JPH0566116A - Three-dimensional position measuring device - Google Patents
Three-dimensional position measuring deviceInfo
- Publication number
- JPH0566116A JPH0566116A JP22918891A JP22918891A JPH0566116A JP H0566116 A JPH0566116 A JP H0566116A JP 22918891 A JP22918891 A JP 22918891A JP 22918891 A JP22918891 A JP 22918891A JP H0566116 A JPH0566116 A JP H0566116A
- Authority
- JP
- Japan
- Prior art keywords
- light
- subject
- light receiving
- receiving element
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、被検体の三次元形状を
高精度に測定しうる三次元測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional measuring device capable of measuring a three-dimensional shape of a subject with high accuracy.
【0002】[0002]
【従来の技術】例えば、建造物,備蓄タンク等の歪を高
精度で測定する技術は、これらの保守の観点から重要で
ある。ここで歪は対称物の三次元形状の経時的な変化と
して把握されるが、保守点検においては、測定精度とし
て数mm程度の分解能が必要なため、高精度な三次元形状
測定技術が必要とされる。この三次元の形状測定技術の
一例を次に説明する。2. Description of the Related Art For example, a technique for measuring strain of a building, a stockpiling tank or the like with high accuracy is important from the viewpoint of maintenance of these. Here, strain is understood as a change in the three-dimensional shape of a symmetrical object over time, but in maintenance inspection, a resolution of several mm is required as the measurement accuracy, so high-precision three-dimensional shape measurement technology is required. To be done. An example of this three-dimensional shape measuring technique will be described below.
【0003】図4に示す三次元位置測定装置は、本願出
願人が先に出願したものである(特開平2−30060
9号公報参照)。The three-dimensional position measuring apparatus shown in FIG. 4 was previously filed by the applicant of the present application (Japanese Patent Laid-Open No. 2-30060).
No. 9).
【0004】同図に示すように、光照射部Aにおいて
は、He−Neレーザ光源1からの出射光が、可変アッ
テネータ2を介し、さらにレンズ3,4で構成されるビ
ームエクスパンダ5を介してミラー6で反射され、この
出射光が被検体7の表面aに結像する。ここで、可変ア
ッテネータ2は被検体7の表面の傾き、反射率の影響に
より観測系の受光レベルが変動するのを防止するための
ものである。また、エクスパンダ5はHe−Neレーザ
光の拡り角を小さくするためのものであり、レンズ4が
搭載されているレンズ搭載ステージ8を動かすことによ
り表面aにおけるビーム径が最小となるように調整され
ている。一方、ミラー6は回転ステージ9に搭載され、
モータ10により駆動されるようになっており、その回
動位置は反射光の光軸からの傾きである回転角θとして
ロータリーエンコーダ11により読取られる。As shown in the figure, in the light irradiation section A, the light emitted from the He-Ne laser light source 1 passes through a variable attenuator 2 and a beam expander 5 composed of lenses 3 and 4. Are reflected by the mirror 6 and the emitted light forms an image on the surface a of the subject 7. Here, the variable attenuator 2 is for preventing the received light level of the observation system from changing due to the influence of the inclination and the reflectance of the surface of the subject 7. Further, the expander 5 is for reducing the spread angle of the He—Ne laser light, and by moving the lens mounting stage 8 on which the lens 4 is mounted, the beam diameter on the surface a is minimized. Has been adjusted. On the other hand, the mirror 6 is mounted on the rotary stage 9,
It is driven by the motor 10, and its rotational position is read by the rotary encoder 11 as a rotation angle θ which is the inclination of the reflected light from the optical axis.
