Nothing Special   »   [go: up one dir, main page]

JPH0548881A - Picture varying power processing system and device - Google Patents

Picture varying power processing system and device

Info

Publication number
JPH0548881A
JPH0548881A JP3032036A JP3203691A JPH0548881A JP H0548881 A JPH0548881 A JP H0548881A JP 3032036 A JP3032036 A JP 3032036A JP 3203691 A JP3203691 A JP 3203691A JP H0548881 A JPH0548881 A JP H0548881A
Authority
JP
Japan
Prior art keywords
reduction
image
picture
scaling
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3032036A
Other languages
Japanese (ja)
Other versions
JP3001274B2 (en
Inventor
Michihiko Ota
充彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3032036A priority Critical patent/JP3001274B2/en
Publication of JPH0548881A publication Critical patent/JPH0548881A/en
Application granted granted Critical
Publication of JP3001274B2 publication Critical patent/JP3001274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)

Abstract

PURPOSE:To make it possible to perform picture reduction (enlarge) for multilevel picture data forming one picture element by plural bits with excellent reproducibility without being complicated by a hardware constitution and without the occurrence of character break, character transform, etc., even when the picture reduction (enlarge) of more than 1/2 is performed. CONSTITUTION:A reduction processing is divided into two stages. For instance, after picture data is reduced to 1/2<n> (n: integral number including 0) at a first stages A1, B1, a reduced picture of (1/2<n>) alpha is obtained by performing a picture reduction with an arbitrary set magnification alpha within the range of 1 to 1/2 for the reduced picture data. In this case, the picture reduction in a main scanning direction B and a sub-scanning direction A is not performed at a time and the constitution is much simplified by performing the picture reduction in each scanning direction A, B, successively. The reduction magnification is not always limited to 1/2<n>. If the range of magnification of the second reduction processing means A2, B2 is set to 1 to 1/P, the reduction of 1/P<n> (P: integral number) is enough. An enlarging processing in a similar system is possible by setting this P as a fraction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はファクシミリやイメージ
スキャナ等により読取られたイメージデータからなる画
像変倍処理方式とその装置に係り、特に複数ビットで1
画素を生成する多値化画像データの変倍処理方式とその
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image scaling processing system comprising image data read by a facsimile, an image scanner or the like and a device therefor.
The present invention relates to a scaling method for multi-valued image data that generates pixels and an apparatus for the same.

【0002】[0002]

【従来の技術】従来よりファクシミリやイメージスキャ
ナにおいては、画像読取部として機能する例えばCCD
で読取られた原画像に対応するアナログ信号をデジタル
化し、該デジタル化したイメージデータを受信機側に送
信するように構成しているが、特に近年においては写真
等の中間色を階調性よく再現可能にするために、前記原
画像に対応するアナログ信号を複数ビットで1画素を形
成する多値化画像データに変換した後、該画像データを
ページプリンタその他のプリンタ側に出力する際に2値
化処理(所定の二値化レベル(閥値)でスライス)して
該2値化信号を用いて主走査方向と副走査方向にビデオ
展開している。
2. Description of the Related Art Conventionally, in a facsimile or image scanner, for example, a CCD functioning as an image reading unit is used.
It is configured to digitize the analog signal corresponding to the original image read by and transmit the digitized image data to the receiver side. Especially in recent years, the intermediate colors of photographs etc. are reproduced with good gradation. In order to enable the conversion, the analog signal corresponding to the original image is converted into multi-valued image data which forms one pixel with a plurality of bits, and then the image data is binary when output to a page printer or other printer side. The binarization processing (slicing at a predetermined binarization level (slice value)) is performed and the binarized signal is used to perform video expansion in the main scanning direction and the sub-scanning direction.

