JPH05157480A - Heat exchanging element - Google Patents
Heat exchanging elementInfo
- Publication number
- JPH05157480A JPH05157480A JP3324754A JP32475491A JPH05157480A JP H05157480 A JPH05157480 A JP H05157480A JP 3324754 A JP3324754 A JP 3324754A JP 32475491 A JP32475491 A JP 32475491A JP H05157480 A JPH05157480 A JP H05157480A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchange
- members
- edge
- exchange element
- liners
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0062—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
- F28D9/0068—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/108—Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、積層構造をなす熱交換
エレメントに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchange element having a laminated structure.
【0002】[0002]
【従来の技術】熱交換エレメントとしては、熱交換すべ
き二つの流体の流れ形式の違いから、向流型、対向流型
または直交型(斜交型)のものが知られており、空調装
置に用いられる熱交換エレメントとしては、通常対向流
型または直交型が採用されている。その基本的な構成
は、熱交換すべき2つの流体を仕切る薄紙等よりなるラ
イナを、複数の平行流路を構成する圧紙等よりなる波形
板状のスペーサを挟んで積層し、全体を段ボール紙状の
構造としている。2. Description of the Related Art As a heat exchange element, a countercurrent type, a counterflow type or an orthogonal type (oblique type) is known due to a difference in flow type of two fluids to be heat-exchanged. As the heat exchange element used in the above, a counterflow type or an orthogonal type is usually adopted. The basic structure is that a liner made of thin paper or the like for partitioning two fluids to be heat-exchanged is laminated with corrugated plate-like spacers made of pressure paper or the like forming a plurality of parallel flow paths sandwiched therebetween, and the whole is corrugated cardboard paper. It has a shape of structure.
【0003】この熱交換エレメントにおいては、長尺の
ものを切断して得られるライナに、同じく長尺の波形板
を切断して得られるスペーサを接着することにより製造
されているが、波形板の山および谷と平行でない方向の
切断で、端面の波形がつぶれたりしやすく、空気対空気
の熱交換器では切断時の端面の変形により圧力損失が大
きいものとなっている。また、切断によって、所定の寸
法形状を得るため、材料の歩留りが悪いという問題があ
った。This heat exchange element is manufactured by adhering a spacer obtained by cutting a long corrugated plate to a liner obtained by cutting a long corrugated plate. When cutting in a direction that is not parallel to the peaks and valleys, the corrugation of the end face is likely to be crushed, and in the air-to-air heat exchanger, the pressure loss is large due to the deformation of the end face during cutting. In addition, there is a problem in that the yield of the material is poor because a predetermined size and shape are obtained by cutting.
【0004】このような問題を解決するために、例え
ば、特開昭61−186795号公報に示すような、平
板状のプレートの片方の伝熱面に直線状のリブを所定間
隔おいて列状に配設してある単位部材を複数枚積層する
ことにより、熱交換エレメントを構成したものが提供さ
れている。In order to solve such a problem, for example, as shown in Japanese Unexamined Patent Publication No. 61-186795, a linear plate has a row of linear ribs on one heat transfer surface at predetermined intervals. There is provided a heat exchange element constituted by stacking a plurality of unit members arranged in the above.
【0005】[0005]
【発明が解決しようとする課題】上記熱交換エレメント
の単位部材を構成するライナの材質は、伝熱性、通湿性
が優れており、コストも低いことから薄紙等の紙材を用
いるのが好ましい。しかし、ライナを紙材で構成した場
合、この熱交換エレメントの単位部材は、一方向にのみ
リブを有するので、このリブと交差する方向の曲げに対
して変形しやすい。このように変形しやすい単位部材
は、持ち運び等の取扱いが困難で、製造に一層手間がか
かっていた。It is preferable to use a paper material such as thin paper as the material of the liner which constitutes the unit member of the heat exchange element because of its excellent heat conductivity and moisture permeability and low cost. However, when the liner is made of a paper material, the unit member of the heat exchange element has ribs only in one direction, and therefore is easily deformed by bending in the direction intersecting with the ribs. Such a unit member, which is easily deformed, is difficult to carry and handle, and it takes more time to manufacture.