【0005】一方、被検体7からの反射光を検出する光
検出部Bでは、撮像光学系12が撮像レンズ13及び検
出器14で構成され、レンズ13を搭載するレンズ搭載
ステージ15を動かすことにより検出器13におけるス
ポット系が最小となるように調整されるようになってお
り、さらに撮像レンズ13,検出器14及びレンズ搭載
ステージ15は回転ステージ16に搭載されてモータ1
7により駆動され、その回転角ψはロータリーエンコー
ダ18により読取られるようになっている。On the other hand, in the photodetector B for detecting the reflected light from the subject 7, the image pickup optical system 12 is composed of the image pickup lens 13 and the detector 14, and the lens mount stage 15 on which the lens 13 is mounted is moved. The spot system in the detector 13 is adjusted so as to be the minimum, and the imaging lens 13, the detector 14, and the lens mounting stage 15 are mounted on the rotary stage 16 so that the motor 1
The rotary angle ψ is read by the rotary encoder 18.
【0006】また、上述した光照射部A及び光検出部B
は架台19上に保持され、モータ20により駆動される
ようになっており、その回転中心はHe−Neレーザ光
の光軸に一致し、回転角ωはロータリーエンコーダ21
により読取られる。なお、上記ミラー6及び受光器14
の回転軸は平行であり、それぞれHe−Neレーザ光の
光軸と点b,cにおいて直角に交差している。Further, the above-mentioned light irradiation section A and light detection section B
Is held on a pedestal 19 and is driven by a motor 20, the center of rotation of which is coincident with the optical axis of the He—Ne laser light, and the rotation angle ω is the rotary encoder 21.
Read by. The mirror 6 and the light receiver 14
Are parallel to each other and intersect the optical axis of the He-Ne laser light at right angles at points b and c, respectively.
【0007】ここで、光照射部Aにおける可変アッテネ
ータ2、レンズ搭載ステージ8及びモータ10、光検出
部Bにおけるレンズ搭載ステージ15及びモータ17並
びにモータ20は、ドライバ22及びコントローラ23
により制御されており、また、ロータリーエンコーダ1
1,18,21のデータは読取カウンター24で読取ら
れる。そして、これらの一連の制御並びにデータによる
被検体7の表面aの位置の演算はCPU25により行わ
れている。The variable attenuator 2, the lens mounting stage 8 and the motor 10 in the light irradiation section A, the lens mounting stage 15, the motor 17 and the motor 20 in the light detecting section B are the driver 22 and the controller 23.
Controlled by the rotary encoder 1
The data of 1, 18 and 21 are read by the reading counter 24. The CPU 25 calculates the position of the surface a of the subject 7 based on the series of controls and data.
【0008】この装置においては、ビームエクスパンダ
5及び回転ステージ9を制御することにより被検体7の
測定すべき表面aにビーム径が最小となるように調整さ
れた像を形成し、この像が撮像光学系12の光軸中心に
なるように回転ステージ16を制御すると共に、レンズ
搭載ステージ15を動かすことにより検出器14におけ
るスポット径が最小となるように調整する。この際の回
転角θ,ψ及び点b,c間の距離xm を用い、三角測量
の原理により被検体7の表面aの位置を算出することが
できる。さらに、回転角θ,ωを変化させて同様に順次
測定することにより、被検体7の反射点位置の三次元マ
ッピングを行うことができる。In this apparatus, by controlling the beam expander 5 and the rotary stage 9, an image adjusted so that the beam diameter is minimized is formed on the surface a to be measured of the subject 7, and this image is The rotation stage 16 is controlled so as to be centered on the optical axis of the image pickup optical system 12, and the lens mounting stage 15 is moved so that the spot diameter in the detector 14 is adjusted to be the minimum. By using the rotation angles θ, ψ and the distance x m between the points b and c at this time, the position of the surface a of the subject 7 can be calculated by the principle of triangulation. Further, the rotation angles θ and ω are changed and the measurement is sequentially performed in the same manner, so that the three-dimensional mapping of the reflection point position of the subject 7 can be performed.