【0003】かかる装置において画像縮小を行う場合
は、一般に前記プリントエンジン側に出力する前の2値
化信号(ドットパターン)を所定倍率に対応させて間引
き制御を行う事により、画像縮小を行うように構成して
いたが、このような構成を取ると特に1/2以下の画像
縮小を行う場合においても字のくずれが生じ易く、而も
1/2以上の画像縮小を行う場合においては前記欠点が
一層増進するのみならず、字化け現象を引起こす。
When an image is reduced in such an apparatus, generally, the image is reduced by performing a thinning control on the binarized signal (dot pattern) before output to the print engine side in correspondence with a predetermined magnification. However, when such a configuration is adopted, the characters are likely to be distorted even when the image is reduced by 1/2 or less, and the above-mentioned drawbacks are caused when the image is reduced by 1/2 or more. Not only increase further, but also cause a garbled phenomenon.

【0004】この為前記2値化処理を行う前の多値化段
階で画像縮小を行う事が好ましいが、そしてこの様な多
値化段階を画像縮小を行う場合、一般に所定倍率に対応
する面積比や長さ比に対応して抽出される参照画素を積
和演算して所望の縮小パターンを得る方式を採用してい
るが、この様な構成を取ると1/2〜1/3に縮小を行
う場合は4画素、1/3〜1/4に縮小する場合は5画
素の参照画素を必要とし、而も前記積和演算処理方式を
採用すると夫々の参照画素毎に乗算器と加算器を必要と
し、結果としてハード構成が煩雑化する。
For this reason, it is preferable to reduce the image in the multi-valued stage before performing the binarization process. However, when the image is reduced in such a multi-valued stage, the area corresponding to a predetermined magnification is generally used. A method of obtaining the desired reduction pattern by multiplying and summing the reference pixels extracted corresponding to the ratio or the length ratio is adopted, but with such a configuration, it is reduced to 1/2 to 1/3. Requires 4 pixels when performing the above, and 5 pixels when reducing to ⅓ to 1/4. If the above-described product-sum operation processing method is adopted, a multiplier and an adder are provided for each reference pixel. Is required, resulting in a complicated hardware configuration.

【0005】本発明はかかる従来技術の欠点に鑑み、ハ
ード構成が煩雑化する事なく而も1/2以上に画像縮小
(拡大)を行っても字くずれや字化け等が生じる事なく
再現性よく画像縮小(拡大)が可能な画像変倍処理方式
とその装置を提供する事を目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention is reproducible without causing misshapen characters or garbled characters even if the image is reduced (enlarged) to 1/2 or more without complicating the hardware configuration. It is an object of the present invention to provide an image scaling processing method and an apparatus therefor that can reduce (enlarge) an image well.

【0006】[0006]

【課題を解決する為の手段】本発明はかかる技術的課題
を達成する為に、複数ビットで1画素を形成する多値化
画像データの画像縮小処理方式を採用するも、1段階で
所望の倍率に縮小させる事なく、縮小処理を2段階に分
け、例えば第1段階で前記画像データを1/2n(n:
0を含む整数)に縮小した後、第2段階で該1/2n
縮小された画像データを1〜1/2の範囲の任意の設定
倍率αで画像縮小を行う事により(1/2n)×αの縮
小画像を得る事を特徴とする画像縮小処理方式を提案す
る。
In order to achieve the above technical object, the present invention adopts an image reduction processing method of multi-valued image data in which one pixel is formed by a plurality of bits, but it is possible to obtain a desired image in one step. The reduction process is divided into two steps without reducing the magnification, and for example, in the first step, the image data is reduced to 1/2 n (n:
After being reduced to an integer including 0), the image data reduced to 1/2 n in the second step is reduced by an arbitrary set magnification α in the range of 1 to 1/2 (1/2 We propose an image reduction processing method characterized by obtaining a reduced image of n ) × α.

【0007】この場合、前記画像縮小を主走査方向と副
走査方向と両者を1度で行う事なく、各走査方向毎に順
次行う事により構成が一層簡単化する。
In this case, the structure is further simplified by sequentially performing the image reduction in each of the main scanning directions and the sub-scanning directions, not in one time, but in each scanning direction.