【0006】加えて、完成された熱交換エレメントは、
リブを設けた分だけ各流路の開口端面(リブの外側面)
の空気抵抗が大きくなり、給気ファンや排気ファンの給
排気効率を低下させるという不具合があった。本発明は
上記問題点に鑑みてなされたもので、給気ファンや排気
ファンの給排気効率が低下するのを抑え、ライナを紙材
で構成した場合でも、取扱いが容易な熱交換エレメント
を提供することを目的としている。In addition, the completed heat exchange element is
Opening end face of each flow path by the amount of ribs provided (outside face of rib)
However, there was a problem that the air resistance of the air conditioner became large and the air supply / exhaust efficiency of the air supply fan and the exhaust fan decreased. The present invention has been made in view of the above problems, and provides a heat exchange element that suppresses a decrease in air supply / exhaust efficiency of an air supply fan or an exhaust fan and is easy to handle even when the liner is made of a paper material. The purpose is to do.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る熱交換エレメントは、単位部材を多
段に積み重ねることによって形成され、熱交換すべき二
つの流体の一方が流れる第1の流路と他方が流れる第2
の流路とを備えた熱交換エレメントにおいて、上記単位
部材は、紙材で構成されたライナと、ライナの一方の面
に、所定間隔毎に同一方向に沿って固着され、上記各流
路を区画する複数のリブからなるリブ群と、上記ライナ
の一方の面の上記リブ群の両側に固着された第1の縁材
と、上記ライナの他方の面に固着された第2の縁材とを
それぞれ備え、各流路の開口端面の空気抵抗が小さくな
るように、第1の縁材と第2の縁材の各外側面を傾斜さ
せていることを特徴としている。In order to achieve the above-mentioned object, a heat exchange element according to the present invention is formed by stacking unit members in multiple stages, and one of two fluids to be heat-exchanged flows therethrough. One flow path and the other flowing second
In the heat exchange element having a flow path of, the unit member is fixed to one surface of the liner and a liner made of paper material along the same direction at predetermined intervals, A rib group composed of a plurality of ribs for partitioning, a first edge member fixed to both sides of the rib group on one surface of the liner, and a second edge member fixed to the other surface of the liner. And the outer side surfaces of the first edge material and the second edge material are inclined so that the air resistance of the opening end surface of each flow path is reduced.
【0008】[0008]
【作用】上記構成の熱交換エレメントによれば、熱交換
エレメントの単位部材を構成するライナの一方の面に、
少なくとも一部がリブの両端部に沿って延びる第1の縁
材を固着し、上記ライナの他方の面に、少なくとも一部
が上記リブの両端部に交差する方向に延びる第2の縁材
を固着しているので、あらゆる方向の曲げに対して変形
しにくく、強度的に優れている。したがって、単位部材
を積み重ねて当該熱交換エレメントを製造する際の、単
位部材の取扱いが容易となり、製造作業を容易に行なう
ことができる。According to the heat exchange element having the above structure, one surface of the liner forming the unit member of the heat exchange element is
A first edge member, at least a portion of which extends along both ends of the rib, is fixed to the other surface of the liner, and a second edge member of which at least a portion extends in a direction intersecting both ends of the rib. Since it is fixed, it is not easily deformed by bending in any direction and has excellent strength. Therefore, the unit members can be easily handled when the unit members are stacked to manufacture the heat exchange element, and the manufacturing operation can be easily performed.
【0009】加えて本発明によれば、各流路の開口端面
の空気抵抗が小さくなるように、第1の縁材と第2の縁
材の各外側面を傾斜させているので、各流路の開口端面
に生じる空気抵抗を可及的に低減することができる。In addition, according to the present invention, since the outer side surfaces of the first edge member and the second edge member are inclined so that the air resistance of the opening end surface of each flow path becomes small, each flow rate is reduced. The air resistance generated at the open end face of the passage can be reduced as much as possible.
【0010】[0010]
【実施例】以下実施例を示す添付図面によって詳細に説
明する。図1は、本発明の一実施例としての熱交換エレ
メントEの要部斜視図であり、図2は、上記熱交換エレ
メントEの全体斜視図であり、図3は、その単位部材U
1、U2を示す概略斜視図である。Embodiments will be described in detail below with reference to the accompanying drawings showing embodiments. 1 is a perspective view of a main part of a heat exchange element E as an embodiment of the present invention, FIG. 2 is a perspective view of the heat exchange element E as a whole, and FIG. 3 is a unit member U thereof.
