Nothing Special   »   [go: up one dir, main page]

JPH05811A - Activated carbon material, its production and use thereof - Google Patents

Activated carbon material, its production and use thereof

Info

Publication number
JPH05811A
JPH05811A JP3301060A JP30106091A JPH05811A JP H05811 A JPH05811 A JP H05811A JP 3301060 A JP3301060 A JP 3301060A JP 30106091 A JP30106091 A JP 30106091A JP H05811 A JPH05811 A JP H05811A
Authority
JP
Japan
Prior art keywords
activated carbon
carbon material
protein
material according
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3301060A
Other languages
Japanese (ja)
Inventor
Hisaoki Abe
久起 阿部
Toshio Kondo
俊夫 近藤
Hideki Fukuda
秀樹 福田
Mayumi Takahashi
真由美 高橋
Tetsuo Aoyama
哲男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPH05811A publication Critical patent/JPH05811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Sludge (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide an activated carbon material with high activity which is useful as a hydrogen peroxide decomposition catalyst or a hydrazine decomposition catalyst and its production method. CONSTITUTION:Protein or protein containing sludge or waste is subjected to carbonization and reactivation treatment to form an activated carbon material. The material has a content of 1 to 5wt.% nitrogen, 3 to 30wt.% oxygen and 40 to 90wt.% carbon, and has 15 to 300Angstrom average pore radius, and consists of vesicular mesopores occupying at least 50vol.% of the whole volume.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学プラントから発生
する廃液や半導体処理の際に発生する排水廃液、金属表
面処理の際に生ずる廃液等に含有する種々の化合物の分
解処理に有効な活性炭素材料に係り、例えば排水、廃液
中に含有する過酸化水素あるいはヒドラジン用の分解触
媒として有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to activated carbon effective for decomposing various compounds contained in waste liquid generated from a chemical plant, waste liquid waste generated during semiconductor treatment, waste liquid generated during metal surface treatment, and the like. It is useful as a decomposition catalyst for hydrogen peroxide or hydrazine contained in waste water and waste liquid, for example, as a raw material.

【0002】[0002]

【従来の技術】過酸化水素はは、現在、工業的に大量に
生産されており、その用途も広範囲に亘り、紙パルプ、
繊維の漂白剤、酸化剤;医薬品としての殺菌剤、酸化
剤;食品の漂白剤、殺菌剤;金属の表面処理剤;半導体
の洗浄剤等として広く利用されている。しかしながら、
過酸化水素を含む廃液をそのまま排出した場合、COD
源となるばかりでなく、廃水処理時、たとえば生物活性
汚泥処理装置に混入した場合、過酸化水素の分解に伴っ
て発生する酸素ガスが沈澱槽で懸濁物を浮上させ、処理
水の水質の悪化の原因となるなど種々のトラブルの原因
となる。このため通常、廃水中の過酸化水素は予め分解
処理して排出される。
2. Description of the Related Art Hydrogen peroxide is currently industrially produced in large quantities and has a wide range of uses.
It is widely used as a bleaching agent and oxidizing agent for fibers; a bactericidal agent and an oxidizing agent as pharmaceuticals; a bleaching agent and a bactericidal agent for foods; a surface treatment agent for metals; and a cleaning agent for semiconductors. However,
If the waste liquid containing hydrogen peroxide is discharged as it is, COD
Not only as a source, but also when treating wastewater, for example, when mixed with a biological activated sludge treatment device, oxygen gas generated by decomposition of hydrogen peroxide floats the suspension in the settling tank, and It causes various troubles such as deterioration. Therefore, hydrogen peroxide in waste water is usually decomposed in advance and discharged.

【0003】従来行われている過酸化水素の分解方法と
しては、(1) 重亜硫酸ソーダ等の薬品を使用した分解方
法、(2) 二酸化マンガンを触媒とする分解方法、(3) 活
性炭を使用する分解方法、(4) カタラーゼ等の酵素を使
用した分解方法等がある。しかしながら、上記の(1) の
方法は、分解時に亜硫酸ガスを発生し、周囲の環境悪化
を招き、また過酸化水素の当量倍以上の使用量が必要で
あり大量の薬品の使用が必要となりコストに影響を与
え、その上過剰な重亜硫酸ソーダはCOD源として二次
公害を招く等の問題がある。(2) の方法は分解時にマン
ガンの溶出があり、特に酸性下ではマンガンの溶出が激
しくマンガンによる汚染発生の欠点がある。(3) の方法
は一般に分解能力が小さく、加えて寿命が短い等の欠点
がある。さらに(4) の方法はカタラーゼが酵素であるこ
とから使用される液のpH領域が中性または常温と限定
される等の欠点がある。このように従来の方法にはそれ
ぞれ多くの問題点を抱えており、根本的な改善が所望さ
れている。
As a conventional method for decomposing hydrogen peroxide, (1) a decomposing method using a chemical such as sodium bisulfite, (2) a decomposing method using manganese dioxide as a catalyst, and (3) using activated carbon And (4) decomposition methods using enzymes such as catalase. However, the above method (1) generates sulfurous acid gas at the time of decomposition, which leads to deterioration of the surrounding environment, and it requires the use of more than the equivalent of hydrogen peroxide, which requires the use of a large amount of chemicals and costs. In addition, there is a problem that excess sodium bisulfite causes secondary pollution as a COD source. In the method (2), manganese is eluted at the time of decomposition, and particularly under acidic conditions, manganese elutes violently, and there is a disadvantage that manganese is contaminated. The method (3) generally has a disadvantage that the decomposition ability is small and the life is short. Further, the method (4) has the drawback that the pH range of the liquid used is limited to neutral or room temperature because catalase is an enzyme. As described above, each of the conventional methods has many problems, and a fundamental improvement is desired.

【0004】また、ヒドラジンあるいはその塩類、ヒド
ラジン誘導体(以下これらをヒドラジン類という)は現
在、清缶剤、還元剤、農薬、重合触媒、発泡剤、半導体
処理剤、水処理剤等々として広く使用されており、ヒド
ラジン類を含有する廃液、排水の処理に際しては予め含
有するヒドラジンの分解処理が行われている。従来この
ヒドラジン類の分解処理は、一般にはヒドラジンを含有
する廃液、排水に次亜塩素酸ソーダを添加しヒドラジン
を酸化分解する方法が採られている。この次亜塩素酸ソ
ーダによるヒドラジンの酸化分解は次式による。 N2 H4 + 4NaOCl → 4NaCl + 2H2O2 + N2+O2 この反応の場合は大量の次亜塩素酸ソーダを使用するた
め、その処理に要する費用も膨大になり高価なものとな
る。また分解後に廃液中に若干の塩素が残存することが
あるなどの問題もある。一方、特開昭53−91093
号公報、特開昭53−91095号公報に、重金属を触
媒とし空気によりヒドラジンを分解する方法が開示され
ている。この空気によるヒドラジンの分解は次式によ
る。 N2 H4 + O2 → N2 +2H2O しかしながら、この方法は分解速度が遅く、ヒドラジン
の分解が不充分である等の欠点があり、さらに重金属に
よる二次汚染の危険性もあり、充分な方法とはいえな
い。
In addition, hydrazine or its salts and hydrazine derivatives (hereinafter referred to as hydrazines) are widely used at present as boiler agents, reducing agents, agricultural chemicals, polymerization catalysts, foaming agents, semiconductor treating agents, water treating agents and the like. Therefore, when treating the waste liquid containing the hydrazines and the waste water, the hydrazine contained is decomposed in advance. Conventionally, the decomposition treatment of hydrazines has generally employed a method of adding sodium hypochlorite to waste liquid and drainage containing hydrazine to oxidize and decompose hydrazine. The oxidative decomposition of hydrazine by sodium hypochlorite is calculated by the following equation. N 2 H 4 + 4NaOCl → 4NaCl + 2H 2 O 2 + N 2 + O 2 In the case of this reaction, a large amount of sodium hypochlorite is used, so the cost required for the treatment becomes enormous and expensive. There is also a problem that some chlorine may remain in the waste liquid after decomposition. On the other hand, JP-A-53-91093
JP-A-53-91095 discloses a method of decomposing hydrazine with air using a heavy metal as a catalyst. The decomposition of hydrazine by this air is based on the following equation. N 2 H 4 + O 2 → N 2 + 2H 2 O However, this method has drawbacks such as a slow decomposition rate and insufficient decomposition of hydrazine, and there is a risk of secondary contamination with heavy metals. It's not a good method.