【0009】[0009]
【発明が解決しようとする課題】ところで、前述した図
4に示す三次元位置測定装置においては、近距離と遠距
離との三次元位置を測定するに際し、例えば測定装置直
上1mの三次元位置を測定する場合と25m先の高さ6
mの三次元位置を測定する場合とでは、約660倍の受
光光量差が生じるという問題がある。また測定上必要な
入射角0°(直上)から入射角88°(25m先で高さ
1m)の範囲で被検体の反射率を測定したところ、正面
入射に比べ、斜め入射では1/7まで反射率が小さくな
るという問題がある。さらに被検体によっては反射率が
極めて低い場合があり、散乱光が微弱なため受光感度を
高めると共にダイナミックレンジを拡大する必要があ
る。By the way, in the above-described three-dimensional position measuring device shown in FIG. 4, when measuring the three-dimensional position of a short distance and a long distance, for example, a three-dimensional position 1 m directly above the measuring device is measured. When measuring and height of 25m ahead 6
There is a problem that a difference in received light amount of about 660 times occurs when the three-dimensional position of m is measured. Also, when the reflectance of the object was measured in the range of the incident angle of 0 ° (directly above) necessary for measurement to the incident angle of 88 ° (height 1 m at 25 m ahead), it was 1/7 for oblique incidence as compared to front incidence. There is a problem that the reflectance becomes small. Further, the reflectance may be extremely low depending on the subject, and since the scattered light is weak, it is necessary to enhance the light receiving sensitivity and expand the dynamic range.
【0010】本発明は上記事情に鑑み、高精度でダイナ
ミックレンジの広い三次元位置の測定を可能とした三次
元位置測定装置を提供することを目的とする。In view of the above circumstances, it is an object of the present invention to provide a three-dimensional position measuring device capable of measuring a three-dimensional position with high accuracy and a wide dynamic range.
【0011】[0011]
【課題を解決するための手段】前記目的を達成する本発
明に係る三次元位置測定装置の構成は、平行光乃至収束
光をプローブ光として被検体に照射すると共にその照射
方向が2本の回転軸回りの回動により可変である光照射
部と、撮像レンズ及び受光素子からなりその光軸方向が
2本の回転軸回りの回動により可変であり且つ上記被検
体からの反射光をその反射点の像が当該光軸に一致する
よう回動調整して検出する光検出部と、上記プローブ光
の出射方向及び上記光検出部での受光方向並びに当該光
検出部と上記光照射部との相対的位置関係より三角測量
の原理で上記反射点の位置を検出する処理部とを備えて
なる三次元位置測定装置であって、受光素子が積分型セ
ンサであると共に、該受光素子が検出する散乱反射光の
強度をもとに受光素子の積分時間を制御する制御手段を
有することを特徴とする。The structure of the three-dimensional position measuring apparatus according to the present invention for achieving the above object is to irradiate a subject with parallel light or convergent light as probe light, and to rotate the light in two irradiation directions. A light irradiator that is variable by rotation about an axis, an imaging lens and a light receiving element, and the optical axis direction is variable by rotation about two rotation axes, and the reflected light from the subject is reflected. Of the photodetection section for rotationally adjusting so that the image of the point coincides with the optical axis and for detection, the emitting direction of the probe light and the light receiving direction at the photodetection section, and the photodetection section and the light irradiation section. A three-dimensional position measuring device comprising a processing unit for detecting the position of the reflection point on the principle of triangulation from the relative positional relationship, wherein the light receiving element is an integral type sensor and the light receiving element detects Receives light based on the intensity of scattered reflected light Characterized in that it has a control means for controlling the integration time of the child.
【0012】[0012]
【作用】前記構成において、受光素子で受光した散乱反
射光の強度を検出すると共にその強度をもとにして受光
素子における受光積分時間を制御して適正な感度を得る
ようにし、センサ感度をコントロールする。In the above structure, the intensity of the scattered reflected light received by the light receiving element is detected, and the light receiving integration time in the light receiving element is controlled based on the intensity to obtain an appropriate sensitivity, thereby controlling the sensor sensitivity. To do.
【0013】[0013]
【実施例】以下、本発明の好適な一実施例を図面を参照
して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to the drawings.
【0014】図1は本実施例に係る三次元位置測定装置
の概略図である。図2は受光積分回路図を示す。FIG. 1 is a schematic diagram of a three-dimensional position measuring apparatus according to this embodiment. FIG. 2 shows a light receiving integration circuit diagram.
