Nothing Special   »   [go: up one dir, main page]

JPH05112657A - Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material - Google Patents

Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material

Info

Publication number
JPH05112657A
JPH05112657A JP27278391A JP27278391A JPH05112657A JP H05112657 A JPH05112657 A JP H05112657A JP 27278391 A JP27278391 A JP 27278391A JP 27278391 A JP27278391 A JP 27278391A JP H05112657 A JPH05112657 A JP H05112657A
Authority
JP
Japan
Prior art keywords
carbon fiber
thermoplastic resin
resin
fiber reinforced
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27278391A
Other languages
Japanese (ja)
Inventor
Tsuneo Tanaka
常雄 田中
Shigeki Tomono
茂樹 友納
Yasushi Komata
靖 小俣
Katsuji Shimamoto
勝次 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP27278391A priority Critical patent/JPH05112657A/en
Publication of JPH05112657A publication Critical patent/JPH05112657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To obtain the subject composition capable of giving a composite material having high strength and impact resistance by impregnating an olefinic polymer modified with an unsaturated carboxylic acid (derivative) into carbon filaments while aligning the filaments under tension and cutting the obtained rod-shaped composition. CONSTITUTION:The objective composition is produced by impregnating a thermoplastic resin consisting of an olefinic polymer modified with an unsaturated carboxylic acid (derivative) into carbon filaments while aligning the filaments under tension and cutting the obtained rod-shaped composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度、高耐衝撃性を
持つ炭素繊維強化熱可塑性樹脂複合材に関するものであ
る。より詳しくは炭素繊維を長手方向に配列集束された
熱可塑性樹脂強化用炭素繊維強化樹脂組成物およびそれ
を含む高強度、高耐衝撃性を持つ炭素繊維強化熱可塑性
樹脂複合材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced thermoplastic resin composite material having high strength and high impact resistance. More specifically, the invention relates to a carbon fiber reinforced resin composition for reinforcing a thermoplastic resin in which carbon fibers are arrayed and bundled in the longitudinal direction, and a carbon fiber reinforced thermoplastic resin composite material containing the same, which has high strength and high impact resistance.

【0002】[0002]

【従来の技術】近年、炭素短繊維を各種のマトリックス
に混合、分散させてなる繊維強化樹脂組成物は、高強
度、高剛性、低比重、高電気伝導性、低熱膨張率、高耐
摩耗性等に優れた特長を有していることから工業的に重
要な材料として注目されている。一般に、炭素繊維をポ
リエステル、ポリアミド、ポリオレフィン、アクリル樹
脂等の各種熱可塑性樹脂に混合、分散させて繊維強化熱
可塑性樹脂組成物を得る場合、あらかじめ多数の炭素短
繊維をサイジング剤等により集合体化させた炭素短繊維
の集合体を熱可塑性樹脂と混練りして繊維強化樹脂ペレ
ットを得、該ペレットを所望の金型に射出成形して製造
する。
2. Description of the Related Art In recent years, fiber-reinforced resin compositions prepared by mixing and dispersing short carbon fibers in various matrices have high strength, high rigidity, low specific gravity, high electrical conductivity, low coefficient of thermal expansion, and high abrasion resistance. It is attracting attention as an industrially important material due to its excellent features. Generally, when a carbon fiber is mixed and dispersed in various thermoplastic resins such as polyester, polyamide, polyolefin, and acrylic resin to obtain a fiber-reinforced thermoplastic resin composition, a large number of carbon short fibers are previously aggregated with a sizing agent or the like. The aggregate of short carbon fibers thus obtained is kneaded with a thermoplastic resin to obtain fiber-reinforced resin pellets, and the pellets are injection-molded into a desired mold to manufacture.

