Nothing Special   »   [go: up one dir, main page]

JPH0534814B2 - - Google Patents

Info

Publication number
JPH0534814B2
JPH0534814B2 JP58066867A JP6686783A JPH0534814B2 JP H0534814 B2 JPH0534814 B2 JP H0534814B2 JP 58066867 A JP58066867 A JP 58066867A JP 6686783 A JP6686783 A JP 6686783A JP H0534814 B2 JPH0534814 B2 JP H0534814B2
Authority
JP
Japan
Prior art keywords
particles
magnetic
powder
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58066867A
Other languages
Japanese (ja)
Other versions
JPS5916306A (en
Inventor
Datsuta Amitaba
Emu Nasashin Debitsudoson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
AlliedSignal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23451974&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0534814(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by AlliedSignal Inc filed Critical AlliedSignal Inc
Publication of JPS5916306A publication Critical patent/JPS5916306A/en
Publication of JPH0534814B2 publication Critical patent/JPH0534814B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 本発明はコアーおよび極片として作られた磁性
物品、ならびにこれらをガラス質金属粉末から製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to magnetic articles made as cores and pole pieces, and methods of making them from vitreous metal powders.

非晶質金属合金およびこれから作られる物品は
米国特許第3856513号明細書(1974年12月24日発
行)にチエンおよびポークによつて示されてい
る。その明細書は、非晶質の状態で得られ、同一
金属を基礎とするそれ以前に知られていた結晶性
合金よりも優れた新規な合金組成物を教示してい
る。そこに示された組成物は急冷により容易に非
晶質の状態になり、望ましい物理的特性をもつ。
その明細書にはさらに、キヤストリボンの摩砕ま
たはエアミル粉砕によつて10〜250μmの範囲の
粉径をもつ非晶質金属粉末を製造しうることが示
されている。
Amorphous metal alloys and articles made therefrom are shown by Chien and Polk in U.S. Pat. No. 3,856,513, issued December 24, 1974. That specification teaches new alloy compositions that are obtained in an amorphous state and are superior to previously known crystalline alloys based on the same metal. The compositions shown therein readily become amorphous upon quenching and have desirable physical properties.
The specification further indicates that amorphous metal powders with a powder size in the range of 10 to 250 μm can be produced by milling or air milling of cast ribbons.

パーマロイおよび他の結晶性合金粉末の圧縮
(consolidation)によつて磁性物品を製造するこ
とは知らている。改善された磁性を要求する新た
な用途は、磁性物品の強度および磁性反応が同時
に高められた合金および圧縮法を開発するために
努力を必要とした。
It is known to produce magnetic articles by consolidation of permalloy and other crystalline alloy powders. New applications requiring improved magnetic properties have necessitated efforts to develop alloys and compaction methods in which the strength and magnetic response of magnetic articles are simultaneously enhanced.

本発明によれば、圧縮して優れた磁性反応を示
す物体となすために特に適した非晶質金属合金が
提供される。さらに本発明によれば熱的機械的方
法を用いてガラス質金属粉末を圧縮する、磁性物
品の製法が提供される。
According to the present invention, an amorphous metal alloy is provided which is particularly suitable for compression into objects exhibiting excellent magnetic response. Further, the present invention provides a method of making a magnetic article using thermo-mechanical methods to compress vitreous metal powder.

本発明方法により製造された物品は残留磁気お
よび透磁率が低く、これは広い周波数にわたつて
一定である。一般にこの種の圧縮態磁性ガラス質
金属合金物体は少なくとも15の比透磁率
(ralative magnetic permeability)をもつ。
こゝで用いられる“比透磁率”という語は、真空
中で同一磁場により生じる磁気誘導に対する特定
磁場によりある媒体中で生じる磁気誘導の比を意
味する。
Articles made by the method of the invention have low remanence and magnetic permeability, which are constant over a wide range of frequencies. Generally, compressed magnetic glassy metal alloy bodies of this type have a relative magnetic permeability of at least 15.
As used herein, the term "relative permeability" refers to the ratio of the magnetic induction produced in a medium by a particular magnetic field to the magnetic induction produced by the same magnetic field in vacuum.

より詳細には本発明によれば強磁性ガラス質金
属粉末をガラス転移温度付近であつて当該合金の
結晶化温度以下のプレス温度69〜690MPaの圧力
において静圧により圧縮する工程を含む方法によ
つて、磁性金属合金の成形品が製造される。これ
により、380〜450℃の範囲の温度で1〜4時間の
間0〜800A/mの磁場の存在下で、成形加工後
の焼鈍を行うのに特に適した圧縮態磁性ガラス質
金属合金物体が形成される。この焼鈍された物品
は改良されたインピーダンス透磁率をもち、信号
および高周波数の電力変圧器などに用いるのに特
に適している。
More specifically, according to the present invention, ferromagnetic vitreous metal powder is compressed by static pressure at a pressing temperature of 69 to 690 MPa, which is around the glass transition temperature and below the crystallization temperature of the alloy. In this way, a molded article of magnetic metal alloy is manufactured. This makes the compressed magnetic vitreous metal alloy object particularly suitable for post-forming annealing in the presence of a magnetic field of 0-800 A/m for 1-4 hours at temperatures in the range 380-450°C. is formed. This annealed article has improved impedance permeability and is particularly suitable for use in signal and high frequency power transformers and the like.

本発明の好ましい態様および添付の図面に関す
る詳細な記述を参照すると、本発明がより十分に
理解され、他の利点が明らかになるであろう。
The invention will be better understood, and other advantages will become apparent, from the detailed description of the preferred embodiments of the invention and the accompanying drawings.

第1図はメルトから直接に非晶質金属粉末をキ
ヤステイングするために用いられる装置の略図で
あり、この装置は刻みのあるキヤステイング用指
示体をもつ。
FIG. 1 is a schematic diagram of an apparatus used for casting amorphous metal powder directly from a melt, the apparatus having a knurled casting indicator.