【0015】これらの図面に示すように、枠体100の
内部には、プローブ光としてのHe−Neレーザ光Lを
出射するレーザ光源101と、このHe−Neレーザ光
Lを被検体102へ反射する回転自在な反射鏡103と
からなる光照射部Aと、被検体102でのレーザ光Lの
反射光RLを受光素子であるCCDイメージセンサ10
4へ導く回転自在な反射鏡105とからなる光検出部B
と、CCDイメージセンサ104の受光量を調整する受
光積分回路106とが設けられている。更に、光照射部
Aの回転軸であるθ軸と光検出部Bの回転軸であるψ軸
とが、光照射部Aの回転中心と光検出部の回転中心とを
結ぶ直線であるω軸と直交するように設けられている。
従って、図中、ω軸とθ軸及びψ軸はω⊥θ、ω⊥ψの
関係となり、且つθ//ψの関係を有することとなる。
尚、107,108はレーザ光を調整するレンズであ
る。As shown in these drawings, inside the frame 100, a laser light source 101 that emits He—Ne laser light L as a probe light, and this He—Ne laser light L is reflected to the subject 102. The CCD image sensor 10 which is a light receiving element for the light irradiation section A composed of the rotatable reflecting mirror 103 and the reflected light RL of the laser light L at the subject 102.
4 and a photodetection section B consisting of a rotatable reflecting mirror 105
And a light reception integration circuit 106 for adjusting the amount of light received by the CCD image sensor 104. Further, the θ axis that is the rotation axis of the light irradiation unit A and the ψ axis that is the rotation axis of the light detection unit B are the straight lines that connect the rotation center of the light irradiation unit A and the rotation center of the light detection unit. It is provided so as to be orthogonal to.
Therefore, in the figure, the ω-axis, the θ-axis, and the ψ-axis have a relationship of ω⊥θ and ω⊥ψ, and also a relationship of θ // ψ.
Incidentally, 107 and 108 are lenses for adjusting laser light.
【0016】上記構成において、レーザ光源101から
出射されるHe−Neレーザ光Lは反射鏡103によっ
て反射されて被検体102に出射される。次いで被検体
102での反射光RLを反射鏡105の回動により受光
素子であるCCDイメージセンサ104へ導くようにし
ている。In the above structure, the He-Ne laser light L emitted from the laser light source 101 is reflected by the reflecting mirror 103 and emitted to the subject 102. Next, the reflected light RL from the subject 102 is guided to the CCD image sensor 104, which is a light receiving element, by rotating the reflecting mirror 105.
【0017】この際の回転軸θ軸,ψ軸の回転角θ,ψ
及び反射鏡103,105間の距離xm を用い、三角測
量の原理により被検体102の表面aの位置を算出する
ことができる。さらに、回転角θ,ωを変化させて同様
にして順次測定することにより被検体102の反射点位
置の三次元マッピングを行うことができる。At this time, the rotation angles θ, ψ of the rotation axes θ, ψ
Using the distance x m between the reflecting mirrors 103 and 105, the position of the surface a of the subject 102 can be calculated according to the principle of triangulation. Further, three-dimensional mapping of the reflection point position of the object 102 can be performed by changing the rotation angles θ and ω and sequentially performing similar measurements.
【0018】尚、検出器は反射光が光軸中心に一致する
ように回転制御されるので、一次元のラインセンサ又は
ピンホール付きの検出器が好ましく、二次元のものであ
ってもよい。Since the detector is rotationally controlled so that the reflected light coincides with the center of the optical axis, a one-dimensional line sensor or a detector with a pinhole is preferable, and a two-dimensional detector may be used.
