成してLi2 Oとして10g/Lのリチウムを
担持し、触媒を得た。
Example 10 The catalyst obtained in Example 9 was further immersed in an aqueous solution of lithium nitrate, the excess was removed by an air stream, dried, and calcined at 400 ° C. for 1 hour to obtain Li 2 O of 10 g / L. A catalyst was obtained by supporting lithium.

【0045】実施例11 実施例9で得た触媒をさらに硝酸ナトリウム水溶液に浸
漬し、空気流にて余剰分を取り除いて乾燥し、400℃
で1時間焼成してNa2 Oとして10g/Lのナトリウ
ムを担持し、触媒を得た。
Example 11 The catalyst obtained in Example 9 was further immersed in an aqueous sodium nitrate solution, the excess was removed with an air stream, and the mixture was dried at 400 ° C.
It was calcined for 1 hour to carry 10 g / L of sodium as Na 2 O to obtain a catalyst.

【0046】実施例12 実施例9で得た触媒をさらに硝酸カリウム水溶液に浸漬
し、空気流にて余剰分を取り除いて乾燥し、400℃で
1時間焼成してK2 Oとして10g/Lのカリウムを担
持し、触媒を得た。
Example 12 The catalyst obtained in Example 9 was further immersed in an aqueous potassium nitrate solution, the excess was removed with an air stream, dried, and calcined at 400 ° C. for 1 hour to give K 2 O of 10 g / L potassium. Was carried to obtain a catalyst.

【0047】実施例13 実施例9で得た触媒をさらに硝酸ストロンチウム水溶液
に浸漬し、空気流にて余剰分を取り除いて乾燥し、40
0℃で1時間焼成してSrOとして10g/Lのストロ
ンチウムを担持し、触媒を得た。
Example 13 The catalyst obtained in Example 9 was further immersed in an aqueous strontium nitrate solution, the excess portion was removed with an air stream and dried.
The catalyst was obtained by carrying out calcination at 0 ° C. for 1 hour, carrying 10 g / L of strontium as SrO.

【0048】実施例14 実施例9で得た触媒をさらに酢酸バリウム水溶液に浸漬
し、空気流にて余剰分を取り除いて乾燥し、400℃で
1時間焼成してBaOとして10g/Lのバリウムを担
持し、触媒を得た。
Example 14 The catalyst obtained in Example 9 was further immersed in an aqueous barium acetate solution, the excess was removed by an air stream, dried, and calcined at 400 ° C. for 1 hour to obtain 10 g / L of barium as BaO. It was carried to obtain a catalyst.

【0049】実施例15 活性アルミナ粉末に硝酸パラジウム水溶液を含浸し、乾
燥後400℃で1時間焼成して、Pd担持活性アルミナ
粉末を得た。この粉末のPd濃度は1.4重量%であっ
た。
Example 15 Pd-supported activated alumina powder was obtained by impregnating activated alumina powder with an aqueous palladium nitrate solution, drying and firing at 400 ° C. for 1 hour. The Pd concentration of this powder was 1.4% by weight.

【0050】実施例9におけるセリウム酸化物粉末に硝
酸パラジウム水溶液を含浸し、乾燥後400℃で1時間
焼成して、粉末Cを得た。粉末CのPd濃度は1.4重
量%であった。
The cerium oxide powder in Example 9 was impregnated with an aqueous solution of palladium nitrate, dried and then calcined at 400 ° C. for 1 hour to obtain powder C. The Pd concentration of the powder C was 1.4% by weight.

【0051】Pd担持アルミナ粉末630g、粉末C2
70g、硝酸水溶液900gを磁性ボールミルに投入
し、実施例1と同様の方法で触媒を得た。
630 g of Pd-supported alumina powder, powder C2
70 g and 900 g of an aqueous nitric acid solution were charged into a magnetic ball mill, and a catalyst was obtained by the same method as in Example 1.

【0052】試験例 前記実施例1〜15および比較例1〜11の各触媒につ
いて、以下の条件で耐久後活性評価を行なった。
Test Example The catalysts of Examples 1 to 15 and Comparative Examples 1 to 11 were subjected to activity evaluation after endurance under the following conditions.