第2図は圧縮された物体の密度の変化を圧縮時
間および圧縮温度の関数として示すグラフであ
る。
FIG. 2 is a graph showing the change in density of a compressed object as a function of compression time and compression temperature.

第3図はインピーダンス透磁率の変化を成形加
工後の焼鈍時間の関数として示すグラフである。
FIG. 3 is a graph showing the change in impedance permeability as a function of annealing time after forming.

第4図はインピーダンス透磁率の変化を絶縁さ
れていない粉末および絶縁された粉末の周波数の
関数として示すグラフである。
FIG. 4 is a graph showing the change in impedance permeability as a function of frequency for uninsulated and insulated powders.

第5図はインピーダンス透磁率の変化の異なる
粒径のものから製造したコアーの周波数の関数と
して示すグラフである。
FIG. 5 is a graph showing the change in impedance permeability as a function of frequency for cores made from different particle sizes.

第6図はコアー損の変化を成形加工後の焼鈍時
間の関数として示すグラフである。
FIG. 6 is a graph showing the change in core loss as a function of annealing time after forming.

透磁率が15よりも大きい本発明の磁性圧縮物体
は一般に粉末状のガラス質金属合金から製造され
る。合金からガラス質金属粉末を製造する一般的
方法は、急冷工程および微粒化(atomization)
工程を伴うものである。合金は直接リボンにキヤ
ステイングされ、摩砕、ボールミル粉砕またはエ
アーミル粉砕によつて希望する粒径範囲の粉末ま
たはフレークにされる。粉末化処理を補助するた
めに、リボン試料は合金の結晶化温度以下におけ
る脆化熱処理を施される。
The magnetic compact bodies of the present invention having a magnetic permeability greater than 15 are generally manufactured from powdered vitreous metal alloys. Common methods for producing glassy metal powders from alloys include a quenching process and atomization.
It involves a process. The alloy is cast directly into ribbon and milled, ball milled or air milled into powder or flakes in the desired particle size range. To assist in the powdering process, the ribbon samples are subjected to an embrittlement heat treatment below the crystallization temperature of the alloy.

あるいは粉末またはフレーク(こゝではその厚
さよりも大きさのオーダーの小さな直径をもつ粒
子と定義される)を第1図に示される型の刻みを
もつキヤステイング用支持体を用いて、希望する
範囲の寸法をもつ最終形状のものに直接にキヤス
テイングすることができる。これにより製造され
る粒子またはフレークの寸法は、刻みの深さおよ
びそれらの問隔に応じて変動するであろう。一般
に刻みは規則的な間隔をもつ多数の山および谷を
含み、隣接する山の間隔は0.01〜0.1cmの範囲に
あり、山の頂部から谷の底部までの距離は0.005
〜0.05cmの範囲にある。このようなキヤステイン
グ用支持体の形状によつて一般に0.01〜0.1cmの
範囲の寸法をもつ粉末粒子またはフレークが得ら
れる。
Alternatively, powders or flakes (here defined as particles having a small diameter on the order of magnitude larger than their thickness) can be deposited as desired using a casting support with indentations of the type shown in Figure 1. It can be cast directly into a final shape with a range of dimensions. The size of the particles or flakes produced thereby will vary depending on the depth of the incisions and their spacing. In general, a notch contains a number of regularly spaced peaks and valleys, with the distance between adjacent peaks ranging from 0.01 to 0.1 cm, and the distance from the peak of the peak to the bottom of the valley being 0.005 cm.
In the range of ~0.05cm. The shape of such a casting support generally results in powder particles or flakes having dimensions in the range 0.01 to 0.1 cm.

第1図に示されるように、装置10は可動性の
冷却面12、溶融金属16を保持するために溜め
14、および頂部に溜め14と連結しかつその底
部に冷却面12に近接した開口をもつノズル18
をもつ。冷却面12は規則的な間隔をもつ山22
および谷をもつ。隣接する山は0.01〜0.1cmの距
離dの間隔をもつ。山の頂部から谷の底部までの
距離y(図示されていない)は0.005〜0.05cmで
あ。粉末は溶融合金を刻み目つき支持体(冷却面
12)上に落下させることによつて直接に製造さ
れる。この支持体は100〜2000m/分の速度で縦
方向に動くよう設定された回転式冷却ロール、エ
ンドレスベルト(図示されていない)などであ
る。これにより得られた粉末粒子の寸法は、距離
dおよびyの大きさによつて直接に変化する。
As shown in FIG. 1, the apparatus 10 includes a movable cooling surface 12, a sump 14 for holding molten metal 16, and an opening connected to the sump 14 at the top and adjacent the cooling surface 12 at the bottom. Motsu nozzle 18
have. The cooling surface 12 has regularly spaced peaks 22
and valleys. Adjacent peaks have a distance d between 0.01 and 0.1 cm. The distance y (not shown) from the top of the mountain to the bottom of the valley is 0.005-0.05 cm. The powder is produced directly by dropping the molten alloy onto a scored support (cooling surface 12). The support may be a rotating cooling roll, an endless belt (not shown), etc. set to move longitudinally at a speed of 100 to 2000 m/min. The dimensions of the powder particles thus obtained vary directly with the magnitude of the distances d and y.

