Nothing Special   »   [go: up one dir, main page]

JPH05701B2 - - Google Patents

Info

Publication number
JPH05701B2
JPH05701B2 JP57174044A JP17404482A JPH05701B2 JP H05701 B2 JPH05701 B2 JP H05701B2 JP 57174044 A JP57174044 A JP 57174044A JP 17404482 A JP17404482 A JP 17404482A JP H05701 B2 JPH05701 B2 JP H05701B2
Authority
JP
Japan
Prior art keywords
viscosity
coating
transport layer
charge transport
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57174044A
Other languages
Japanese (ja)
Other versions
JPS5964847A (en
Inventor
Juichi Yashiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17404482A priority Critical patent/JPS5964847A/en
Publication of JPS5964847A publication Critical patent/JPS5964847A/en
Publication of JPH05701B2 publication Critical patent/JPH05701B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子写真感光体の製造方法に関し、更
に詳しくは、電荷輸送層と電荷発生層とを有する
機能分離型電子写真感光体の電荷輸送層の塗布方
法に関するものである。 有機光導電物質は、無機光導電物質に比べて、
無公害性、高生産性などの利点があるが、感度が
低いため実用化はむずかしかつた。そのため、い
くつかの増感方法が提案されているが、効果的な
方法としては電荷発生層と電荷輸送層を積層した
機能分離型感光体を用いることが知られている。 電荷発生層は、スーダンレツド、ダイアンブル
ー、ジエナスグリーンBなどのアゾ顔料、アルゴ
ールイエロー、ピレンキノン、インダンスレンブ
リリアントバイオレツドRRPなどのキノン顔料、
キノシアニン顔料、ペリレン顔料、インジゴ、チ
オインジゴ等のインジゴ顔料、インドフアースト
オレンジトナーなどのビスベンゾイミダゾールが
顔料、銅フタロシアニンなどのフタロシアニン顔
料、キナクリドン顔料等の電荷発生物質をポリエ
ステル、ポリスチレン、脂肪酸セルロースエステ
ル、ポリ酢酸ビニル、アクリル、ポリビニルピロ
リドン、メチルセルロース、ヒドロキシプロピル
メチルセルロース、ポリビニルブチラールなどの
結着剤樹脂に分散させて、基体状に塗布して形成
される。 電荷発生層の上に設ける電荷輸送層は、主鎖又
は側鎖にアントラセン、ピレン、フエナントレ
ン、コロネンなどの多環芳香族化合物又はインド
ール、カルバゾール、オキサゾール、インオキサ
ゾール、チアゾール、イミダゾール、ピラゾー
ル、オキサジアゾール、ピラゾリン、チアジアゾ
ール、トリアゾールなどの含窒素環式化合物を有
する化合物、ヒドラゾン化合物、等の電荷輸送性
物質を成膜性のある樹脂に溶解させて形成され
る。これは電荷輸送性物質が一般的に低分子量
で、それ自身では成膜性に乏しいためである。こ
のような樹脂としてはポリエステル、ポリサルホ
ン、ポリカーボネート、ポリメタクリル酸エステ
ル類、ポリスチレン、スチレン−アクリロニトリ
ル共重合体等が挙げられる。これらの樹脂のう
ち、成膜性や電位、感度、光メモリー効果等の電
子写真的特性を考慮すると、スチレン、またはメ
タクリル酸メチルの重合体もしくは共重合体を用
いることが好ましい。例えば、ポリスチレン、ポ
リメタクリル酸メチル、スチレンメタクリル酸メ
チル共重合体、スチレンアクリロニトリル共重合
体、スチレンブタジエン共重合体、メタクリル酸
メチルメタクリル酸ブチル共重合体などである。 また、電荷輸送層を形成する方法としてはスプ
レー、ロールコーター、バーコーター、ナイフコ
ーター、ブレードコーター、浸漬などの塗布によ
る方法が挙げられるが、これらのうち、円筒状基
体に、継ぎ目がなく、平滑な表面が得られ、簡便
な塗布方法として浸漬塗布方法が好適である。塗
布のようすを添付図面に示す。 本発明は浸漬塗布方法によつて電荷輸送層を塗
布する際において塗液の粘度と引き上げ塗布速度
の関係において、最も良好な表面性が得られる条
件を設定することを目的とするものである。 電荷輸送層の膜厚は、受容電位や感度等に寄与
し、通常は10〜20μ程度の範囲に選ばれるが、こ
の膜厚を得るように浸漬塗布するには、粘度の引
き上げ塗布速度には一定の関係がある。すなわ
ち、粘度、塗布速度はいずれも値が大きいほど膜
厚は厚くなり、膜厚をT、粘度をN、塗布速度を
SとするとT∝NSの関係があることがわかつた。
そこで所定の膜厚を得るためには、塗液の粘度が
低い場合には塗布速度を速く、粘度が高い場合に
は塗布速度をおそくすればよい。 ところが本発明者の実験の結果、スチレン、ま
たはメタクリル酸メチルの重合体もしくは共重合
体を含む塗液の場合は、粘度が50cP(センチポア
ズ)より低い場合には、塗布速度を40cm/分にし
なくてはならず、このような条件で塗布すると、
塗膜の膜厚の上下むらが2μ以上となり、感光体
の電位むらが大きくなり、実用に適しないことが
わかつた。さらに溶剤の比率が多いので、引き上
げ中に塗膜からの溶剤乾燥によつて結露すること
もあつた。 また粘度が300cPより高い場合には、塗布速度
をいくら遅くしても膜厚が厚くなりすぎて、これ
も実用に適しないことがわかつた。 本発明は、電荷輸送層を浸漬塗布する際に、溶
液の粘度N(cP)を50〜300cPに調整し、引き上
げ塗布速度S(cm/分)を40cm/分以下とし、更
に粘度N(cP)と引き上げ塗布速度S(cm/分)
の関係がS=A/Nとなる条件で溶液を塗布する
ものである。ここでAは300〜3000の範囲の定数
であり、これは使用する樹脂や電荷輸送物質の種
類、および希望膜厚によつて定まることがわかつ
た。これらの数値については実施例によつて説明
する。 電荷輸送層の形成は、本発明による如く、スチ
レン、またはメタクリル酸メチル含有重合体を用
い、溶液粘度50〜300cP、引き上げ塗布速度40
cm/分以下、S=A/N(A=300〜3000)の関係
で塗布することによつて、平滑で一様な表面性で
特製も良好な電荷輸送層の形成に奏功した。 実施例 1 添付図面に示されるような一方が閉じた円筒状
の80φ×300mmのアルミニウムシリンダーを基体
とした。これにポリアミド樹脂(商品名:アミラ
ンCM8000、東レ製)の4%メタノール溶液を浸
漬法により10cm/分の引き上げ塗布速度で塗布
し、80℃10分間の加熱乾燥を施して0.6μ厚の下引
き層をもうけた。 次に下記構造式のビスアゾ顔料を10部(重量
部、以下同様)、 ポリビニルブチラール樹脂(商品名:エスレツク
BXL、積水化学(株)製)8部およびシクロヘキサ
ノン60部を1φガラスビーズを用いたサンドミル
装置で20時間にわたり分散した。この分散液にメ
チルエチルケトン(MEK)を100部加えて、塗液
とした。これを浸漬塗布方法により、10cm/分の
引き上げ速度で塗布し、80℃10分間の乾燥をして
0.07μの電荷発生層を形成した。 次に、 で示される構造式のヒドラゾン化合物7部、ポリ
スチレン樹脂(商品名:ダイヤレツクスHF−
55;三菱モンサント化成製)10部をモノクロルベ
ンゼンに溶解した。モノクロルベンゼンの重量部
と溶液粘度の関係を第1表に示す。