【0008】尚前記縮小倍率は必ずしも1/2nに限定
される事なく、第2の縮小処理手段の倍率範囲を1〜1
/Pに設定するば1/Pn(P:整数)に縮小してもよ
く、又前記Pを分数に設定する事により前記と同様な方
式で拡大処理も可能である。
The reduction scale is not necessarily limited to 1/2 n, and the scale range of the second reduction processing means is 1 to 1
If it is set to / P, it may be reduced to 1 / P n (P: integer), and if P is set to a fraction, enlargement processing can be performed in the same manner as described above.

【0009】[0009]

【作用】本発明の作用を分りやすくするために、例えば
前記Pに2を用いた場合について説明すると、本技術手
段によれば、前もって1/2nに縮小した画像データを
所望倍率αに縮小するものである為に、見掛け上は1〜
1/2倍の限定した縮小倍率であるにも拘らず、前記n
を0に設定する事により1〜0.5倍の縮小倍率が、又
前記nを1に設定する事により0.5〜0.25倍の縮
小倍率が、又前記nを2に設定する事により0.25〜
0.125倍の縮小倍率が夫々得られ、結果として広い
範囲の縮小処理が可能となる。
In order to make it easier to understand the operation of the present invention, the case of using 2 for P will be described. According to the present technical means, the image data previously reduced to 1/2 n is reduced to the desired magnification α. Because it does, it looks like 1
Despite the limited reduction ratio of 1/2,
Set 0 to 0 to 1 to 0.5 times reduction ratio, set n to 1 to set 0.5 to 0.25 times reduction ratio, and set n to 2. By 0.25
A reduction ratio of 0.125 is obtained for each, and as a result, reduction processing in a wide range is possible.

【0010】又1/2nに変倍する変倍手段は単にシフ
トレジスタを用いる事により簡単に構成出来、而も1〜
1/2の範囲の任意の設定倍率で画像変倍を行う第2の
変倍手段においても、限定された縮小倍率であり而も参
照画素も3つの画素で足りる為に、該縮小処理を行う処
理回路も、又倍率に対応させて係数演算を行う係数生成
回路等も煩雑化する事なく、回路構成が簡単化する。
Further, the scaling means for scaling to 1/2 n can be simply constructed by simply using a shift register.
Even in the second scaling means that scales an image at an arbitrary set scaling factor in the range of 1/2, the scaling process is performed because the scaling factor is limited and three reference pixels are sufficient. The circuit configuration is simplified without complicating the processing circuit or the coefficient generation circuit for performing the coefficient calculation corresponding to the magnification.

【0011】又本発明は主走査方向と副走査方向の変倍
処理を同時に行う事も可能であるが、好ましくは画像変
倍を片側走査方向(主/副)毎に順次個別に行う事によ
り、例えばトップマージンやレフトマージンを設定する
場合にも、回路構成を煩雑化する事なく一方の倍率を変
えて容易に偏倍(主走査方向と副走査方向の倍率が異な
る事)する事が出来る。
Further, according to the present invention, it is possible to carry out the scaling processing in the main scanning direction and the sub-scanning direction at the same time, but it is preferable to carry out the image scaling in the one side scanning direction (main / sub) individually. For example, even when setting a top margin or a left margin, one of the magnifications can be changed and the magnification can be easily changed (the magnifications in the main scanning direction and the sub scanning direction are different) without complicating the circuit configuration. ..

【0012】[0012]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described in detail below as an example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Not too much.

【0013】図1は本発明の実施例に係る画像縮小処理
手段を示す全体ブロック図で、その構成を多値化画像デ
ータの流れに従って説明するに、Aは副走査処理手段、
Bは主走査処理手段で、いずれも1/2n倍器A1,B
1と積和演算回路A2,B2から構成され、先ず複数ビ
ットで1画素を構成する多値化データを副走査方向に縮
小処理をした後、該縮小処理した多値化データを主走査
処理手段Bに入力し、主走査方向に縮小処理を行うよう
に構成している。
FIG. 1 is an overall block diagram showing an image reduction processing means according to an embodiment of the present invention. The structure will be described according to the flow of multi-valued image data.
B is a main scanning processing means, both of which are 1/2 n multipliers A1 and B.
1 and sum-of-products arithmetic circuits A2 and B2. First, multi-valued data forming one pixel with a plurality of bits is reduced in the sub-scanning direction, and then the reduced multi-valued data is subjected to main scanning processing means. It is configured to input to B and perform reduction processing in the main scanning direction.