図示された態様においてノズル手段は冷却面の
運動方向に一般に垂直に配置されたスロツトをも
つ。スロツトは一対の平行なリツプ、すなわち冷
却面の運動方向に番号をつけられた第1リツプお
よび第2リツプによつて規定される。ノズル18
のスロツトは冷却面の運動方向に測定して0.2〜
1mmの幅をもつ。第1リツプは少なくともスロツ
ト幅に等しい幅をもち、第2リツプはスロツト幅
の1.5〜3倍の幅をもつ。リツプと冷却面の間隙
はスロツト幅の0.1〜1倍である。ガラス質合金
の製造は米国特許第3856513号(チエンらに付与)
明細書中に示される基本的教示によつて行うこと
ができる。得られらシート、リボン、テープおよ
び線材はここに記載された材料の有用な前駆物質
である。
In the illustrated embodiment, the nozzle means has a slot oriented generally perpendicular to the direction of movement of the cooling surface. The slot is defined by a pair of parallel lips, a first lip and a second lip numbered in the direction of motion of the cooling surface. Nozzle 18
The slot is 0.2~ measured in the direction of movement of the cooling surface.
It has a width of 1mm. The first lip has a width at least equal to the slot width and the second lip has a width from 1.5 to 3 times the slot width. The gap between the lip and the cooling surface is 0.1 to 1 times the width of the slot. The production of glassy alloys is covered by U.S. Patent No. 3,856,513 (granted to Chien et al.)
This can be done by following the basic teachings provided in the specification. The resulting sheets, ribbons, tapes and wires are useful precursors for the materials described herein.

粉末の圧縮は物体を製造するに際して最初の工
程である。圧縮用の粉末には微粉末(105μmよ
りも小さな粒径をもつもの)、粗大粉末(105〜
300μmの粒径をもつもの)およびフレーク
(300μmよりも大きな粒径をもつもの)が含まれ
うる。圧縮はガラス転移温度付近であつて結晶化
温度よりも低い温度のガラス質金属粉末をプレス
することによつて得ることができる。
Compression of powder is the first step in manufacturing an object. Powders for compression include fine powder (with a particle size smaller than 105 μm) and coarse powder (105 μm or smaller).
(with a particle size of 300 μm) and flakes (with a particle size greater than 300 μm). Compaction can be obtained by pressing the glassy metal powder at a temperature near the glass transition temperature and below the crystallization temperature.

低い透磁率(すなわち25以下)を希望する場合
は、105μm以下の粒径を採用する。高い透磁率
(100以上)のためには300μm以上の比較的大き
な粒径を採用する。
If a low magnetic permeability (ie, 25 or less) is desired, a particle size of 105 μm or less is used. For high magnetic permeability (above 100), a relatively large particle size of 300 μm or more is used.

圧縮のためには排気したカンに粉末を入れたの
ちストリツプを形成させるか、あるいは均衡プレ
スしてデイスク、リングその他の希望する形状、
たとえばトランスおよびインデユーサーのコア
ー、モーターの固定子およびローター部品となす
ことができる。さらに粉末を結晶化温度以下であ
つてかつガラス転移温度領域の温度で加温プレス
し、トランス/インデユーサーコアーまたモータ
ーのローター/固定子セグメントなど希望するい
かなる形状にもなすことができる。圧縮はガラス
転移温度の近くで起こる粉末またはフレーク粒子
の間での機械的からみ合いおよび狭い範囲
(Short−range)での拡散結合によつておこるも
のと考えられる。
For compaction, the powder is placed in an evacuated can and then formed into strips or isostatically pressed into discs, rings or other desired shapes.
For example, it can be made into transformer and inducer cores, motor stator and rotor parts. Furthermore, the powder can be hot pressed at a temperature below the crystallization temperature and in the glass transition temperature range to form any desired shape, such as a transformer/inducer core or rotor/stator segment of a motor. Compaction is believed to occur through mechanical entanglement and short-range diffusion bonding between powder or flake particles that occur near the glass transition temperature.

これまで非晶質合金は、非常に硬いこと、及び
剪断力や圧縮力によつて容易に変形しないことか
ら、粒子間結合(interparticle bonding)を実現
することは困難とされていた。本発明者らは、研
究の結果、圧縮処理を行う温度と圧力を適正に選
定すれば粒子間結合の実現が可能であることを見
出し本発明を完成するに至つたのである。
Until now, it has been difficult to achieve interparticle bonding with amorphous alloys because they are very hard and do not easily deform under shear or compressive forces. As a result of research, the present inventors have discovered that interparticle bonding can be achieved by appropriately selecting the temperature and pressure for compression treatment, and have completed the present invention.

ガラス転移温度(Tg)よりかなり低い温度で
は粒子が比較的硬いため、圧縮処理中に加えられ
る剪断力および圧縮力によつて容易には変形しな
い。一方Tgよりもかなり高い温度では、圧縮中
に非晶質粒子が初期結晶化する危険性が高い。こ
れに対し、Tgからほぼ50℃の範囲内にプレス温
度で圧縮を行えば良好な粒子間結合が達成される
ことが見出された。さらに、圧縮圧力は69〜
690MPaの範囲としなければならない。この範囲
以外では、たとえ前記の温度範囲で圧縮処理を行
つても良好な粒子間結合を得ることはできない。
温度、圧力の2つの条件が共に満たせれることが
本発明においては必須である。
Since the particles are relatively hard at temperatures well below the glass transition temperature (Tg), they are not easily deformed by the shear and compression forces applied during the compaction process. On the other hand, at temperatures much higher than Tg, there is a high risk of initial crystallization of amorphous particles during compression. On the other hand, it has been found that good interparticle bonding can be achieved if compression is performed at a pressing temperature within a range of approximately 50°C from Tg. Furthermore, the compression pressure is 69 ~
Must be within the range of 690MPa. Outside this range, good interparticle bonding cannot be obtained even if compression treatment is performed within the above temperature range.
In the present invention, it is essential that the two conditions of temperature and pressure are both satisfied.