【0003】一方、従来の炭素短繊維集合体では、樹脂
成分と炭素短繊維とを混練りする際に繊維含有率を上げ
ると混練時に必要な力が大きくなりすぎたり、また混練
り時に補強材である炭素繊維が切断されて所望の繊維長
を維持できず、その結果十分な強度・剛性が得られない
ことから、長手方向に配列集束された炭素繊維強化熱可
塑性樹脂複合体を切断して得られる小複合体を成形原料
とすることにより高特性を発現させている。
On the other hand, in the conventional short carbon fiber aggregate, if the fiber content is increased when the resin component and the short carbon fibers are kneaded, the force required for the kneading becomes too large, and the reinforcing material during the kneading. The desired carbon length cannot be maintained as a result of the carbon fiber being cut, and as a result, sufficient strength and rigidity cannot be obtained.Therefore, the carbon fiber reinforced thermoplastic resin composite arrayed and aligned in the longitudinal direction is cut. By using the obtained small composite as a molding raw material, high characteristics are exhibited.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、一般に
熱可塑性樹脂への炭素繊維のような無機繊維の充填にお
いては熱硬化性樹脂へ炭素繊維のような無機繊維を充填
した場合に比べると期待されるほど補強効果が出ていな
いのが現状である。この理由としては、無機繊維と熱可
塑性樹脂との親和性が乏しいことが挙げられる。熱硬化
性樹脂の場合、樹脂の粘度が低く繊維表面に濡れ易い、
表面処理された繊維上の官能基と熱硬化性樹脂の反応基
とがカップリング作用効果を示すと考えられる。一方、
熱可塑性樹脂の場合、樹脂の粘度が高くかつ反応性に乏
しいため十分な補強効果が得られていないものと考えら
れる。また特に炭素繊維の場合、他の無機繊維に比べて
も更に官能基が少ないため、ガラス繊維のようなシラン
カップリング剤による表面処理効果がほとんどなく、繊
維自身の持つ高特性が十分に利用できていないのが実状
である。
However, it is generally expected that the filling of the thermoplastic resin with the inorganic fiber such as the carbon fiber is higher than the filling of the thermosetting resin with the inorganic fiber such as the carbon fiber. The current situation is that the reinforcement effect is not so high. The reason for this is that the affinity between the inorganic fiber and the thermoplastic resin is poor. In the case of thermosetting resin, the viscosity of the resin is low and the fiber surface is easily wetted,
It is considered that the functional group on the surface-treated fiber and the reactive group of the thermosetting resin exhibit a coupling effect. on the other hand,
In the case of a thermoplastic resin, it is considered that a sufficient reinforcing effect is not obtained because the resin has high viscosity and poor reactivity. Also, especially in the case of carbon fiber, since it has fewer functional groups than other inorganic fibers, there is almost no surface treatment effect with a silane coupling agent such as glass fiber, and the high characteristics of the fiber itself can be fully utilized. The reality is that they do not.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等はか
かる課題を解決すべく鋭意検討を行なった結果、炭素長
繊維を張力下に引き揃えながら不飽和カルボン酸又はそ
の誘導体で変性されたオレフィン系重合体であることを
特徴とする熱可塑性樹脂を含浸して得られる棒状の繊維
強化熱可塑性樹脂組成物を、熱可塑性樹脂強化用炭素繊
維強化樹脂組成物として使用することにより、上記課題
が解消されることを見いだし本発明に到達した。
The inventors of the present invention have made extensive studies to solve the above problems, and as a result, have been modified with unsaturated carboxylic acids or their derivatives while aligning carbon long fibers under tension. By using a rod-shaped fiber-reinforced thermoplastic resin composition obtained by impregnating a thermoplastic resin characterized by being an olefin-based polymer, by using as a carbon fiber-reinforced resin composition for thermoplastic resin reinforcement, the above problems The present invention has been reached by finding that the above is solved.

【0006】すなわち、本発明の目的は、炭素繊維が長
手方向に配列集束された熱可塑性樹脂強化用炭素繊維強
化樹脂組成物およびそれを含む高強度、高耐衝撃性を持
つ炭素繊維強化熱可塑性樹脂複合材を提供することにあ
る。
That is, an object of the present invention is to provide a carbon fiber reinforced resin composition for reinforcing a thermoplastic resin in which carbon fibers are arrayed and bundled in the longitudinal direction, and a carbon fiber reinforced thermoplastic resin containing the same and having high strength and high impact resistance. It is to provide a resin composite material.