【0014】次に前記夫々の処理手段の内部構成につい
て説明する。1は副走査係数発生器と1/2n倍器A1
に夫々倍率係数αとnを付与する倍率設定器で、目的と
する倍率Tが前記1〜1/2の場合にはnを0、αをT
に、又倍率Tが前記1/2〜1/4の場合にはnを1、
αをT/2に、更に倍率Tが前記1/4〜1/8の場合
にはnを2、αをT/4に設定する。この結果αは常に
0.5〜1.0の範囲に収める事が出来る。
Next, the internal structure of each processing means will be described. 1 is a sub-scanning coefficient generator and 1/2 n multiplier A1
When the target magnification T is 1 to 1/2, n is 0 and α is T.
If the magnification T is 1/2 to 1/4, n is 1,
α is set to T / 2, and when the magnification T is 1/4 to 1/8, n is set to 2 and α is set to T / 4. As a result, α can always be kept in the range of 0.5 to 1.0.

【0015】1/2n倍器A1は、シフト回路2、加算
器兼用の16KB SRAM3、1走査ライン遅延器4、切換ス
イッチ5及び切換制御回路6からなり、その動作手順を
前記nが0、1、2の場合に夫々分けて説明するに、前
記nが0の場合は前もって該1/2n倍器A1,B1で
縮小処理を行う事なく、原画像に対応する多値化画像デ
ータを1ラインづつ遅延させて繰返した後、3ライン分
の画像データをSRAM3にライトする。
The 1/2 n multiplier A1 is composed of a shift circuit 2, a 16 KB SRAM 3 also serving as an adder, a scanning line delay device 4, a changeover switch 5 and a changeover control circuit 6, the operation procedure of which n is 0, In the case of 1 and 2, respectively, when n is 0, the multi-valued image data corresponding to the original image is obtained without performing the reduction process in advance with the 1/2 n multipliers A1 and B1. After delaying by one line and repeating, image data for three lines is written to the SRAM 3.

【0016】又前記nが1(2)の場合は前記シフト回
路2内で前記入力画素データを1ビット右シフトさせて
1/2倍(1/4倍)に変換した後、SRAM3及び遅延器
4により1走査ライン前の対応する画像データ(1、
2、3走査ライン前の対応する画像データを順次)と加
算して2(4)ラインから1ラインの画像データを生成
させSRAM3にライトするとともに、次に次位及び次々位
のラインについても同様な加算操作を繰返して3ライン
分の画像データをSRAM3にライトする。
When n is 1 (2), the input pixel data is right-shifted by 1 bit in the shift circuit 2 and converted to 1/2 times (1/4 times), and then the SRAM 3 and the delay unit are provided. The corresponding image data (1,
The corresponding image data before two or three scanning lines are sequentially added) to generate one line of image data from 2 (4) lines and write it to the SRAM3, and the same is applied to the next and next lines. By repeating such addition operation, the image data for three lines is written in the SRAM3.

【0017】積和演算回路A2は、係数発生器12、副
走査方向の対応する画素データを格納するレジスタ11
a…、該各レジスタ11a…間に介在させた1ライン遅
延回路13a…、前記画素データと対応する係数を乗算
する乗算器14a…、該乗算器14a…により演算され
たデータを加算する加算器15とからなる。
The product-sum operation circuit A2 includes a coefficient generator 12 and a register 11 for storing corresponding pixel data in the sub-scanning direction.
a, a 1-line delay circuit 13a interposed between the registers 11a, a multiplier 14a for multiplying the coefficient corresponding to the pixel data, and an adder for adding the data calculated by the multiplier 14a. It consists of 15.

