JPH06269151A - Brushless synchronous generator - Google Patents
Brushless synchronous generatorInfo
- Publication number
- JPH06269151A JPH06269151A JP7875493A JP7875493A JPH06269151A JP H06269151 A JPH06269151 A JP H06269151A JP 7875493 A JP7875493 A JP 7875493A JP 7875493 A JP7875493 A JP 7875493A JP H06269151 A JPH06269151 A JP H06269151A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- winding
- voltage
- stator
- auxiliary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は自己励磁式同期発電機に
関し、スリップリング等を介した外部からの励磁電流を
必要とせず、また特別の励磁回路を設けることなく負荷
に対応可能としたブラシレス同期発電機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-excited synchronous generator, which does not require an exciting current from the outside through a slip ring or the like, and is capable of handling a load without providing a special exciting circuit. Regarding synchronous generators.
【0002】[0002]
【従来の技術】一般に同期発電機の固定子に負荷として
コンデンサを接続した、無励磁同期発電機の容量負荷に
よる自励発電がある。図1にこの例を示す。図1におい
て無励磁の回転子1と、出力端子a,b,c間にスイッ
チSを介し、コンデンサCを接続した固定子2とによっ
て同期発電機3を構成した場合、たとえ回転子が無励磁
であっても、回転子を回転させると回転子の残留磁気に
よってきわめて低い起電力が固定子の電機子巻線に誘導
される。この時の電機子進み電流Iに対する端子電圧V
の関係は図2の直線A´のようになる。ただし、これは
飽和を無視した場合であり、実際の発電機では磁路の飽
和が起こるため、発電機のV−I特性はAで示す飽和曲
線となる。2. Description of the Related Art Generally, there is self-excited power generation by a capacitive load of a non-excitation synchronous generator in which a capacitor is connected to a stator of a synchronous generator as a load. This example is shown in FIG. In FIG. 1, when the synchronous generator 3 is composed of a non-excited rotor 1 and a stator 2 to which a capacitor C is connected via a switch S between output terminals a, b and c, even if the rotor is non-excited. However, when the rotor is rotated, an extremely low electromotive force is induced in the armature winding of the stator due to the residual magnetism of the rotor. Terminal voltage V with respect to armature lead current I at this time
The relationship is as shown by the straight line A'in FIG. However, this is the case where saturation is ignored, and saturation of the magnetic path occurs in an actual generator, so the VI characteristic of the generator is the saturation curve indicated by A.
【0003】更にコンデンサCを負荷として接続した場
合の自励発電について説明する。負荷として接続したコ
ンデンサCの端子電圧Vとその充電電流Iとの間には、
周波数をfとすれば次の関係が明らかである。Further, self-excited power generation when the capacitor C is connected as a load will be described. Between the terminal voltage V of the capacitor C connected as a load and its charging current I,
The following relationship is clear when the frequency is f.
【0004】[0004]
【数1】I=2πfcV この関係を図2に示すと直線Bの充電特性曲線となる。
自励発電では残留磁気による起電力でコンデンサCに9
0°の進み電流が流れ、これによって固定子の電機子端
子電圧Vが上昇し、更にそれに応じて充電電流が増加す
るというくり返しで飽和曲線Aと充電特性曲線Bとの交
点Pで電圧と電流は安定して、発電を持続していくこと
になる。## EQU1 ## I = 2.pi.fcV This relationship is shown in FIG.
In self-excited power generation, electromotive force due to residual magnetism causes capacitor C to
A leading current of 0 ° flows, which causes the armature terminal voltage V of the stator to rise, and the charging current to increase correspondingly, and the voltage and current at the intersection P between the saturation curve A and the charging characteristic curve B repeat. Will be stable and continue to generate electricity.
【0005】[0005]
【発明が解決しようとする課題】ここで発電機の出力端
子a,b,cに負荷を接続すると電圧降下が発生する。
この電圧降下は負荷が大きく負荷力率が低いほど大き
い。ここでこの電圧降下を補償することが必要となる。
これは回転子の残留磁気による自励発電になっているた
めで、このままでは通常の使用に耐えることはできな
い。一般に同期発電機は直流機と同様に界磁磁束を作る
ため磁極をもっている。この磁極は小型の同期発電機で
は永久磁石を使用することもあるが直流励磁を行うのが
一般的となっており、この直流励磁のために別の励磁機
を必要としている。この励磁装置としては直流電源から
直接供給するもの、あるいは交流を供給して整流するも
の、更に交流電源と整流器とにより直流を供給するもの
など様々であるが、いずれも装置が大型になるというこ
とと、回転子に磁界を形成するためにブラシを介して回
転子に電流を流すという構成を必要とし、保守が容易で
ないという欠点を有するものであった。When a load is connected to the output terminals a, b and c of the generator, a voltage drop occurs.