【0007】そしてその目的は、炭素長繊維を張力下に
引き揃えながら熱可塑性樹脂を含浸して得られる棒状の
組成物を切断してなる炭素繊維強化樹脂組成物であって
該熱可塑性樹脂が不飽和カルボン酸又はその誘導体で変
性されたオレフィン系重合体であることを特徴とする、
熱可塑性樹脂強化用炭素繊維強化樹脂組成物、および、
炭素長繊維を張力下に引き揃えながら熱可塑性樹脂を含
浸して得られる棒状の組成物を切断してなる炭素繊維強
化樹脂組成物であって該熱可塑性樹脂が、不飽和カルボ
ン酸又はその誘導体で変性されたオレフィン系重合体で
ある熱可塑性樹脂強化用炭素繊維強化樹脂組成物5〜3
0重量部を、熱可塑性樹脂100重量部に対して配合し
たことを特徴とする炭素繊維強化樹脂複合材、さらに詳
しくは、炭素長繊維を張力下に引き揃えながら熱可塑性
樹脂を含浸して得られる棒状の組成物を切断してなる炭
素繊維強化樹脂組成物であって該炭素長繊維50〜95
重量%配合している、上記熱可塑性樹脂強化用炭素繊維
強化樹脂組成物、により容易に達成することができる。
[0007] The object is a carbon fiber reinforced resin composition obtained by cutting a rod-shaped composition obtained by impregnating a long carbon fiber under tension with a thermoplastic resin and squeezing the rod-shaped composition. An olefin polymer modified with an unsaturated carboxylic acid or a derivative thereof,
Carbon fiber reinforced resin composition for thermoplastic resin reinforcement, and
A carbon fiber reinforced resin composition obtained by cutting a rod-shaped composition obtained by impregnating a long carbon fiber under tension with a thermoplastic resin, wherein the thermoplastic resin is an unsaturated carboxylic acid or derivative thereof. Carbon fiber reinforced resin composition for reinforcing thermoplastic resin, which is an olefin polymer modified with
0 parts by weight was blended with 100 parts by weight of the thermoplastic resin, more specifically, a carbon fiber reinforced resin composite material, more specifically, obtained by impregnating a thermoplastic resin while aligning carbon long fibers under tension. Carbon fiber reinforced resin composition obtained by cutting a rod-shaped composition to be used
This can be easily achieved by the above-mentioned carbon fiber reinforced resin composition for reinforcing thermoplastic resin, which is blended in a weight percentage.

【0008】以下、本発明を詳細に説明する。本発明で
は炭素繊維として従来公知の種々の炭素繊維が使用で
き、具体的にはポリアクリロニトリル系、ピッチ系、レ
ーヨン系等の炭素繊維が挙げられる。本発明に用いるオ
レフィン系重合体は、ポリオレフィンに不飽和カルボン
酸又はその誘導体を加えてラジカル発生剤の存在下又は
不存在下で反応を行うことによって、ポリオレフィンの
分子鎖中に不飽和カルボン酸又はその誘導体を化学的に
結合せしめることによって得られるオレフィン系重合体
である。
The present invention will be described in detail below. In the present invention, various conventionally known carbon fibers can be used as the carbon fibers, and specific examples thereof include polyacrylonitrile-based, pitch-based and rayon-based carbon fibers. The olefin-based polymer used in the present invention is obtained by adding an unsaturated carboxylic acid or a derivative thereof to a polyolefin and carrying out the reaction in the presence or absence of a radical generator to give an unsaturated carboxylic acid or It is an olefin polymer obtained by chemically bonding the derivative.

【0009】不飽和カルボン酸又はその誘導体として
は、無水物が好ましく具体的には無水マレイン酸、マレ
イン酸、アクリル酸、脂環式カルボン酸等を用いること
ができる。オレフィン系重合体が、ポリプロピレンの場
合、結合させる不飽和カルボン酸又はその誘導体の量
は、ポリプロピレン100重量部に対して0.005〜
5重量部でもあり、好ましくは0.01〜1.0重量部
である。又、オレフィン系重合体に不飽和カルボン酸又
はその誘導体を化学的に結合する方法は公知の方法が適
用できる。
The unsaturated carboxylic acid or its derivative is preferably an anhydride, and specifically, maleic anhydride, maleic acid, acrylic acid, alicyclic carboxylic acid or the like can be used. When the olefin polymer is polypropylene, the amount of the unsaturated carboxylic acid or its derivative to be bonded is 0.005 to 100 parts by weight of polypropylene.
It is also 5 parts by weight, preferably 0.01 to 1.0 parts by weight. Known methods can be applied to the method of chemically bonding the unsaturated carboxylic acid or its derivative to the olefin polymer.