1 is a schematic perspective view showing U1 and U2.
【0011】これらの図を参照して、この熱交換エレメ
ントEは、熱交換すべき二つの流体の一方が流れる第1
の流路L1と他方が流れる第2の流路L2とを備えてお
り、各流路L1、L2が互いに直交する方向に延びてい
る直交流型である。本実施例における単位部材U1、U
2は、同一のものであり、それぞれ略正方形に成形され
たライナ10、20を備えている。With reference to these figures, this heat exchange element E has a first flow through which one of two fluids to be heat-exchanged flows.
Is a cross-flow type in which each of the flow paths L1 and L2 extends in a direction orthogonal to each other. Unit members U1 and U in this embodiment
2 are the same and are provided with liners 10 and 20 each formed in a substantially square shape.
【0012】ライナ10、20は、伝熱性と通湿性とを
合わせ持つ、例えば和紙をベースとする、例えば0.1
mm〜0.2mm程度の薄紙等の紙材に、塩化カルシウムや
塩化リチウムを含浸させて吸水性を付与したものであ
り、熱交換すべき2つの流体を間仕切るものである。ラ
イナ10、20の形状としては、本実施例のように正方
形の他、菱形や長方形の方形のものを採用することがで
きる。The liners 10 and 20 have both heat conductivity and moisture permeability, and are based on, for example, Japanese paper, for example, 0.1.
It is a paper material such as a thin paper having a thickness of about mm to 0.2 mm impregnated with calcium chloride or lithium chloride to impart water absorbability, and partitions two fluids to be heat-exchanged. As the shape of the liners 10 and 20, in addition to a square as in the present embodiment, a rhombic or rectangular rectangular shape can be adopted.
【0013】ライナ10、20の上面には、複数のリブ
11a、21aが接着されており、これらのリブ11
a、21aによってリブ群11、21が形成されてい
る。各リブ11a、21aは、ライナ10、20との結
合性のよい非金属材料により構成されており、それぞれ
一定間隔を隔てた状態で、上記ライナ10、20の一変
に対し略平行に並んでいる。各リブ11a、21aの材
質としては、高分子材料、セラミックス、ファイバー材
料、木材、紙材等を例示することができる。A plurality of ribs 11a and 21a are adhered to the upper surfaces of the liners 10 and 20.
The rib groups 11 and 21 are formed by a and 21a. Each of the ribs 11a and 21a is made of a non-metallic material having a good bonding property with the liners 10 and 20, and is arranged substantially parallel to the change of the liners 10 and 20 with a certain distance therebetween. .. Examples of the material of the ribs 11a and 21a include polymer materials, ceramics, fiber materials, wood, paper materials and the like.
【0014】単位部材U1、U2を積層した際の、ライ
ナ10、10およびライナ20、20間の間隔を規定す
るリブ11a、21aの高さHとしては、1〜4mm程度
が好ましく、リブ11a、11aおよびリブ21a、2
1a間のピッチとしては、10〜50mm程度が好まし
い。これらの要素により規定される複列の平行流路は、
大き過ぎると流路L1、L2内での整流効果が小さく、
小さ過ぎると流路L1、L2内での圧力損失が大きくな
るので、両者のバランスを考慮して、上記の範囲に設定
される。When the unit members U1 and U2 are laminated, the height H of the ribs 11a and 21a defining the spacing between the liners 10 and 10 and the liners 20 and 20 is preferably about 1 to 4 mm, and the ribs 11a and 11a and ribs 21a, 2
The pitch between 1a is preferably about 10 to 50 mm. The double-row parallel channels defined by these elements are
If it is too large, the rectification effect in the flow paths L1 and L2 is small,
If it is too small, the pressure loss in the flow paths L1 and L2 increases, so the above range is set in consideration of the balance between the two.