This voltage drop increases as the load increases and the load power factor decreases. Here it is necessary to compensate for this voltage drop.
This is because self-excited power generation is performed by the remanent magnetism of the rotor, and it cannot withstand normal use as it is. Generally, a synchronous generator has magnetic poles to create a magnetic field flux like a DC machine. Although a permanent magnet may be used for this magnetic pole in a small synchronous generator, it is common to perform DC excitation, and another exciter is required for this DC excitation. There are various excitation devices such as those that are directly supplied from a DC power supply, those that are supplied with alternating current for rectification, and those that are supplied with direct current by an AC power supply and a rectifier. In addition, there is a drawback in that maintenance is not easy because it requires a structure in which a current is passed through the rotor via a brush in order to form a magnetic field in the rotor.
【0006】[0006]
【課題を解決するための手段】このような従来技術の欠
点を解決するために、回転子コアに三相の回転子巻線を
設けて三相スター結線すると共に該回転子巻線の2つの
巻線間に整流素子を接続した回転子と、前記回転子コア
に対向して周設した固定子コアを有し、該固定子に三相
スター結線にした電機子巻線を巻装しその出力端子間に
静電容量を接続した固定子と、前記固定子の電機子巻線
の同一相にそれぞれ巻線を設け該巻線に誘起する電圧の
総和が零にならないように直列結線して補助巻線とし該
補助巻線の端子をサイリスタ素子を介して接続した補助
回路とにより同期発電機を構成した。In order to solve the above-mentioned drawbacks of the prior art, a rotor core is provided with a three-phase rotor winding to perform a three-phase star connection, and two rotor windings are connected. A rotor having a rectifying element connected between the windings and a stator core provided around the rotor core so as to face the rotor core, and the three-phase star-connected armature winding is wound around the stator. A stator having a capacitance connected between the output terminals and windings are provided in the same phase of the armature winding of the stator, and are connected in series so that the total voltage induced in the winding does not become zero. A synchronous generator was constituted by an auxiliary winding and an auxiliary circuit in which the terminals of the auxiliary winding were connected via a thyristor element.
【0007】[0007]
【作用】本発明の同期発電機は、三相スター結線した回
転子巻線の2つの線間にダイオードを接続した回転子
と、三相スター結線にした電機子巻線とその出力端子間
に静電容量を接続した固定子及び固定子の電機子巻線の
同一相に補助巻線を設け該補助巻線に誘起する電圧の総
和が零にならないように直列結線してその端子をサイリ
スタを介して接続した補助回路とにより構成している。According to the synchronous generator of the present invention, a rotor in which a diode is connected between two lines of a three-phase star-connected rotor winding, and a three-phase star-connected armature winding and its output terminal are connected. An auxiliary winding is provided in the same phase of the stator and the armature winding of the stator to which an electrostatic capacity is connected, and the auxiliary winding is connected in series so that the total voltage induced in the auxiliary winding does not become zero, and its terminal is connected to a thyristor It is configured with an auxiliary circuit connected via the.
【0008】以上の構成において、回転子を他の電動
機、あるいは原動機で回転駆動すると回転子の残留磁気
により電機子巻線に電圧を誘起する。この電圧で静電容
量には90°の進み電流が流れ、この進み電流によって
固定子の電機子端子電圧Vが上昇し、更にそれに応じて
充電電流が増加するというくり返しで電機子巻線の電圧
は大きくなる。最終的には電機子巻線の飽和曲線と静電
容量の充電特性との交点の電圧と電流に落ちつくことに
なる。これまでは従来の自励式同期発電機と同じ作用と
なる。In the above structure, when the rotor is rotationally driven by another electric motor or a prime mover, a voltage is induced in the armature winding due to the residual magnetism of the rotor. This voltage causes a 90 ° advance current to flow in the capacitance, and this advance current increases the armature terminal voltage V of the stator, and the charging current accordingly increases. Grows. Eventually, the voltage and current at the intersection of the saturation curve of the armature winding and the charging characteristic of the capacitance settle down. Up to now, the operation is the same as the conventional self-excited synchronous generator.