【0010】熱可塑性樹脂強化用炭素繊維強化樹脂組成
物中の炭素繊維含有率としては、通常50〜95重量
%、好ましくは70〜90重量%とするのがよい。そし
てかかる炭素繊強化熱可塑性樹脂複合体は上記補強用炭
素長繊維を張力下で引き揃えながら熱可塑性樹脂を含浸
し成形する、いわゆるプルトルージョン法により製造さ
れる。本発明では、かかる棒状の組成物を切断して、繊
維方向の長さを好ましくは3〜25mm、より好ましく
は6〜10mmの小複合体とする。この範囲を逸脱する
と射出成形時のフィード性の点で望ましくない。
The carbon fiber content in the thermoplastic resin-reinforced carbon fiber reinforced resin composition is usually 50 to 95% by weight, preferably 70 to 90% by weight. The carbon fiber reinforced thermoplastic resin composite is manufactured by a so-called pull-through method, in which the reinforcing carbon long fibers are aligned under tension and impregnated with the thermoplastic resin to be molded. In the present invention, such a rod-shaped composition is cut into a small composite having a length in the fiber direction of preferably 3 to 25 mm, more preferably 6 to 10 mm. If it deviates from this range, it is not desirable in terms of feedability during injection molding.

【0011】次に、本発明の熱可塑性樹脂強化用炭素繊
維強化樹脂組成物を熱可塑性樹脂に配合した高強度、高
耐衝撃性を有する炭素繊維強化樹脂熱可塑性樹脂複合材
について説明する。マトリックス樹脂としては、特に限
定はされないが例えば、ポリカーボネート、ポリスチレ
ン、ポリエステル、ポリアミド、ポリオレフィン、アク
リル樹脂、ポリオキシメチレン、ポリフェニレンサルフ
ァイド、ポリフェニレンエーテル、ポリフェニレンオキ
シド、ポリブチレンテレフタレート、ポリエーテル・エ
ーテルケトン、ポリフェニレンスルホン、液晶ポリマ
ー、アクリロニトリル−ブタジェン−スチレン樹脂(A
BS樹脂)、フ ッ素樹脂などのポリマー類又はこれら
のコポリマー類などの公知の熱可塑性樹脂あるいはそれ
らのポリマーアロイが挙げられる。
Next, a description will be made of a carbon fiber reinforced thermoplastic resin composite material having high strength and high impact resistance, which is obtained by blending the thermoplastic resin-reinforced carbon fiber reinforced resin composition of the present invention with a thermoplastic resin. The matrix resin is not particularly limited, and examples thereof include polycarbonate, polystyrene, polyester, polyamide, polyolefin, acrylic resin, polyoxymethylene, polyphenylene sulfide, polyphenylene ether, polyphenylene oxide, polybutylene terephthalate, polyether ether ketone, polyphenylene sulfone. , Liquid crystal polymer, acrylonitrile-butadiene-styrene resin (A
Known thermoplastic resins such as polymers such as BS resin) and fluorine resins or copolymers thereof, or polymer alloys thereof can be mentioned.

【0012】上述した熱可塑性樹脂強化用炭素繊維強化
樹脂組成物とマトリックス樹脂の配合割合は、熱可塑性
樹脂100重量部に対して、熱可塑性樹脂強化用炭素繊
維強化樹脂組成物を5〜50重量部、好ましくは、5〜
20重量部の範囲である。熱可塑性樹脂強化用炭素繊維
強化樹脂組成物の配合量が5重量部未満では炭素繊維の
量が少なく高特性を発現しにくく、また50重量部を越
えるとオレフィン系重合体の量が多くなり、物性の低
下、マトリックス樹脂への混合、分散の工程に於て種々
の問題が発生する。本手法は、接着性の悪い炭素繊維と
樹脂との間に反応性の高いオレフィン系重合体を介在さ
せることにより両者の結合が強固になっていると考えら
れる。また、この様なマトリックス樹脂と本発明のオレ
フィン系重合体樹脂組成物との配合方法としては特に限
定サれるものではないが、通常一軸押し出し機、二軸押
し出し機、プレス機、高速ミキサー、射出成形機等の方
法により行なわれる。更に、上記成分以外に本発明の効
果を損なわない程度に例えば、他種炭素繊維、ガラス繊
維、アラミド繊維、ボロン繊維、炭化ケイ素繊維などの
短繊維及び長繊維、ホイスカー類、これらにニッケル、
アルミニウム、銅などの金属をコーテイングした繊維あ
るいは金属繊維などの繊維状強化材類、あるいはカーボ
ンブラック、二硫化モリブデン、マイカ、タルク、炭酸
カルシウムなどのフィラー類からなる強化材、安定剤、
滑剤、その他添加剤などを加えることが出来る。以下、
実施例により具体的に本発明を説明するが、本発明はそ
の要旨を越えない限り下記の実施例に限定されるもので
はない。
The blending ratio of the above-mentioned thermoplastic resin-reinforced carbon fiber reinforced resin composition and matrix resin is 5 to 50 parts by weight of the thermoplastic resin-reinforced carbon fiber reinforced resin composition with respect to 100 parts by weight of the thermoplastic resin. Parts, preferably 5 to
It is in the range of 20 parts by weight. When the compounding amount of the carbon fiber reinforced resin composition for thermoplastic resin reinforcement is less than 5 parts by weight, the amount of carbon fibers is small and it is difficult to exhibit high characteristics, and when it exceeds 50 parts by weight, the amount of the olefin polymer increases, Various problems occur in the processes of deterioration of physical properties, mixing with matrix resin, and dispersion. In this method, it is considered that the bond between the carbon fiber and the resin having poor adhesion is strengthened by interposing a highly reactive olefin polymer. The method of blending such a matrix resin and the olefin polymer resin composition of the present invention is not particularly limited, but usually a single-screw extruder, a twin-screw extruder, a press machine, a high-speed mixer, injection It is carried out by a method such as a molding machine. Further, to the extent that the effects of the present invention other than the above components are not impaired, other types of carbon fibers, glass fibers, aramid fibers, boron fibers, short fibers such as silicon carbide fibers and long fibers, whiskers, nickel in these,
Fiber-reinforced materials such as fibers coated with metals such as aluminum and copper or metal fibers, or reinforcing materials and stabilizers composed of fillers such as carbon black, molybdenum disulfide, mica, talc and calcium carbonate.
Lubricants and other additives can be added. Less than,
The present invention will be specifically described by way of examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