The present invention relates to a method for manufacturing an electrophotographic photoreceptor, and more particularly to a method for coating a charge transport layer of a functionally separated electrophotographic photoreceptor having a charge transport layer and a charge generation layer. Compared to inorganic photoconductive materials, organic photoconductive materials have
Although it has advantages such as non-polluting properties and high productivity, its low sensitivity has made it difficult to put it into practical use. For this reason, several sensitization methods have been proposed, but it is known that an effective method is to use a functionally separated photoreceptor in which a charge generation layer and a charge transport layer are laminated. The charge generation layer is made of azo pigments such as Sudan Red, Diane Blue, and Jenas Green B; quinone pigments such as Algol Yellow, Pyrene Quinone, and Indanthrene Brilliant Violet RRP;
Indigo pigments such as quinocyanine pigments, perylene pigments, indigo and thioindigo, bisbenzimidazole pigments such as India First Orange Toner, phthalocyanine pigments such as copper phthalocyanine, charge generating substances such as quinacridone pigments, polyesters, polystyrenes, fatty acid cellulose esters, It is formed by dispersing it in a binder resin such as polyvinyl acetate, acrylic, polyvinylpyrrolidone, methylcellulose, hydroxypropylmethylcellulose, or polyvinyl butyral and applying it onto a substrate. The charge transport layer provided on the charge generation layer contains a polycyclic aromatic compound such as anthracene, pyrene, phenanthrene, coronene, or indole, carbazole, oxazole, inoxazole, thiazole, imidazole, pyrazole, or oxadiazole in the main chain or side chain. It is formed by dissolving a charge transporting substance such as a compound having a nitrogen-containing cyclic compound such as azole, pyrazoline, thiadiazole, or triazole, or a hydrazone compound in a resin with film-forming properties. This is because the charge transporting substance generally has a low molecular weight and has poor film-forming properties by itself. Examples of such resins include polyester, polysulfone, polycarbonate, polymethacrylic acid esters, polystyrene, and styrene-acrylonitrile copolymer. Among these resins, it is preferable to use styrene or a polymer or copolymer of methyl methacrylate in consideration of electrophotographic properties such as film-forming properties, potential, sensitivity, and photomemory effect. Examples include polystyrene, polymethyl methacrylate, styrene methyl methacrylate copolymer, styrene acrylonitrile copolymer, styrene butadiene copolymer, methyl methacrylate butyl methacrylate copolymer, and the like. Methods for forming the charge transport layer include coating methods such as spraying, roll coater, bar coater, knife coater, blade coater, and dipping. A dip coating method is suitable as a simple coating method that provides a smooth surface. The application process is shown in the attached drawing. The object of the present invention is to set conditions for obtaining the best surface properties in terms of the relationship between the viscosity of the coating liquid and the pull-up coating speed when coating a charge transport layer by a dip coating method. The thickness of the charge transport layer contributes to acceptance potential, sensitivity, etc., and is usually selected in the range of about 10 to 20 μm, but in order to achieve this thickness by dip coating, it is necessary to increase the viscosity and the coating speed. There is a certain relationship. That is, it was found that the larger the values of both viscosity and coating speed, the thicker the film becomes, and where T is the film thickness, N is the viscosity, and S is the coating speed, there is a relationship of T∝NS.