【0015】図1及び図3を参照して、上記ライナ1
0、20の上面の上記リブ群11、21の両側に沿って
伸びる両辺部には、上記リブ11a、21aと略平行な
第1の縁材12、22が接着されており、上記ライナ1
0、20の下面の、上記リブ11a、21aに対し交差
する方向に沿って延びる両辺部には、第2の縁材13、
23が接着されている。Referring to FIGS. 1 and 3, the liner 1 is
First edge members 12 and 22 substantially parallel to the ribs 11a and 21a are adhered to both sides of the upper surface of the ribs 0 and 20 extending along both sides of the rib groups 11 and 21, respectively.
On both sides of the lower surface of 0, 20 extending along the direction intersecting the ribs 11a, 21a, the second edge member 13,
23 is glued.
【0016】各第1の縁材12、22および第2の縁材
13、23は、いずれもリブ11a、21aと同材質で
成形されている。ここで各第1の縁材12、22および
第2の縁材13、23の高さh1、h2は、それぞれ各
リブ11a、21aの高さHの半分に設定されており、
単位部材U1、U2を積層した際に、下側の単位部材U
2(U1)の第1縁材22(12)と上側の単位部材U
1(U2)の第2縁材13(23)が密着した状態で積
層されるようになっている。Each of the first edge members 12 and 22 and the second edge members 13 and 23 is formed of the same material as that of the ribs 11a and 21a. Here, the heights h1 and h2 of the first edge members 12 and 22 and the second edge members 13 and 23 are set to half of the height H of the ribs 11a and 21a, respectively.
When the unit members U1 and U2 are stacked, the lower unit member U
2 (U1) first edge member 22 (12) and upper unit member U
The second edge material 13 (23) of 1 (U2) is laminated in a state of being in close contact.
【0017】ここで本実施例においては、第1の縁材1
2、22と第2の縁材13、23の各外側面2a、3a
を、上下幅方向両端が、幅方向途中部に対して各流路L
1、L2側へ傾斜している。さらに本実施例において
は、各縁材12、22および第2の縁材13、23の、
熱交換エレメントEの互いに対向する二角部と、上記二
角部が対向する方向に対し直交する方向に対向する二辺
部を構成する部位に、切欠部gを設けており、この切欠
部gに図示しないボルトを熱交換エレメントEの側部か
ら装着して、熱交換エレメントEの組立を容易迅速に行
なうことができるようにしている。Here, in this embodiment, the first edge member 1
2, 22 and the respective outer side surfaces 2a, 3a of the second edge members 13, 23
The upper and lower widthwise ends of each flow path L with respect to the widthwise middle part.
It is inclined to the 1 and L2 side. Further, in the present embodiment, each of the edge members 12 and 22 and the second edge members 13 and 23,
A notch g is provided in a portion that constitutes two opposite corners of the heat exchange element E and two sides that oppose each other in a direction orthogonal to a direction in which the two opposite corners face each other, and the notch g is provided. A bolt (not shown) is attached from the side of the heat exchange element E so that the heat exchange element E can be easily and quickly assembled.
【0018】上記構成によると、図3に示す一方の単位
部材U1の上に、他方の単位部材U2を90°ずつ向き
を交互に変えて積層することにより、図1及び図2に示
すように熱交換エレメントEを構成することができる。
従って単位部材U1、U2は、あらゆる方向の曲げに対
して変形しにくくなる結果、単位部材U1、U2を積み
重ねて当該熱交換エレメントEを製造する際の、各単位
部材U1、U2の取扱いが容易となり、製造作業を容易
に行なうことができる。しかも本実施例においては、各
単位部材U1、U2を正方形に形成しているので、単一
種類の部材によって一方の単位部材U1と他方の単位部
材U2を構成することができる。According to the above construction, the other unit member U2 is laminated on the one unit member U1 shown in FIG. 3 by alternately changing the direction by 90 °, as shown in FIGS. The heat exchange element E can be constructed.
Therefore, the unit members U1 and U2 are less likely to be deformed by bending in all directions. As a result, the unit members U1 and U2 can be easily handled when the unit members U1 and U2 are stacked to manufacture the heat exchange element E. Therefore, the manufacturing work can be easily performed. Moreover, in this embodiment, since the unit members U1 and U2 are formed in a square shape, one unit member U1 and the other unit member U2 can be formed of a single type of member.