【0013】[0013]

【実施例】【Example】

実施例1 マトリックス樹脂として変性ポリオレフィン樹脂(三菱
化成社製“ノバテックAP−790P”)を用い、強化
繊維としてピッチ系炭素繊維(三菱化成社製“ダイアリ
ードK223”)を用いて、棒状の組成物(直径3m
m、繊維含有率77重量%)を成形温度240℃で引き
抜き成形法により調整した。この棒状の組成物を約10
mm長にカッターにより切断して炭素繊維強化樹脂組成
物を作製した。
Example 1 A modified polyolefin resin (“Novatech AP-790P” manufactured by Mitsubishi Kasei Co., Ltd.) was used as a matrix resin, and a pitch-based carbon fiber (“Dialead K223” manufactured by Mitsubishi Kasei Co., Ltd.) was used as a reinforcing fiber. (Diameter 3m
m, fiber content 77% by weight) was adjusted by a pultrusion molding method at a molding temperature of 240 ° C. This rod-shaped composition is about 10
A carbon fiber reinforced resin composition was produced by cutting into a mm length with a cutter.

【0014】この組成物とポリプロピレン樹脂(三菱化
成社製“三菱ポリプロ8800J”)を炭素繊維含有率
として20重量%(変性ポリオレフィン量6重量%)に
なるように配合した後、射出成形にて成形し試験片を得
た。その後、その物性を測定した。
This composition and polypropylene resin ("Mitsubishi Polypro 8800J" manufactured by Mitsubishi Kasei Co., Ltd.) were blended so as to have a carbon fiber content of 20% by weight (modified polyolefin amount 6% by weight), and then molded by injection molding. Then, a test piece was obtained. Then, the physical properties were measured.

【0015】実施例2 マトリックス樹脂として変性ポリオレフィン樹脂(三菱
化成社製“ノバテックAP−790P”)を用い、強化
繊維としてピッチ系炭素繊維(三菱化成社製“ダイアリ
ードK223”)を用いて、棒状の組成物(直径3m
m、繊維含有率83重量%)を成形温度240℃で引き
抜き成形法により調整した。この棒状の組成物を約10
mm長にカッターにより切断して炭素繊維強化樹脂組成
物を作製した。
Example 2 A modified polyolefin resin ("Novatech AP-790P" manufactured by Mitsubishi Kasei Co., Ltd.) was used as a matrix resin, and a pitch-based carbon fiber ("Dilead K223" manufactured by Mitsubishi Kasei Co., Ltd.) was used as a reinforcing fiber. Composition (diameter 3m
m, fiber content 83% by weight) was adjusted by a pultrusion molding method at a molding temperature of 240 ° C. This rod-shaped composition is about 10
A carbon fiber reinforced resin composition was produced by cutting into a mm length with a cutter.