Therefore, in order to obtain a predetermined film thickness, the coating speed may be increased if the viscosity of the coating liquid is low, and the coating speed may be slowed if the viscosity is high. However, as a result of the inventor's experiments, in the case of a coating liquid containing a polymer or copolymer of styrene or methyl methacrylate, if the viscosity is lower than 50 cP (centipoise), the coating speed should not be set to 40 cm/min. If applied under these conditions,
It was found that the vertical unevenness of the coating film thickness was 2μ or more, and the potential unevenness of the photoreceptor was large, making it unsuitable for practical use. Furthermore, since the proportion of solvent was high, dew condensation sometimes occurred due to drying of the solvent from the coating film during pulling. It was also found that when the viscosity is higher than 300 cP, the film thickness becomes too thick no matter how slow the coating speed is, and this is also not suitable for practical use. In the present invention, when dip-coating the charge transport layer, the viscosity N (cP) of the solution is adjusted to 50 to 300 cP, the pulling coating speed S (cm/min) is 40 cm/min or less, and the viscosity N (cP) is adjusted to 50 to 300 cP. ) and pulling application speed S (cm/min)
The solution is applied under conditions such that the relationship S=A/N. Here, A is a constant in the range of 300 to 3000, and it has been found that this depends on the type of resin and charge transport material used, and the desired film thickness. These numerical values will be explained using examples. According to the present invention, the charge transport layer is formed using a polymer containing styrene or methyl methacrylate at a solution viscosity of 50 to 300 cP and a pulling coating speed of 40 cP.
By coating at cm/min or less and in the relationship S=A/N (A=300 to 3000), a charge transport layer with smooth and uniform surface properties and good special properties was successfully formed. Example 1 A cylindrical 80φ x 300mm aluminum cylinder with one end closed as shown in the attached drawings was used as a base. A 4% methanol solution of polyamide resin (trade name: Amilan CM8000, manufactured by Toray Industries) was applied to this by a dipping method at a lifting coating speed of 10 cm/min, and then heated and dried at 80°C for 10 minutes to form a 0.6μ thick undercoat. Added layers. Next, add 10 parts (parts by weight, the same applies hereinafter) of the bisazo pigment with the following structural formula, Polyvinyl butyral resin (product name: ESLETSUKU)
8 parts of BXL (manufactured by Sekisui Chemical Co., Ltd.) and 60 parts of cyclohexanone were dispersed for 20 hours using a sand mill apparatus using 1φ glass beads. 100 parts of methyl ethyl ketone (MEK) was added to this dispersion to prepare a coating liquid. This was applied using the dip coating method at a lifting speed of 10 cm/min, and dried at 80°C for 10 minutes.
A charge generation layer of 0.07μ was formed. next, 7 parts of a hydrazone compound with the structural formula shown, polystyrene resin (product name: Dialex HF-
55 (manufactured by Mitsubishi Monsanto Chemical) was dissolved in monochlorobenzene. Table 1 shows the relationship between parts by weight of monochlorobenzene and solution viscosity.