【発明が解決しようとする課題】上記のように従来方法
における過酸化水素またはヒドラジンの分解方法にはそ
れぞれ種々の問題点がある。本発明は、上記の種々の問
題点を解決し、広範囲な液性(pH領域)で使用可能で
あり、かつ高活性な過酸化水素分解能またはヒドラジン
分解能を有し、その上二次公害の発生を伴うことなく、
分解処理できる活性炭素材料からなる過酸化水素および
ヒドラジン分解用触媒を提供するものである。
As described above, each of the conventional methods for decomposing hydrogen peroxide or hydrazine has various problems. INDUSTRIAL APPLICABILITY The present invention solves the above-mentioned various problems, can be used in a wide range of liquid properties (pH range), and has highly active hydrogen peroxide decomposing ability or hydrazine decomposing ability, and further, generation of secondary pollution. Without
The present invention provides a catalyst for decomposing hydrogen peroxide and hydrazine, which is composed of an activated carbon material that can be decomposed.

【0005】[0005]

【課題を解決するための手段】本発明者らは、蛋白質、
または蛋白質を含有する汚泥もしくは廃棄物質を炭化処
理、賦活処理して得られる活性炭素材料が、過酸化水素
またはヒドラジンの分解触媒として高活性で、かつ二次
汚染の発生を伴わず安全であり、極めて有効であること
を見い出した。さらに検討を加え、上記の炭化、賦活処
理を行った後、酸処理、加熱処理して得られる活性炭素
材料およびポリアクリロニトリル系活性炭素繊維を加熱
処理して得られる活性炭素材料も高活性を示し過酸化水
素またはヒドラジンの分解触媒として極めて有効である
ことを見い出した。すなわち、本発明は窒素1〜5重量
%、酸素3〜30重量%、炭素40〜90重量%をそれ
ぞれ含有し、かつ平均細孔半径が15〜30Åであり、
有孔メソポアが全容積当たり少なくとも50容積%を占
めることを特徴とする活性炭素材料およびその製造法な
らびに過酸化水素またはヒドラジン分解用触媒に関す
る。
[Means for Solving the Problems]
Or carbonization treatment of sludge or waste material containing protein, activated carbon material obtained by activation treatment, is highly active as a decomposition catalyst of hydrogen peroxide or hydrazine, and is safe without the occurrence of secondary pollution, It has been found to be extremely effective. After further study, after the above carbonization and activation treatment, activated carbon material obtained by acid treatment and heat treatment and activated carbon material obtained by heat treatment of polyacrylonitrile-based activated carbon fiber also show high activity. It has been found to be extremely effective as a decomposition catalyst for hydrogen peroxide or hydrazine. That is, the present invention contains 1 to 5% by weight of nitrogen, 3 to 30% by weight of oxygen, and 40 to 90% by weight of carbon, respectively, and has an average pore radius of 15 to 30Å.
The present invention relates to an activated carbon material characterized by containing at least 50% by volume of porous mesopores, a method for producing the same, and a catalyst for decomposing hydrogen peroxide or hydrazine.

【0006】本発明における活性炭素材料は、蛋白質ま
たは蛋白質を含有する汚泥もしくは廃棄物質を炭化、賦
活処理を行って得られるが、過酸化水素およびヒドラジ
ンの分解に有効な高活性を示すには、窒素の含有量が1
〜5重量%であることが重要であり、窒素の含有量が上
記範囲外である場合、特に1重量%よりも少ない場合
は、過酸化水素またはヒドラジンの分解活性が著しく低
下し不都合である。また、酸素含有量、炭素含有量も上
記の範囲内にあることが望ましく、上記の範囲外では過
酸化水素またはヒドラジンの分解活性の低下が認めら
れ、本発明の所期の目的を十分に発揮することができず
好ましくない。本発明に係る活性炭素材料は上記の炭
化、賦活処理を行った段階では酸素含有量および炭素含
有量はそれぞれ5〜30重量%、40〜90重量%であ
る。この状態の活性炭素材料でも過酸化水素またはヒド
ラジンの分解触媒として十分に高活性であるが、上記の
賦活処理を行った後、次いで酸処理を行い加熱処理する
ことにより、酸素含有量および炭素含有量をそれぞれ3
〜10重量%、70〜95重量%とすることができ、さ
らに高活性化され、例えば強酸性の過酸化水素を含有す
る廃液や高濃度の過酸化水素またはヒドラジンを含有す
る廃液等に適用し過酸化水素またはヒドラジンを速やか
に分解除去するのにより好適である。したがって、対象
とする被処理液の種類により本発明の活性炭素材料から
なる触媒を適宜選択することにより効果的な分解除去を
行うことができる。
The activated carbon material in the present invention is obtained by carbonizing and activating a protein or a sludge containing a protein or a waste material. To exhibit a high activity effective for decomposing hydrogen peroxide and hydrazine, Nitrogen content is 1
It is important that the content is up to 5% by weight, and if the nitrogen content is out of the above range, particularly if it is less than 1% by weight, the decomposition activity of hydrogen peroxide or hydrazine is significantly lowered, which is inconvenient. Further, it is desirable that the oxygen content and the carbon content are also within the above-mentioned ranges, and if the oxygen content and the carbon content are out of the above-mentioned ranges, a decrease in the decomposition activity of hydrogen peroxide or hydrazine is observed, and the intended purpose of the present invention is sufficiently exhibited. It cannot be done and is not preferable. The activated carbon material according to the present invention has an oxygen content and a carbon content of 5 to 30% by weight and 40 to 90% by weight, respectively, at the stage of performing the above-mentioned carbonization and activation treatment. Even the activated carbon material in this state has sufficiently high activity as a decomposition catalyst for hydrogen peroxide or hydrazine, but after the activation treatment described above, an acid treatment and then a heat treatment are performed to obtain an oxygen content and a carbon content. 3 each
It can be 10 to 10% by weight, 70 to 95% by weight, and is applied to a highly activated, for example, waste liquid containing strongly acidic hydrogen peroxide or a waste liquid containing high concentration hydrogen peroxide or hydrazine. It is more preferable to rapidly decompose and remove hydrogen peroxide or hydrazine. Therefore, effective decomposition and removal can be performed by appropriately selecting the catalyst composed of the activated carbon material of the present invention according to the type of the target liquid to be treated.

【0007】また本発明の活性炭素材料は上記の通り平
均細孔半径が15〜30Åを有するものであるが、この
平均細孔半径が15Åよりも小さい場合、および30Å
よりも大きい場合は過酸化水素またはヒドラジンの分解
能が低く望ましくなく上記した範囲内にあることが好ま
しい。さらに本発明に係る活性炭素材料は有孔メソポア
が全容積当たり少なくとも50容積%を占める。そして
このメソポアは、上記の賦活処理を行った後、次いで酸
処理を行い加熱処理することによりさらに高めることが
でき、全容積当たり少なくとも60容積%を占めるもの
となる。本発明の過酸化水素またはヒドラジンの分解触
媒として有用な活性炭素材料において、その比表面積は
格別限定されないが、好ましくは300〜1500平方
メートル/gの範囲であることが本発明の目的を達成す
る上で好適である。なお、本発明において活性炭素材料
の平均細孔半径および比表面積ならびに有孔メソポア
は、オートソーブ測定器(湯浅アイオニクス社製)を使
用して窒素ガスの吸着法により求めた。
The activated carbon material of the present invention has an average pore radius of 15 to 30 Å as described above. When the average pore radius is smaller than 15 Å, and 30 Å
If it is larger than the above range, the resolution of hydrogen peroxide or hydrazine is low, which is not desirable and is preferably within the above range. Further, the activated carbon material according to the present invention has at least 50% by volume of the porous mesopores based on the total volume. The mesopores can be further enhanced by performing the activation treatment, then the acid treatment and the heat treatment, and the mesopores occupy at least 60% by volume based on the total volume. In the activated carbon material useful as a decomposition catalyst for hydrogen peroxide or hydrazine of the present invention, its specific surface area is not particularly limited, but it is preferably in the range of 300 to 1500 square meters / g in order to achieve the object of the present invention. Is preferred. In the present invention, the average pore radius and specific surface area of the activated carbon material and the mesopores having pores were determined by a nitrogen gas adsorption method using an autosorb measuring instrument (manufactured by Yuasa Ionics).