【0009】さて、本発明においては固定子に電機子巻
線の他に補助巻線を設けてある。この補助巻線には、電
機子巻線に誘起した電圧による三相電機子電流により電
圧を誘起している。この電圧により補助回路の補助巻線
には、その回路のサイリスタ素子を介して整流電流が流
れるようになる。この整流電流には直流分と交流分が含
まれている。In the present invention, the stator is provided with auxiliary windings in addition to the armature windings. A voltage is induced in this auxiliary winding by a three-phase armature current due to the voltage induced in the armature winding. This voltage causes a rectified current to flow in the auxiliary winding of the auxiliary circuit via the thyristor element of the circuit. This rectified current contains a direct current component and an alternating current component.
【0010】まず直流分は静止磁界を作り、回転子はこ
の静止磁界によって電圧を誘起するが、回転子には線間
に整流素子が設けてあるのでこの整流素子によって回転
子巻線には整流電流が流れ磁極を形成し、固定子の電機
子巻線の誘起電圧が大きくなるように作用するものであ
る。First, the direct current component creates a static magnetic field, and the rotor induces a voltage by this static magnetic field. Since the rotor has a rectifying element between the lines, the rectifying element rectifies the rotor winding. A current flows to form a magnetic pole, which acts to increase the induced voltage in the armature winding of the stator.
【0011】一方交流分は正相分と逆相分が存在する。
まず正相分は発電機の同期インピーダンスにより電圧を
降下させる作用をするが、逆相分は回転子の回転磁界と
は逆回転の磁界を作り、この回転磁界によって回転子に
電圧を誘起して回転子の線間に設けた整流素子によって
整流電流が流れて回転子の磁極を強くするように作用す
る。回転子の磁界が強くなると固定子電機子巻線の誘起
電圧が更に大きくなる。On the other hand, the AC component has a positive phase component and a negative phase component.
First, the positive phase component acts to drop the voltage due to the synchronous impedance of the generator, but the negative phase component creates a magnetic field reverse to the rotating magnetic field of the rotor, and this rotating magnetic field induces a voltage in the rotor. The rectifying element provided between the lines of the rotor causes a rectifying current to flow, and acts to strengthen the magnetic poles of the rotor. The stronger the rotor magnetic field, the greater the induced voltage in the stator armature windings.
【0012】ここで補助回路にサイリスタ素子を設けて
おくと、サイリスタ素子の点弧角により整流電流を制御
することが可能で、このことによって電機子巻線の出力
端子からの出力電圧を制御することが可能となる。If a thyristor element is provided in the auxiliary circuit, it is possible to control the rectified current by the firing angle of the thyristor element, which controls the output voltage from the output terminal of the armature winding. It becomes possible.
【0013】以上のように、ブラシレスの構成で自励式
の同期発電機を、固定子に補助巻線を巻装してサイリス
タ素子で接続した補助回路を設け、回転子巻線の線間に
整流素子を設けるという簡単な構成で実現可能となっ
た。As described above, the brushless construction of the self-exciting type synchronous generator is provided with the auxiliary circuit in which the auxiliary winding is wound around the stator and connected by the thyristor element, and the commutation is performed between the lines of the rotor winding. It can be realized with a simple configuration of providing an element.
【0014】[0014]
【実施例】図3により本発明の実施例を説明する。図3
に示すものは本発明のブラシレス同期発電機における固
定子と回転子の巻線部分だけを抜き出したものである。
まず符号1は同期発電機の固定子側を示し、符号2は同
じく回転子側を示している。Embodiment An embodiment of the present invention will be described with reference to FIG. Figure 3
In the brushless synchronous generator of the present invention, only the winding parts of the stator and the rotor are extracted as shown in FIG.
First, reference numeral 1 indicates the stator side of the synchronous generator, and reference numeral 2 also indicates the rotor side.