【0018】尚、上記回路動作を説明する前に本回路に
おけるの係数発生器12における係数発生アルゴリズム
を簡単に説明するに例えば1〜1/2縮小の場合は例え
ば10画素を5〜10画素の間の任意の新画素で表現し
直せば良い為に、これを図2で示すように長さ比率で配
分し直すと新画素は隣接する3つの旧画素を参照して重
み付けをすれば良い事が理解できる。従って前記対応す
る夫々の画素毎に重み付けを行う係数も3種類で足り、
その計算式は下記の通りになる。 Kan=α+Kan-1ー1(Kan-1>0) =α+Kan-1 (Kan-1≦0) Kbn=1ーKan (Kan≧1ーα) =α (Kan<1ーα) Kcn=0 、 (Kan≧1ーα) =1ーαーKan (Kan<1ーα) そして前記αが例えば70%の場合はその係数は図2に
示す値になる。
Before describing the circuit operation, the coefficient generation algorithm in the coefficient generator 12 in this circuit will be briefly described. For example, in the case of 1 to 1/2 reduction, for example, 10 pixels are replaced with 5 to 10 pixels. Since it may be re-expressed by an arbitrary new pixel between them, if this is redistributed by the length ratio as shown in FIG. 2, the new pixel may be weighted by referring to three adjacent old pixels. Can understand. Therefore, three types of coefficients for weighting each corresponding pixel are sufficient,
The calculation formula is as follows. K an = α + K an− 1−1 (K an−1 > 0) = α + K an−1 (K an−1 ≦ 0) K bn = 1−K an (K an ≧ 1−α) = α (K an <1−α) K cn = 0, (K an ≧ 1−α) = 1−α−K an (K an <1−α), and when α is 70%, the coefficient is shown in FIG. It becomes a value.

【0019】次に前記積和演算回路A2の動作手順につ
いて簡単に説明するに、副走査方向に隣接する3つの画
素データは、遅延回路13a…により1走査ラインづつ
遅延させながら前記1/2n倍器A1より呼出す事によ
り、副走査方向に対応する画素データが精度よく各レジ
スタ11a…に格納される事となる。
[0019] To briefly described next operation procedure of the product-sum operation circuit A2, 3 single pixel data adjacent in the sub-scanning direction, the 1/2 n while one scan line at a time delayed by the delay circuit 13a ... By calling from the multiplier A1, the pixel data corresponding to the sub-scanning direction is accurately stored in each register 11a.

【0020】そして各レジスタ11a…に格納された画
素データPa,Pb,Pcと前記係数発生器12より生成
した係数Ka,Kb,Kcを、夫々の乗算器14a…によ
り積算して重み付けを行い、該重み付けしたデータを加
算器15により加算する事により副走査方向に変倍処理
したデータが主走査処理手段に入力され、主走査方向に
縮小処理を行う。
The pixel data P a , P b , P c stored in each register 11 a ... And the coefficients K a , K b , K c generated by the coefficient generator 12 are integrated by the respective multipliers 14 a. Then, the weighted data is added, and the weighted data is added by the adder 15, and the data subjected to the scaling processing in the sub-scanning direction is input to the main scanning processing means, and the reduction processing is performed in the main scanning direction.

【0021】主走査処理手段Aも、1/2n倍器B1と
積和演算回路B2から構成され、いずれの回路も一ライ
ン遅延回路13a…を有さない点を除いて、前記副走査
処理手段A側のデータと同一である為に、その説明は省
略する。尚、本実施例は、副走査方向の縮小と、主走査
方向の縮小を順次個別に行うために夫々の縮小倍率を異
ならせる事も可能である。
The main scanning processing means A is also composed of a 1/2 n multiplier B1 and a product-sum operation circuit B2, except that neither circuit has a one-line delay circuit 13a. Since it is the same as the data on the means A side, the description thereof is omitted. Incidentally, in the present embodiment, the reduction in the sub-scanning direction and the reduction in the main-scanning direction are sequentially performed individually, so that it is possible to make the reduction ratios different from each other.

【0022】尚、前記各処理手段においては重み付けを
行うために、参照画素と対応する数の乗算器14a…を
必要とし、而も乗算器14a…はハードウエアとしての
負担が大であるために回路構成が煩雑化し易い。
In each of the processing means, in order to perform weighting, the number of multipliers 14a ... Corresponding to the number of reference pixels is required, and since the multipliers 14a ... Have a heavy load on hardware. The circuit configuration easily becomes complicated.