【0019】加えて本実施例によれば、各流路L1、L
2の開口端面の空気抵抗が小さくなるように、第1の縁
材12、22と第2の縁材13、23の各外側面2a、
3aを傾斜させているので、各流路L1、L2の開口端
面に生じる空気抵抗を可及的に低減することができる。
これにより、給気ファンや排気ファンの給排気効率が低
下するのを抑制することができる。In addition, according to this embodiment, the flow paths L1 and L
The outer surface 2a of each of the first edge members 12 and 22 and the second edge members 13 and 23, so that the air resistance of the opening end surface of the second edge member 2 is small.
Since 3a is inclined, the air resistance generated at the open end faces of the flow paths L1 and L2 can be reduced as much as possible.
As a result, it is possible to prevent the air supply and exhaust efficiency of the air supply fan and the exhaust fan from being lowered.
【0020】さらに本実施例においては、各縁材12、
22および第2の縁材13、23の、熱交換エレメント
Eに切欠部gを設けて、この切欠部gにボルトを熱交換
エレメントEの側部から装着できるようにしているの
で、組立時の位置決めが容易になり、しかも積層工数が
低減する。このため熱交換エレメントEの組立を容易迅
速に行なうことができ、製造コストも大幅に低減する。Further, in this embodiment, each edge member 12,
Since the notch g is provided in the heat exchange element E of the second and second edging members 13 and 23 and the bolt can be attached to the notch g from the side of the heat exchange element E, the notch g Positioning becomes easy and the number of stacking steps is reduced. Therefore, the heat exchange element E can be easily and quickly assembled, and the manufacturing cost is significantly reduced.
【0021】次に図4及び図5に示す本発明の別の実施
例について説明する。図4は、上記別の実施例としての
熱交換エレメントEの全体斜視図であり、図5は、その
単位部材U1、U2を示す概略斜視図である。図4及び
図5に示すように、この実施例の熱交換エレメントE
は、熱交換すべき二つの流体の一方が流れる第1の流路
L1と他方が流れる第2の流路L2とを備えており、各
流路L1、L2は、それぞれ各流体の導入側と排出側と
の途中部が対向流となるように屈曲している対向流型の
ものである。Next, another embodiment of the present invention shown in FIGS. 4 and 5 will be described. FIG. 4 is an overall perspective view of a heat exchange element E as another embodiment, and FIG. 5 is a schematic perspective view showing its unit members U1 and U2. As shown in FIGS. 4 and 5, the heat exchange element E of this embodiment
Includes a first flow path L1 through which one of the two fluids to be heat-exchanged flows and a second flow path L2 through which the other fluid flows, and each of the flow paths L1 and L2 is connected to the introduction side of each fluid. It is a counterflow type in which the middle part with the discharge side is bent so as to be a counterflow.
【0022】図4及び図5の実施例において、単位部材
U1、U2は、それぞれ正六角形に成形されたライナ1
0、20を備えており、各単位部材U1、U2に接着さ
れているリブ群11、21の各リブ11a、21aは、
両流路L1、L2の、それぞれ各流体の導入側および排
出側が交差流となり、途中部が対向流となるように屈曲
している。また図5に示すように、上記ライナ10、2
0の上面の上記リブ群11、21の両側には、一部が上
記リブ11a、21aの両端部に沿い、残りがリブ11
a、21aの途中部に沿って延びる第1の縁材12、2
2が接着されており、上記ライナ10、20の下面に
は、一部が上記リブ11a、21aの両端部に対し交差
する方向に沿い、残りが上記リブ11a、21aの途中
部に沿って延びる第2の縁材13、23が接着されてい
る。そして、各第1の縁材12、22および第2の縁材
13、23の高さh1、h2は、それぞれ各リブ11
a、21aの高さHの半分に設定されており、単位部材
U1、U2を積層した際に、下側の単位部材U2(U
1)の第1縁材22(12)と上側の単位部材U1(U
2)の第2縁材13(23)が密着した状態で積層され
るようになっている。In the embodiment shown in FIGS. 4 and 5, the unit members U1 and U2 are liner 1 molded in a regular hexagon.
The ribs 11a and 21a of the rib groups 11 and 21 which are provided with 0 and 20 and are bonded to the unit members U1 and U2 are
The flow paths L1 and L2 are bent so that the introduction side and the discharge side of each fluid become a cross flow, and the middle part becomes a counter flow. Also, as shown in FIG.