【0019】ここで、受光素子であるCCDイメージセ
ンサ104の受光量を調整する受光積分回路図である図
2を参照して、強度に応じて積分時間を変化させること
を説明する。CCDイメージセンサ104で受光した被
検体の反射光を光強度検出回路110で検知し、その光
強度に応じて積分時間を制御する積分時間制御回路11
1を作動し、蓄積時間を例えば0.5m/sec 〜512
m/sec の範囲(1024倍)に調整するようにして、
受光感度及びダイナミックレンジを増大させる。よっ
て、三次元位置の測定を近距離から長距離まで連続して
行うことができる。Now, changing the integration time according to the intensity will be described with reference to FIG. 2 which is a light receiving integration circuit diagram for adjusting the amount of light received by the CCD image sensor 104 which is a light receiving element. An integration time control circuit 11 that detects the reflected light of the subject received by the CCD image sensor 104 by the light intensity detection circuit 110 and controls the integration time according to the light intensity.
1 is activated and the accumulation time is, for example, 0.5 m / sec to 512
Adjust to the range of m / sec (1024 times),
Increase the photosensitivity and dynamic range. Therefore, it is possible to continuously measure the three-dimensional position from a short distance to a long distance.
【0020】ここで、光強度は一般に積分時間に応じて
増減するもので図3に示すように飽和露光量(図中Fで
示す)の(蓄積される電荷が飽和する光量)の15〜9
0%(図中Aで示す)の露光量とするのが好適である。
この場合のダイナミックレンジは6:1(90:15)
に相当するため、三次元位置測定を行うためには460
0/6=約770倍のダイナミックレンジの拡大が必要
となる(従来においての660倍の受光量差と反射率の
低下(1/7)を考慮した場合には、4600:1(≒
660×7:1)のダイナミックレンジが必要とな
る。)。Here, the light intensity generally increases / decreases in accordance with the integration time, and as shown in FIG. 3, the saturated exposure amount (indicated by F in the figure) is 15 to 9 of the (light amount at which the accumulated charges are saturated).
The exposure amount is preferably 0% (indicated by A in the figure).
The dynamic range in this case is 6: 1 (90:15)
Since it corresponds to the
0/6 = It is necessary to expand the dynamic range by about 770 times (4600: 1 (≈) when considering the 660 times difference in received light amount and the decrease in reflectance (1/7) in the conventional case.
A dynamic range of 660 × 7: 1) is required. ).
【0021】[0021]
【発明の効果】以上実施例と共に述べたように、本発明
に係る三次元位置測定装置は受光素子が受光する反射光
の積分時間を光の強度に応じて調整することにより、受
光感度及びダイナミックレンジの不足を解消することが
でき、近くのものから遠くのものまで連続して三次元位
置測定をすることができる。As described above with reference to the embodiments, the three-dimensional position measuring apparatus according to the present invention adjusts the integration time of the reflected light received by the light receiving element according to the intensity of the light, thereby obtaining the light receiving sensitivity and the dynamic. It is possible to solve the shortage of the range, and it is possible to measure three-dimensional position continuously from near objects to far objects.
【図1】本実施例に係る三次元位置測定装置の概略図で
ある。FIG. 1 is a schematic diagram of a three-dimensional position measuring apparatus according to this embodiment.
【図2】その受光積分回路図である。FIG. 2 is a light receiving integration circuit diagram thereof.
【図3】受光飽和量と時間との関係を示す図である。FIG. 3 is a diagram showing a relationship between a light reception saturation amount and time.
【図4】従来技術に係る三次元位置測定装置の概略図で
ある。FIG. 4 is a schematic diagram of a conventional three-dimensional position measuring apparatus.