【0008】本発明の活性炭素材料は、蛋白質または蛋
白質含有汚泥もしくは廃棄物質を炭化、賦活処理して得
られる。本発明の活性炭素材料の製造に用いられる蛋白
質または蛋白質含有汚泥もしくは廃棄物質としては、パ
ン酵母、クロレラなどの酵母類;細菌、藻類、ビール酵
母醗酵廃菌体、医薬品醗酵酵母廃菌体、アミノ酸醗酵粕
等の微生物蛋白質;工場廃液処理、糞尿処理、家庭排水
処理などの生物活性汚泥の余剰汚泥等があげられる。そ
の他に、魚類、獣肉、獣血などの動物性蛋白質;大豆、
脂肪大豆などの豆類、小麦胚芽、米胚芽などの植物性蛋
白質等も使用できる。これらのうち、酵母類、細菌、藻
類、醗酵廃菌体などの微生物蛋白質あるいは生物活性汚
泥の余剰汚泥などが取扱、入手性の点から望ましいもの
である。本発明に係る活性炭素材料からなる触媒は、上
記のような蛋白質または蛋白質含有汚泥もしくは廃棄物
質を原料とするものであるから安価に製造することがで
きる。
The activated carbon material of the present invention is obtained by carbonizing and activating a protein or a protein-containing sludge or a waste substance. Examples of proteins or protein-containing sludge or waste substances used in the production of the activated carbon material of the present invention include yeasts such as baker's yeast and chlorella; bacteria, algae, brewer's yeast fermentation waste cells, pharmaceutical fermentation yeast waste cells, amino acids. Microbial proteins such as fermentation dregs; surplus sludge of bioactive sludge such as factory waste liquid treatment, manure treatment, domestic wastewater treatment and the like. In addition, animal proteins such as fish, meat and animal blood; soybean,
Beans such as fatty soybeans and vegetable proteins such as wheat germ and rice germ can also be used. Of these, microbial proteins such as yeasts, bacteria, algae, and fermentation waste cells, or surplus sludge of bioactive sludge, are desirable from the viewpoint of handling and availability. The catalyst comprising the activated carbon material according to the present invention can be manufactured at a low cost because it uses the above-mentioned protein or protein-containing sludge or waste material as a raw material.

【0009】本発明の活性炭素材料を触媒として使用す
る場合、粉末、または成形品いずれでも使用することが
でき、それぞれの用途、使用箇所、使用状況等により適
宜選択される。本発明の活性炭素材料からなる触媒を成
形品とするには、原料の蛋白質または蛋白質含有汚泥も
しくは廃棄物質を成形した後、炭化処理し、次いで賦活
処理後、酸洗、加熱処理すればよい。成形する際には必
要に応じて粘結剤を使用することができる。この粘結剤
としては、たとえば、タールピッチ、リグニン、糖蜜、
アルギン酸ソーダ、カルボキシメチルセルロース(CM
C)、合成樹脂、ポリビニルアルコール、デンプン等の
有機質系粘結剤、スメクタイト、水ガラス等の無機質系
粘結剤などが例示される。これら粘結剤は、成形できる
程度に使用すればよく、原料に対して通常0.05〜2
重量%程度が使用される。
When the activated carbon material of the present invention is used as a catalyst, either a powder or a molded product can be used, and it is appropriately selected depending on the respective uses, places of use, situations of use and the like. In order to form a catalyst comprising the activated carbon material of the present invention into a molded article, the raw material protein or protein-containing sludge or a waste substance may be molded, carbonized, then activated, then pickled and heated. A binder may be used if necessary during molding. Examples of the binder include tar pitch, lignin, molasses,
Sodium alginate, carboxymethyl cellulose (CM
C), synthetic resins, organic binders such as polyvinyl alcohol and starch, and inorganic binders such as smectite and water glass. These binders may be used to such an extent that they can be molded, and are usually used in an amount of 0.05-2
About wt% is used.

【0010】本発明の活性炭素材料を製造する際の炭化
処理は、主として原料の蛋白質または蛋白質含有汚泥も
しくは廃棄物質中に含有する非炭素成分を除去し、もし
くは減少させ、次いで行われる賦活処理に適した材料と
する工程である。この炭化処理は、通常150〜600
℃で、好ましくは200〜500℃の温度で、空気、窒
素、炭酸ガスあるいはこれらの混合ガスを導入しなが
ら、数分から数時間行なわれる。 この炭化処理の際に
原料の蛋白質または蛋白質含有汚泥もしくは廃棄物質の
粉末、あるいは成形物が融着あるいは溶着すると所望す
る微細な細孔を形成することが困難となり、次いで実施
される賦活処理にも悪影響を与え、良好な特性を持つ活
性炭素材料を得ることができず好ましくない。この融着
あるいは溶着を防止するために、原料に少量の鉄化合物
を添加することが好ましい。この鉄化合物は、融着ある
いは溶着を防止する以外に炭化処理時の操作性を良好に
し、均一な炭化処理を行うことができる。このような目
的に使用される鉄化合物としては、たとえば硫酸第一
鉄、硫酸第二鉄、硫酸第一鉄アンモニウム、硫酸第二鉄
アンモニウム、硝酸第二鉄、塩化第一鉄、塩化第二鉄、
りん酸第一鉄、りん酸第二鉄、炭酸第一鉄、水酸化第一
鉄、水酸化第二鉄、けい酸第一鉄、硫化第一鉄、硫化第
二鉄等の無機系の鉄化合物あるいはその塩;クエン酸第
二鉄、クエン酸第二鉄アンモニウム、シュウ酸第一鉄、
シュウ酸第二鉄アンモニウム等の有機酸の鉄化合物ある
いはその塩等を挙げることができる。これらの鉄化合物
は、原料に対して1〜20重量%程度添加される。
The carbonization treatment for producing the activated carbon material of the present invention is carried out by removing or reducing non-carbon components mainly contained in the raw material protein or protein-containing sludge or waste material, and then carrying out the activation treatment to be carried out subsequently. This is a process of making a suitable material. This carbonization is usually 150-600
C., preferably at a temperature of 200 to 500.degree. C., for several minutes to several hours while introducing air, nitrogen, carbon dioxide or a mixed gas thereof. During this carbonization treatment, if the raw material protein or protein-containing sludge or waste substance powder, or a molded product is fused or welded, it becomes difficult to form the desired fine pores, and the activation treatment to be carried out next is also difficult. This is not preferable because it gives an adverse effect and an activated carbon material having good characteristics cannot be obtained. In order to prevent this fusion or welding, it is preferable to add a small amount of iron compound to the raw material. This iron compound not only prevents fusion or welding, but also improves the operability during the carbonization treatment and enables uniform carbonization treatment. Examples of the iron compound used for such purpose include ferrous sulfate, ferric sulfate, ferrous ammonium sulfate, ferric ammonium sulfate, ferric nitrate, ferric chloride, ferric chloride. ,
Inorganic iron such as ferrous phosphate, ferric phosphate, ferrous carbonate, ferrous hydroxide, ferric hydroxide, ferrous silicate, ferrous sulfide, ferric sulfide Compounds or salts thereof; ferric citrate, ferric ammonium citrate, ferrous oxalate,
Examples thereof include iron compounds of organic acids such as ferric ammonium oxalate and salts thereof. These iron compounds are added in an amount of about 1 to 20% by weight based on the raw materials.