【0053】[0053]

【表1】 <耐久条件> エンジン排気量 4400cc 触媒入口ガス温度 850℃ 耐久時間 100時間 入口ガス組成 CO 0.5±0.1% O2 0.5±0.1% HC 約1100ppm NO 1300ppm CO2 15%[Table 1] <Durability conditions> Engine displacement 4400cc Catalyst inlet gas temperature 850 ° C Endurance time 100 hours Inlet gas composition CO 0.5 ± 0.1% O 2 0.5 ± 0.1% HC About 1100ppm NO 1300ppm CO 2 15%

【0054】[0054]

【表2】 <評価条件> エンジン排気量 2000cc 燃料 無煙ガソリン 触媒入口ガス温度 400℃ ストイキ 振幅±1.0A/F 中心A/F=14.6 リッチ 振幅±0.2A/F 中心A/F=14.2A/F[Table 2] <Evaluation conditions> Engine displacement 2000 cc Fuel smokeless gasoline Catalyst inlet gas temperature 400 ° C Stoke amplitude ± 1.0 A / F center A / F = 14.6 Rich amplitude ± 0.2 A / F center A / F = 14.2A / F

【0055】耐久した後の触媒の、ストイキ、リッチに
おける転化率の測定結果を表3に示した。
Table 3 shows the measurement results of the conversion rates of the catalyst after being durable, in stoichiometry and rich.

【0056】[0056]

【表3】 [Table 3]

【0057】[0057]

【発明の効果】以上説明してきたように本発明によれ
ば、触媒活性成分として貴金属のうち少なくともパラジ
ウムと、これに鉄、コバルトおよびニッケルよりなる群
から選ばれた少なくとも一種とジルコニウムとを含有し
た酸化セリウムとを含むため、理論空燃費での浄化性能
が損なわれることてく還元雰囲気の触媒性能が向上す
る。
As described above, according to the present invention, at least palladium among noble metals, at least one selected from the group consisting of iron, cobalt and nickel, and zirconium are contained as catalytically active components. Since it contains cerium oxide, the purification performance at the theoretical air fuel consumption is impaired and the catalytic performance in the reducing atmosphere is improved.

【0058】これは鉄、コバルトおよびニッケルよりな
る群から選ばれた少なくとも一種とジルコニウムとセリ
ウムとが密に接することにより、それぞれ単独の酸化物
を単に混合しただけでは得られない相互作用が生じ、パ
ラジウムの浄化作用を向上させるためと考えられる。ま
た、触媒成分担持層にさらにアルカリ金属および/また
はアルカリ土類金属を担持させることにより還元雰囲気
での活性をいっそう向上させることができるという効果
が得られる。
This is because the intimate contact of at least one selected from the group consisting of iron, cobalt and nickel with zirconium and cerium causes an interaction which cannot be obtained by simply mixing individual oxides. It is considered to improve the purifying action of palladium. Further, by further supporting the alkali metal and / or the alkaline earth metal on the catalyst component supporting layer, the effect that the activity in the reducing atmosphere can be further improved can be obtained.

【0059】また実施例より明らかなように、本発明で
用いた鉄、コバルト、ニッケルよりなる群から選ばれた
少なくとも一種とジルコニウムとを含有したセリウム酸
化物の成分組成には、好適な範囲がある。
Further, as is clear from the examples, the component composition of the cerium oxide containing zirconium and at least one selected from the group consisting of iron, cobalt and nickel used in the present invention has a preferable range. is there.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 触媒成分担持層を有する一体構造型触媒
において、触媒成分担持層が触媒成分として貴金属のう
ち少なくともパラジウムと活性アルミナ粉末とセリウム
酸化物粉末とを含み、該セリウム酸化物が、鉄、コバル
トおよびニッケルよりなる群から選ばれた少なくとも一
種とジルコニウムとを含有したことを特徴とする排ガス
浄化用触媒。
1. A monolithic structure type catalyst having a catalyst component supporting layer, wherein the catalyst component supporting layer contains at least palladium among noble metals as a catalyst component, activated alumina powder and cerium oxide powder, and the cerium oxide is iron. An exhaust gas purifying catalyst comprising at least one selected from the group consisting of cobalt, nickel and zirconium.
【請求項2】 該セリウム酸化物粉末が、金属換算で、
鉄、コバルトおよびニッケルよりなる群から選ばれた少
なくとも一種を1〜20モル%、ジルコニウムを1〜2
0モル%、セリウムを60〜98モル%含み、触媒1L
当り10〜100g担持されていることを特徴とする請
求項1記載の触媒。
2. The cerium oxide powder, in terms of metal,
1 to 20 mol% of at least one selected from the group consisting of iron, cobalt and nickel, and 1 to 2 of zirconium
0 mol%, containing 60 to 98 mol% of cerium, catalyst 1L
The catalyst according to claim 1, wherein the catalyst is supported in an amount of 10 to 100 g per unit.
【請求項3】 触媒成分担持層にさらにリチウム、ナト
リウム、カリウム、バリウムおよびストロンチウムから
なる群から選ばれた少なくとも一種を触媒1L当り1〜
30重量%含むことを特徴とする請求項1または2記載
の触媒。
3. The catalyst component-supporting layer further comprises at least one selected from the group consisting of lithium, sodium, potassium, barium and strontium per 1 L of catalyst.
The catalyst according to claim 1 or 2, which comprises 30% by weight.
JP5086270A 1993-04-13 1993-04-13 Catalyst for exhaust gas purification Pending JPH06296869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5086270A JPH06296869A (en) 1993-04-13 1993-04-13 Catalyst for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5086270A JPH06296869A (en) 1993-04-13 1993-04-13 Catalyst for exhaust gas purification