【表】 これらの液を用い、乾燥後の膜厚が16μとなる
よう浸漬法で塗布した。引き上げ速度との関係を
第2表に示す。
[Table] These solutions were applied by dipping to a film thickness of 16 μm after drying. Table 2 shows the relationship with the pulling speed.

【表】【table】

【表】 このように粘度が250、120、60(cP)のところ
で良い結果が得られた。なお、この時のAの値は
1500であつた。 第2表に示された条件で電荷発生層状上に電荷
輸送層を塗布し、100℃で1時間乾燥して電子写
真感光体とした。 こうして製造した電子写真感光体を、−5.6KV
コロナ帯電、画像露光、乾式トナー現像、普通紙
へのトナー転写、ウレタンゴムブレード(硬度
70°、圧力5gw/cm、感光体に対する角度20°)
によるクリーニング工程等を有する電子写真複写
機に取り付けてみたところ、粘度35cP以外のも
のは良質のコピー画像が得られたが、粘度35cP
のものは、画像濃度のむらが見られた。 実施例 2 電荷発生層までは実施例1と同様に基体上に塗
布した。さらに実施例1と同じヒドラゾン化合物
7部と、スチレン−メタクリル酸メチル共重合樹
脂(商品名:MS200、製鉄化学製)10部をトル
エンに溶解した。トルエンの量と粘度、および膜
厚が16μとなる塗布速度の関係を第3表に示し
た。
[Table] As shown above, good results were obtained at viscosities of 250, 120, and 60 (cP). In addition, the value of A at this time is
It was 1500. A charge transport layer was coated on the charge generation layer under the conditions shown in Table 2, and dried at 100° C. for 1 hour to obtain an electrophotographic photoreceptor. The electrophotographic photoreceptor thus manufactured was heated to -5.6KV.
Corona charging, image exposure, dry toner development, toner transfer to plain paper, urethane rubber blade (hardness
70°, pressure 5gw/cm, angle 20° to photoreceptor)
When I installed it in an electrophotographic copying machine that has a cleaning process such as
In the case of , uneven image density was observed. Example 2 A substrate was coated in the same manner as in Example 1 up to the charge generation layer. Further, 7 parts of the same hydrazone compound as in Example 1 and 10 parts of styrene-methyl methacrylate copolymer resin (trade name: MS200, manufactured by Tetsutsu Kagaku) were dissolved in toluene. Table 3 shows the relationship between the amount of toluene, the viscosity, and the coating speed at which the film thickness was 16 μm.

【表】【table】

【表】 このように粘度は220、150、100cPのところで
良い結果が得られ、Aの値は2400であつた。 得られた電子写真感光体を用いてコピー画像を
とると、粘度が220、150、100cPのものは良質の
画像が得られたが、50cPのものはむらが大きか
つた。
[Table] As shown above, good results were obtained at viscosities of 220, 150, and 100 cP, and the value of A was 2400. When copy images were taken using the obtained electrophotographic photoreceptor, images of good quality were obtained with those having a viscosity of 220, 150, and 100 cP, but those with a viscosity of 50 cP had large unevenness.

【図面の簡単な説明】[Brief explanation of the drawing]

図は浸漬塗布について装置の一例を挙げたもの
である。 図中の符号は、1……塗膜、2……液槽、3…
…塗液、4……一端が閉じた円筒状基体、5……
支持部、6……駆動モーター(この回転により7
……昇降ねじを回転させ、基体を引き上げる。)、
8……通気管、9……ゴム製空気室(8と9によ
り基体内部に閉じ込められた空気の一部をとり出
す。)を示す。
The figure shows an example of equipment for dip coating. The symbols in the diagram are 1...paint film, 2...liquid tank, 3...
...Coating liquid, 4... Cylindrical substrate with one end closed, 5...
Support part, 6... Drive motor (this rotation causes 7
...Turn the lifting screw and pull up the base. ),
8...Vent pipe, 9...Rubber air chamber (8 and 9 take out part of the air trapped inside the base body).