粉末を適切な有機結合剤、たとえばパラフイ
ン、ポリスルホン、ポリイミド、フエノールホル
ムアルデヒド樹脂と混和したのち常温プレスして
適切な形状となることもできる。結合剤の量は30
重量%までであり、高透磁率をもつコアーのため
には10重量%以下が好ましく、0.5〜3重量%が
より好ましい。このように成形された合金は理論
的最大の少なくとも60重量%の密度をもつ。プレ
スされた物体は結合剤の硬化温度よりも低い比較
的低温で硬化させてより高い強度を与えたのち研
削して最終的形状となすことができる。この方法
の好ましい生成物は、磁性成分として適した形状
をもつものを含む。硬化過程は同時に磁場を与え
ることによつて行うことができる。
The powder can also be mixed with a suitable organic binder such as paraffin, polysulfone, polyimide, phenol formaldehyde resin and then cold pressed into the appropriate shape. The amount of binder is 30
% by weight, preferably up to 10% by weight for cores with high magnetic permeability, and more preferably from 0.5 to 3% by weight. The alloy thus formed has a density of at least 60% by weight of the theoretical maximum. The pressed object can be cured at a relatively low temperature below the curing temperature of the binder to provide greater strength and then ground to its final shape. Preferred products of this method include those having a shape suitable as a magnetic component. The curing process can be carried out by simultaneously applying a magnetic field.

金属ガラスは冷却されて結晶化することなく剛
性の状態になつた溶融合金である。この種の金属
ガラスは一般に下記の特性のうち少なくとも幾つ
かをもつ。高度の硬さおよび引掻抵抗、ガラス質
面の平滑性が大きいこと、寸法および形状の安定
性、機械的剛性、強度、延性、それに関連する金
属及び合金と比較して高い電気抵抗、および拡散
性のX線回折のパターン。
Metallic glass is a molten alloy that has been cooled to a rigid state without crystallizing. Metallic glasses of this type generally have at least some of the following properties: High degree of hardness and scratch resistance, great smoothness of the glassy surface, dimensional and shape stability, mechanical stiffness, strength, ductility, high electrical resistance compared to related metals and alloys, and diffusion X-ray diffraction pattern.

こゝで“合金”という語は2種またはそれ以上
の金属の固体混合物を示すものとしての普通の意
味で用いられる(コンデンスト・ケミカル・デイ
クシヨナリー、第9版、フアン・ノーストラン
ド・ラインホールド社、ニユーヨーク、1977)。
これらの合金はさらに少なくとも1種の非金属元
素を混合含有する。“ガラス質金属(glassy
metal)合金”、“金属ガラス(mesallic gass)”、
“非晶質金属(amorphous metal)合金”および
“ガラス質金属(vitreous metal)合金”という
語はすべてこゝで同等に用いられる。
The term "alloy" is used here in its ordinary sense as referring to a solid mixture of two or more metals (Condensed Chemical Dictionary, 9th edition, Juan Norstrand Reinhold). , New York, 1977).
These alloys further contain a mixture of at least one non-metallic element. “glassy metal”
metal) alloys”, “metallic gases”,
The terms "amorphous metal alloy" and "vitreous metal alloy" are all used interchangeably herein.

本発明に示される方法に適した合金には組成物
〔Fe、Ni、Co〕65-88〔Mo、Nb、Ta、Cr、V〕0-10
〔B、C、S〕5-25が含まれる。
Alloys suitable for the method described in this invention include compositions [Fe, Ni, Co] 65-88 [Mo, Nb, Ta, Cr, V] 0-10
[B, C, S] 5-25 are included.

本発明による好ましい強磁性合金は鉄、コバル
トおよびニツケルよりなる群のうちの1員子に基
づくものである。鉄を基礎とする合金は一般組成
Fe40-88(Co、Ni)0-40(Mo、Nb、Ta、V、Cr)
(B0-10C、Si)5-25をもち、コバルトを基礎とする
合金は一般組成Co40-88(Fe、Ni)0-40(Mo、Nb、
Ta、V、Mn、Cr)0-10(B、C、Si)5-25をもち、
ニツケルを基礎する合金は一般組成Ni40-80(Co、
Fe)4-40(Mo、Nb、Ta、V、Mn、Cr)0-10(B、
C、Si)5-25をもつ。
Preferred ferromagnetic alloys according to the invention are based on a member of the group consisting of iron, cobalt and nickel. Alloys based on iron have a general composition
Fe 40-88 (Co, Ni) 0-40 (Mo, Nb, Ta, V, Cr)
(B 0-10 C, Si) 5-25 , cobalt-based alloys have the general composition Co 40-88 (Fe, Ni) 0-40 (Mo, Nb,
Ta, V, Mn, Cr) 0-10 (B, C, Si) 5-25 ,
The alloys based on nickel have the general composition Ni 40-80 (Co,
Fe) 4-40 (Mo, Nb, Ta, V, Mn, Cr) 0-10 (B,
C, Si) with 5-25 .

特に好ましい合金は鉄79原子%、ホウ素16原子
%およびケイ素5原子%の組成をもつ。
A particularly preferred alloy has a composition of 79 atomic percent iron, 16 atomic percent boron, and 5 atomic percent silicon.

非晶質金属服末を圧縮して、電磁気コアー、極
片など各種の用途に適した成形加工部品となすこ
とができる。ガラス質金属圧縮物は高い透磁率ま
たは低い透磁率をもつ。得られたコアーはトラン
スのコアー、モーターの固定子またはローターそ
の他の交流用に用いることができる。この種の用
途に好ましい非晶質合金にはFe78B13Si4
Fe79B16Si5およびFe81B13.5Si3.5C2が含まれる。
Amorphous metal powder can be compressed into molded parts suitable for various uses such as electromagnetic cores and pole pieces. Vitreous metal compacts have high or low magnetic permeability. The obtained core can be used as a transformer core, a motor stator or rotor, and other alternating current applications. Preferred amorphous alloys for this type of application include Fe 78 B 13 Si 4 ,
Contains Fe 79 B 16 Si 5 and Fe 81 B 13.5 Si 3.5 C 2 .