【0015】まず固定子側1は、固定子コア(省略)に
スター結線の電機子巻線3を設けてある。該電機子巻線
3の出力端子a,b,cのそれぞれの端子間には容量負
荷のコンデンサCが設けてある。また前記電機子巻線3
の同一相にそれぞれ補助巻線4を設けサイリスタSCR
を介して直列に接続してあり補助回路5としてある。こ
の補助回路5の直列接続した補助巻線4は、同一相の電
機子巻線3の作用によって補助巻線4に誘起される電圧
の総和が常に零にならないような直列接続としてある。First, on the stator side 1, a star connection armature winding 3 is provided on a stator core (omitted). A capacitor C, which is a capacitive load, is provided between the output terminals a, b, and c of the armature winding 3. Also, the armature winding 3
Auxiliary windings 4 are provided on the same phase of each thyristor SCR
And is connected in series via and serves as an auxiliary circuit 5. The auxiliary windings 4 connected in series of the auxiliary circuit 5 are connected in series so that the sum of the voltages induced in the auxiliary windings 4 by the action of the armature windings 3 of the same phase does not always become zero.
【0016】一方回転子側2は、回転子コア(省略)に
回転子巻線6を設け、この回転子巻線6をスターに接続
すると共に、該回転子巻線6の線間に並列に整粒素子と
してダイオ−ドD2,D3が接続してある。On the other hand, on the rotor side 2, a rotor winding 6 is provided on a rotor core (not shown), the rotor winding 6 is connected to a star, and the rotor winding 6 is connected in parallel between the lines. Diodes D 2 and D 3 are connected as particle size control elements.
【0017】また説明の都合上各巻線に誘起する電圧を
次のように規定する。固定子の電機子巻線3に誘起する
電圧をE1、電機子巻線の電圧によって補助巻線4に誘
起する電圧をE2とする。また補助巻線6の電圧E2に
よって回転子巻線6に誘起する電圧をeとする。For convenience of explanation, the voltage induced in each winding is defined as follows. Let E 1 be the voltage induced in the armature winding 3 of the stator, and E 2 be the voltage induced in the auxiliary winding 4 by the voltage of the armature winding. Further, the voltage induced in the rotor winding 6 by the voltage E 2 of the auxiliary winding 6 is e.
【0018】以上のように構成した本発明の同期電動機
は、前記回転子側2を他の電動機あるいは原動機によっ
て回転駆動することにより発電作用を行うものである。In the synchronous motor of the present invention having the above-described structure, the rotor side 2 is driven to rotate by another electric motor or a prime mover to generate electricity.
【0019】回転子側2を回転駆動すると回転子の残留
磁気により電機子巻線3にわずかの電圧を誘起する。こ
の電圧Vにより静電容量負荷のコンデンサCには90°
の進み電流が流れ、この進み電流によって固定子の電機
子電圧Vが上昇し、更にそれに応じて充電電流が増加す
るというくり返しで電機子巻線3の電圧Vは大きくな
り、最終的には電機子巻線の飽和曲線と静電容量の充電
特性との交点P(図2参照)に落ちつくことになる。When the rotor side 2 is rotationally driven, a slight voltage is induced in the armature winding 3 due to the residual magnetism of the rotor. This voltage V causes the capacitor C, which is a capacitive load, to rotate 90 °.
Of the stator armature voltage V increases due to this leading current, and the charging current also increases accordingly, so that the voltage V of the armature winding 3 increases, and finally the armature winding 3 increases. It will settle at the intersection point P (see FIG. 2) between the saturation curve of the subsidiary winding and the charging characteristic of the electrostatic capacitance.
【0020】本発明においては、その特徴として固定子
の電機子巻線3と同一相に補助巻線4を設けてある。ま
たこの補助巻線4は、それぞれの相の補助巻線4に誘起
する電圧の総和が零にならないように直列に接続すると
共に接続した補助巻線の端子をサイリスタSCRを介し
て接続した補助回路5にしてあることに特徴を有するも
のである。The feature of the present invention is that the auxiliary winding 4 is provided in the same phase as the armature winding 3 of the stator. The auxiliary winding 4 is connected in series so that the total voltage induced in the auxiliary windings 4 of the respective phases does not become zero, and the terminals of the connected auxiliary windings are connected via a thyristor SCR. The feature is that it is set to 5.