【0011】上記の炭化処理に次いで実施される賦活処
理は、炭化処理で生成した細孔構造をより微細構造に成
長ないし発達、あるいは熟成させる工程であり、水蒸
気、炭酸ガス、酸素を主体とするガス雰囲気中で、一般
には700〜1100℃、好ましくは800〜1000
℃で数分ないし数時間実施される。本発明の活性炭素材
料を製造するに当たって、炭化処理、賦活処理は内熱式
または外熱式のロータリーキルンまたは管状炉、連続式
多段炉等を用いて実施される。
The activation treatment carried out after the above carbonization treatment is a step of growing, developing, or aging the fine pore structure formed by the carbonization treatment into a finer structure, and mainly comprises water vapor, carbon dioxide gas, and oxygen. In a gas atmosphere, generally 700 to 1100 ° C., preferably 800 to 1000
It is carried out at ℃ for several minutes to several hours. In producing the activated carbon material of the present invention, carbonization treatment and activation treatment are carried out using an internal heating type or external heating type rotary kiln or tubular furnace, a continuous multi-stage furnace or the like.

【0012】蛋白質または蛋白質を含有する汚泥もしく
は廃棄物質を原料とする本発明の活性炭素材料は、炭
化、賦活後次いでさらに酸処理した後、加熱処理するこ
とにより活性をより向上させることができる。この酸処
理に使用される酸は、通常、硫酸、塩酸、硝酸、フッ酸
等の無機酸であり、これらは5〜50重量%程度の水溶
液で使用される。酸処理は常温〜100℃で数分から数
時間実施される。酸処理を行った後、水洗を行い次いで
加熱処理を行う。この加熱処理は窒素、ヘリウム、アル
ゴン、二酸化炭素等の不活性ガスや水素、アンモニア、
一酸化炭素等の還元性ガスの雰囲気下で400〜110
0℃、好ましくは500〜1000℃で数分から数時間
実施される。本発明において上記の酸処理は、活性炭素
材料中の不純物成分を除去し、加熱処理することにより
不純物成分が除去された部分の微細構造がさらに成長あ
るいは発達、熟成される。この酸処理後次いで加熱処理
することにより酸処理前と比較し、分解活性がより向上
される。
The activity of the activated carbon material of the present invention, which is made of a protein or a sludge containing a protein or a waste material as a raw material, can be further improved by subjecting it to carbonization, activation, further acid treatment, and then heat treatment. The acid used for this acid treatment is usually an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid or hydrofluoric acid, and these are used in an aqueous solution of about 5 to 50% by weight. The acid treatment is carried out at room temperature to 100 ° C. for several minutes to several hours. After the acid treatment, it is washed with water and then heat-treated. This heat treatment is carried out with an inert gas such as nitrogen, helium, argon, carbon dioxide, hydrogen, ammonia,
400 to 110 under an atmosphere of a reducing gas such as carbon monoxide
It is carried out at 0 ° C., preferably 500 to 1000 ° C. for several minutes to several hours. In the present invention, the above-mentioned acid treatment removes impurity components in the activated carbon material, and heat treatment is performed to further grow, develop, or age the fine structure of the portions from which the impurity components have been removed. By performing heat treatment after the acid treatment, the decomposition activity is further improved as compared with that before the acid treatment.

【0013】本発明の活性炭素材料は、上記した蛋白質
または蛋白質を含有する汚泥もしくは廃棄物質を原料と
する他に、ポリアクリロニトリル系炭素繊維を原料とし
て得ることもできる。この場合ポリアクリロニトリル系
炭素繊維は、繊維状、フェルト状、マット状、織物状等
いずれの形態でも使用でき、それぞれの用途、使用箇
所、使用状態等により適宜選択される。このポリアクリ
ロニトリル系炭素繊維を原料とした本発明の活性炭素材
料は、上記した適宜の形状のポリアクリロニトリル系炭
素繊維を窒素、ヘリウム、アルゴン、二酸化炭素等の不
活性ガスあるいは水素、アンモニア、一酸化炭素等の還
元性ガスの雰囲気下で400〜1100℃、好ましくは
500〜1000℃で数分から数時間加熱処理すること
により得られる。本発明に用いられるポリアクリロニト
リル系活性炭素繊維はアクリロニトリルを主成分とし、
これに共重合成分として、たとえば塩化ビニル、塩化ビ
ニリデン、アクリル酸、アクリル酸誘導体、メタクリル
酸、メタクリル酸誘導体、アクリルアミド、N−メチロ
ールアクリルアミド、アリルスルホン酸およびメタアリ
ルスルホン酸等の共重合モノマーの一種または二種以上
と共重合して得られる重合体を紡糸し、不融化、賦活を
行った活性炭素繊維である。
The activated carbon material of the present invention can be obtained by using polyacrylonitrile-based carbon fiber as a raw material in addition to the above-mentioned protein or sludge containing the protein or a waste substance as a raw material. In this case, the polyacrylonitrile-based carbon fiber can be used in any form such as fibrous, felt-like, mat-like, and woven-like form, and is appropriately selected depending on each application, place of use, state of use, and the like. The activated carbon material of the present invention using this polyacrylonitrile-based carbon fiber as a raw material is an inert gas such as nitrogen, helium, argon, carbon dioxide or the like, hydrogen, ammonia, or monoxide, which is a polyacrylonitrile-based carbon fiber having the above-mentioned appropriate shape. It can be obtained by heat treatment at 400 to 1100 ° C., preferably 500 to 1000 ° C. for several minutes to several hours in an atmosphere of a reducing gas such as carbon. The polyacrylonitrile-based activated carbon fiber used in the present invention has acrylonitrile as a main component,
As a copolymerization component, for example, one of copolymerization monomers such as vinyl chloride, vinylidene chloride, acrylic acid, acrylic acid derivative, methacrylic acid, methacrylic acid derivative, acrylamide, N-methylolacrylamide, allylsulfonic acid and methallylsulfonic acid. Alternatively, it is an activated carbon fiber obtained by spinning, infusibilizing, and activating a polymer obtained by copolymerization with two or more kinds.

【0014】本発明の活性炭素材料を触媒として使用す
る過酸化水素の分解は、一般には過酸化水素を含有する
水溶液、過酸化水素を含有する有機溶剤あるいは過酸化
水素含有廃液等を、本発明の触媒と接触させることによ
り実施されるが、このような方法に限定されるものでな
く、過酸化水素のミストあるいは蒸気の状態で本発明の
触媒と接触させることにより分解することもできる。ま
た、本発明の活性炭素材料からなる触媒を用いて被処理
液中の過酸化水素を分解する場合、被処理液のpHおよ
び被処理液中の過酸化水素の濃度等は格別限定されず、
広範囲の液性で使用することができる。本発明の触媒を
使用した過酸化水素の分解は回分式、連続式いずれの方
法でも実施でき、処理時の温度、処理時間等は被処理液
の種類等により適宜選択し得る。
In the decomposition of hydrogen peroxide using the activated carbon material of the present invention as a catalyst, generally, an aqueous solution containing hydrogen peroxide, an organic solvent containing hydrogen peroxide, a waste liquid containing hydrogen peroxide, or the like is used. However, the method is not limited to such a method, and decomposition can also be carried out by contacting with the catalyst of the present invention in the state of mist or vapor of hydrogen peroxide. Further, when decomposing hydrogen peroxide in the liquid to be treated using the catalyst comprising the activated carbon material of the present invention, the pH of the liquid to be treated and the concentration of hydrogen peroxide in the liquid to be treated are not particularly limited,
It can be used in a wide range of liquid properties. Decomposition of hydrogen peroxide using the catalyst of the present invention can be carried out by either a batch method or a continuous method, and the temperature during the treatment, the treatment time and the like can be appropriately selected depending on the type of the liquid to be treated and the like.

【0015】また、本発明の活性炭素材料を触媒として
使用しヒドラジンを分解する場合は酸素発生剤の共存下
で処理することにより特に効果的にヒドラジンを分解処
理することができる。上記の酸素発生剤は、一般に過酸
素化合物が使用され、この過酸素化合物としては、過酸
化水素、過炭酸ソーダ、過ほう酸ソーダなどが例示され
る。過酸化水素の共存下でのヒドラジンの分解は次式に
より行われる。 N2 H4 + 2H2 O2 → N2 + 4H2O この分解反応は従来の次亜塩素酸ソーダを使用する方法
に比べ、理論上はヒドラジン1当量に対して過酸化水素
2当量を使用すればよいが通常はやや過剰量の過酸化水
素が使用される。しかしながら、次亜塩素酸ソーダを使
用する方法に比べ過酸化水素の使用量は遙に少なく経費
が節減でき、その上本発明に係る活性炭素材料からなる
触媒を使用し、過酸素化合物の存在下にヒドラジンを分
解する場合は二次汚染の発生の原因となるような物質の
発生がなく安全である。ヒドラジンを含有する被処理液
中のヒドラジンを分解する場合、一般に、被処理液の液
性(液のpH)が分解速度等に影響を与える。後述する
ように従来の水処理に使用される活性炭の場合液性がア
ルカリである場合には殆んど活性を示さないが、本発明
に係る活性炭素材料からなる触媒は被処理液の液性に余
り影響されず広い範囲のpH域で充分に活性である。ま
た、本発明に係る活性炭素材料を触媒としてヒドラジン
を分解するに際しては、回分式、連続式いずれの方法で
も実施でき、処理時の温度、時間等は被処理液の種類等
により適宜選択される。
When the activated carbon material of the present invention is used as a catalyst to decompose hydrazine, the decomposition treatment of hydrazine can be carried out particularly effectively by treating in the presence of an oxygen generator. Generally, a peroxygen compound is used as the oxygen generator, and examples of the peroxygen compound include hydrogen peroxide, sodium percarbonate, and sodium perborate. Decomposition of hydrazine in the presence of hydrogen peroxide is performed by the following equation. N 2 H 4 + 2H 2 O 2 → N 2 + 4H 2 O This decomposition reaction theoretically uses 2 equivalents of hydrogen peroxide for 1 equivalent of hydrazine compared to the conventional method using sodium hypochlorite. However, a slight excess of hydrogen peroxide is usually used. However, compared with the method using sodium hypochlorite, the amount of hydrogen peroxide used is much smaller and the cost can be saved. Moreover, the catalyst composed of the activated carbon material according to the present invention is used, and the presence of a peroxygen compound is When hydrazine is decomposed, it is safe because it does not generate any substances that may cause secondary pollution. In the case of decomposing hydrazine in a liquid to be treated containing hydrazine, the liquidity of the liquid to be treated (pH of the liquid) generally affects the decomposition rate and the like. As will be described later, the activated carbon used for conventional water treatment shows almost no activity when the liquid is alkaline, but the catalyst made of the activated carbon material according to the present invention has a liquid property of the liquid to be treated. It is not so much affected and is sufficiently active in a wide pH range. Further, when decomposing hydrazine using the activated carbon material according to the present invention as a catalyst, it can be carried out by either a batch method or a continuous method, and the temperature and time during the treatment are appropriately selected depending on the type of the liquid to be treated and the like. .

【0016】次に実施例により本発明を具体適に説明す
る。 (本発明活性炭素材料の製造)
Next, the present invention will be explained more specifically with reference to Examples. (Production of Activated Carbon Material of the Present Invention)

【実施例1】微生物廃菌体(メタノール資化性廃菌体)
1000部(重量部 以下同じ)、硝酸第二鉄200
部、ポリビニルアルコール20部および水1000部を
ニーダーで十分混練し、造粒して成形体とした。この成
形体を250〜500℃で3時間、空気を導入しながら
炭化処理を行い、次いで水蒸気の存在下に1000℃で
2時間賦活処理を行って256部の活性炭素材料を得
た。これは窒素含有量2.3重量%、酸素含有量22.
8重量%、炭素含有量48.2重量%で平均細孔半径は
21Åであり、全容積当たりメソポアは約55%を占め
た。
[Example 1] Microbial waste cells (methanol-utilizing waste cells)
1000 parts (the same applies hereafter by weight), ferric nitrate 200
Parts, 20 parts of polyvinyl alcohol and 1000 parts of water were sufficiently kneaded with a kneader and granulated to obtain a molded body. The molded body was carbonized at 250 to 500 ° C. for 3 hours while introducing air, and then activated at 1000 ° C. for 2 hours in the presence of steam to obtain 256 parts of activated carbon material. This has a nitrogen content of 2.3% by weight and an oxygen content of 22.
The average pore radius was 21Å at 8 wt% and carbon content of 48.2 wt%, and the mesopores accounted for about 55% based on the total volume.

【0017】[0017]

【実施例2】化学工場の生物活性汚泥処理装置で発生す
る余剰汚泥の乾燥物1000部に水600部を加え、ニ
ーダーで十分に混練し、造粒して成形体とした。この成
形体を200〜500℃で、窒素ガス雰囲気下に2時間
炭化処理を行い、次いで水蒸気/炭酸ガス=1(容積
比)の混合ガス中、800℃で1時間賦活処理を行って
221部の活性炭素材料を得た。これは窒素含有量2.
7重量%、酸素含有量8.8重量%、炭素含有量77.
9重量%で平均細孔半径は26Åであり、全容積当たり
メソポアは約68%を占めた。
Example 2 600 parts of water was added to 1000 parts of the dried product of the surplus sludge generated in the biological activated sludge treatment device of a chemical factory, and the mixture was sufficiently kneaded with a kneader and granulated to obtain a molded body. This molded body was carbonized at 200 to 500 ° C. for 2 hours in a nitrogen gas atmosphere, and then activated for 1 hour at 800 ° C. in a mixed gas of steam / carbon dioxide gas = 1 (volume ratio) to give 221 parts. Of activated carbon material was obtained. This has a nitrogen content of 2.
7% by weight, oxygen content 8.8% by weight, carbon content 77.
At 9% by weight, the average pore radius was 26Å, and the total volume of mesopores accounted for about 68%.

【0018】[0018]

【実施例3】実施例1と同様の原料(微生物廃菌体)を
実施例1と同様の条件で炭化、賦活処理した後、次いで
30重量%塩酸水溶液を使用し、90℃で2時間加熱し
た。その後水洗を行いさらに800℃で1時間、炭酸ガ
ス雰囲気下で加熱を行い202部の活性炭素材料を得
た。これは窒素含有量が3.2重量%、酸素含有量が
8.2重量%、炭素含有量が81.6重量%で平均細孔
半径が19Åで、全容積当たりメソポアは約61%を占
めた。
Example 3 The same raw material (waste microorganism cells) as in Example 1 was carbonized and activated under the same conditions as in Example 1, and then heated at 90 ° C. for 2 hours using a 30 wt% hydrochloric acid aqueous solution. did. Then, it was washed with water and further heated at 800 ° C. for 1 hour in a carbon dioxide atmosphere to obtain 202 parts of activated carbon material. It has a nitrogen content of 3.2% by weight, an oxygen content of 8.2% by weight, a carbon content of 81.6% by weight, an average pore radius of 19Å, and a total volume of mesopores of about 61%. It was

【0019】[0019]

【実施例4】実施例2と同様の原料(生物活性汚泥処理
装置で発生する余剰汚泥)を実施例2と同様の条件で炭
化、賦活処理した後、50重量%硫酸水溶液で60℃、
5時間加熱を行った。次いで水洗を行いさらに900℃
で1時間水素ガス雰囲気下で加熱処理し、189部の活
性炭素材料を得た。得られた活性炭素材料は窒素含有量
が4.1重量%、酸素含有量が7.6重量%、炭素含有
量が83.2重量%で平均細孔半径が26Åで全容積当
たりメソポアは約73%を占めた。
Example 4 The same raw material as in Example 2 (excess sludge generated in the bioactive sludge treatment device) was carbonized and activated under the same conditions as in Example 2, and then treated with a 50 wt% sulfuric acid aqueous solution at 60 ° C.
Heated for 5 hours. Then wash with water and 900 ℃
And heat-treated in a hydrogen gas atmosphere for 1 hour to obtain 189 parts of activated carbon material. The obtained activated carbon material had a nitrogen content of 4.1% by weight, an oxygen content of 7.6% by weight, a carbon content of 83.2% by weight, an average pore radius of 26 Å, and a mesopore volume of about 3%. Accounted for 73%.