Publications (1)

Publication Number Publication Date
JPH06296869A true JPH06296869A (en) 1994-10-25

Family

ID=13882134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5086270A Pending JPH06296869A (en) 1993-04-13 1993-04-13 Catalyst for exhaust gas purification

Country Status (1)

Country Link
JP (1) JPH06296869A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620392B2 (en) * 2000-02-22 2003-09-16 Mazda Motor Corporation Catalyst for purifying exhaust gas and method for purifying exhaust gas with the catalyst
WO2010101219A1 (en) * 2009-03-06 2010-09-10 株式会社アイシーティー Catalyst for purification of exhaust gas
JP2011036824A (en) * 2009-08-17 2011-02-24 Mazda Motor Corp Catalyst for cleaning exhaust, and method of producing the same
US8530372B2 (en) 2009-07-22 2013-09-10 Basf Corporation Oxygen storage catalyst with decreased ceria reduction temperature
JP2013240736A (en) * 2012-05-18 2013-12-05 Toyota Motor Corp Exhaust gas purifying catalyst

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620392B2 (en) * 2000-02-22 2003-09-16 Mazda Motor Corporation Catalyst for purifying exhaust gas and method for purifying exhaust gas with the catalyst
WO2010101219A1 (en) * 2009-03-06 2010-09-10 株式会社アイシーティー Catalyst for purification of exhaust gas
CN102341174A (en) * 2009-03-06 2012-02-01 株式会社Ict Catalyst For Purification Of Exhaust Gas
JPWO2010101219A1 (en) * 2009-03-06 2012-09-10 株式会社アイシーティー Exhaust gas purification catalyst
US8808653B2 (en) 2009-03-06 2014-08-19 Umicore Shokubai Japan Co., Ltd. Catalyst for purifying exhaust gas
JP2015037784A (en) * 2009-03-06 2015-02-26 ユミコア日本触媒株式会社 Exhaust gas purification catalyst
CN104722312A (en) * 2009-03-06 2015-06-24 优美科触媒日本有限公司 Catalyst For Purification Of Exhaust Gas
US8530372B2 (en) 2009-07-22 2013-09-10 Basf Corporation Oxygen storage catalyst with decreased ceria reduction temperature
JP2011036824A (en) * 2009-08-17 2011-02-24 Mazda Motor Corp Catalyst for cleaning exhaust, and method of producing the same
JP2013240736A (en) * 2012-05-18 2013-12-05 Toyota Motor Corp Exhaust gas purifying catalyst

Similar Documents

Publication Publication Date Title
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
JP3185448B2 (en) Exhaust gas purification catalyst
WO1990014888A1 (en) Exhaust gas purifying catalyst excellent in thermal resistance and method of production thereof
JP3144880B2 (en) Method for producing three-way catalyst with excellent low-temperature activity
JP6339013B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH06378A (en) Catalyst for purification of exhaust gas
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH06296869A (en) Catalyst for exhaust gas purification
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JP2734808B2 (en) Exhaust gas purification catalyst
JP3505739B2 (en) Exhaust gas purification catalyst
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JPH06190282A (en) Catalyst for purification of exhaust gas
JP4407117B2 (en) Method for producing exhaust gas purifying catalyst
JP2635689B2 (en) Method for producing exhaust gas purifying catalyst
JPH06210174A (en) Catalyst for purification of exhaust gas and its production
JP3885339B2 (en) Exhaust gas purification catalyst, method for producing the same, and method for using the same
JPH07213907A (en) Exhaust gas purifying catalyst and its production
JPH05285388A (en) Catalyst for purification of exhaust gas