【0016】この組成物とポリプロピレン樹脂(三菱化
成社製“三菱ポリプロ8800J”)を炭素繊維含有率
として20重量%(変性ポリオレフィン量4重量%)に
なるように配合した後、射出成形にて成形し試験片を得
た。その後、その物性を測定した。
This composition was blended with polypropylene resin ("Mitsubishi Polypro 8800J" manufactured by Mitsubishi Kasei Co., Ltd.) so as to have a carbon fiber content of 20% by weight (amount of modified polyolefin of 4% by weight), followed by injection molding. Then, a test piece was obtained. Then, the physical properties were measured.

【0017】実施例3 マトリックス樹脂として変性ポリオレフィン樹脂(三菱
化成社製“ノバテックAP−790P”)を用い、強化
繊維としてピッチ系炭素繊維(三菱化成社製“ダイアリ
ードK223”)を用いて、棒状の組成物(直径3m
m、繊維含有率77重量%)を成形温度240℃で引き
抜き成形法により調整した。この棒状の組成物を約10
mm長にカッターにより切断して炭素繊維強化樹脂組成
物を作製した。
Example 3 A modified polyolefin resin (“Novatech AP-790P” manufactured by Mitsubishi Kasei) was used as a matrix resin, and a pitch-based carbon fiber (“Dialead K223” manufactured by Mitsubishi Kasei) was used as a reinforcing fiber. Composition (diameter 3m
m, fiber content 77% by weight) was adjusted by a pultrusion molding method at a molding temperature of 240 ° C. This rod-shaped composition is about 10
A carbon fiber reinforced resin composition was produced by cutting into a mm length with a cutter.

【0018】この組成物とABS樹脂(三菱化成ポリテ
ック社製)を炭素繊維含有率として20重量%(変性ポ
リオレフィン量6重量%)になるように配合した後、射
出成形にて成形し試験片を得た。その後、その物性を測
定した。
This composition and ABS resin (manufactured by Mitsubishi Kasei Polytech Co., Ltd.) were blended so as to have a carbon fiber content of 20% by weight (modified polyolefin amount: 6% by weight), and then molded by injection molding to obtain a test piece. Obtained. Then, the physical properties were measured.

【0019】比較例1 炭素短繊維集合体20重量%と上記ポリプロピレン樹脂
とをドライブレンドした後、スクリュー押出機にしこ
み、溶融混合してストランド状に押出し、水冷後ペレッ
ト状に切断した。このようにして得られた炭素短繊維強
化成形材料を90℃4時間乾燥した後、射出成形にて成
形し試験片を得た。その後、その物性を測定した。
Comparative Example 1 20% by weight of a short carbon fiber aggregate and the above polypropylene resin were dry blended, and then the mixture was put into a screw extruder, melt-mixed, extruded into a strand, cooled with water, and cut into a pellet. The short carbon fiber reinforced molding material thus obtained was dried at 90 ° C. for 4 hours and then molded by injection molding to obtain a test piece. Then, the physical properties were measured.

【0020】比較例2 炭素短繊維集合体20重量%と上記ポリプロピレン樹脂
72重量%、上記変性ポリオレフィン樹脂6重量%とを
ドライブレンドした後、スクリュー押出機にしこみ、溶
融混合してストランド状に押出し、水冷後ペレット状に
切断した。このようにして得られた炭素短繊維強化成形
材料を90℃4時間乾燥した後、射出成形にて成形し試
験片を得た。その後、その物性を測定した。
Comparative Example 2 20% by weight of a short carbon fiber aggregate, 72% by weight of the polypropylene resin, and 6% by weight of the modified polyolefin resin were dry-blended, then squeezed into a screw extruder, melt-mixed and extruded in a strand form. After cooling with water, it was cut into pellets. The short carbon fiber reinforced molding material thus obtained was dried at 90 ° C. for 4 hours and then molded by injection molding to obtain a test piece. Then, the physical properties were measured.

【0021】比較例3 炭素短繊維集合体20重量%と上記ABS樹脂とをドラ
イブレンドした後、スクリュー押出機にしこみ、溶融混
合してストランド状に押出し、水冷後ペレット状に切断
した。このようにして得られた炭素短繊維強化成形材料
を90℃4時間乾燥した後、射出成形にて成形し試験片
を得た。その後、その物性を測定した。実施例1〜3、
比較例1〜3の物性測定結果を第1表に示す。
Comparative Example 3 20% by weight of a short carbon fiber aggregate and the above ABS resin were dry-blended, then put into a screw extruder, melt-mixed and extruded into a strand, cooled with water and cut into pellets. The short carbon fiber reinforced molding material thus obtained was dried at 90 ° C. for 4 hours and then molded by injection molding to obtain a test piece. Then, the physical properties were measured. Examples 1-3,
Table 1 shows the results of measuring the physical properties of Comparative Examples 1 to 3.