以下の実施例は本発明をより十分に理解するた
めに示したものである。本発明の原理および実施
を具体的に説明するために示された特定の技術、
条件、材料、割合および報告されたデータは一例
であつて、本発明の範囲を限定するものと解すべ
きではない。
The following examples are presented in order that the invention may be more fully understood. Certain techniques presented to illustrate the principles and practice of the invention;
The conditions, materials, proportions, and data reported are exemplary and should not be construed as limiting the scope of the invention.

実施例 1 300μm以下の粒径およびFe79B16Si5(下に書か
れた数値は原子%である)の組成をもつ非晶質金
属粉末を米国特許第4142571号明細書に詳述され
た方法に従つてメルトから直接にキヤステイング
されたリボンをエアーミル粉砕することによつて
製造した。キヤステイングされたリボンは16時間
のボールミル粉砕前に不活性な窒素雰囲気下に
400℃で1〜2時間の脆化処理も施された。この
操作により300〜10μmの範囲の微細な非晶質粒
子が得られた。得られた微細な粉末粒子を種々の
粒径範囲、すなわち“−325メツシユ”(40μ
m)、“−150メツシユ”(150μm)および“−
48メチシユ”(300μm)に篩分けした。次いで
SiO2およびメタノールを含有するスラリーと粒
子を混和することにより粉末を1〜3重量%
SiO2で被覆するか、またはMgOおよびメタノー
ルを含有するスラリーを用いて1重量%MgOで
被覆した。被覆された−150メツシユおよび−325
メツシユのサイズの粉末を黒鉛鋳型中で410〜510
℃の範囲の温度において5分、15分および30分間
プレスした。用いた圧力は69MPaであつた。
Fe79B13Si9合金について正確にガラス転移温度を
測定することはできなかつたので、結晶化温度
TX(=530℃)よりも低い410〜510℃の広い温度
範囲にわたつて加温プレスを行つた。コアー密度
の変化をプレス条件の関数として第2図に示す。
460℃、1/2時間でほぼ80〜85%の理想的な密度が
得られた。しかし、これよりも高い温度では同じ
密度を得るためにプレス時間を短縮することがで
きる。また特定の用途に必要な希望する形状、す
なわち棒状、トロイド(toroid)、EI型などに直
接に加温プレスするために各種の型を加工するこ
ともできる。
Example 1 An amorphous metal powder with a particle size of less than 300 μm and a composition of Fe 79 B 16 Si 5 (values written below are in atomic percent) was prepared as detailed in U.S. Pat. No. 4,142,571. Ribbons casted directly from the melt according to the method were produced by air milling. The casted ribbons were placed under an inert nitrogen atmosphere before ball milling for 16 hours.
An embrittlement treatment was also performed at 400°C for 1 to 2 hours. This operation yielded fine amorphous particles in the range of 300 to 10 μm. The resulting fine powder particles were divided into various particle size ranges, i.e. “-325 mesh” (40 μm mesh).
m), "-150 mesh" (150 μm) and "-
It was sieved to a size of 48 mm (300 μm).
The powder is reduced to 1-3% by weight by mixing the particles with a slurry containing SiO 2 and methanol.
Coated with SiO 2 or 1% by weight MgO using a slurry containing MgO and methanol. -150 mesh and -325 coated
410-510 mesh size powder in graphite mold
Pressing was carried out for 5 minutes, 15 minutes and 30 minutes at temperatures in the range of .degree. The pressure used was 69 MPa.
Since it was not possible to accurately measure the glass transition temperature for the Fe 79 B 13 Si 9 alloy, the crystallization temperature
The heating press was performed over a wide temperature range of 410 to 510°C, which is lower than T X (=530°C). The variation in core density as a function of pressing conditions is shown in FIG.
The ideal density of approximately 80-85% was obtained at 460°C for 1/2 hour. However, at higher temperatures the pressing time can be reduced to obtain the same density. Various molds can also be fabricated for direct hot pressing into desired shapes needed for specific applications: rods, toroids, EI shapes, etc.

実施例 2 合金の粒径105μm以下およびFe79B16Si5の組成
をもつ非晶質金属粒子を実施例1に示されたエア
ーミル粉砕によつて、また注型し放しのリボンを
400℃で1時間熱処理することにより脆化したの
ちボールミル粉砕によつて製造した。エアーミル
粉砕した粒末粒子を1重量%MgOで被覆した。
トロイドコアー(内径=25mm、外径=38mmおよび
厚さ=12mm)を430℃で1/2時間の加温プレスによ
り成形加圧した。加工後の焼鈍の効果を評価する
ために、絶縁された粉末および絶縁されていない
粉末の双方から製造したプレス成形コアーを435
℃で1〜4時間焼鈍し、対応するインピーダンス
透磁率を測定し、第3図にプロツトした。
Example 2 Amorphous metal particles having an alloy particle size of 105 μm or less and a composition of Fe 79 B 16 Si 5 were milled by air milling as shown in Example 1, and as-cast ribbons were
It was made brittle by heat treatment at 400°C for 1 hour, and then pulverized in a ball mill. The air milled powder particles were coated with 1% by weight MgO.
A toroid core (inner diameter = 25 mm, outer diameter = 38 mm, and thickness = 12 mm) was molded and pressed at 430°C for 1/2 hour. To evaluate the effect of post-processing annealing, press-formed cores made from both insulated and non-insulated powders were
C. for 1 to 4 hours, and the corresponding impedance permeability was measured and plotted in FIG.

成形加工後の焼鈍によつて透磁率が実質的に改
善され、最適な焼鈍は本実施例で採用した特定の
組成および圧縮法に関しては435℃で1〜2時間
であることを見出された。
Post-forming annealing has been found to substantially improve permeability, with optimal annealing being 1 to 2 hours at 435°C for the particular composition and compression method employed in this example. .

実施例 3 合金の粒径105μm以下およびFe79B16Si5の組成
をもつ非晶質金属粉末粒子を実施例1に示したエ
アーミル粉砕によつて製造した。
Example 3 Amorphous metal powder particles having an alloy particle size of 105 μm or less and a composition of Fe 79 B 16 Si 5 were produced by air milling as described in Example 1.

絶縁の効果を評価するため、430℃で1/2時間の
加温プレスにより1〜3重量%のSiO2または
MgOを用いてトロイドコアー(内径=25mm、外
径=38mmおよび厚さ=12mm)を作成した。成形加
工されたコアーを次いで435℃で1時間焼鈍し、
そのインピーダンス透磁率を周波数(.1テラス
の誘導で1〜100KHz)の関数として測定した。
結果を第4図に示す。絶縁された粉末コアーに関
するインピーダンス透磁率は、周波数と共に変化
しない。これに対し絶縁されていないコアーに関
する透磁率は、渦電流遮蔽により周波数と共に低
下する。この透磁率が一定であることは、信号お
よび高周波電力変圧器に望ましいきわめて重要な
磁気特性である。
To evaluate the insulation effect, 1 to 3 wt% SiO 2 or
A toroid core (inner diameter = 25 mm, outer diameter = 38 mm, and thickness = 12 mm) was created using MgO. The formed core was then annealed at 435°C for 1 hour.
The impedance permeability was measured as a function of frequency (1-100 KHz with .1 terrace induction).
The results are shown in Figure 4. The impedance permeability for an insulated powder core does not vary with frequency. In contrast, the magnetic permeability for an uninsulated core decreases with frequency due to eddy current shielding. This constant magnetic permeability is a very important magnetic property desired in signal and high frequency power transformers.

実施例 4 異なる粒径範囲、すなわち“−48メツシユサイ
ズ”(300μm)および“−150メツシユサイズ”
(150μm)をもつ非晶質金属粉末を実施例1に
示した方法に従つてエアーミル粉砕により製造し
た。粉末粒子を1重量%MgOで被覆し、圧縮し
とトロイド試料(内径=25mm、外径=38mmおよび
厚さ=12mm)となし、435℃で1〜2時間の成形
加工後焼鈍を行つた。このコアーのインピーダン
ス透磁率を周波数の関数としてプロツトした。第
5図に示すように、粒径が大きくなると共により
高い透磁率が得られた。
Example 4 Different particle size ranges: “-48 mesh size” (300 μm) and “-150 mesh size”
(150 μm) was prepared by air milling according to the method described in Example 1. The powder particles were coated with 1 wt % MgO and compacted into toroidal specimens (inner diameter = 25 mm, outer diameter = 38 mm and thickness = 12 mm) and annealed after shaping at 435° C. for 1-2 hours. The impedance permeability of this core was plotted as a function of frequency. As shown in FIG. 5, higher magnetic permeability was obtained as the particle size increased.

実施例 5 電力変圧器のコアーとして用いるためには、イ
ンピーダンス透磁率のほかにコアー損特性も重要
である。実施例1に記載したものと同一の合金
Fe79B16Si5および同一の成形加工を用いて、粒径
−48メツシユおよび−150メツシユの絶縁(1%
MgO)粉末からトロイドコアー(内径=25mm、
外径=38mm、厚さ=12mm)を製造した。成形加工
したコアーを435℃で1〜3時間焼鈍した。50K
Hz/.1テスラにおけるコアー損値を第5図に示
す。最適な加熱処理は435℃で2時間以上である
と思われる。高周波コアー損値は粒径が小さくな
ると共に、かつ1〜3重量%の絶縁によつて実質
的に低下した。最適な低周波(60〜400Hz)コア
ー損に必要な粉末特性および絶縁特性は高周波用
に必要なものと実質的に異なつている。低周波で
は渦電流は主体ではないので、60〜400Hzの変圧
器およびモータに用いるためには、絶縁されてい
ない比較的大きい粒径(たとえば300μm以上)
が望ましい。またこの種の低周波変圧器およびモ
ーターに用いるためには、非晶質マトリツクスの
部分的結晶化を避けるために比較的低い温度(た
とえば380〜420℃の範囲程度の温度)で成形加工
後の焼鈍を行うべきである。高周波用には粒系が
比較的小さく(たとえば105μm以下)、粒子は絶
縁体(たとえばMgO、SiO2など)で被覆され、
焼鈍温度は420〜450℃の範囲にある。
Example 5 In order to use it as a core of a power transformer, in addition to impedance permeability, core loss characteristics are also important. The same alloy as described in Example 1
Using Fe 79 B 16 Si 5 and the same forming process, insulation (1%
MgO) powder to toroid core (inner diameter = 25 mm,
An outer diameter of 38 mm and a thickness of 12 mm were manufactured. The formed cores were annealed at 435°C for 1 to 3 hours. 50K
Hz/. Figure 5 shows the core loss value at 1 Tesla. The optimal heat treatment appears to be 2 hours or more at 435°C. High frequency core loss values were substantially reduced with decreasing grain size and with 1-3 wt% insulation. The powder and insulation properties required for optimal low frequency (60-400 Hz) core loss are substantially different from those required for high frequencies. At low frequencies, eddy currents are not dominant, so for use in 60-400Hz transformers and motors, relatively large particles (e.g. 300 μm or more) without insulation are required.
is desirable. In addition, for use in this type of low-frequency transformers and motors, the molding process must be performed at relatively low temperatures (e.g., in the range of 380 to 420°C) to avoid partial crystallization of the amorphous matrix. Annealing should be performed. For high frequency applications, the particle system is relatively small (e.g. 105 μm or less), and the particles are coated with an insulator (e.g. MgO, SiO2, etc.).
The annealing temperature is in the range of 420-450℃.