【0020】[0020]

【実施例5】市販のポリアクリロニトリル系活性炭素繊
維FE−400(東邦レーヨン株式会社製)100gを
管状加熱炉で窒素ガス雰囲気下、950℃、1時間加熱
処理を行って89gの活性炭素材料を得た。これは窒素
含有量2.1重量%、酸素含有量8.5重量%、炭素含
有量86.8重量%であり、平均細孔半径は20Åであ
り全容積当たりメソポアは約56%を占めた。
Example 5 100 g of commercially available polyacrylonitrile-based activated carbon fiber FE-400 (manufactured by Toho Rayon Co., Ltd.) was heat-treated at 950 ° C. for 1 hour in a tubular heating furnace under a nitrogen gas atmosphere to obtain 89 g of activated carbon material. Obtained. It had a nitrogen content of 2.1% by weight, an oxygen content of 8.5% by weight, a carbon content of 86.8% by weight, an average pore radius of 20Å, and mesopores accounted for about 56% of the total volume. .

【0021】(過酸化水素の分解)(Decomposition of hydrogen peroxide)

【実施例6】上記の実施例1および2で得た活性炭素材
料を触媒として使用し過酸化水素含有水溶液中の過酸化
水素の分解試験を行った。すなわち過酸化水素を413
0ppm含有し、pH6.5の工場排水800gを各々
の容器に採り、実施例1および2で得た活性炭素材料か
らなる触媒0.15gをそれぞれに投入し、25℃で撹
拌した。30分経過後までの排水中の過酸化水素の濃度
を測定した結果、15分経過後そのほぼ93%が分解
し、30分後にはほぼ100%が分解した。また、実施
例3、4および5で得た活性炭素材料を触媒として使用
して過酸化水素の分解試験を上記と同様の工場排水を用
いて行った。すなわち実施例3、4および5で得た活性
炭素材料からなる触媒0.11gをそれぞれに投入し、
25℃で撹拌した。30分経過後までの排水中の過酸化
水素の濃度を測定した結果、いずれの場合も10分経過
後そのほぼ90%が分解し、20分後にはほぼ100%
が分解した。
Example 6 A decomposition test of hydrogen peroxide in an aqueous solution containing hydrogen peroxide was carried out using the activated carbon materials obtained in the above Examples 1 and 2 as a catalyst. That is, hydrogen peroxide 413
800 g of factory wastewater containing 0 ppm and having a pH of 6.5 was collected in each container, and 0.15 g of the catalyst made of the activated carbon material obtained in Examples 1 and 2 was added to each container and stirred at 25 ° C. As a result of measuring the concentration of hydrogen peroxide in the wastewater after 30 minutes, almost 93% of the hydrogen peroxide was decomposed after 15 minutes and almost 100% was decomposed after 30 minutes. Further, using the activated carbon materials obtained in Examples 3, 4 and 5 as a catalyst, a hydrogen peroxide decomposition test was conducted using the same factory wastewater as above. That is, 0.11 g of the catalyst composed of the activated carbon materials obtained in Examples 3, 4 and 5 was added to each,
Stir at 25 ° C. As a result of measuring the concentration of hydrogen peroxide in the waste water after 30 minutes, almost 90% of the hydrogen peroxide decomposed after 10 minutes and almost 100% after 20 minutes.
Was disassembled.

【0022】[0022]

【比較例1】市販の水処理用活性炭ダイヤソーブG(三
菱化成株式会社製)0.15gを使用し、実施例6と同
様の条件で過酸化水素の分解試験を行った。30分後の
分解率は約5%程度に過ぎなかった。なお、使用した活
性炭ダイヤソーブGは窒素含有量が0.5重量%、酸素
含有量が5.6重量%、炭素含有量が90.8重量%で
あり、平均細孔半径は13Åで全容積当たりのメソポア
は約15%を占めるものであった。
Comparative Example 1 A decomposition test of hydrogen peroxide was conducted under the same conditions as in Example 6 using 0.15 g of a commercially available activated carbon for water treatment, Diasorb G (manufactured by Mitsubishi Kasei Co., Ltd.). The decomposition rate after 30 minutes was only about 5%. The activated carbon diasorb G used had a nitrogen content of 0.5% by weight, an oxygen content of 5.6% by weight, a carbon content of 90.8% by weight, and an average pore radius of 13 Å per total volume. Mesopores accounted for about 15%.

【0023】[0023]

【実施例7】上記の実施例1、2で得た活性炭素材料を
触媒として使用して金属表面処理廃液中の過酸化水素の
分解試験を行った。すなわち、過酸化水素4500pp
mを含有し、pH2(硫酸酸性)の金属表面処理廃液8
00gを各々の容器に採り、実施例1および2で得た活
性炭素材料からなる触媒0.15gをそれぞれに投入
し、25℃で攪拌した。60分経過後までの廃液中の過
酸化水素の濃度を測定した結果、いずれの触媒の場合も
30分経過後約97%が分解し、45分経過後ほぼ10
0%が分解した。また、実施例3、4および5で得た活
性炭素材料を触媒として使用し、上記と同様の条件で、
上記と同様の水溶液中の過酸化水素の分解試験を行っ
た。その結果、60分経過後までの廃液中の過酸化水素
の濃度を測定した結果、いずれの触媒も、25分経過後
そのほぼ95%が分解し、35分後にはほぼ100%が
分解した。
Example 7 Using the activated carbon materials obtained in Examples 1 and 2 above as a catalyst, a decomposition test of hydrogen peroxide in a metal surface treatment waste liquid was conducted. That is, hydrogen peroxide 4500 pp
Metal surface treatment waste liquid containing m and having a pH of 2 (sulfuric acid) 8
00 g was placed in each container, and 0.15 g of the catalyst made of the activated carbon material obtained in Examples 1 and 2 was added to each container and stirred at 25 ° C. As a result of measuring the concentration of hydrogen peroxide in the waste liquid after 60 minutes, about 97% of the catalysts were decomposed after 30 minutes and almost 10% after 45 minutes in all the catalysts.
0% decomposed. Also, using the activated carbon materials obtained in Examples 3, 4 and 5 as a catalyst, under the same conditions as above,
The decomposition test of hydrogen peroxide in the same aqueous solution as above was performed. As a result, as a result of measuring the concentration of hydrogen peroxide in the waste liquid after 60 minutes, almost 95% of the catalysts were decomposed after 25 minutes and almost 100% were decomposed after 35 minutes.

【0024】[0024]

【比較例2】比較例1で使用したと同様な触媒を使用
し、実施例7に用いたと同様な金属表面処理廃液中の過
酸化水素の分解試験を行った。45分経過後の分解率は
約5%で、60分経過後の分解率は10%未満であっ
た。
Comparative Example 2 Using the same catalyst as used in Comparative Example 1, the same decomposition test of hydrogen peroxide in the metal surface treatment waste liquid as used in Example 7 was conducted. The decomposition rate after 45 minutes was about 5%, and the decomposition rate after 60 minutes was less than 10%.

【0025】(ヒドラジンの分解)(Decomposition of hydrazine)

【実施例8】上記の実施例1、2で得た活性炭素材料か
らなる触媒を使用してヒドラジン含有アンモニア水中の
ヒドラジンの分解試験を行った。すなわち、ヒドラジン
700ppm、アンモニア28重量%を含有する化学プ
ラントの排水に、過酸化水素濃度が7000ppmにな
るように過酸化水素を添加した。この排水800gを各
々の陽気に採り、実施例1または2で得た活性炭素材料
からなる触媒0.3gをそれぞれ投入し、25℃で攪拌
した。60分経過後までの排水中のヒドラジンの濃度を
測定した結果、いずれの触媒を使用した場合も30分経
過後約82%が分解し、60分経過後にはほぼ99%が
分解した。
Example 8 A decomposition test of hydrazine in hydrazine-containing ammonia water was conducted using the catalyst composed of the activated carbon material obtained in Examples 1 and 2 above. That is, hydrogen peroxide was added to wastewater of a chemical plant containing 700 ppm of hydrazine and 28% by weight of ammonia so that the hydrogen peroxide concentration would be 7,000 ppm. 800 g of this drainage was taken in a positive manner, 0.3 g of the catalyst composed of the activated carbon material obtained in Example 1 or 2 was added, and the mixture was stirred at 25 ° C. As a result of measuring the concentration of hydrazine in the waste water after 60 minutes, about 82% was decomposed after 30 minutes and almost 99% was decomposed after 60 minutes when any catalyst was used.