Claims (1)

【特許請求の範囲】[Claims] 1 スチレンまたはメタクリル酸メチルを含有す
る重合体もしくは共重合体、および電荷輸送性物
質を溶解した溶液を浸漬塗布する工程において、
該溶液の粘度N(cP)を50〜300cPに調整し、引
き上げ塗布速度S(cm/分)を40cm/分以下とし、
更に粘度Nと引き上げ塗布速度Sの関係がS=
A/N(Aは300〜3000の範囲の定数)となる条件
で前記溶液を塗布して電荷輸送層を形成すること
を特徴とする機能分離型電子写真感光体の製造方
法。
1. In the step of dip coating a solution containing a polymer or copolymer containing styrene or methyl methacrylate and a charge transporting substance,
Adjust the viscosity N (cP) of the solution to 50 to 300 cP, and set the pulling application speed S (cm/min) to 40 cm/min or less,
Furthermore, the relationship between viscosity N and pulling coating speed S is S=
A method for producing a functionally separated electrophotographic photoreceptor, comprising forming a charge transport layer by applying the solution under conditions such that A/N (A is a constant in the range of 300 to 3000).
JP17404482A 1982-10-05 1982-10-05 Production of electrophotographic receptor Granted JPS5964847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17404482A JPS5964847A (en) 1982-10-05 1982-10-05 Production of electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17404482A JPS5964847A (en) 1982-10-05 1982-10-05 Production of electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS5964847A JPS5964847A (en) 1984-04-12
JPH05701B2 true JPH05701B2 (en) 1993-01-06

Family

ID=15971636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17404482A Granted JPS5964847A (en) 1982-10-05 1982-10-05 Production of electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5964847A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2663464B2 (en) * 1987-11-10 1997-10-15 ミノルタ株式会社 Photoreceptor manufacturing method
JPH02124576A (en) * 1988-11-02 1990-05-11 Fuji Xerox Co Ltd Production of electrophotographic sensitive body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918131A (en) * 1972-06-12 1974-02-18
JPS5610368A (en) * 1979-07-09 1981-02-02 Mitsubishi Rayon Co Ltd Method and device for immersion coating
JPS57122444A (en) * 1981-01-23 1982-07-30 Canon Inc Electrophotographic receptor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918131A (en) * 1972-06-12 1974-02-18
JPS5610368A (en) * 1979-07-09 1981-02-02 Mitsubishi Rayon Co Ltd Method and device for immersion coating
JPS57122444A (en) * 1981-01-23 1982-07-30 Canon Inc Electrophotographic receptor

Also Published As

Publication number Publication date
JPS5964847A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
US4610942A (en) Electrophotographic member having corresponding thin end portions of charge generation and charge transport layers
JPS5893062A (en) Electrophotogaphic photoreceptor
JPS5993453A (en) Electrophotographic receptor
JPH0243175B2 (en)
JPS59184359A (en) Electrophotographic sensitive body
JPS6066258A (en) Electrophotographic sensitive body
JPH05701B2 (en)
JPH05702B2 (en)
JPS6097361A (en) Apparatus for producing electrophotographic sensitive body
JPH02300759A (en) Electrophotographic sensitive body
JPH0259459B2 (en)
JPH0480383B2 (en)
JPS60263157A (en) Formation of coat film
JPS60158451A (en) Manufacture of electrophotographic sensitive body
JP3789498B2 (en) Method for producing electrophotographic photosensitive member
JPS63213854A (en) Electrophotographic sensitive body
JPH05281757A (en) Method for regenerating electrophotographic sensitive body
JPS63118164A (en) Electrophotographic sensitive body
JPS60159750A (en) Electrophotographic sensitive body
JPS62254157A (en) Production of electrophotographic sensitive body
JPS5987073A (en) Coating method
JPS60159751A (en) Electrophotographic sensitive body
JPH0359423B2 (en)
JPS5988740A (en) Electrophotographic recepter
JPH07175229A (en) Production of electrophotographic photoreceptor