【0023】図3に記載した発明はかかる欠点を解消せ
んとするもので、積和演算回路A2,B2内に組込まれ
る乗算器14を一つに限定し、副(主)走査方向に対応
する画素データが格納されている各レジスタ11a…と
前記乗算器14間と、係数発生器12と乗算器14間に
夫々セレクタ16a…を介在させ、タイミング制御回路
17よりのタイミング信号に基づいて、先ずPa・Ka
の積算を乗算器14a…で行った後、該重み付けデータ
を加算器15を介してラッチ回路18にラッチする。
The invention described in FIG. 3 is intended to solve such a drawback, and limits the number of multipliers 14 incorporated in the product-sum operation circuits A2 and B2 to one, and corresponds to the sub (main) scanning direction. The selectors 16a are interposed between the registers 11a in which pixel data are stored and the multiplier 14 and between the coefficient generator 12 and the multiplier 14, respectively, and based on the timing signal from the timing control circuit 17, first, Pa · K a
After being added by the multipliers 14a ..., The weighting data is latched in the latch circuit 18 via the adder 15.

【0024】そして次及び次々位のタイミング信号でP
b・Kb、Pc・Kcの積算を順次行いつつ、夫々の重み
付けデータを加算器15により前記ラッチデータに順次
加算する。かかる実施例によれば一つの乗算器14で前
記実施例と同様な効果を営む事が出来る。
Then, with the next and next higher timing signals, P
While adding b · K b and Pc · K c sequentially, each weighting data is sequentially added to the latch data by the adder 15. According to this embodiment, one multiplier 14 can achieve the same effect as the above embodiment.

【0025】[0025]

【効果】以上記載した如く本発明は、ハード構成が煩雑
化する事なく而も1/2以上に画像縮小(拡大)を行っ
ても字くずれや字化け等が生じる事なく再現性よく画像
縮小(拡大)が可能となる。等の種々の著効を有す。
[Effect] As described above, according to the present invention, even if the image is reduced (enlarged) to 1/2 or more without complicating the hardware configuration, the image is reduced with good reproducibility without causing misalignment or garbled characters. (Enlargement) is possible. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る画像縮小処理装置の全体
ブロック図、
FIG. 1 is an overall block diagram of an image reduction processing apparatus according to an embodiment of the present invention,

【図2】図1に示す積和演算回路における係数発生アル
ゴリズムを示す作用図、
FIG. 2 is an operation diagram showing a coefficient generation algorithm in the product-sum calculation circuit shown in FIG.

【図3】本発明の実施例に係る画像縮小処理装置の全体
ブロック図、
FIG. 3 is an overall block diagram of an image reduction processing apparatus according to an embodiment of the present invention,

【符号の説明】[Explanation of symbols]

A 副走査処理手段、 B 主走査処理手段 A1,B1 1/2n倍器 A2,B2 積和演算回
A sub-scanning processing means, B main-scanning processing means A1, B1 1/2 n multiplier A2, B2 product-sum operation circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数ビットで1画素を形成する多値化画
像データの画像変倍処理方式において、前記画像データ
を1/Pn(n:0を含む整数、P:整数若しくは分
数)に変倍した後、該1/Pnに変倍された画像データ
を1〜1/Pの範囲の任意の設定倍率αで画像変倍を行
い、これにより(1/Pn)αの変倍画像を得る事を特
徴とする画像変倍処理方式
1. In an image scaling processing method of multi-valued image data in which one pixel is formed by a plurality of bits, the image data is converted into 1 / P n (n: integer including 0, P: integer or fraction). After scaling, the image data scaled to 1 / P n is subjected to image scaling at an arbitrary set scaling factor α in the range of 1 to 1 / P, and thereby a scaled image of (1 / P n ) α is obtained. Image scaling method characterized by obtaining
【請求項2】 請求項1記載の画像変倍を片側走査方向
(主/副)毎に順次個別に行う事を特徴とする画像変倍
処理方式
2. An image scaling processing method, characterized in that the image scaling according to claim 1 is sequentially and individually performed for each one-side scanning direction (main / sub).
【請求項3】 複数ビットで1画素を形成する多値化画
像データの画像変倍処理装置において、前記画像データ
を1/Pn(n:0を含む整数、P:整数若しくは分
数)に変倍する第1の変倍手段と、該第1の変倍手段に
より変倍された画像データを1〜1/Pの範囲の任意の
設定倍率で画像変倍を行う第2の変倍手段からなる事を
特徴とする画像変倍処理装置
3. An image scaling processing device for multi-valued image data which forms one pixel with a plurality of bits, wherein the image data is converted into 1 / P n (n: integer including 0, P: integer or fraction). From the first scaling means for scaling and the second scaling means for scaling the image data scaled by the first scaling means at any set scaling factor in the range of 1 to 1 / P. Image scaling processor characterized in that
JP3032036A 1991-01-31 1991-01-31 Image scaling processing method and apparatus Expired - Fee Related JP3001274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032036A JP3001274B2 (en) 1991-01-31 1991-01-31 Image scaling processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032036A JP3001274B2 (en) 1991-01-31 1991-01-31 Image scaling processing method and apparatus