【0026】[0026]

【実施例9】上記の実施例8のヒドラジン含有アンモニ
ア水の代わりに、ヒドラジンを含有するボイラー廃液中
のドラジンの分解試験を行った。すなわち、ヒドラジン
700ppmを含有するボイラー廃液に過酸化水素濃度
3000ppmになるように過酸化水素を添加した。こ
の溶液800gを各々の陽気に採り、実施例1または2
で得た活性炭素材料からなる触媒0.1gをそれぞれ投
入し、25℃で攪拌した。60分経過後までの排水中の
ヒドラジンの濃度を測定した結果、いずれの触媒を使用
した場合も30分経過後約88%が分解し、60分経過
後にはほぼ99%が分解した。
Example 9 Instead of the hydrazine-containing ammonia water of Example 8 above, a decomposition test of hydrazine in a boiler waste liquid containing hydrazine was conducted. That is, hydrogen peroxide was added to a boiler waste liquid containing 700 ppm of hydrazine so that the hydrogen peroxide concentration would be 3000 ppm. 800 g of this solution was taken in each case to give Example 1 or 2
Each 0.1 g of the catalyst made of the activated carbon material obtained in the above was added and stirred at 25 ° C. As a result of measuring the concentration of hydrazine in the waste water after 60 minutes, about 88% was decomposed after 30 minutes and almost 99% was decomposed after 60 minutes when any catalyst was used.

【0027】[0027]

【比較例3】比較例1で使用したと同様な活性炭を使用
し、実施例9に用いたと同様な廃液中のヒドラジンの分
解試験を実施例9と同様な条件で行った。30分経過後
の分解率は約33%、60分経過後の分解率は48%に
過ぎなかった。
Comparative Example 3 Using the same activated carbon as used in Comparative Example 1, the same decomposition test of hydrazine in the waste liquid as used in Example 9 was conducted under the same conditions as in Example 9. The decomposition rate after 30 minutes was about 33%, and the decomposition rate after 60 minutes was only 48%.

【0028】[0028]

【発明の効果】本発明の活性炭素材料は種々の化合物、
例えば過酸化水素、ヒドラジン等の分解触媒として有効
であり、化学プラントから発生する廃液や半導体処理の
際に発生する排水廃液等の処理に有効である。本発明に
係る活性炭素材料用からなる触媒を使用して過酸化水素
またはヒドラジンを分解する際は、広範囲な液性(pH
領域)で使用可能で、かつ長期間にわたって高活性であ
り、その上二次公害の発生を伴うことなく分解処理でき
る。
The activated carbon material of the present invention comprises various compounds,
For example, it is effective as a decomposition catalyst for hydrogen peroxide, hydrazine, and the like, and is effective for treating waste liquid generated from a chemical plant or waste liquid waste generated during semiconductor treatment. When decomposing hydrogen peroxide or hydrazine using the catalyst composed of the activated carbon material according to the present invention, a wide range of liquid (pH
Area), high activity over a long period of time, and can be decomposed without secondary pollution.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 11/00 N 7824−4D (72)発明者 高橋 真由美 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 (72)発明者 青山 哲男 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C02F 11/00 N 7824-4D (72) Inventor Mayumi Takahashi Niigata City Niigata City Tayuhama Niiwari 182 Address Mitsubishi Gas Chemical Co., Ltd. Niigata Research Laboratory (72) Inventor Tetsuo Aoyama 182 Shinwari, Tayuhama, Niigata City, Niigata Prefecture Mitsubishi Gas Chemical Co., Ltd. Niigata Research Laboratory

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 窒素1〜5重量%、酸素3〜30重量
%、炭素40〜95重量%を含有し、かつ平均細孔半径
が15〜30Åであり、有孔メソポアが全容積当たり少
なくとも50容積%を占めることを特徴とする活性炭素
材料。
1. Containing 1 to 5% by weight of nitrogen, 3 to 30% by weight of oxygen, 40 to 95% by weight of carbon, having an average pore radius of 15 to 30Å, and having at least 50 perforated mesopores per total volume. Activated carbon material characterized by occupying volume%.
【請求項2】 窒素1〜5重量%、酸素3〜10重量%
および炭素70〜95重量%である請求項第1項記載の
活性炭素材料。
2. Nitrogen 1-5% by weight, oxygen 3-10% by weight
The activated carbon material according to claim 1, wherein the carbon content is 70 to 95% by weight.
【請求項3】 蛋白質または蛋白質含有汚泥もしくは廃
棄物質を炭化、賦活処理して得られた請求項第1項また
は第2項記載の活性炭素材料。
3. The activated carbon material according to claim 1, which is obtained by carbonizing and activating a protein or a sludge containing protein or a waste substance.
【請求項4】 蛋白質または蛋白質含有汚泥もしくは廃
棄物質を炭化、賦活処理した後、酸処理し加熱して得ら
れた請求項第2項記載の活性炭素材料。
4. The activated carbon material according to claim 2, which is obtained by carbonizing and activating a protein or a protein-containing sludge or a waste substance, followed by acid treatment and heating.
【請求項5】 蛋白質または蛋白質含有汚泥もしくは廃
棄物質が微生物蛋白質または生物活性汚泥である請求項
第3項または第4項記載の活性炭素材料。
5. The activated carbon material according to claim 3 or 4, wherein the protein or protein-containing sludge or waste substance is a microbial protein or bioactive sludge.
【請求項6】 微生物蛋白質が酵母、細菌、藻類から選
ばれた一種であり、蛋白質含有汚泥もしくは廃棄物質
が、工場廃液処理、糞尿処理、家庭排水処理に使用され
る生物活性汚泥から選ばれた一種、または廃菌体、アミ
ノ酸醗酵粕から選ばれた一種である請求項第4項および
第5項記載の活性炭素材料。
6. The microbial protein is one selected from yeast, bacteria, and algae, and the protein-containing sludge or waste substance is selected from bioactive sludge used for factory waste liquid treatment, manure treatment, and domestic wastewater treatment. The activated carbon material according to claim 4 or 5, which is one kind or a kind selected from waste bacterial cells and amino acid fermentation lees.
【請求項7】 蛋白質、または蛋白質含有汚泥もしくは
廃棄物質を、成形しまたは成形することなく150〜6
00℃で炭化処理し、次いで700〜1100℃で水蒸
気、炭酸ガス、酸素を主体とするガス雰囲気下で賦活処
理を行うことを特徴とする請求項第1項記載の活性炭素
材料の製造方法。
7. A protein, or a sludge or a waste material containing protein, which is molded or unmolded 150 to 6
The method for producing an activated carbon material according to claim 1, wherein carbonization is performed at 00 ° C., and then activation is performed at 700 to 1100 ° C. in a gas atmosphere mainly composed of steam, carbon dioxide, and oxygen.
【請求項8】 蛋白質または蛋白質含有汚泥もしくは廃
棄物質を、成形しまたは成形することなく150〜60
0℃で炭化処理し、次いで700〜1100℃で水蒸
気、炭酸ガス、酸素を主体とするガス雰囲気下で賦活処
理を行った後、次いで酸処理し、不活性ガスまたは還元
性ガスの雰囲気下で400〜1100℃で加熱を行うこ
とを特徴とする請求項第2項記載の活性炭素材料の製造
方法。
8. A protein or a sludge containing protein or a waste substance is molded with or without molding in a range of 150 to 60.
After carbonization at 0 ° C., then activation at 700 to 1100 ° C. in a gas atmosphere mainly composed of steam, carbon dioxide, and oxygen, then acid treatment, and then in an atmosphere of an inert gas or a reducing gas. The method for producing an activated carbon material according to claim 2, wherein heating is performed at 400 to 1100 ° C.
【請求項9】 ポリアクリロニトリル繊維状活性炭素材
を還元性ガスの雰囲気下で400〜1100℃で加熱を
行うことを特徴とする請求項第1項または第2項記載の
活性炭素材料。
9. The activated carbon material according to claim 1 or 2, wherein the polyacrylonitrile fibrous activated carbon material is heated at 400 to 1100 ° C. in an atmosphere of a reducing gas.
【請求項10】 請求項第1項、第2項または第9項記
載の活性炭素材料からなる過酸化水素分解用触媒。
10. A catalyst for decomposing hydrogen peroxide, which comprises the activated carbon material according to claim 1, 2, or 9.
【請求項11】 請求項第1項、第2項または第9項記
載の活性炭素材料からなるヒドラジン分解用触媒。
11. A catalyst for decomposing hydrazine, which comprises the activated carbon material according to claim 1, 2, or 9.
JP3301060A 1990-12-13 1991-10-21 Activated carbon material, its production and use thereof Pending JPH05811A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP41009190 1990-12-13
JP2-410091 1990-12-13
JP2-410092 1990-12-13
JP41009290 1990-12-13

Publications (1)

Publication Number Publication Date
JPH05811A true JPH05811A (en) 1993-01-08

Family

ID=26582988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3301060A Pending JPH05811A (en) 1990-12-13 1991-10-21 Activated carbon material, its production and use thereof

Country Status (1)

Country Link
JP (1) JPH05811A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112174A1 (en) * 2003-06-11 2004-12-23 Matsushita Electric Industrial Co., Ltd. Method for producing electrode for oxygen reduction, electrode for oxygen reduction, and electrochemical device using same
JP2007117967A (en) * 2005-10-31 2007-05-17 Asahi Breweries Ltd Carrier for autotrophic ammonia oxidizing bacterium, ammonia nitrogen removing bacterium-deposited body and method for removing ammonia nitrogen
JP2009525247A (en) * 2006-02-01 2009-07-09 エスゲーエル カーボン アクチエンゲゼルシャフト Biopolymer carbide
WO2011055604A1 (en) 2009-11-05 2011-05-12 日清紡ホールディングス株式会社 Carbon catalyst and use thereof
JP2013163629A (en) * 2012-02-13 2013-08-22 Kuraray Chemical Co Ltd Activated carbon and application thereof
JP2013544748A (en) * 2010-11-26 2013-12-19 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing nitrogen-containing porous carbonaceous material
JP2014097912A (en) * 2012-11-14 2014-05-29 Asahi Kasei Chemicals Corp Nitrogen-containing carbon material, method for manufacturing the same and electrode for fuel cell
US9359390B2 (en) 2010-03-31 2016-06-07 Kuraray Chemical Co., Ltd. Activated carbon and use therefor
KR20180000604A (en) * 2016-06-23 2018-01-03 한양대학교 에리카산학협력단 Carbon dioxide adsorbent and method for manufacturing the same
CN111333069A (en) * 2020-03-14 2020-06-26 北京神舟茂华环保科技有限公司 Method for preparing supercapacitor electrode material by using protein in sludge
CN111389359A (en) * 2020-03-26 2020-07-10 西北工业大学深圳研究院 Biochar adsorbing material based on sulfate-reduced sludge and preparation method and application thereof
EP3546425A4 (en) * 2016-12-20 2020-07-22 Kuraray Co., Ltd. Porous carbon material, method for producing same and use of same
CN112264015A (en) * 2020-11-23 2021-01-26 湖南速博生物技术有限公司 Preparation method of catalyst for wastewater oxidation treatment
CN113603076A (en) * 2021-08-10 2021-11-05 北京化工大学 Preparation method of sodium alginate-based porous carbon aerogel electrode material

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112174A1 (en) * 2003-06-11 2004-12-23 Matsushita Electric Industrial Co., Ltd. Method for producing electrode for oxygen reduction, electrode for oxygen reduction, and electrochemical device using same
JP2007117967A (en) * 2005-10-31 2007-05-17 Asahi Breweries Ltd Carrier for autotrophic ammonia oxidizing bacterium, ammonia nitrogen removing bacterium-deposited body and method for removing ammonia nitrogen
JP2009525247A (en) * 2006-02-01 2009-07-09 エスゲーエル カーボン アクチエンゲゼルシャフト Biopolymer carbide
WO2011055604A1 (en) 2009-11-05 2011-05-12 日清紡ホールディングス株式会社 Carbon catalyst and use thereof
US8372781B2 (en) 2009-11-05 2013-02-12 Nisshinbo Holdings, Inc. Carbon catalyst and use thereof
JP5167418B2 (en) * 2009-11-05 2013-03-21 日清紡ホールディングス株式会社 Carbon catalyst and its use
US9359390B2 (en) 2010-03-31 2016-06-07 Kuraray Chemical Co., Ltd. Activated carbon and use therefor
JP2013544748A (en) * 2010-11-26 2013-12-19 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing nitrogen-containing porous carbonaceous material
JP2013163629A (en) * 2012-02-13 2013-08-22 Kuraray Chemical Co Ltd Activated carbon and application thereof
JP2014097912A (en) * 2012-11-14 2014-05-29 Asahi Kasei Chemicals Corp Nitrogen-containing carbon material, method for manufacturing the same and electrode for fuel cell
KR20180000604A (en) * 2016-06-23 2018-01-03 한양대학교 에리카산학협력단 Carbon dioxide adsorbent and method for manufacturing the same
EP3546425A4 (en) * 2016-12-20 2020-07-22 Kuraray Co., Ltd. Porous carbon material, method for producing same and use of same
US11090644B2 (en) 2016-12-20 2021-08-17 Kuraray Co., Ltd. Porous carbon material, method for producing same and use of same
AU2017383796B2 (en) * 2016-12-20 2023-02-23 Kuraray Co., Ltd. Porous carbon material, method for producing same and use of same
CN111333069A (en) * 2020-03-14 2020-06-26 北京神舟茂华环保科技有限公司 Method for preparing supercapacitor electrode material by using protein in sludge
CN111389359A (en) * 2020-03-26 2020-07-10 西北工业大学深圳研究院 Biochar adsorbing material based on sulfate-reduced sludge and preparation method and application thereof
CN112264015A (en) * 2020-11-23 2021-01-26 湖南速博生物技术有限公司 Preparation method of catalyst for wastewater oxidation treatment
CN112264015B (en) * 2020-11-23 2023-07-25 湖南速博生物技术有限公司 Preparation method of wastewater oxidation treatment catalyst
CN113603076A (en) * 2021-08-10 2021-11-05 北京化工大学 Preparation method of sodium alginate-based porous carbon aerogel electrode material

Similar Documents

Publication Publication Date Title
US5242879A (en) Active carbon materials, process for the preparation thereof and the use thereof
JPH05811A (en) Activated carbon material, its production and use thereof
CN109292883A (en) A method of graphitization charcoal and its degradation Organic Pollutants In Water
JPH0564789A (en) Treatment of waste fluid containing water polluting organic matter
CN109574166A (en) A kind of sewage-treating agent and its preparation process
CN113952928A (en) Carbon-based adsorbent and preparation method thereof
KR102478521B1 (en) Composite adsorbent containing coffee beans and iron hydroxide
CN110075802B (en) Iron oxide loaded activated carbon and synthesis method and application thereof
CN109772301A (en) Modified ozone oxidation catalyst of a kind of graphene oxide and preparation method thereof
CN116571072A (en) Malodorous waste gas water-based composite absorbent and preparation method and application thereof
JP3279330B2 (en) Nitrogen oxide removal method
CN115382551B (en) Three-dimensional carbonaceous functional cathode material based on potassium ferrate modification, and preparation method and application thereof
JPH05123683A (en) Treatment of waste solution containing quaternary ammonium salt
JPH05123684A (en) Treatment of waste solution containing sulfur compound
CN109201002A (en) Transition metal carbide composite material, preparation method and its absorption purposes of a kind of charcoal package
JP2010274169A (en) Catalyst for decomposing hydrogen peroxide and method for producing the catalyst
JPH0222000A (en) Method for modifying and concentrating organic sludge with enzyme
CN114260014A (en) NiCo2O4/CeO2Composite catalyst and preparation method and application thereof
CN106701734A (en) Modified bentonite adsorbent for fixing benzene degrading bacterium
CN113457639A (en) Manganese-loaded loofah sponge fiber for adsorption catalytic denitrification and preparation and application thereof
JPH09256A (en) Production of microbial carrier
JP5266471B2 (en) Method for producing activated carbon from chicken manure
CN108358261A (en) A kind of method of wastewater treatment
CN108773873A (en) A kind of purifying agent for polluted water and preparation method thereof
CN112723621B (en) Co-Ce-Zr/gamma-Al for treating ciprofloxacin wastewater2O3Composite particle electrode and preparation method and application thereof