【0022】[0022]

【表1】 [Table 1]

【0023】これらの比較により明らかなように、本発
明は、高強度、高耐衝撃性の利点を有している。しか
も、該処理は容易かつ低コストであることから、工業上
極めて有用である。
As is clear from these comparisons, the present invention has the advantages of high strength and high impact resistance. Moreover, since the treatment is easy and low cost, it is industrially very useful.

【0024】[0024]

【発明の効果】本発明の炭素繊維強化熱可塑性樹脂組成
物は、長手方向に配列集束された炭素繊維強化変性ポリ
オレフィン樹脂を切断して得られる小複合体を成形原料
とすることにより、高強度、高耐衝撃性の利点を有して
いる。しかも、該処理は容易かつ低コストであることか
ら、工業上極めて有用である。
EFFECTS OF THE INVENTION The carbon fiber reinforced thermoplastic resin composition of the present invention has a high strength by using a small composite obtained by cutting a carbon fiber reinforced modified polyolefin resin arrayed and bundled in the longitudinal direction as a forming raw material. , Has the advantage of high impact resistance. Moreover, since the treatment is easy and low cost, it is industrially very useful.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D06M 15/263 // D06M 101:40 (72)発明者 島本 勝次 神奈川県横浜市緑区鴨志田町1000番地 三 菱化成株式会社総合研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location D06M 15/263 // D06M 101: 40 (72) Inventor Katsuji Shimamoto Kamoshida, Midori-ku, Yokohama-shi, Kanagawa 1000-cho, Sanritsu Kasei Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素長繊維を張力下に引き揃えながら
熱可塑性樹脂を含浸して得られる、棒状の組成物を切断
してなる炭素繊維強化樹脂組成物であって、該熱可塑性
樹脂が不飽和カルボン酸又はその誘導体で変性されたオ
レフィン系重合体であることを特徴とする、熱可塑性樹
脂強化用炭素繊維強化樹脂組成物。
1. A carbon fiber reinforced resin composition obtained by cutting a rod-shaped composition, which is obtained by impregnating a continuous carbon fiber under tension with a thermoplastic resin, wherein the thermoplastic resin is not contained. A carbon fiber reinforced resin composition for reinforcing a thermoplastic resin, which is an olefin polymer modified with a saturated carboxylic acid or a derivative thereof.
【請求項2】 炭素長繊維を張力下に引き揃えながら
熱可塑性樹脂を含浸して得られる、棒状の組成物を切断
してなる炭素繊維強化樹脂組成物であって、該熱可塑性
樹脂が不飽和カルボン酸又はその誘導体で変性されたオ
レフィン系重合体である熱可塑性樹脂強化用炭素繊維強
化樹脂組成物5〜30重量部を、熱可塑性樹脂100重
量部に対して配合してなることを特徴とする炭素繊維強
化熱可塑性樹脂複合材
2. A carbon fiber reinforced resin composition obtained by cutting a rod-shaped composition, which is obtained by impregnating a long carbon fiber under tension with a thermoplastic resin, and wherein the thermoplastic resin is not contained. Characterized by adding 5 to 30 parts by weight of a carbon fiber reinforced resin composition for reinforcing a thermoplastic resin, which is an olefin polymer modified with a saturated carboxylic acid or a derivative thereof, to 100 parts by weight of the thermoplastic resin. Carbon fiber reinforced thermoplastic resin composite material
JP27278391A 1991-10-21 1991-10-21 Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material Pending JPH05112657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27278391A JPH05112657A (en) 1991-10-21 1991-10-21 Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27278391A JPH05112657A (en) 1991-10-21 1991-10-21 Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material

Publications (1)

Publication Number Publication Date
JPH05112657A true JPH05112657A (en) 1993-05-07

Family

ID=17518691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27278391A Pending JPH05112657A (en) 1991-10-21 1991-10-21 Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material

Country Status (1)