100 枠体 101 レーザ光源 102 被検体 103 反射鏡 104 CCDイメージセンサ 105 反射鏡 106 受光積分回路 107 レンズ 108 レンズ 110 光強度検出回路 111 積分時間制御回路 L レーザ光 RL 反射光 100 frame 101 laser light source 102 subject 103 reflecting mirror 104 CCD image sensor 105 reflecting mirror 106 light receiving integration circuit 107 lens 108 lens 110 light intensity detection circuit 111 integration time control circuit L laser light RL reflected light
Claims (1)
検体に照射すると共にその照射方向が2本の回転軸回り
の回動により可変である光照射部と、撮像レンズ及び受
光素子からなりその光軸方向が2本の回転軸回りの回動
により可変であり且つ上記被検体からの反射光をその反
射点の像が当該光軸に一致するよう回動調整して検出す
る光検出部と、上記プローブ光の出射方向及び上記光検
出部での受光方向並びに当該光検出部と上記光照射部と
の相対的位置関係より三角測量の原理で上記反射点の位
置を検出する処理部とを備えてなる三次元位置測定装置
であって、受光素子が積分型センサであると共に、該受
光素子が検出する散乱反射光の強度をもとに受光素子の
積分時間を制御する制御手段を有することを特徴とする
三次元位置測定装置。1. A light irradiation unit that irradiates a subject with parallel light or convergent light as probe light, and the irradiation direction of the light is variable by rotating about two rotation axes, an imaging lens and a light receiving element. An optical detection unit which has an optical axis direction which is variable by rotation about two rotation axes and which adjusts rotation of the reflected light from the subject so that an image of the reflection point coincides with the optical axis; A processing unit that detects the position of the reflection point on the principle of triangulation based on the emitting direction of the probe light, the light receiving direction at the light detection unit, and the relative positional relationship between the light detection unit and the light irradiation unit. A three-dimensional position measuring device provided, wherein the light receiving element is an integral type sensor, and has a control means for controlling the integration time of the light receiving element based on the intensity of scattered reflected light detected by the light receiving element. 3D position measuring device characterized by ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22918891A JPH0566116A (en) | 1991-09-09 | 1991-09-09 | Three-dimensional position measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22918891A JPH0566116A (en) | 1991-09-09 | 1991-09-09 | Three-dimensional position measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0566116A true JPH0566116A (en) | 1993-03-19 |
Family
ID=16888188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22918891A Withdrawn JPH0566116A (en) | 1991-09-09 | 1991-09-09 | Three-dimensional position measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0566116A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018123992A1 (en) * | 2016-12-27 | 2018-07-05 | 国立研究開発法人理化学研究所 | Measuring device, optical sensor, measuring method, and program |
WO2022158560A1 (en) * | 2021-01-22 | 2022-07-28 | 凸版印刷株式会社 | Distance image capturing device and distance image capturing method |
-
1991
- 1991-09-09 JP JP22918891A patent/JPH0566116A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018123992A1 (en) * | 2016-12-27 | 2018-07-05 | 国立研究開発法人理化学研究所 | Measuring device, optical sensor, measuring method, and program |
WO2022158560A1 (en) * | 2021-01-22 | 2022-07-28 | 凸版印刷株式会社 | Distance image capturing device and distance image capturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6667798B1 (en) | Method and device for determining spatial positions and orientations | |
EP2362936B1 (en) | Scanner with feedback control | |
JP3197529B2 (en) | Non-contact measurement method of wheel alignment characteristics and its measurement device | |
JPH0599617A (en) | Method and device for detecting edge section and hole by optical scanning head | |
KR100568439B1 (en) | Ellipsometer measuring instrument | |
JPH0566116A (en) | Three-dimensional position measuring device | |
JPH0769151B2 (en) | Surface shape measuring device | |
JP3554268B2 (en) | Light beam irradiation measurement device | |
JP3607821B2 (en) | Inclination angle measuring machine | |
JP2002131017A (en) | Apparatus and method of distance measurement | |
JPH09189545A (en) | Distance measuring device | |
JPH0523016U (en) | Three-dimensional position measuring device | |
JPH10339605A (en) | Optical range finder | |
JPH08327337A (en) | Three dimensional shape measuring apparatus | |
JP2597711B2 (en) | 3D position measuring device | |
JPH0560530A (en) | Measurement device for three-dimensional position | |
JPH08304040A (en) | Three-dimensional shape measuring apparatus | |
JPH0334563B2 (en) | ||
JPH08327336A (en) | Three dimensional shape-measuring apparatus | |
JP2755762B2 (en) | Remote displacement measuring device | |
JPH09113234A (en) | Sensor for measuring two-dimensional shape | |
JPS5826325Y2 (en) | position detection device | |
JPH0255735B2 (en) | ||
JPH04106732U (en) | interferometer | |
JP2023065551A (en) | Device and method for geometrically measuring object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981203 |