On both sides of the rib groups 11 and 21 on the upper surface of 0, a part is along the both ends of the ribs 11a and 21a, and the rest is the rib 11
1st edge material 12 and 2 which extends along the intermediate part of a, 21a
2 is adhered, and the lower surfaces of the liners 10 and 20 are partially extended along a direction intersecting both ends of the ribs 11a and 21a, and the remaining portions are extended along intermediate portions of the ribs 11a and 21a. The second edge members 13 and 23 are adhered. The heights h1 and h2 of the first edge members 12 and 22 and the second edge members 13 and 23 are the ribs 11 respectively.
It is set to half the height H of a and 21a, and when the unit members U1 and U2 are stacked, the lower unit member U2 (U
1) the first edge member 22 (12) and the upper unit member U1 (U
The second edge member 13 (23) of 2) is laminated in a state of being in close contact.
【0023】さらに本実施例においても第1の縁材1
2、22と第2の縁材13、23の各外側面2a、3a
の形状を、上下幅方向両端が、幅方向途中部に対して各
流路L1、L2側へ傾斜している。図4、図5に示す実
施例においても、各単位部材U1、U2の強度が向上さ
せることができる。また各流路L1、L2の開口端面に
生じる空気抵抗を可及的に低減させて、給気ファンや排
気ファンの給排気効率が低下するのを抑制することが可
能となり、また運転音低下および省動力化にもつなが
る。Further, also in this embodiment, the first edge member 1
2, 22 and the respective outer side surfaces 2a, 3a of the second edge members 13, 23
Both ends in the width direction are inclined toward the flow paths L1 and L2 with respect to the middle portion in the width direction. Also in the embodiment shown in FIGS. 4 and 5, the strength of each unit member U1, U2 can be improved. Further, it is possible to reduce the air resistance generated at the opening end faces of the flow paths L1 and L2 as much as possible, and suppress the reduction of the air supply / exhaust efficiency of the air supply fan or the exhaust fan, and to reduce the operating noise and It also leads to power saving.
【0024】さらに図4及び図5に示す実施例を採用し
た場合には、熱交換すべき二つの流体が、第1、第2の
流路L1、L2の各途中部のところで対向流となるの
で、単位流量当たりの熱交換器の有効率が高くなる結
果、熱交換効率を向上させることができる。なお上述し
た実施例は何れも本発明の好ましい具体例に過ぎず、例
えば第1の縁材12の高さh1と第2の縁材13の高さ
h2との和をリブ11aの高さHと等しく設定するに当
たり、第2の縁材13の高さh2を第1の縁材12の高
さh1よりも高く設定したり、各単位部材U1、U2を
接合するに当たり、一の単位部材の第1の縁材の長手方
向に延びる側面に、この一の単位部材と交差する方向に
配列された他の単位部材の第2の縁材の長手方向に延び
る側面を接合する等、本発明の要旨を変更しない範囲
で、種々の変更を施すことが可能であることは云うまで
もない。Further, when the embodiment shown in FIGS. 4 and 5 is adopted, the two fluids to be heat-exchanged become counterflows at the midpoints of the first and second flow paths L1 and L2. Therefore, as a result of increasing the effective rate of the heat exchanger per unit flow rate, it is possible to improve the heat exchange efficiency. It should be noted that any of the above-described embodiments is merely a preferred specific example of the present invention. For example, the sum of the height h1 of the first edge member 12 and the height h2 of the second edge member 13 is the height H of the rib 11a. In setting the same as, the height h2 of the second edge member 13 is set higher than the height h1 of the first edge member 12 and the unit members U1 and U2 are joined together. The side surface extending in the longitudinal direction of the first edge member is joined to the side surface extending in the longitudinal direction of the second edge member of the other unit member arranged in a direction intersecting with the one unit member. It goes without saying that various changes can be made without changing the gist.
【0025】[0025]
【発明の効果】以上説明したように本発明の熱交換エレ
メントによれば、熱交換エレメントの単位部材を構成す
るライナの一方の面に第1の縁材を固着し、上記ライナ
の他方の面に、上記第1の縁材に交差する方向に延びる
第2の縁材を固着しているので、あらゆる方向の曲げに
対して変形しにくく、強度的に優れている。したがっ
て、単位部材を積み重ねて当該熱交換エレメントを製造
する際の、単位部材の取扱いが容易となり、製造作業を
容易に行なうことができる。As described above, according to the heat exchange element of the present invention, the first edge member is fixed to one surface of the liner forming the unit member of the heat exchange element, and the other surface of the liner is fixed. In addition, since the second edge member extending in the direction intersecting with the first edge member is fixed, the second edge member is not easily deformed by bending in all directions and is excellent in strength. Therefore, the unit members can be easily handled when the unit members are stacked to manufacture the heat exchange element, and the manufacturing operation can be easily performed.
【0026】加えて本発明によれば、各流路の開口端面
に生じる空気抵抗を可及的に低減することができる結
果、給気ファンや排気ファンの給排気効率が低下するの
を抑制することが可能となり、また運転音低下および省
動力化にもつながる。したがって本発明によれば、給気
ファンや排気ファンの給排気効率が低下するのを抑え、
ライナを紙材で構成した場合でも、取扱いが容易な熱交
換エレメントを提供することができる。In addition, according to the present invention, as a result of being able to reduce the air resistance generated at the opening end face of each flow path as much as possible, it is possible to suppress a decrease in the air supply / exhaust efficiency of the air supply fan or the exhaust fan. This also reduces driving noise and saves power. Therefore, according to the present invention, it is possible to prevent the supply and exhaust efficiency of the supply fan and the exhaust fan from decreasing.
Even when the liner is made of a paper material, it is possible to provide a heat exchange element that is easy to handle.
【図1】本発明の一実施例としての熱交換エレメントの
要部斜視図である。FIG. 1 is a perspective view of a main part of a heat exchange element according to an embodiment of the present invention.
【図2】上記熱交換エレメントの斜視図である。FIG. 2 is a perspective view of the heat exchange element.
【図3】上記熱交換エレメントを構成する単位部材を示
す斜視図である。FIG. 3 is a perspective view showing a unit member constituting the heat exchange element.
【図4】本発明の別の実施例における熱交換エレメント
の斜視図である。FIG. 4 is a perspective view of a heat exchange element according to another embodiment of the present invention.
【図5】上記図4の熱交換エレメントを構成する単位部
材を示す斜視図である。5 is a perspective view showing a unit member constituting the heat exchange element of FIG.
E 熱交換エレメント U1 単位部材 U2 単位部材 10 ライナ 11 リブ群 11a リブ 21a リブ 12 第1の縁材 13 第2の縁材 20 ライナ 21 リブ群 22 第1の縁材 23 第2の縁材 L1 第1の流路 L2 第2の流路 E Heat Exchange Element U1 Unit Member U2 Unit Member 10 Liner 11 Rib Group 11a Rib 21a Rib 12 First Edge Material 13 Second Edge Material 20 Liner 21 Rib Group 22 First Edge Material 23 Second Edge Material L1 First Channel 1 L2 Channel 2
Claims (1)
とによって形成され、熱交換すべき二つの流体の一方が
流れる第1の流路(L1)と他方が流れる第2の流路(L2)と
を備えた熱交換エレメントにおいて、 上記単位部材(U1 、U2) は、 紙材で構成されたライナ(10 、20) と、 ライナ(10 、20) の一方の面に、所定間隔毎に同一方向
に沿って固着され、上記各流路(L1 、L2) を区画する複
数のリブ(11a、21a)からなるリブ群(11 、21)と、 上記ライナ(10 、20) の一方の面の上記リブ群(11 、2
1) の両側に固着された第1の縁材(12 、22) と、 上記ライナ(10 、20) の他方の面に固着された第2の縁
材(13 、23) とをそれぞれ備え、 各流路(L1 、L2) の開口端面の空気抵抗が小さくなるよ
うに、第1の縁材(12、22) と第2の縁材(13 、23)の各
外側面(2a 、3a) を傾斜させていることを特徴とする熱
交換エレメント。1. A first flow path (L1), which is formed by stacking unit members (U1, U2) in multiple stages, in which one of two fluids to be heat-exchanged flows and a second flow path (in which the other flows). In the heat exchange element with (L2), the unit members (U1, U2) are liner (10, 20) made of paper material, and on one surface of the liner (10, 20) at predetermined intervals. A rib group (11, 21) consisting of a plurality of ribs (11a, 21a) that are fixed along the same direction and partition each flow path (L1, L2), and one of the liners (10, 20). Face rib group (11, 2
The first edge members (12, 22) fixed to both sides of 1) and the second edge members (13, 23) fixed to the other surface of the liner (10, 20) are respectively provided, Each outer surface (2a, 3a) of the first edge material (12, 22) and the second edge material (13, 23) so that the air resistance at the opening end surface of each flow path (L1, L2) becomes small. A heat exchange element characterized by being inclined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3324754A JPH05157480A (en) | 1991-12-09 | 1991-12-09 | Heat exchanging element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3324754A JPH05157480A (en) | 1991-12-09 | 1991-12-09 | Heat exchanging element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05157480A true JPH05157480A (en) | 1993-06-22 |
Family
ID=18169309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3324754A Pending JPH05157480A (en) | 1991-12-09 | 1991-12-09 | Heat exchanging element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05157480A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6851171B2 (en) * | 2002-11-27 | 2005-02-08 | Battelle Memorial Institute | Method of fabricating multi-channel devices and multi-channel devices therefrom |
US6983788B2 (en) * | 1998-11-09 | 2006-01-10 | Building Performance Equipment, Inc. | Ventilating system, heat exchanger and methods |
EP2131133A1 (en) * | 2007-03-30 | 2009-12-09 | Panasonic Corporation | Heat exchange element |
US8162042B2 (en) | 2007-01-22 | 2012-04-24 | Building Performance Equipment, Inc. | Energy recovery ventilator with condensate feedback |
-
1991
- 1991-12-09 JP JP3324754A patent/JPH05157480A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6983788B2 (en) * | 1998-11-09 | 2006-01-10 | Building Performance Equipment, Inc. | Ventilating system, heat exchanger and methods |
US7334629B2 (en) | 1998-11-09 | 2008-02-26 | Building Performance Equipment | Ventilating system, heat exchanger and methods |
US7640662B2 (en) | 1998-11-09 | 2010-01-05 | Building Performance Equipment, Inc. | Method of making heat exchangers |
US6851171B2 (en) * | 2002-11-27 | 2005-02-08 | Battelle Memorial Institute | Method of fabricating multi-channel devices and multi-channel devices therefrom |
US8162042B2 (en) | 2007-01-22 | 2012-04-24 | Building Performance Equipment, Inc. | Energy recovery ventilator with condensate feedback |
EP2131133A1 (en) * | 2007-03-30 | 2009-12-09 | Panasonic Corporation | Heat exchange element |
EP2131133A4 (en) * | 2007-03-30 | 2011-01-05 | Panasonic Corp | Heat exchange element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5110641B2 (en) | Total heat exchanger | |
JP3577863B2 (en) | Counter-flow heat exchanger | |
JPH09152292A (en) | Heat exchanging element | |
JPH0534089A (en) | Heat exchanging element | |
JP3879482B2 (en) | Stacked heat exchanger | |
JPH035511B2 (en) | ||
JPH05157480A (en) | Heat exchanging element | |
KR101443053B1 (en) | Sensible heat exchange element | |
JPH0129431Y2 (en) | ||
CN110573823A (en) | Flow path plate, heat exchange element, heat exchange ventilator, and method for manufacturing flow path plate | |
JPH1047884A (en) | Heat exchanger | |
KR20100059140A (en) | Heat exchange element for ventilating duct | |
KR101276562B1 (en) | Total heat exchanger and manufacturing method for the same | |
JPH0534087A (en) | Heat exchanging element | |
JP2933760B2 (en) | Heat exchanger | |
JPH0534088A (en) | Heat exchanging element | |
JPS61175487A (en) | Heat exchanger | |
WO2024053082A1 (en) | Heat exchange element and heat exchange ventilation device | |
JP3610788B2 (en) | Heat exchange element and air conditioner | |
JPH0318872Y2 (en) | ||
JPH0373796B2 (en) | ||
JPS61186795A (en) | Heat exchanger | |
JPS61202095A (en) | Heat exchanger | |
JPH0697158B2 (en) | Heat exchanger | |
JPH073170Y2 (en) | Heat exchanger |