Country Link
JP (1) JPH05112657A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034598A1 (en) * 1994-06-13 1995-12-21 Chisso Corporation Long-fiber-reinforced polymer alloy resin composition
JP2005125581A (en) * 2003-10-23 2005-05-19 Daicel Chem Ind Ltd Carbon long fiber-reinforced resin pellet, its manufacturing method, and molded article
WO2011064994A1 (en) 2009-11-30 2011-06-03 株式会社カネカ Carbon fiber reinforced composite materials
WO2013137246A1 (en) 2012-03-14 2013-09-19 帝人株式会社 Molding material, molded product thereof, and method for producing said molded product
WO2013183636A1 (en) 2012-06-06 2013-12-12 帝人株式会社 Molding material, molded body of same, and method for producing molded body
WO2014007213A1 (en) 2012-07-05 2014-01-09 帝人株式会社 Material for molding, molded article produced from said material, and method for producing said molded article
WO2018168554A1 (en) 2017-03-16 2018-09-20 株式会社カネカ Bonded composite of thermoplastic-resin-based fiber-reinforced composite material and metal member, and method for producing bonded composite
US10570259B2 (en) 2015-09-02 2020-02-25 Jsr Corporation Composition and formed article
CN113789045A (en) * 2021-10-21 2021-12-14 广东粤港澳大湾区黄埔材料研究院 Polyurethane composite material and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034598A1 (en) * 1994-06-13 1995-12-21 Chisso Corporation Long-fiber-reinforced polymer alloy resin composition
JP2005125581A (en) * 2003-10-23 2005-05-19 Daicel Chem Ind Ltd Carbon long fiber-reinforced resin pellet, its manufacturing method, and molded article
WO2011064994A1 (en) 2009-11-30 2011-06-03 株式会社カネカ Carbon fiber reinforced composite materials
WO2013137246A1 (en) 2012-03-14 2013-09-19 帝人株式会社 Molding material, molded product thereof, and method for producing said molded product
US9688854B2 (en) 2012-03-14 2017-06-27 Teijin Limited Material for molding, shaped product therefrom, and method for manufacturing the shaped product
WO2013183636A1 (en) 2012-06-06 2013-12-12 帝人株式会社 Molding material, molded body of same, and method for producing molded body
WO2014007213A1 (en) 2012-07-05 2014-01-09 帝人株式会社 Material for molding, molded article produced from said material, and method for producing said molded article
US9284436B2 (en) 2012-07-05 2016-03-15 Teijin Limited Material for molding, shaped product therefrom, and method for manufacturing shaped product
US10570259B2 (en) 2015-09-02 2020-02-25 Jsr Corporation Composition and formed article
WO2018168554A1 (en) 2017-03-16 2018-09-20 株式会社カネカ Bonded composite of thermoplastic-resin-based fiber-reinforced composite material and metal member, and method for producing bonded composite
CN113789045A (en) * 2021-10-21 2021-12-14 广东粤港澳大湾区黄埔材料研究院 Polyurethane composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0150931B1 (en) Reinforced composite structures
EP0062732B1 (en) Coated carbon fiber reinforced poly(vinylidene fluoride)
JPH05112657A (en) Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material
US5641572A (en) Short carbon fiber bundling mass, process for producing the same and fiber-reinforced thermoplastic resin composition
JP2012036247A (en) Resin composition
JP2757454B2 (en) Short carbon fiber aggregate and fiber-reinforced thermoplastic resin composition obtained by blending the same
JPH0526642B2 (en)
JPS59147033A (en) Reinforced heat-conductive resin
JP3013426B2 (en) Carbon fiber reinforced thermoplastic resin composition
JPS6231107B2 (en)
JPH04279638A (en) Electrically conductive fiber-reinforced thermoplastic
JP2512028B2 (en) Carbon short fiber aggregate and fiber reinforced thermoplastic resin composition using the same
JP2000303362A (en) Sizing agent and chopped carbon fiber treated with the sizing agent
JP3008481B2 (en) Short carbon fiber aggregate and fiber reinforced thermoplastic resin composition using the same as reinforcing material
CN118359890B (en) Antistatic long glass fiber reinforced polypropylene composite material and preparation method thereof
JPS6198758A (en) Propylene resin composition
JPS59202257A (en) Electrically conductive polyamide resin composition
JP2611299B2 (en) Functionality imparting agent for resin
JP2946872B2 (en) Carbon fiber and carbon fiber reinforced resin composition using the same
JPH022990B2 (en)
JP3301099B2 (en) Short carbon fiber aggregate, method for producing the same, and fiber-reinforced thermoplastic resin composition using the same
JPH09157403A (en) Carbon short fiber assembly, its production and fiber-reinforced resin composition
JPH0326726A (en) Carbon short fiber aggregate and fiber-reinforced thermoplastic resin composition using same
CN118359890A (en) Antistatic long glass fiber reinforced polypropylene composite material and preparation method thereof
JP2000239532A (en) Thermoplastic resin composition