【0021】この補助巻線4には、前述の電機子巻線3
に起動初期に誘起する電圧Vによって流れる電機子電流
により電圧E2が誘起される。この電圧E2により補助
回路5の補助巻線4にはその回路5のサイリスタSCR
を介して整流電流が流れるようになる。この整流電流に
は直流分と交流分とが含まれている。以下この直流と交
流に別けて説明する。The auxiliary winding 4 includes the above-mentioned armature winding 3
The voltage E 2 is induced by the armature current flowing due to the voltage V induced at the initial stage of startup. This voltage E 2 causes the auxiliary winding 4 of the auxiliary circuit 5 to pass through the thyristor SCR of the circuit 5.
The rectified current will flow through the. This rectified current includes a direct current component and an alternating current component. The direct current and the alternating current will be separately described below.
【0022】まず整流電流の直流分は固定子側1に静止
磁界を作ることとなり、この静止磁界と、転駆動される
回転子の回転子巻線6とが鎖交し、補助回路5の静止磁
界による電圧eを誘起することになる。回転子巻線6の
線間にはダイオードD2,D3が設けてあるのでこの電
圧eによる電流は整流されることになり、結果として回
転子巻線6には整流電流が流れ、回転子に磁極を形成す
ることになる。この回転子に形成した磁極は固定子に対
して電圧を誘起するもので、起動初期に発生する固定子
の電圧Vに加わり、固定子の電機子巻線3全体の誘起電
圧E1を更に高めるように作用するものである。このよ
うに電機子巻線3の誘起電圧E1が大きくなればそれに
よって誘起される補助巻線4の電圧E2も大きくなり、
この作用のくり返しにより電機子電圧E1は実用可能な
電力を発生するものとなる。First, the direct current component of the rectified current creates a static magnetic field on the stator side 1, and this static magnetic field interlinks with the rotor winding 6 of the rotor to be driven to rotate, so that the auxiliary circuit 5 is stationary. The voltage e due to the magnetic field will be induced. Since the diodes D 2 and D 3 are provided between the lines of the rotor winding 6, the current due to this voltage e is rectified, and as a result, the rectified current flows through the rotor winding 6 and the rotor The magnetic pole will be formed on the. The magnetic poles formed on this rotor induce a voltage to the stator, and in addition to the voltage V of the stator generated at the initial stage of startup, the induced voltage E 1 of the entire armature winding 3 of the stator is further increased. It works like this. In this way, when the induced voltage E 1 of the armature winding 3 increases, the voltage E 2 of the auxiliary winding 4 induced by it also increases,
By repeating this action, the armature voltage E 1 generates practicable electric power.
【0023】さて一方の整流電流の交流分の正相分と逆
相分とが存在する。まず正相分は発電機の同期インピー
ダンスにより電圧を降下させる作用をする。逆相分は回
転子の回転磁界とは逆回転の磁界を作っているので、回
転子巻線6はこの逆回転の磁界と鎖交することになり回
転子に電圧を誘起するように作用し、回転子には補助回
路5による整流電流の交流分のうち逆相分によっても電
圧を誘起して整流電流が流れるようになり、回転子の界
磁極を強くするように作用する。There is a positive-phase component and a negative-phase component of the alternating current component of one of the rectified currents. First, the positive phase component acts to drop the voltage due to the synchronous impedance of the generator. Since the antiphase component creates a magnetic field that rotates in the opposite direction to the rotating magnetic field of the rotor, the rotor winding 6 interlinks with the magnetic field that rotates in the opposite direction, and acts to induce a voltage in the rotor. In the rotor, the rectified current is caused to flow by inducing a voltage also by the reverse phase component of the AC component of the rectified current by the auxiliary circuit 5, and acts to strengthen the field pole of the rotor.
【0024】このように補助回路5の直流分と交流の逆
相分とによって、回転子の界磁が強められると固定子の
電機子巻線3の誘起電圧E1は更に大きくなる。When the field of the rotor is strengthened by the direct-current component and the alternating-phase component of the alternating current of the auxiliary circuit 5 as described above, the induced voltage E 1 of the armature winding 3 of the stator is further increased.
【0025】ところで、前述の補助回路5の補助巻線4
のように、巻線4のそれぞれに誘起する電圧の総和が零
にならないように補助巻線4を接続しておくと、補助巻
線4に流れる整流電流の交流分による電機子巻線3への
影響が無くなる。つまり、図3のサイリスタSCRに流
れる整流電流の交流分の一方について見ると、この交流
分をiとするとiは図4のように流れている。このよう
に励磁巻線4に流れる交流電流がiが主巻線3に補償電
流i’を流すと仮定すると、中性点0においてキルヒホ
ツフの電流則がBy the way, the auxiliary winding 4 of the above-mentioned auxiliary circuit 5
When the auxiliary winding 4 is connected so that the total of the voltages induced in the windings 4 does not become zero, the armature winding 3 is affected by the AC component of the rectified current flowing in the auxiliary winding 4. The effect of will disappear. That is, looking at one of the alternating current components of the rectified current flowing through the thyristor SCR in FIG. 3, assuming that this alternating current component is i, i flows as shown in FIG. Assuming that the alternating current i flowing in the exciting winding 4 causes the compensating current i ′ to flow in the main winding 3 as described above, at the neutral point 0, Kirchhoff's current law is
【0026】[0026]
【数2】i≠2i となって成立しない。したがって主巻線3には励磁巻線
4に流れる交流分iの補償電流i’は流れないことにな
る。すなわち主巻線3と励磁巻線4の間の交流電流によ
る干渉はないということになる。結果的に励磁巻線4
は、大きい励磁インダクタンスを仮想的に有しこの仮想
励磁インダクタンスを通じて交流分iが流れるように作
用していることになる。[Equation 2] i ≠ 2i, which does not hold. Therefore, the compensating current i'of the AC component i flowing in the exciting winding 4 does not flow in the main winding 3. That is, there is no interference due to the alternating current between the main winding 3 and the excitation winding 4. As a result, excitation winding 4
Has a large exciting inductance and acts so that the alternating current component i flows through the virtual exciting inductance.
【0027】ところで補助回路5のサイリスタSCR
は、その点孤角を制御するもので、この制御によるとこ
ろは、補助回路5を流れる整流電流を制御することで、
回転子巻線に誘起する電圧eを制御することになる。結
果として回転子の界磁をブラシレスで制御できるから、
発電機の出力、つまり電機子巻線3の誘起電圧を制御可
能となる。By the way, the thyristor SCR of the auxiliary circuit 5
Controls the firing angle. The control is by controlling the rectified current flowing through the auxiliary circuit 5,
The voltage e induced in the rotor winding will be controlled. As a result, the field of the rotor can be controlled brushlessly,
It is possible to control the output of the generator, that is, the induced voltage of the armature winding 3.
【0028】[0028]
【発明の効果】以上のように本発明によると、固定子に
補助巻線を設けて、ここに誘起して流れる電流をサイリ
スタで制御するという補助回路を設け、回転子巻線の線
間にダイオードを接続するという、固定子への単純な巻
線の追加と、ありふれた制御素子の追加組み合せによ
り、直流電源を必要とせず、励磁用発電機も必要とせ
ず、保守のめんどうなスリップリングなども省略した、
簡単なブラシレス自励式同期電動機を提供可能とした。As described above, according to the present invention, the auxiliary winding is provided on the stator, and the auxiliary circuit for controlling the current induced by the thyristor is provided between the wires of the rotor winding. By adding a simple winding to the stator, which connects a diode, and an additional combination of common control elements, a DC power supply is not required, an excitation generator is not required, and a slip ring that is troublesome for maintenance, etc. Also omitted,
It is possible to provide a simple brushless self-excited synchronous motor.
【図1】無励磁同期発電機の容量負荷による自励発電を
示す回路図。FIG. 1 is a circuit diagram showing self-excited power generation by a capacitive load of a non-excitation synchronous generator.
【図2】容量負荷における電機子の飽和曲線と容量負荷
の充電特性を示す図。FIG. 2 is a diagram showing a saturation curve of an armature in a capacitive load and a charging characteristic of the capacitive load.
【図3】本発明のブラシレス同期発電機の巻線部分を抜
き出した回路図。FIG. 3 is a circuit diagram in which a winding portion of the brushless synchronous generator of the present invention is extracted.
【図4】補助回路の交流分電流と電機子巻線の補償電流
を示す固定子の巻線部分だけを抜き出した図。FIG. 4 is a diagram showing only the winding portion of the stator, which shows the alternating current component of the auxiliary circuit and the compensation current of the armature winding.