Publications (2)

Publication Number Publication Date
JPH0548881A true JPH0548881A (en) 1993-02-26
JP3001274B2 JP3001274B2 (en) 2000-01-24

Family

ID=12347650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032036A Expired - Fee Related JP3001274B2 (en) 1991-01-31 1991-01-31 Image scaling processing method and apparatus

Country Status (1)

Country Link
JP (1) JP3001274B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700682B1 (en) 1998-09-03 2004-03-02 Kabushiki Kaisha Toshiba Image processing system capable of easily changing subscanning magnification in image read
JP2007310607A (en) * 2006-05-18 2007-11-29 Fuji Xerox Co Ltd Image processing apparatus, method and program
US7602523B2 (en) 2003-10-27 2009-10-13 Noritsu Koki Co. Ltd. Image processing method for resizing image and image processing apparatus for implementing the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700682B1 (en) 1998-09-03 2004-03-02 Kabushiki Kaisha Toshiba Image processing system capable of easily changing subscanning magnification in image read
US7602523B2 (en) 2003-10-27 2009-10-13 Noritsu Koki Co. Ltd. Image processing method for resizing image and image processing apparatus for implementing the method
JP2007310607A (en) * 2006-05-18 2007-11-29 Fuji Xerox Co Ltd Image processing apparatus, method and program
US8014631B2 (en) 2006-05-18 2011-09-06 Fuji Xerox Co., Ltd. Image processing apparatus, image processing method, and computer readable medium for generating a reduced image

Also Published As

Publication number Publication date
JP3001274B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
US5289293A (en) Pixel density conversion and processing
JPH0865510A (en) Error diffusion method,error diffusion system and error production generation
US4937677A (en) Method of enlarging/reducing dithered images
JP3396992B2 (en) Image processing method and apparatus
JP3706830B2 (en) Image signal processing device
JPH0548881A (en) Picture varying power processing system and device
JP2833670B2 (en) Pixel density conversion method
JP3783815B2 (en) Image processing device
JPH01312671A (en) Picture processor
JPH1188693A (en) Pseudo-gradation processing unit
JPH06348834A (en) Image processing device
JP2714140B2 (en) Pixel density converter
JP2714141B2 (en) Pixel density converter
JP3359361B2 (en) Enlargement printing device
JPH08297739A (en) Picture processor and method therefor
JPH0638038A (en) Smoothing processing method for binary image
JPH02107061A (en) Picture signal processing method
JPH08186704A (en) Magnified data generator in digital copying machine
JP2833669B2 (en) Pixel density conversion method
JPH0879508A (en) Resolution reduction converter for binary image
JPH01163068A (en) Image signal output device for printing
JPH0589238A (en) Image processing device, image reducing method, and image processing method
JPH06311346A (en) Picture processor
JPH0832798A (en) Method and device for processing image
JPH0795393A (en) Method and device for processing magnified picture data in digital copying machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees