Nothing Special   »   [go: up one dir, main page]

JPH05138042A - Metal carrier catalyst for purifying exhaust gas - Google Patents

Metal carrier catalyst for purifying exhaust gas

Info

Publication number
JPH05138042A
JPH05138042A JP4108295A JP10829592A JPH05138042A JP H05138042 A JPH05138042 A JP H05138042A JP 4108295 A JP4108295 A JP 4108295A JP 10829592 A JP10829592 A JP 10829592A JP H05138042 A JPH05138042 A JP H05138042A
Authority
JP
Japan
Prior art keywords
metal
catalyst
exhaust gas
metal carrier
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4108295A
Other languages
Japanese (ja)
Inventor
Toshihiro Takada
登志広 高田
Tetsuo Nagami
哲夫 永見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4108295A priority Critical patent/JPH05138042A/en
Publication of JPH05138042A publication Critical patent/JPH05138042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To obtain a catalytically active state by a reduced quantity of power in a metal carrier catalyst for purifying exhaust gas, by providing a device supplying a current to a metal carrier and providing a part where the resistance of the current supply route of the metal carrier becomes locally large on the inflow side of exhaust gas. CONSTITUTION:In a metal carrier catalyst for purifying exhaust gas consisting of a metal carrier composed of an outer cylinder 3 in which a honeycomb body 1 constituted of metal foil is inserted, the catalyst support layer formed to the surface of said carrier and the catalyst metal supported on the catalyst support layer, a device consisting of a power supply 4 supplying a current to the metal carrier and a lead is provided and a part where the resistance of the current supply route of the metal carrier becomes locally large is provided on the inflow side of exhaust gas. Since heat generation is concentrated and large heat value is obtained by increasing local resistance, a part reaching active temp. at an early state is generated. The exhaust gas passes through said and the heat exchange with the exhaust gas is generated to heat the whole of the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車エンジンなどの内
燃機関の排気系に配置され、排気ガスを浄化する排ガス
浄化用メタル担体触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying metal carrier catalyst arranged in an exhaust system of an internal combustion engine such as an automobile engine to purify exhaust gas.

【0002】[0002]

【従来の技術】自動車はエンジンからの排気ガスを浄化
するために、排気系に排ガス浄化用触媒を装着してい
る。この触媒は、排気ガス中の未燃焼炭化水素(H
C)、一酸化炭素(CO)、窒素酸化物(NOx)等の
有害成分を酸化あるいは還元することにより浄化する。
そして触媒の浄化効率は、触媒の温度が昇温するほど高
められ、活性温度を超えた時に特に高い浄化効率を示
す。一般に触媒は、触媒を通過する排気ガスから熱を得
て、排気ガスと触媒との間の熱伝達により、熱が触媒全
体に伝わり暖機される。触媒にはセラミック製触媒とメ
タル担体触媒があり、特にメタル担体触媒においては、
熱伝導率が高いため温度の上昇が比較的早く、活性温度
に達するまでの時間が短い。しかし、エンジン始動時の
ように排気ガス温度が低い場合には、触媒が活性温度に
達せず、浄化効率は低いという欠点がある。このため従
来には、エンジン始動時に触媒を活性温度にいち早く達
せさせるために、排気ガスの昇温を待たずに触媒を加熱
させ効率よく排気ガスの浄化を行うメタル担体触媒があ
る。例えば、実開昭63─67609号では、セラミッ
ク製触媒の上流側にメタル担体触媒を配置し、通電のた
めに該メタル担体触媒の中心部に一方の電極を有し、メ
タル担体触媒の外筒を他方の電極とし、エンジン始動と
同時に電極に電圧を印加し、通電することにより発熱さ
せるメタル担体触媒を開示している。
2. Description of the Related Art An automobile is equipped with an exhaust gas purifying catalyst in its exhaust system in order to purify exhaust gas from an engine. This catalyst is used for unburned hydrocarbons (H
C), carbon monoxide (CO), nitrogen oxides (NOx) and other harmful components are purified by oxidation or reduction.
The purification efficiency of the catalyst is increased as the temperature of the catalyst rises, and particularly high purification efficiency is exhibited when the temperature exceeds the activation temperature. Generally, the catalyst obtains heat from the exhaust gas passing through the catalyst and is transferred to the entire catalyst by the heat transfer between the exhaust gas and the catalyst to be warmed up. There are two types of catalysts, ceramic-made catalysts and metal-supported catalysts.
Due to its high thermal conductivity, the temperature rises relatively quickly and the time to reach the activation temperature is short. However, when the exhaust gas temperature is low, such as when the engine is started, the catalyst does not reach the activation temperature and the purification efficiency is low. Therefore, conventionally, there is a metal-supported catalyst that efficiently purifies the exhaust gas by heating the catalyst without waiting for the temperature of the exhaust gas to rise so that the catalyst reaches the activation temperature quickly when the engine is started. For example, in Japanese Utility Model Laid-Open No. 63-67609, a metal-supported catalyst is arranged upstream of a ceramic catalyst, and one electrode is provided at the center of the metal-supported catalyst for energization, and an outer cylinder of the metal-supported catalyst is provided. Is used as the other electrode, and a metal carrier catalyst that generates heat by applying a voltage to the electrode at the same time when the engine is started and energizing the electrode is disclosed.

【0003】[0003]

【発明が解決しようとする課題】上述のようなメタル担
体触媒においては、メタル担体触媒の横断面中央部から
外周に向けて放射状に電流が流れ、抵抗は横断面中央部
から外周にむけて徐々に小さくなっている。メタル担体
触媒の各部に生じる発熱量は各部における抵抗に比例す
ることから、前述したような構造においては、メタル担
体触媒全体が得る発熱量は横断面中央部から外周にむけ
て徐々に小さくなり各部に分散するため、活性温度を得
るには多くの電力を消費する。ところで発熱により生じ
た熱は、触媒の反応熱をおこすとともに、触媒と排気ガ
スの熱伝達により触媒に伝わり触媒を暖機することか
ら、触媒は局部が活性温度に達するまでの発熱量を得れ
ば、他の部分の発熱量は小さくても良い。本発明はこの
ような事情に鑑みてなされたものであり、メタル担体触
媒に生じる発熱を分散させるのではなく、メタル担体触
媒の通電経路において、電気抵抗を局所的に大きくする
ことにより、その局部に発熱を集中させ、早期に触媒を
活性温度に達せさせ、触媒活性な状態を少ない電力量で
得ることを目的とする。
In the metal-supported catalyst as described above, a current flows radially from the center of the cross-section of the metal-supported catalyst to the outer periphery, and the resistance gradually increases from the center of the cross-section to the outer periphery. It is getting smaller. Since the calorific value generated in each part of the metal-supported catalyst is proportional to the resistance in each part, in the structure as described above, the calorific value obtained for the whole metal-supported catalyst gradually decreases from the central part of the cross section toward the outer periphery and becomes smaller. Therefore, it consumes a lot of power to obtain the activation temperature. By the way, the heat generated by the heat generation causes the reaction heat of the catalyst and is also transferred to the catalyst by the heat transfer between the catalyst and the exhaust gas to warm up the catalyst, so that the catalyst can obtain the heat generation amount until the local temperature reaches the activation temperature. For example, the calorific value of other parts may be small. The present invention has been made in view of such circumstances, and instead of dispersing the heat generated in the metal-supported catalyst, locally increasing the electric resistance in the energization path of the metal-supported catalyst to locally The purpose of the present invention is to concentrate heat generation on the catalyst to reach the activation temperature of the catalyst at an early stage and to obtain the catalyst activated state with a small amount of electric power.

【0004】[0004]

【課題を解決するための手段】本発明により課題を解決
するための第1の手段として、ハニカム形状を有するメ
タル担体と、該メタル担体の表面に形成される担持層
と、前記メタル担体に担持される触媒金属からなる排ガ
ス浄化用メタル担体触媒において、前記メタル担体を通
電する装置を備え、排気ガス流入側に前記メタル担体の
通電経路の抵抗が局所的に大きくなる部分を有したこと
を特徴とする。ここで排気ガス流入側とは、メタル担体
の排気ガス流出側端面以外の部分をいう。
As a first means for solving the problems according to the present invention, a metal carrier having a honeycomb shape, a carrier layer formed on the surface of the metal carrier, and a carrier layer supported on the metal carrier are provided. In a metal carrier catalyst for exhaust gas purification consisting of a catalyst metal, a device for energizing the metal carrier is provided, and a portion in which a resistance of a current path of the metal carrier locally increases on an exhaust gas inflow side is characterized in that And Here, the exhaust gas inflow side refers to a portion other than the end surface of the metal carrier on the exhaust gas outflow side.

【0005】また、本発明により課題を解決するための
第2の手段として、ハニカム形状を有するメタル担体
と、該メタル担体の表面に形成される担持層と、前記メ
タル担体に担持される触媒金属からなる排ガス浄化用メ
タル担体触媒において、前記メタル担体を通電する装置
を備え、排気ガス流入側に前記メタル担体の通電経路の
抵抗が局所的に大きくなるような孔部またはスリット部
を設けたことを特徴とする。ここで排気ガス流入側と
は、メタル担体の排気ガス流出側端面以外の部分をい
う。
As a second means for solving the problems according to the present invention, a metal carrier having a honeycomb shape, a carrier layer formed on the surface of the metal carrier, and a catalyst metal supported on the metal carrier. In the exhaust gas purifying metal carrier catalyst, the device is provided with a device for energizing the metal carrier, and a hole or slit is provided on the exhaust gas inflow side so that the resistance of the energizing path of the metal carrier is locally increased. Is characterized by. Here, the exhaust gas inflow side refers to a portion other than the end surface of the metal carrier on the exhaust gas outflow side.

【0006】また、本発明により課題を解決するための
第3の手段として、ハニカム形状を有するメタル担体
と、該メタル担体の表面に形成される担持層と、前記メ
タル担体に担持される触媒金属からなる排ガス浄化用メ
タル担体触媒において、前記メタル担体を通電する装置
を備え、排気ガス流入側に前記メタル担体の通電経路の
抵抗が局所的に大きくなるような金属箔の肉厚を変えた
部分を設けたことを特徴とする。ここで排気ガス流入側
とは、メタル担体の排気ガス流出側端面以外の部分をい
う。
As a third means for solving the problems according to the present invention, a metal carrier having a honeycomb shape, a carrier layer formed on the surface of the metal carrier, and a catalyst metal supported on the metal carrier. In a metal carrier catalyst for exhaust gas purification, which comprises a device for energizing the metal carrier, a portion where the thickness of the metal foil is changed so that the resistance of the energizing path of the metal carrier locally increases on the exhaust gas inflow side. Is provided. Here, the exhaust gas inflow side refers to a portion other than the end surface of the metal carrier on the exhaust gas outflow side.

【0007】また、本発明により課題を解決するための
第4の手段として、金属製の平板と波板が重ねられて巻
回され構成されるハニカム形状と、平板もしくは波板の
みが巻回され構成される部分とを有するメタル担体と、
該メタル担体の表面に形成される担持層と、該担持層に
担持される触媒金属からなる排ガス浄化用メタル担体触
媒において、前記メタル担体を巻回軸方向に通電する装
置を備え、前記メタル担体の排気ガス流出側はハニカム
形状で、排気ガス流入側の少なくとも一部は平板もしく
は波板のみが巻回されていることを特徴とする排ガス浄
化用メタル担体触媒。
As a fourth means for solving the problems according to the present invention, a honeycomb shape constituted by stacking and winding a metal flat plate and a corrugated plate, and a flat plate or only a corrugated plate are wound. A metal carrier having a composed part,
A metal carrier for exhaust gas purification, comprising a carrier layer formed on the surface of the metal carrier and a catalyst metal supported on the carrier layer, comprising a device for energizing the metal carrier in the winding axis direction. The exhaust gas outflow side has a honeycomb shape, and at least a part of the exhaust gas inflow side is wound with only a flat plate or a corrugated plate.

【作用】本発明の請求項1に記載の発明においては、メ
タル担体触媒上の通電経路に抵抗が局所的に大きくなる
部分を有する。抵抗が大きいと、発熱量も大きく、また
抵抗が小さいと、発熱量も小さい。つまり、局所の抵抗
を大きくすることで発熱が集中し、大きな発熱量が得ら
れるため早期に活性温度に達する部分を生じる。そし
て、その部分を排気ガスが通過するため、排気ガスと触
媒との熱交換が生じ、触媒全体が暖機される。
In the invention according to claim 1 of the present invention, the current-carrying path on the metal-supported catalyst has a portion where the resistance locally increases. When the resistance is large, the amount of heat generated is large, and when the resistance is small, the amount of heat generated is small. That is, by increasing the local resistance, heat generation is concentrated and a large amount of heat generation is obtained, so that a portion that reaches the activation temperature early is generated. Then, since the exhaust gas passes through that portion, heat exchange between the exhaust gas and the catalyst occurs, and the entire catalyst is warmed up.

【0008】また、本発明の請求項2に記載の発明にお
いては、通電経路の一部に設けられた孔部またはスリッ
ト部によりこの部分の通電経路の面積が小さくなる。よ
ってこの周辺部の抵抗が局所的に大きくなり、発熱が集
中し、大きな発熱量が得られるため早期に活性温度に達
する部分を生じる。そして、その部分を排気ガスが通過
するため、排気ガスと触媒との熱交換が生じ、触媒全体
が暖機される。
Further, in the invention according to claim 2 of the present invention, the area of the current-carrying path in this portion is reduced by the hole or slit provided in a part of the current-carrying path. Therefore, the resistance of the peripheral portion is locally increased, heat generation is concentrated, and a large amount of heat generation is obtained, so that a portion that reaches the activation temperature early is generated. Then, since the exhaust gas passes through that portion, heat exchange between the exhaust gas and the catalyst occurs, and the entire catalyst is warmed up.

【0009】また、本発明の請求項3に記載の発明にお
いては、メタル担体触媒上の通電経路の一部でメタル担
体を構成する箔の肉厚を変えることにより通電経路の面
積が小さくなる部分が生じる。よってこの周辺部の抵抗
が局所的に大きくなり、発熱が集中し、大きな発熱量が
得られるため早期に活性温度に達する部分を生じる。そ
して、その部分を排気ガスが通過するため、排気ガスと
触媒との熱交換が生じ、触媒全体が暖機される。
In the invention according to claim 3 of the present invention, the area of the current-carrying path is reduced by changing the thickness of the foil constituting the metal carrier in a part of the current-carrying path on the metal-support catalyst. Occurs. Therefore, the resistance of the peripheral portion is locally increased, heat generation is concentrated, and a large amount of heat generation is obtained, so that a portion that reaches the activation temperature early is generated. Then, since the exhaust gas passes through that portion, heat exchange between the exhaust gas and the catalyst occurs, and the entire catalyst is warmed up.

【0010】また、本発明の請求項4に記載の発明にお
いては、メタル担体触媒は巻回軸方向に通電されるが、
その経路中の一部が平板もしくは波板のみが巻回された
部分、すなわち表面積の小さい部分となっている。よっ
てこの表面積の小さい部分の抵抗が局所的に大きくな
り、発熱が集中し、大きな発熱量が得られるため早期に
活性温度に達する部分を生じる。そして、その部分を排
気ガスが通過するため、排気ガスと触媒との熱交換が生
じ、触媒全体が暖機される。
In the invention according to claim 4 of the present invention, the metal carrier catalyst is energized in the winding axis direction,
A part of the path is a part in which only a flat plate or a corrugated plate is wound, that is, a part having a small surface area. Therefore, the resistance of the portion having a small surface area locally increases, heat generation is concentrated, and a large amount of heat generation is obtained, so that a portion that reaches the activation temperature early is generated. Then, since the exhaust gas passes through that portion, heat exchange between the exhaust gas and the catalyst occurs, and the entire catalyst is warmed up.

【0011】[0011]

【実施例】以下実施例により具体的に説明する。 (実施例1)図1に本実施例のメタル担体触媒の概略図
を示す。このメタル担体触媒は、図示されないが一部に
孔が開いている平板と波板を巻回して形成され、その巻
回中心において軸方向に貫通するプラス電極2を有した
ハニカム体1と、ハニカム体1が挿入された外筒3とか
らなるメタル担体と、図示されないがメタル担体の全表
面に形成され、活性アルミナからなる触媒担持層と、触
媒担持層に担持された触媒金属と、から構成され、直径
90mm、長さ50mmの円柱形状に形成されている。
また、プラス電極2の端面と外筒3の端面には、電源4
に通ずる導線を有している。以下、製造方法を説明す
る。
Embodiments will be specifically described below with reference to embodiments. (Example 1) Fig. 1 shows a schematic view of a metal-supported catalyst of this example. Although not shown, this metal-supported catalyst is formed by winding a flat plate and a corrugated plate having holes partially formed therein, and a honeycomb body 1 having a plus electrode 2 penetrating in the axial direction at the winding center, and a honeycomb body. A metal carrier composed of an outer cylinder 3 into which the body 1 is inserted, a catalyst carrier layer (not shown) formed on the entire surface of the metal carrier and composed of activated alumina, and a catalyst metal supported on the catalyst carrier layer. It is formed into a cylindrical shape having a diameter of 90 mm and a length of 50 mm.
Further, the power source 4 is provided on the end surface of the positive electrode 2 and the end surface of the outer cylinder 3.
It has a conductor leading to. The manufacturing method will be described below.

【0012】20wt%Cr−5wt%Al−残部主に
Feからなり、厚さ50μm、幅50mmの帯状の平板
を2枚用意し、図2に示すように平板の箔長さの略1/
2の位置に、箔の幅方向に等間隔になるように直径10
μmの孔を4個設ける。そして1枚は略波形状の波板9
に形成する。さらにこの波板9は900℃の高温で24
時間加熱し、表面にアルミナ皮膜を生成して絶縁処理さ
れる。これら加工された平板8と波板9をプラス電極2
を軸にして巻回し、ハニカム体1を形成した。尚、この
時平板8と波板9に設けられた孔はほぼ重なっている。
20 wt% Cr-5 wt% Al-the balance The balance consists mainly of Fe. Two strip-shaped flat plates having a thickness of 50 μm and a width of 50 mm are prepared, and as shown in FIG.
At the position of 2, the diameter is 10 so that it is evenly spaced in the width direction of the foil.
Provide 4 μm holes. And one is a substantially corrugated plate 9
To form. Furthermore, this corrugated sheet 9 is heated at a high temperature of 900 ° C.
It is heated for a period of time to form an alumina film on the surface for insulation treatment. The processed flat plate 8 and corrugated plate 9 are used as the plus electrode 2
The honeycomb body 1 was formed by winding it around the axis. At this time, the holes formed in the flat plate 8 and the corrugated plate 9 are substantially overlapped with each other.

【0013】このハニカム体1を、厚さ1.5mmのS
US430MT(JIS規格)から形成されたマイナス
電極を兼ね備える外筒3に挿入し、図1に示すように、
孔部を有する部分を含む円周上近傍以外の、ハニカム体
最外周部5と中央部7に、ニッケル系の高融点ロウ材の
粉末と有機系バインダーを混合した水溶液を流し込み、
乾燥させ1200℃で2時間、真空度10-4で加熱処理
してロウ付けを行いメタル担体を作成した。そしてこの
メタル担体を活性アルミナスラリーに浸漬し、余分なス
ラリーを吹き飛ばした後焼成して触媒担持層を形成し
た。その後ジニトロジアンミン白金水溶液及び硝酸ロジ
ウム水溶液にそれぞれ浸漬・乾燥・焼成して、触媒担持
層に白金とロジウムからなる触媒金属を担持した。担持
量は、触媒1リットル当たり白金が1.0g、ロジウム
が0.2gである。
This honeycomb body 1 was formed into S having a thickness of 1.5 mm.
Inserted in an outer cylinder 3 formed of US430MT (JIS standard) and also serving as a negative electrode, as shown in FIG.
An aqueous solution obtained by mixing a nickel-based high melting point brazing powder and an organic binder is poured into the outermost peripheral portion 5 and the central portion 7 of the honeycomb body other than the vicinity of the circumference including the portion having the pores,
It was dried and heat-treated at 1200 ° C. for 2 hours at a vacuum degree of 10 −4 for brazing to prepare a metal carrier. Then, this metal carrier was dipped in an activated alumina slurry, and the excess slurry was blown off and then fired to form a catalyst supporting layer. After that, each was immersed in an aqueous solution of dinitrodiammine platinum and an aqueous solution of rhodium nitrate, dried and calcined to support a catalyst metal composed of platinum and rhodium on the catalyst supporting layer. The supported amounts are 1.0 g of platinum and 0.2 g of rhodium per liter of catalyst.

【0014】このメタル担体触媒を2000cc直列4
気筒エンジンの排気系に装着し、空燃比(A/F)=1
4.6にて、エンジンを始動させ、同時に通電を行っ
た。本実施例においては中央部7をロウ付けしているた
め、通電時に電極から中央部7の外側面までは一体的に
通電される。そして孔部を有するハニカム部6では波板
を絶縁処理しているので、電流は中央部の外側面から外
周に向けて平板の上を渦巻き状に流れる。そしてその通
電経路の途中に設けられた孔部により、通電経路の面積
が小さくなるため孔部周辺の抵抗が局所的に大きくな
る。よって孔部周辺が大きな発熱量を得ることになり、
通過する排気ガスがその熱を得、排気ガスと触媒との熱
交換により触媒が暖機される。そしてエンジン始動15
秒後のメタル担体触媒の排気ガスの流出側から10mm
離れた位置で排気ガスの温度を測定した。その結果を表
1に示す。 (実施例2〜8)平板と波板もしくは平板のみに孔を開
け、その孔径、孔数、位置を表1のように変え、平板を
絶縁処理すること以外は実施例1と同様にしてそれぞれ
のメタル担体触媒を形成した。2カ所以上の孔を開ける
場合の位置は、孔を開ける板の通電経路の中央部で巻回
した時に同一周上で等間隔となるような位置とした。そ
して実施例1と同様にエンジン始動15秒後にメタル担
体触媒の排気ガスの流出側から10mm離れた位置で排
気ガスの温度を測定した。その結果を表1に示す。 (比較例1)平板と波板のどちらにも孔部を設けないこ
と以外は実施例1と同様にしてメタル担体触媒を形成
し、同様にエンジン始動15秒後にメタル担体触媒の排
気ガスの流出側から10mm離れた位置で排気ガスの温
度を測定した。その結果を表1に示す。 (評価)表1より、本発明のメタル担体触媒は、エンジ
ン始動15秒後の温度がいずれも触媒の活性温度である
300℃を越えていたのに対し、比較例のメタル担体触
媒は300℃に達していないことがわかる。つまりメタ
ル担体触媒を単に通電させるより、メタル担体触媒の箔
に孔部を設けて通電させた方が早く暖気し、エンジン始
動時の排気ガス浄化率を早期に高めることができる。
This metal-supported catalyst was connected in 2000cc in series 4
Installed in the exhaust system of a cylinder engine, air-fuel ratio (A / F) = 1
At 4.6, the engine was started and simultaneously energized. In the present embodiment, since the central portion 7 is brazed, the electric current is integrally conducted from the electrode to the outer surface of the central portion 7 when energized. Since the corrugated plate is insulated in the honeycomb portion 6 having the holes, the current flows spirally on the flat plate from the outer surface of the central portion toward the outer periphery. Due to the hole provided in the middle of the energizing path, the area of the energizing path is reduced, so that the resistance around the hole is locally increased. Therefore, a large amount of heat is generated around the hole,
The exhaust gas passing through obtains its heat, and the catalyst is warmed up by heat exchange between the exhaust gas and the catalyst. And engine start 15
10 mm from the exhaust side of the exhaust gas of the metal-supported catalyst after 2 seconds
The temperature of the exhaust gas was measured at a remote location. The results are shown in Table 1. (Examples 2 to 8) The same procedure as in Example 1 was performed except that holes were formed in the flat plate and the corrugated plate or only the flat plate, and the hole diameter, the number of holes, and the position were changed as shown in Table 1, and the flat plate was subjected to insulation treatment. To form a metal-supported catalyst. When two or more holes are drilled, the positions are such that they are equally spaced on the same circumference when wound at the center of the energization path of the plate to be drilled. Then, in the same manner as in Example 1, 15 seconds after the engine was started, the temperature of the exhaust gas was measured at a position 10 mm away from the exhaust gas outflow side of the metal carrier catalyst. The results are shown in Table 1. (Comparative Example 1) A metal-supported catalyst was formed in the same manner as in Example 1 except that holes were not formed in both the flat plate and the corrugated plate, and the exhaust gas of the metal-supported catalyst flowed out 15 seconds after the engine was started. The temperature of the exhaust gas was measured at a position 10 mm away from the side. The results are shown in Table 1. (Evaluation) From Table 1, in the metal-supported catalysts of the present invention, the temperatures after 15 seconds from engine start exceeded 300 ° C., which is the activation temperature of the catalysts, whereas the metal-supported catalysts of Comparative Examples were 300 ° C. You can see that it has not reached. That is, rather than simply energizing the metal-supported catalyst, it is possible to warm the air more quickly by providing holes in the foil of the metal-supported catalyst and energizing the metal-supported catalyst, so that the exhaust gas purification rate at engine startup can be increased earlier.

【0015】また比較例1にみられるようなメタル担体
触媒では、排気ガスは触媒内を軸方向のみ流れる。しか
し本実施例のように、箔に孔部を有することで排気ガス
は軸方向のみならず多方向に流れ、乱流を発生する。そ
して発熱した熱とメタル担体触媒を通過する排気ガスと
の熱交換が排気ガスの乱流により一層活発に行われ、発
生した触媒反応熱が担体側に伝わり易くなるため、触媒
の暖機性能がより向上することになる。
Further, in the metal carrier catalyst as seen in Comparative Example 1, the exhaust gas flows only in the axial direction in the catalyst. However, as in the present embodiment, since the foil has holes, the exhaust gas flows not only in the axial direction but also in multiple directions to generate turbulent flow. The heat exchange between the generated heat and the exhaust gas passing through the metal-supported catalyst is more actively performed by the turbulent flow of the exhaust gas, and the generated heat of the catalytic reaction is easily transferred to the carrier side, so that the catalyst warm-up performance is improved. It will be improved.

【0016】本実施例は孔部の位置を箔の幅方向に等間
隔に設けることで、メタル担体触媒の端面を排気ガス流
入側あるいは流出側に配置できるようにし、実際に排気
系に装着する際の作業性能の向上をはかったものであ
る。しかし、孔部を排気ガス流出側のみに設ければ、本
発明の効果は得られ、この場合、排気ガス流入側が発熱
し、エンジン始動後出される排気ガスが、メタル担体触
媒に流入する時に触媒端面に発した熱を得た後、触媒内
を通過することになるので、暖機性能が向上する。ま
た、孔部がメタル担体触媒の排気ガス流出側でかつプラ
ス電極近傍に設けられれば、排気ガス流入側でかつ排気
ガス流量の多いメタル担体触媒の中央部に大きな発熱量
が得られるため、暖機性能が向上することになる。また
電極の位置は、メタル担体触媒の中心軸にプラス電極を
有しているがこの位置に限られるものではなく、中心よ
り外れた位置でもよい。また、メタル担体触媒の排気ガ
ス流入側端面にプラス電極を、排気ガス流出側端面にマ
イナス電極を配置してもよい。そしてその場合、メタル
担体を構成する箔は絶縁処理を行っても、行わなくても
よい。また本実施例においては絶縁処理を行っている
が、行わない場合も考えられる。いずれの場合において
も、通電経路において排気ガス流入側の抵抗が局所的に
大きくなるような孔部もしくはスリット部を設け、触媒
が活性するのに必要最少限の発熱をおこすことで本発明
の効果が得られる。また、排気ガス温度の検知部を設
け、排気ガスが所定温度以上になったら、信号により電
流を切るようにすることも考えられる。 (実施例9)このメタル担体触媒は、波板と一部の板厚
が薄くなっている平板から形成され、中央部には軸方向
に貫通する電極を有したハニカム体と、ハニカム体が挿
入された外筒とからなるメタル担体と、メタル担体の全
表面に形成され活性アルミナからなる触媒担持層と、触
媒担持層に担持された触媒金属と、から構成され、直径
90mm、長さ50mmの円柱形状に形成されている。
以下、製造方法を説明する。
In this embodiment, the holes are provided at equal intervals in the width direction of the foil so that the end surface of the metal-supported catalyst can be arranged on the exhaust gas inflow side or the outflow side, and is actually mounted on the exhaust system. This is intended to improve the work performance at the time. However, if the holes are provided only on the exhaust gas outflow side, the effect of the present invention can be obtained. In this case, the exhaust gas inflow side generates heat, and the exhaust gas discharged after the engine starts flows into the metal-supported catalyst to the catalyst. After the heat generated at the end face is obtained, it passes through the inside of the catalyst, so the warm-up performance is improved. Further, if the hole is provided on the exhaust gas outflow side of the metal-supported catalyst and in the vicinity of the plus electrode, a large amount of heat generation is obtained at the exhaust gas inflow-side and in the central part of the metal-supported catalyst with a large exhaust gas flow rate, so that the warm-up is achieved. The machine performance will be improved. The position of the electrode has a positive electrode on the central axis of the metal-supported catalyst, but is not limited to this position, and may be a position deviated from the center. Further, a positive electrode may be arranged on the exhaust gas inflow side end surface of the metal carrier catalyst, and a negative electrode may be arranged on the exhaust gas outflow side end surface. In that case, the foil forming the metal carrier may or may not be insulated. Further, although the insulating treatment is performed in the present embodiment, it may be considered that the insulating treatment is not performed. In any case, the effect of the present invention is provided by providing a hole or slit in which the resistance on the exhaust gas inflow side is locally increased in the energization path, and generating the minimum amount of heat necessary for the catalyst to be activated. Is obtained. It is also conceivable to provide an exhaust gas temperature detection unit and turn off the electric current by a signal when the exhaust gas temperature exceeds a predetermined temperature. (Example 9) This metal-supported catalyst was composed of a corrugated plate and a flat plate with a partly thin plate thickness, and a honeycomb body having an electrode penetrating in the axial direction in the central portion and a honeycomb body inserted. A metal carrier composed of an outer cylinder, a catalyst carrier layer formed on the entire surface of the metal carrier and composed of activated alumina, and a catalyst metal supported on the catalyst carrier layer, and having a diameter of 90 mm and a length of 50 mm. It is formed in a cylindrical shape.
The manufacturing method will be described below.

【0017】20wt%Cr−5wt%Al−残部主に
Feからなり、厚さ50μm、幅50mmの帯状の平板
から形成される略波形状の波板と、前記平板の箔長さの
略1/2の位置に担体軸方向全長50mmに渡り板厚を
30μmとする部分を設ける。そして波板を900℃の
高温で24時間加熱し、波板の上にアルミナ皮膜を生成
することにより波板を絶縁処理する。これら加工された
平板と波板をプラス電極を軸にしてロール状に巻回し、
ハニカム体を形成した。
20 wt.% Cr-5 wt.% Al-the balance is composed mainly of Fe, and is a substantially corrugated corrugated plate formed from a band-shaped flat plate having a thickness of 50 μm and a width of 50 mm, and approximately 1 / of the foil length of the flat plate. A portion having a plate thickness of 30 μm is provided at a position 2 over the entire length of the carrier axial direction of 50 mm. Then, the corrugated plate is heated at a high temperature of 900 ° C. for 24 hours to form an alumina film on the corrugated plate to insulate the corrugated plate. These processed flat plate and corrugated plate are wound in a roll shape with the positive electrode as an axis,
A honeycomb body was formed.

【0018】このハニカム体を、厚さ1.5mmのSU
S430MT(JIS規格)から形成されたマイナス電
極を兼ね備える外筒に挿入し、板厚を薄くした部分を含
む円周上近傍以外のハニカム体最外周部と中央部に、ニ
ッケル系の高融点ロウ材の粉末と有機系バインダーを混
合した水溶液を流し込み、乾燥させ1200℃で2時
間、真空度10-4で処理してロウ付けを行いメタル担体
を作成した。そしてこのメタル担体を活性アルミナスラ
リーに浸漬し、余分なスラリーを吹き飛ばした後焼成し
て触媒担持層を形成した。その後ジニトロジアンミン白
金水溶液及び硝酸ロジウム水溶液にそれぞれ浸漬・乾燥
・焼成して、触媒担持層に白金とロジウムからなる触媒
金属を担持した。担持量は、触媒1リットル当たり白金
が1.0g、ロジウムが0.2gである。このメタル担
体触媒を実施例1と同様にエンジン始動15秒後にメタ
ル担体触媒の排気ガスの流出側から10mm離れた位置
で排気ガスの温度を測定した。その結果を表1に示す。
This honeycomb body was replaced with a SU having a thickness of 1.5 mm.
Nickel-based high melting point brazing material inserted into an outer cylinder formed of S430MT (JIS standard) that also serves as a negative electrode, and at the outermost peripheral portion and central portion of the honeycomb body other than the vicinity of the circumference including the thinned portion An aqueous solution prepared by mixing the above powder and an organic binder was poured, dried and treated at 1200 ° C. for 2 hours at a vacuum degree of 10 −4 for brazing to prepare a metal carrier. Then, this metal carrier was dipped in an activated alumina slurry, and the excess slurry was blown off and then fired to form a catalyst supporting layer. After that, each was immersed in an aqueous solution of dinitrodiammine platinum and an aqueous solution of rhodium nitrate, dried and calcined to support a catalyst metal composed of platinum and rhodium on the catalyst supporting layer. The supported amounts are 1.0 g of platinum and 0.2 g of rhodium per liter of catalyst. Exhaust gas temperature of this metal-supported catalyst was measured at a position 10 mm away from the exhaust side of the exhaust gas of the metal-supported catalyst 15 seconds after the engine was started as in Example 1. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】(評価)表1より、板厚を一部変えたメタ
ル担体触媒においてもエンジン始動15秒後の温度が触
媒の活性温度である300℃を越えることが示され、比
較例1に比べ早期に昇温することがわかる。 (実施例10)図3に本実施例のメタル担体触媒の模式
的断面図を示す。このメタル担体触媒は、軸方向両端に
形成された第1ハニカム部10及び第2ハニカム部11
と、軸方向で第1ハニカム部10と第2ハニカム部11
の間で平板のみが巻回された部分(以下ロール部と称
す)12とからなるハニカム体1と、ハニカム体1が挿
入された外筒3とからなるメタル担体と、図示しないが
メタル担体の全表面に形成され活性アルミナからなる触
媒担持層と、触媒担持層に担持された触媒金属と、から
構成され、直径100mm、長さ100mmの円柱形状
に形成されている。また第1ハニカム部10の外側端面
と、第2ハニカム部11の外側端面には電源4に通ずる
導線を有している。以下、製造方法を説明する。20w
t%Cr−5wt%Al−残部主にFeからなり厚さ5
0μm、幅100mmの帯状の平板15と、この平板1
5から形成され幅10mmの略波形状の波板16とを用
意し、図4に示すように平板15の両側縁部に2枚の波
板16を重ねた状態でロール状に巻回し、ハニカム体1
を形成した。これによりハニカム体1には軸方向両側に
ハニカム通路をもつ第1ハニカム部10及び第2ハニカ
ム部11がそれぞれ10mmの長さで形成され、第1ハ
ニカム部10と第2ハニカム部11の間には平板のみが
巻回されたロール部12が形成された。第1ハニカム部
10及び第2ハニカム部11のセル数は、それぞれ1平
方インチ当たり400個である。このハニカム体1を、
厚さ1.5mmのSUS430MT(JIS規格)から
形成された外筒3に挿入し、第1ハニカム部10と外筒
3の間13と、第1ハニカム部10と第2ハニカム部1
1に、ニッケル系の高融点ロウ材の粉末と有機系バイン
ダーを混合した水溶液を流し込み、乾燥させ1200℃
で2時間、真空度10-4で加熱処理してロウ付けした。
また、第2ハニカム部11及び、ロール部12と外筒3
との間には絶縁体14が介在されている。そしてこのメ
タル担体触媒を活性アルミナスラリーに浸漬し、余分な
スラリーを吹き飛ばした後焼成して触媒担持層を形成し
た。その後ジニトロジアンミン白金水溶液及び硝酸ロジ
ウム水溶液にそれぞれ浸漬・乾燥・焼成して、触媒担持
層に白金とロジウムからなる触媒金属を担持した。担持
量は、触媒1リットル当たり白金が1.0g、ロジウム
が0.2gである。
(Evaluation) From Table 1, it is shown that the temperature after 15 seconds from engine start exceeds 300 ° C., which is the activation temperature of the catalyst, even in the case of the metal-supported catalyst whose plate thickness is partially changed. It can be seen that the temperature rises early. (Embodiment 10) FIG. 3 shows a schematic sectional view of a metal-supported catalyst of this embodiment. This metal-supported catalyst has a first honeycomb part 10 and a second honeycomb part 11 formed at both ends in the axial direction.
And the first honeycomb part 10 and the second honeycomb part 11 in the axial direction.
A metal carrier composed of a portion (hereinafter referred to as a roll portion) 12 in which only the flat plate is wound between the metal body and an outer cylinder 3 into which the honeycomb body 1 is inserted; It is composed of a catalyst-supporting layer formed on the entire surface and made of activated alumina, and a catalyst metal supported on the catalyst-supporting layer, and is formed into a cylindrical shape having a diameter of 100 mm and a length of 100 mm. Further, the outer end surface of the first honeycomb portion 10 and the outer end surface of the second honeycomb portion 11 have conducting wires that communicate with the power source 4. The manufacturing method will be described below. 20w
t% Cr-5wt% Al-remaining mainly Fe and thickness 5
A strip-shaped flat plate 15 having a width of 0 μm and a width of 100 mm, and this flat plate 1
5 and a substantially corrugated corrugated plate 16 having a width of 10 mm are prepared, and as shown in FIG. 4, two corrugated plates 16 are overlapped on both side edges of the flat plate 15 and wound in a roll shape to form a honeycomb. Body 1
Formed. As a result, the first honeycomb portion 10 and the second honeycomb portion 11 having the honeycomb passages on both sides in the axial direction are formed in the honeycomb body 1 to have a length of 10 mm, respectively, and between the first honeycomb portion 10 and the second honeycomb portion 11. The roll portion 12 was formed by winding only the flat plate. The number of cells of each of the first honeycomb portion 10 and the second honeycomb portion 11 is 400 per square inch. This honeycomb body 1
It is inserted into the outer cylinder 3 formed of SUS430MT (JIS standard) having a thickness of 1.5 mm, and is inserted between the first honeycomb part 10 and the outer cylinder 3 13 and the first honeycomb part 10 and the second honeycomb part 1.
An aqueous solution of nickel-based high-melting-point brazing material powder and an organic binder is poured into 1 and dried at 1200 ° C.
For 2 hours at a vacuum degree of 10 −4 and brazing.
In addition, the second honeycomb portion 11, the roll portion 12 and the outer cylinder 3
Insulator 14 is interposed between and. Then, the metal-supported catalyst was immersed in an activated alumina slurry, and the excess slurry was blown off and then fired to form a catalyst supporting layer. After that, each was immersed in an aqueous solution of dinitrodiammine platinum and an aqueous solution of rhodium nitrate, dried and calcined to support a catalyst metal composed of platinum and rhodium on the catalyst supporting layer. The supported amounts are 1.0 g of platinum and 0.2 g of rhodium per liter of catalyst.

【0021】このメタル担体触媒を3000ccの直列
6気筒エンジンの排気系に装着し、空燃比(A/F)=
14.6にて、〔触媒入りガス温度850℃×10分〜
触媒入りガス温度450℃×10分〕のサイクルで30
0サイクル(100時間)運転し耐久試験を行った。そ
の結果メタル担体触媒には亀裂等の異常は見られず、耐
久性を有することが確認された。そしてその後メタル担
体触媒が室温まで充分冷却されてから、同一のエンジン
にてA/F=14.6の条件で、エンジン始動と同時に
メタル担体触媒の両端部を電極とし軸方向に通電した。
本実施例の場合、通電経路の途中で平板のみで構成され
るロール部12を有しており、この部分で通電経路の面
積が小さくなるため、局所的に抵抗が大きくなり発熱す
る。つまりエンジン始動後間もなく、メタル担体触媒が
発熱することになる。そしてエンジン始動直後から、H
C、CO、NOxの触媒による浄化率を測定し始め、排
気ガスの浄化率が一般に安定する温度である400℃の
時の浄化率を表2に示す。また、同時に、平均浄化率が
50%に達した時の時間を測定した。そしてその結果を
表2に示す。平均浄化率が50%に達する時間が短い触
媒であるほど、触媒性能は優れると考えられる。尚、通
電しなかった場合についても同様に測定し、その結果を
表2に示す。 (実施例11〜13)ロール部12を波板のみから形成
し、第1ハニカム部10及び第2ハニカム部11のセル
数を表3に示すように変えたこと以外は実施例10と同
様にして、それぞれのメタル担体触媒を形成した。そし
て実施例10と同様に耐久試験を行ったが、いずれのメ
タル担体触媒にも亀裂等の異常は見られず、耐久性が見
られた。また排気ガスが400℃の時の浄化率と、平均
浄化率が50%に到達する時間を実施例10と同様にし
て測定し、結果を表2に示す。 (実施例14〜17)図5に実施例14〜17のメタル
担体触媒の模式的断面図を示す。このメタル担体触媒
は、ロール部12の軸方向中間位置に第1ハニカム部1
0及び第2ハニカム部11より径の小さい第3ハニカム
部17が形成され、この第3ハニカム部17に導電体1
8が接続されている。そして、第1ハニカム部10と、
第2ハニカム部11と、第3ハニカム部17は、それぞ
れがロウ付けされ、第2ハニカム部11、及びロール部
12と外筒3との間には絶縁体14が介在されている。
また第1ハニカム部10と、外筒3とはロウ付け部13
により接合されている。以上の構成により、第3ハニカ
ム部17と、第2ハニカム部11との間においては19
で示す部分が優先的に通電され、さらにこの部分はメタ
ル担体触媒を構成する箔が波板のみであるので、抵抗が
大きくなり優先的に発熱する。なお、構成の詳細は表3
に示す。そして実施例10と同様に排気ガス温度が40
0℃の時の浄化率と、平均浄化率が50%に到達する時
間を測定し、結果を表2に示す。 (比較例2)全体がハニカム部で構成され、ロール部を
もたないこと以外は実施例10と同様の構成で比較例の
メタル担体触媒を形成し、同様に入りガス温度400℃
の時の浄化率と、平均浄化浄化率50%到達時間を測定
し、結果を表2に示す。
This metal carrier catalyst was mounted on the exhaust system of a 3000cc inline 6-cylinder engine, and the air-fuel ratio (A / F) =
At 14.6, [catalyst-containing gas temperature 850 ° C. × 10 minutes-
Gas temperature with catalyst 450 ° C x 10 minutes]
A durability test was conducted by operating for 0 cycles (100 hours). As a result, it was confirmed that the metal-supported catalyst did not show any abnormality such as cracks and had durability. Then, after the metal-supported catalyst was sufficiently cooled to room temperature, under the condition of A / F = 14.6 in the same engine, both ends of the metal-supported catalyst were used as electrodes at the same time when the engine was started, and electric current was applied in the axial direction.
In the case of the present embodiment, the roll portion 12 formed of only a flat plate is provided in the middle of the energizing path, and the area of the energizing path is reduced in this part, so the resistance locally increases and heat is generated. That is, the metal-supported catalyst will generate heat shortly after the engine is started. Immediately after starting the engine, H
Table 2 shows the purification rates when the purification rate of C, CO, and NOx by the catalyst is measured and the exhaust gas purification rate is 400 ° C., which is a temperature at which the purification rate is generally stable. At the same time, the time when the average purification rate reached 50% was measured. The results are shown in Table 2. It is considered that the shorter the time for which the average purification rate reaches 50%, the better the catalyst performance. It should be noted that the same measurement was carried out when the power was not applied, and the results are shown in Table 2. (Examples 11 to 13) Same as Example 10 except that the roll portion 12 was formed only from the corrugated plate and the number of cells of the first honeycomb portion 10 and the second honeycomb portion 11 was changed as shown in Table 3. To form the respective metal-supported catalysts. Then, a durability test was conducted in the same manner as in Example 10, but no abnormality such as cracks was observed in any of the metal carrier catalysts, and durability was observed. Further, the purification rate when the exhaust gas was 400 ° C. and the time until the average purification rate reached 50% were measured in the same manner as in Example 10, and the results are shown in Table 2. (Examples 14 to 17) FIG. 5 shows a schematic sectional view of the metal-supported catalysts of Examples 14 to 17. This metal-supported catalyst is provided in the first honeycomb unit 1 at an axially intermediate position of the roll unit 12.
0 and the third honeycomb portion 17 having a diameter smaller than that of the second honeycomb portion 11 is formed, and the conductor 1 is formed on the third honeycomb portion 17.
8 is connected. Then, the first honeycomb part 10
The second honeycomb part 11 and the third honeycomb part 17 are brazed to each other, and the insulator 14 is interposed between the second honeycomb part 11, the roll part 12 and the outer cylinder 3.
Further, the first honeycomb portion 10 and the outer cylinder 3 are connected to each other by the brazing portion 13
Are joined by. With the above configuration, 19 is provided between the third honeycomb part 17 and the second honeycomb part 11.
The portion indicated by (5) is preferentially energized, and since the foil forming the metal-supported catalyst is only the corrugated sheet in this portion, the resistance increases and heat is generated preferentially. The details of the configuration are shown in Table 3.
Shown in. And the exhaust gas temperature is 40
The purification rate at 0 ° C. and the time required for the average purification rate to reach 50% were measured, and the results are shown in Table 2. (Comparative Example 2) A metal-supported catalyst of Comparative Example was formed in the same configuration as in Example 10 except that the whole part was formed of a honeycomb portion and did not have a roll portion.
The purification rate at that time and the time required for reaching the average purification rate of 50% were measured, and the results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】(評価)表2より、本発明のメタル担体触
媒は高い浄化率を示し、浄化率が50%に到達する時間
も極めて短縮されている。そして比較例と比べると、通
電時と非通電時の差が大きくなっており、通電による効
果が極めて大きいことがわかる。これはロール部の存在
によるものであることが明らかである。また、実施例1
4〜17の方が実施例10〜13より浄化率が50%に
到達する時間が短いが、これは第3ハニカム部17の存
在により排気ガスの流入量の多い軸中心部分がさらに優
先的に加熱されたことによるものである。なお、第3ハ
ニカム部16はロール部12中に独立して存在する例で
示したが、これに限られるものでなく、例えば第1ハニ
カム部10から軸方向に突出して延びる形状としても同
様の効果を奏する。本発明においては、メタル担体触媒
の排気ガス流入側をロール部とし、流出側をハニカム形
状とすれば、効果は得られる。しかし、実施例10〜1
7のようなハニカム形状の間にロール部を有したメタル
担体触媒の場合、エンジンが停止すると、表面積の大き
なハニカム部は放熱性が大きいため冷却されやすいが、
ロール部は空気の断熱作用により放熱性が小さいため冷
却されにくい。したがって、短時間の停止後の再始動時
には、ロール部の温度は充分高く、再始動直後の浄化性
能に優れている。また長時間の停止後の再始動時にはロ
ール部の温度が低下しても、ロール部は軸中心ほど放熱
性が小さく温度が高いので、短時間の通電により軸中心
部は速やかに触媒の活性温度まで上昇する。これにより
高い浄化性能が得られる。また、排気ガス温度の検知部
を設け、排気ガスが所定温度になったら、信号により電
流を切るようにすることも考えられる。
(Evaluation) From Table 2, the metal-supported catalyst of the present invention exhibits a high purification rate, and the time for the purification rate to reach 50% is extremely shortened. As compared with the comparative example, the difference between when energized and when not energized is large, and it can be seen that the effect of energization is extremely large. It is clear that this is due to the presence of the roll section. In addition, Example 1
In Examples 4 to 17, the time required for the purification rate to reach 50% is shorter than that in Examples 10 to 13, but this is because the presence of the third honeycomb portion 17 gives priority to the axial center portion where the exhaust gas inflow amount is large. This is due to being heated. Although the third honeycomb portion 16 has been shown as an example in which it independently exists in the roll portion 12, the present invention is not limited to this. For example, the third honeycomb portion 16 may have a shape that extends in the axial direction from the first honeycomb portion 10 as well. Produce an effect. In the present invention, the effect can be obtained if the exhaust gas inflow side of the metal-supported catalyst is a roll portion and the outflow side is a honeycomb shape. However, Examples 10-1
In the case of a metal-supported catalyst having a roll portion between honeycomb shapes such as 7, when the engine is stopped, the honeycomb portion having a large surface area is likely to be cooled due to its large heat dissipation.
The roll portion has a small heat radiation property due to the heat insulating effect of air, and therefore is hard to be cooled. Therefore, at the time of restarting after a short stop, the temperature of the roll portion is sufficiently high, and the purification performance immediately after restarting is excellent. Also, even if the temperature of the roll part drops when restarting after being stopped for a long time, the roll part has a low heat radiation property toward the shaft center and the temperature is high. Rise to. As a result, high purification performance can be obtained. It is also conceivable to provide a detector for the exhaust gas temperature and turn off the current by a signal when the exhaust gas reaches a predetermined temperature.

【0025】[0025]

【発明の効果】本発明によれば、メタル担体触媒を通電
した時にその通電経路の一部の電気抵抗が局所的に大き
くなり、その部分の発熱量が大きくなり、早期に触媒が
活性温度に達する。これにより触媒の反応熱が連鎖的に
周辺部に伝わり、排気ガスとの熱伝達による熱の拡散作
用と相まって、触媒は暖機される。よって、触媒活性な
状態を少ない電力量で得ることができる。
According to the present invention, when the metal-supported catalyst is energized, the electrical resistance of a part of the energization path locally increases, the amount of heat generation in that part increases, and the catalyst reaches the activation temperature early. Reach As a result, the reaction heat of the catalyst is transferred to the peripheral portion in a chain manner, and the catalyst is warmed up in combination with the heat diffusion action by the heat transfer with the exhaust gas. Therefore, the catalytically active state can be obtained with a small amount of electric power.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1に示されるメタル担体触媒
の模式的断面図である。
FIG. 1 is a schematic cross-sectional view of a metal-supported catalyst shown in Example 1 of the present invention.

【図2】 図1のメタル担体触媒のハニカム体を製造す
る方法を説明する斜視図である。
[Fig. 2] Fig. 2 is a perspective view illustrating a method for manufacturing the honeycomb body of the metal-supported catalyst of Fig. 1.

【図3】 本発明の実施例10に示されるメタル担体触
媒の模式的断面図である。
FIG. 3 is a schematic cross-sectional view of a metal carrier catalyst shown in Example 10 of the present invention.

【図4】 図4のメタル担体触媒のハニカム体を製造す
る方法を説明する斜視図である。
[Fig. 4] Fig. 4 is a perspective view illustrating a method for manufacturing the honeycomb body of the metal-supported catalyst of Fig. 4.

【図5】 本発明の実施例14〜17に示されるメタル
担体触媒の模式的断面図である。
FIG. 5 is a schematic cross-sectional view of metal-supported catalysts shown in Examples 14 to 17 of the present invention.

【符号の説明】[Explanation of symbols]

1・・・ハニカム体 2・・・プラス電極 3・・・外筒(マイナス電極) 4・・・電源 1 ... Honeycomb body 2 ... Positive electrode 3 ... Outer cylinder (minus electrode) 4 ... Power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/24 L 9150−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area F01N 3/24 L 9150-3G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属箔で構成されるハニカム形状を有す
るメタル担体と、該メタル担体の表面に形成される担持
層と、該担持層に担持される触媒金属からなる排ガス浄
化用メタル担体触媒において、 前記メタル担体を通電する装置を備え、 排気ガス流入側に、前記メタル担体の通電経路の抵抗が
局所的に大きくなる部分を有したことを特徴とする排ガ
ス浄化用メタル担体触媒。
1. A metal carrier catalyst for exhaust gas purification comprising a metal carrier having a honeycomb shape composed of a metal foil, a carrier layer formed on the surface of the metal carrier, and a catalyst metal supported on the carrier layer. An exhaust gas purifying metal carrier catalyst comprising a device for energizing the metal carrier, and having a portion on the exhaust gas inflow side where the resistance of the current passage of the metal carrier locally increases.
【請求項2】 金属箔で構成されるハニカム形状を有す
るメタル担体と、該メタル担体の表面に形成される担持
層と、該担持層に担持される触媒金属からなる排ガス浄
化用メタル担体触媒において、 前記メタル担体を通電する装置を備え、 排気ガス流入側に、前記メタル担体の通電経路の抵抗が
局所的に大きくなるような、孔部またはスリット部を設
けたことを特徴とする排ガス浄化用メタル担体触媒。
2. An exhaust gas purifying metal carrier catalyst comprising a honeycomb-shaped metal carrier composed of a metal foil, a carrier layer formed on the surface of the metal carrier, and a catalyst metal supported on the carrier layer. A device for energizing the metal carrier, wherein a hole or slit is provided on the exhaust gas inflow side so that the resistance of the current path of the metal carrier is locally increased. Metal-supported catalyst.
【請求項3】 金属箔で構成されるハニカム形状を有す
るメタル担体と、該メタル担体の表面に形成される担持
層と、該担持層に担持される触媒金属からなる排ガス浄
化用メタル担体触媒において、 前記メタル担体を通電する装置を備え、 排気ガス流入側に前記メタル担体の通電経路の抵抗が局
所的に大きくなるような、前記メタル担体を構成する金
属箔の肉厚を変えた部分を設けたことを特徴とする排ガ
ス浄化用メタル担体触媒。
3. An exhaust gas-purifying metal carrier catalyst comprising a honeycomb-shaped metal carrier composed of a metal foil, a carrier layer formed on the surface of the metal carrier, and a catalyst metal supported on the carrier layer. , A device for energizing the metal carrier is provided, and a portion where the thickness of the metal foil forming the metal carrier is changed is locally provided on the exhaust gas inflow side so that the resistance of the current path of the metal carrier is locally increased. A metal carrier catalyst for purifying exhaust gas, which is characterized in that
【請求項4】 金属製の平板と波板が重ねられて巻回さ
れ構成されるハニカム形状と、平板もしくは波板のみが
巻回され構成される部分とを有するメタル担体と、該メ
タル担体の表面に形成される担持層と、該担持層に担持
される触媒金属からなる排ガス浄化用メタル担体触媒に
おいて、 前記メタル担体を巻回軸方向に通電する装置を備え、 前記メタル担体の排気ガス流出側はハニカム形状で、排
気ガス流入側の少なくとも一部は平板もしくは波板のみ
が巻回されていることを特徴とする排ガス浄化用メタル
担体触媒。
4. A metal carrier having a honeycomb shape formed by stacking and winding a metal flat plate and a corrugated plate, and a metal carrier having a portion formed by winding only the flat plate or the corrugated plate, and a metal carrier of the metal carrier. An exhaust gas purifying metal carrier catalyst comprising a supporting layer formed on the surface and a catalytic metal supported on the supporting layer, comprising a device for energizing the metal carrier in the winding axis direction, and exhaust gas outflow of the metal carrier. The exhaust gas purifying metal carrier catalyst is characterized in that the side has a honeycomb shape, and at least a part of the exhaust gas inflow side is wound with a flat plate or a corrugated plate only.
JP4108295A 1991-06-06 1992-04-28 Metal carrier catalyst for purifying exhaust gas Pending JPH05138042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4108295A JPH05138042A (en) 1991-06-06 1992-04-28 Metal carrier catalyst for purifying exhaust gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13506891 1991-06-06
JP3-135068 1991-06-06
JP4108295A JPH05138042A (en) 1991-06-06 1992-04-28 Metal carrier catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH05138042A true JPH05138042A (en) 1993-06-01

Family

ID=26448221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4108295A Pending JPH05138042A (en) 1991-06-06 1992-04-28 Metal carrier catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH05138042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633745A (en) * 1992-07-16 1994-02-08 Mitsubishi Motors Corp Electric heating catalytic device
US5529759A (en) * 1993-12-21 1996-06-25 Toyota Jidosha Kabushiki Kaisha Electrically heated catalytic converter for an engine
WO2020162510A1 (en) * 2019-02-05 2020-08-13 株式会社キャタラー Metallic base material for exhaust purging, and exhaust purging device using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633745A (en) * 1992-07-16 1994-02-08 Mitsubishi Motors Corp Electric heating catalytic device
US5529759A (en) * 1993-12-21 1996-06-25 Toyota Jidosha Kabushiki Kaisha Electrically heated catalytic converter for an engine
WO2020162510A1 (en) * 2019-02-05 2020-08-13 株式会社キャタラー Metallic base material for exhaust purging, and exhaust purging device using same
JP2020124688A (en) * 2019-02-05 2020-08-20 株式会社キャタラー Metal substrate for purifying exhaust gas and exhaust gas purification device using the same
US11998874B2 (en) 2019-02-05 2024-06-04 Cataler Corporation Metallic base material for exhaust purging, and exhaust purging device using same

Similar Documents

Publication Publication Date Title
US4976929A (en) Electrically heated catalytic converter
JP5170584B2 (en) Electric heating type catalyst equipment
JPH04284852A (en) Catalyst core for catalytic converter
JP3334898B2 (en) Exhaust gas purification device
JPH07163888A (en) Honeycomb heater
JP3210508B2 (en) Honeycomb heater
JPH06501417A (en) Heatable catalytic device for exhaust gas purification of internal combustion engines
JP3345222B2 (en) Honeycomb body and honeycomb unit for energized heating
US20230374925A1 (en) Heating carrier, and exhaust gas reduction carrier having heating carrier
JP3334897B2 (en) Exhaust gas purification device
JPH0540251Y2 (en)
JP3393299B2 (en) Catalyzer
JP5664517B2 (en) Electric heating type catalytic device
JPH09327627A (en) Catalyst and manufacture thereof
JP2010203419A (en) Exhaust emission control device for hybrid vehicle
JPH05138042A (en) Metal carrier catalyst for purifying exhaust gas
US5505911A (en) Catalytic converter
JPH08284652A (en) Structure of electrically heating catalyst
JPH07166846A (en) Honeycomb heater
JP3152441B2 (en) Metal carrier for gas purification catalyst
JP2008045435A (en) Electrically heated catalyst device
JP3260898B2 (en) Electrically heated catalytic converter
JP3312933B2 (en) Electric heating type honeycomb body
JP3269653B2 (en) Electric heating type honeycomb body
JPH0780321A (en) Electric heating metal honeycomb body

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040113

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040616

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080625

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100625

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10