1 固定子側 2 回転子側 3 電機子巻線 4 補助巻線 5 補助回路 6 回転子巻線 SCR サイリスタ D2 ダイオード D3 ダイオード1 Stator Side 2 Rotor Side 3 Armature Winding 4 Auxiliary Winding 5 Auxiliary Circuit 6 Rotor Winding SCR Thyristor D 2 Diode D 3 Diode
Claims (1)
三相スター結線すると共に該回転子巻線の2つの線間に
整流素子を接続した回転子と、前記回転子コアに対向し
て周設した固定子コアを有し、該固定子コアに三相スタ
ー結線にした電機子巻線を巻装しその出力端子間に静電
容量を接続した固定子と、前記固定子の電機子巻線の同
一相にそれぞれ巻線を設け該巻線に誘起する電圧の総和
が零にならないように直列結線して補助巻線とし該補助
巻線の端子をサイリスタ素子を介して接続した補助回路
とにより構成したことを特徴とするブラシレス同期発電
機。1. A rotor having three-phase rotor windings provided on a rotor core for three-phase star connection and a rectifying element connected between two lines of the rotor winding, and the rotor core. A stator having stator cores arranged facing each other, the stator core being wound with an armature winding having a three-phase star connection, and having a capacitance connected between its output terminals; Each of the armature windings has a winding in the same phase and is connected in series to form an auxiliary winding so that the sum of the voltages induced in the winding does not become zero, and the terminals of the auxiliary winding are connected via thyristor elements. A brushless synchronous generator characterized by being configured with the auxiliary circuit described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7875493A JPH06269151A (en) | 1993-03-11 | 1993-03-11 | Brushless synchronous generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7875493A JPH06269151A (en) | 1993-03-11 | 1993-03-11 | Brushless synchronous generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06269151A true JPH06269151A (en) | 1994-09-22 |
Family
ID=13670692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7875493A Pending JPH06269151A (en) | 1993-03-11 | 1993-03-11 | Brushless synchronous generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06269151A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015509697A (en) * | 2012-02-16 | 2015-03-30 | ジェンラ8 リミテッド | Synchronous electrical machine |
CN104767336A (en) * | 2015-03-30 | 2015-07-08 | 北京工业大学 | Single-phase separately-excited magneto-resistive power generator |
JP2019165551A (en) * | 2018-03-19 | 2019-09-26 | ミネベアミツミ株式会社 | Motor device and motor drive control method |
-
1993
- 1993-03-11 JP JP7875493A patent/JPH06269151A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015509697A (en) * | 2012-02-16 | 2015-03-30 | ジェンラ8 リミテッド | Synchronous electrical machine |
CN104767336A (en) * | 2015-03-30 | 2015-07-08 | 北京工业大学 | Single-phase separately-excited magneto-resistive power generator |
JP2019165551A (en) * | 2018-03-19 | 2019-09-26 | ミネベアミツミ株式会社 | Motor device and motor drive control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09294389A (en) | Power generating equipment and cleaner using it | |
US8450963B2 (en) | Brushless synchronous machine utilizing third harmonic excitation | |
EP0696834B1 (en) | Three-phase brushless self-excited synchronous generator with no rotor exciting windings | |
Pallantla et al. | Comparison and evaluation of the different brushless excitation topologies for synchronous machines-A literature survey | |
US3210644A (en) | Dynamo electric machine | |
US5012148A (en) | AC machine system with induced DC field | |
JPH11220857A (en) | Brushless three-phase synchronous generator | |
JPH06269151A (en) | Brushless synchronous generator | |
JP2939914B2 (en) | Brushless self-excited synchronous generator | |
JP2887686B2 (en) | Brushless self-excited synchronous generator | |
JP2003134766A (en) | Brushless electric rotating machine | |
JP3539148B2 (en) | Cylindrical synchronous generator | |
JPH06327205A (en) | Brushless synchronous generator | |
JPS6223348A (en) | Brushless generator | |
RU2279173C2 (en) | Inductor engine (variants) | |
JPH07222416A (en) | Brushless three-phase ac generator | |
JP3489108B2 (en) | Brushless self-excited single-phase synchronous generator | |
JPH06284656A (en) | Induction generator | |
JPH0724930Y2 (en) | Brushless single phase alternator | |
JPH01264551A (en) | Brushless self-excited synchronous generator | |
JPH06253513A (en) | Synchronuous motor | |
JPH07264821A (en) | Brushless 3-phase ac generator | |
JPH06284657A (en) | Induction generator | |
JPH0817560B2 (en) | Brushless generator | |
JP2530297B2 (en) | AC generator |