以上に本発明をより詳細に記載したが、これら
の詳述に固執する必要はなく、当業者には種々の
変更および修正をなしうることは自明であり、こ
れらはすべて特許請求の範囲の記載により定めら
れる本発明の範囲内に包含されることは理解され
るであろう。
Although the present invention has been described in more detail above, it is not necessary to adhere to these detailed descriptions, and it is obvious that various changes and modifications can be made to those skilled in the art, all of which are within the scope of the claims. It will be understood that it is within the scope of the invention as defined by.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はメルトから直接に非晶質金属粉末をキ
ヤステイングするために用いられる装置の略図で
あり、この装置は刻みのあるキヤステイング用支
持体をもつ。第2図は圧縮された物体の密度の変
化を圧縮時間および圧縮温度の関数として示すグ
ラフである。第3図はインピーダンス透磁率の変
化を成形加工後の焼鈍時間の関数として示すグラ
フである。第4図はインピーダンス透磁率の変化
を絶縁されていない粉末および絶縁された粉末の
周波数の関数として示すグラフである。第5図は
インピーダンス透磁率の変化を異なる粒径のもの
から製造したコアーの周波数の関数として示すグ
ラフである。第6図はコアー損の変化を成形加工
後の焼鈍時間の関数として示すグラフである。第
1図中の記号は下記のものを示す。 12……冷却面、14……溜め、16……溶融
金属、18……ノズル、20……ノズルの開口、
22……刻みの山、24……刻みの谷。
FIG. 1 is a schematic representation of an apparatus used for casting amorphous metal powder directly from a melt, the apparatus having a knurled casting support. FIG. 2 is a graph showing the change in density of a compressed object as a function of compression time and compression temperature. FIG. 3 is a graph showing the change in impedance permeability as a function of annealing time after forming. FIG. 4 is a graph showing the change in impedance permeability as a function of frequency for uninsulated and insulated powders. FIG. 5 is a graph showing the change in impedance permeability as a function of frequency for cores made from different particle sizes. FIG. 6 is a graph showing the change in core loss as a function of annealing time after forming. The symbols in Figure 1 indicate the following. 12... Cooling surface, 14... Reservoir, 16... Molten metal, 18... Nozzle, 20... Nozzle opening,
22...Notched Mountain, 24...Notched Valley.

Claims (1)

【特許請求の範囲】 1 強磁性ガラス質金属粉末をガラス転移温度か
らほぼ50℃の範囲内であつて当該合金の結晶化温
度以下のプレス温度で69〜690MPaの圧力におい
て静圧により圧縮して、圧縮態磁性ガラス質金属
合金体となす工程を含む磁性金属合金の成形品の
製法。 2 圧縮工程を1〜60分間行う、特許請求の範囲
第1項記載の方法。 3 粉末が105μm以下の粒子直径をもつ粒子か
らなる、特許請求の範囲第2項記載の方法。 4 粉末が少なくとも300μmの粒子直径をもつ
粒子からなる、特許請求の範囲第1項記載の方
法。 5 粒子を圧縮工程の前に絶縁体で被覆する工程
を含む、特許請求の範囲第3項記載の方法。 6 粒子を圧縮工程に際して黒鉛鋳型中で410〜
510℃の範囲の温度において5〜30分間プレスす
る、特許請求の範囲第5項記載の方法。 7 圧縮合金物体を380〜450℃の範囲の温度で1
〜4時間焼鈍する工程を含む、特許請求の範囲第
2項記載の方法。 8 焼鈍工程を0〜800A/mの磁場の存在下で
行う、特許請求の範囲第7項記載の方法。
[Claims] 1. Ferromagnetic glassy metal powder is compressed by static pressure at a pressure of 69 to 690 MPa at a pressing temperature within a range of approximately 50°C from the glass transition temperature and below the crystallization temperature of the alloy. , a method for producing a molded article of a magnetic metal alloy, including the step of forming a compressed magnetic glassy metal alloy body. 2. The method according to claim 1, wherein the compression step is carried out for 1 to 60 minutes. 3. The method according to claim 2, wherein the powder consists of particles having a particle diameter of 105 μm or less. 4. The method of claim 1, wherein the powder consists of particles with a particle diameter of at least 300 μm. 5. The method of claim 3, comprising the step of coating the particles with an insulator before the compression step. 6 Particles are compressed in a graphite mold during the compression process at 410~
6. A method according to claim 5, characterized in that pressing is carried out for 5 to 30 minutes at a temperature in the range of 510<0>C. 7 Compressed alloy objects at temperatures ranging from 380 to 450°C
3. The method of claim 2, comprising the step of annealing for ~4 hours. 8. The method according to claim 7, wherein the annealing step is performed in the presence of a magnetic field of 0 to 800 A/m.
JP58066867A 1982-04-15 1983-04-15 Method of producing powder core for electromagnetic device Granted JPS5916306A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36861282A 1982-04-15 1982-04-15
US368612 1989-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1180135A Division JPH0277505A (en) 1982-04-15 1989-07-12 Apparatus for casting metal powder

Publications (2)

Publication Number Publication Date
JPS5916306A JPS5916306A (en) 1984-01-27
JPH0534814B2 true JPH0534814B2 (en) 1993-05-25

Family

ID=23451974

Family Applications (2)

Application Number Title Priority Date Filing Date
JP58066867A Granted JPS5916306A (en) 1982-04-15 1983-04-15 Method of producing powder core for electromagnetic device
JP1180135A Pending JPH0277505A (en) 1982-04-15 1989-07-12 Apparatus for casting metal powder

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP1180135A Pending JPH0277505A (en) 1982-04-15 1989-07-12 Apparatus for casting metal powder

Country Status (4)

Country Link
EP (1) EP0092091B2 (en)
JP (2) JPS5916306A (en)
CA (1) CA1232158A (en)
DE (1) DE3364158D1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594104A (en) * 1985-04-26 1986-06-10 Allied Corporation Consolidated articles produced from heat treated amorphous bulk parts
JPH0733521B2 (en) * 1988-07-01 1995-04-12 セイコー電子部品株式会社 Method for producing alloy powder for anisotropic bonded magnet
CA2040741C (en) * 1990-04-24 2000-02-08 Kiyonori Suzuki Fe based soft magnetic alloy, magnetic materials containing same, and magnetic apparatus using the magnetic materials
IT1242582B (en) * 1990-10-05 1994-05-16 Intermac Srl PROCESS FOR AUTOMATIC POLISHED WIRE PROCESSING OF THE EDGE OF GLASS SLABS OF ANY SHAPE AND MACHINE FOR THE EXECUTION OF SUCH PROCEDURE.
JPH11158502A (en) * 1997-11-26 1999-06-15 Masaaki Yagi Compound powder and method for compacting compound powder
US6930581B2 (en) * 2002-02-08 2005-08-16 Metglas, Inc. Current transformer having an amorphous fe-based core
JP4299152B2 (en) * 2004-01-08 2009-07-22 日本碍子株式会社 Electromagnetic wave shielding case and manufacturing method thereof
JP2008141012A (en) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd Reactor
JP2018152449A (en) 2017-03-13 2018-09-27 株式会社東芝 Plural flat magnetic metal particles, pressed powder material, and rotary electric machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187357A (en) * 1981-05-15 1982-11-18 Aisin Seiki Co Ltd Soft magnetic resin composed of amorphous alloy

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2128518B2 (en) * 1970-06-08 1973-09-13 Fuji Photo Film Co. Ltd., Ashigara, Kanagawa (Japan) Color developing sheet for pressure sensitive copier papers
US3856513A (en) 1972-12-26 1974-12-24 Allied Chem Novel amorphous metals and amorphous metal articles
DE2628207A1 (en) 1976-06-23 1978-01-05 Draloric Electronic Soft magnetic moulded bodies mfr. - from mixture of powdered magnetic material and binder contg. a solvent for the binder
US4116728B1 (en) * 1976-09-02 1994-05-03 Gen Electric Treatment of amorphous magnetic alloys to produce a wide range of magnetic properties
AU503857B2 (en) * 1976-10-22 1979-09-20 Allied Chemical Corp. Continuous casting of metal strip
US4142571A (en) 1976-10-22 1979-03-06 Allied Chemical Corporation Continuous casting method for metallic strips
US4215084A (en) * 1978-05-03 1980-07-29 The Battelle Development Corporation Method and apparatus for producing flake particles
JPS55152155A (en) * 1979-05-16 1980-11-27 Sumitomo Special Metals Co Ltd Fine crystalline strip material for high permeability magnetic material, preparation and product thereof
US4321090A (en) * 1980-03-06 1982-03-23 Allied Corporation Magnetic amorphous metal alloys
JPS58163555A (en) * 1982-03-24 1983-09-28 Nippon Yakin Kogyo Co Ltd Device for producing foil piece directly from molten material
JPS58163557A (en) * 1982-03-25 1983-09-28 Nippon Yakin Kogyo Co Ltd Producing device for foil piece
JPS58163556A (en) * 1982-03-25 1983-09-28 Nippon Yakin Kogyo Co Ltd Producing device for foil piece
JPS5939224B2 (en) * 1982-04-08 1984-09-21 日本冶金工業株式会社 Foil piece manufacturing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187357A (en) * 1981-05-15 1982-11-18 Aisin Seiki Co Ltd Soft magnetic resin composed of amorphous alloy

Also Published As

Publication number Publication date
EP0092091A3 (en) 1984-03-07
JPH0277505A (en) 1990-03-16
CA1232158A (en) 1988-02-02
EP0092091B2 (en) 1991-01-30
EP0092091A2 (en) 1983-10-26
EP0092091B1 (en) 1986-06-18
CA1256667C (en) 1989-07-04
DE3364158D1 (en) 1986-07-24
JPS5916306A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
US4385944A (en) Magnetic implements from glassy alloys
US4197146A (en) Molded amorphous metal electrical magnetic components
US10984932B2 (en) Amorphous soft magnetic alloy and inductance component using the same
Suzuki et al. Soft magnetic properties of nanocrystalline bcc Fe‐Zr‐B and Fe‐M‐B‐Cu (M= transition metal) alloys with high saturation magnetization
KR100545849B1 (en) Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same
JP5305126B2 (en) Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
US6827557B2 (en) Amorphous alloy powder core and nano-crystal alloy powder core having good high frequency properties and methods of manufacturing the same
US20090232693A1 (en) Fe-based amorphous magnetic powder, magnetic powder core with excellent high frequency properties and method of making them
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
JP2004204296A (en) BULK SHAPED Fe BASED SINTERED ALLOY SOFT MAGNETIC MATERIAL CONSISTING OF METAL GLASS, AND PRODUCTION METHOD THEREFOR
JPH10212503A (en) Compact of amorphous soft magnetic alloy powder and its production
JPH044387B2 (en)
JPS6024346A (en) Ceramic instrument solidified from glassy alloy powder
JPH0851010A (en) Green compact of soft magnetic alloy, production method thereof and coating powder therefor
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
JPH0534814B2 (en)
JP2778719B2 (en) Iron-based amorphous magnetic alloy containing cobalt
JPS63117406A (en) Amorphous alloy dust core
JPS63158810A (en) Dust core
JPS61154014A (en) Dust core
JPS59179729A (en) Magnetic core of amorphous alloy powder compact
CA1256667A (en) Manufacture of powder cores for electromagnetic apparatus
JPS6370503A (en) Magnetic alloy powder and magnetic core using same
Kang et al. Preparation of Fe–Si–B–Nb amorphous powder cores with excellent high-frequency magnetic properties
JP7285346B2 (en) Metallic glass powder magnetic core with high density and high resistivity and its manufacturing method