Nothing Special   »   [go: up one dir, main page]

JPH05108652A - Estimating system for financial property price - Google Patents

Estimating system for financial property price

Info

Publication number
JPH05108652A
JPH05108652A JP26356291A JP26356291A JPH05108652A JP H05108652 A JPH05108652 A JP H05108652A JP 26356291 A JP26356291 A JP 26356291A JP 26356291 A JP26356291 A JP 26356291A JP H05108652 A JPH05108652 A JP H05108652A
Authority
JP
Japan
Prior art keywords
equation
asset
state
price
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26356291A
Other languages
Japanese (ja)
Inventor
Giichi Tanaka
義一 田中
Shunji Takubo
俊二 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26356291A priority Critical patent/JPH05108652A/en
Publication of JPH05108652A publication Critical patent/JPH05108652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Complex Calculations (AREA)

Abstract

PURPOSE:To provide a system where a series of procedures are carried out many times to the property groups, the statistic value including the average estimated value, the standard deviation, etc., are calculated based on the estimated value calculated from the property groups, and the estimating accuracy is improved with use of a high performance computer like a supercomputer, etc., CONSTITUTION:A desired bond to be estimated is designated in a process 1. The inputted bond and N-1 pieces of bond names are selected with generation of the uniform random numbers in a process 2. In a process 3, the stock price data on a past T period of the name of e group N are read out of a stock price data base 5, an equation showing the price structure in the pest T period is decided by a prescribed method, and the price of the designated name is estimated. Then both processes 2 and 3 are carried out to a group consisting of N names including a relevant bond and the stock price is estimated in consideration of the mutual influences of bonds. Thus procedure is repeated by LL times for simulation with change of the component names of the group. Then the statistic value including the average estimated stock price, etc., obtained in the process 3 is outputted in a process 4 and the due procedure is complete.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高性能計算機使用によ
る金融資産の価格予測システムに係わり、特に統計手法
により予測精度の向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a financial asset price forecasting system using a high-performance computer, and more particularly to improving the forecasting accuracy by a statistical method.

【0002】[0002]

【従来の技術】金融資産の価格変動予測システムとし
て、MTVモデルによるアプローチが知られている。こ
の方法は 刈谷武昭著 「ポートフォリオ計量分析の基
礎」 p49−p61 東洋経済新報社 に述べられて
いる。これは、p変量の資産価格の変動の背後には、q
個の共通の状態変数があり、その状態変数の変動によっ
て資産価格が変動するという状態空間モデルに従がって
いる。状態モデルは2つの方程式系、観測方程式と状態
方程式からなる。観測方程式は、資産価格と状態変数の
関係を表現し、状態方程式は、状態変数の時間的関係を
表現する。MTVモデルでは、観測方程式を主成分分析
から決定し、それから求まる状態変数をもとに状態方程
式を定常時系列モデルによって決定する。状態方程式は
状態変数の時系列関係を表現するため、未来の状態変数
が予測可能となり、状態変数と資産価格を示す観測方程
式により資産価格が予測可能なモデルとなっている。
2. Description of the Related Art An MTV model approach is known as a system for predicting price fluctuations of financial assets. This method is described in Takeaki Kariya, “Basics of Portfolio Econometric Analysis,” p49-p61, Toyo Keizai Shinposha. This is because q
There is a common state variable, and the state space model follows that asset prices fluctuate due to changes in the state variable. The state model consists of a system of two equations, an observation equation and a state equation. The observation equation expresses the relation between the asset price and the state variable, and the state equation expresses the temporal relation of the state variable. In the MTV model, the observation equation is determined from the principal component analysis, and the state equation is determined by the steady time series model based on the state variable obtained from it. Since the state equation expresses the time series relation of the state variables, the future state variable can be predicted, and the asset price can be predicted by the observation equation showing the state variable and the asset price.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、資
産価格の予測の精度において以下のような問題点があ
る。
The above-mentioned prior art has the following problems in the accuracy of predicting asset prices.

【0004】第1は、ある個別資産の価格を予測する
際、どのような資産群を用意すべきかが示されていな
い。資産群の設定によっては、共通の変動要因によって
説明される割合がすくない可能性がある。この時は、予
測可能性が少ないはずである。
First, when predicting the price of a certain individual asset, what kind of asset group should be prepared is not shown. Depending on the set of assets, the proportion explained by common variables may be small. At this time, the predictability should be low.

【0005】第2は、ある資産価格をある資産群で上記
の解析を行った場合、当該資産の未来の株価は決定論的
に数値が与えられる。しかし、この予測値を使用する際
に必要な統計的な信頼区間などを与えることはできな
い。
Secondly, when a certain asset price is analyzed by a certain asset group, the future stock price of the asset is given a deterministic numerical value. However, it is not possible to give the statistical confidence intervals necessary for using this predicted value.

【0006】第3は、状態方程式の構造を決める際、状
態変数の値を観測方程式の主成分解析による結果から得
て時系列解析を行って推定するだけであり、あまり精度
のよい方法でない。
Thirdly, when determining the structure of the state equation, the value of the state variable is obtained from the result of the principal component analysis of the observation equation and estimated by performing time series analysis, which is not a very accurate method.

【0007】そこで、本発明の目的は、上記の問題点を
解決するため、金融資産の価格予測において、スーパコ
ンピュータなどの高性能計算機を用いて予測精度を向上
させるシステムを提供することにある。
[0007] Therefore, an object of the present invention is to provide a system for improving the accuracy of prediction of the price of financial assets by using a high performance computer such as a super computer in order to solve the above problems.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、以下の手段を設けた。
In order to achieve the above object, the following means are provided.

【0009】第1の課題に対しては、予測したい資産を
含む多数の資産からなる資産群を選択する手段を設け、
個別資産群に対し予測シミュレーションを行い、予測し
たい資産の資産群での予測可能性を、時系列構造を有す
る共通因子による説明率で判定する手段を設けた。
For the first problem, means for selecting an asset group consisting of a large number of assets including the asset to be predicted is provided,
Prediction simulation was performed for each individual asset group, and a means for determining the predictability of the asset to be predicted in the asset group by the explanation rate by a common factor having a time series structure was provided.

【0010】第2の課題に対しては、第1の課題の手段
で述べた資産群の選択の際に一様乱数を用いて選択する
手段を設け、それぞれの資産群における価格構造に基づ
いて予測したい銘柄の予測値を算出し、個別シミュレー
ションにより算出された予測値の結果を基に、平均値、
標準偏差などの統計量を算出する手段を設けた。
For the second problem, a means for selecting using a uniform random number when selecting the asset group described in the means of the first problem is provided, and based on the price structure of each asset group. Calculate the predicted value of the stock you want to predict, and based on the result of the predicted value calculated by the individual simulation, the average value,
A means for calculating statistics such as standard deviation was provided.

【0011】第3の課題に対しては、状態方程式の構造
を以下の繰り返しで求める手段を設けた。状態方程式の
初期値構造としては、従来の方法を用いて決める。そし
て、状態変数のデータとして、観測値である資産価格の
時点1からtまでのみを使って時点tの状態変数を求め
るカルマンフィルタによる手段を、観測方程式、状態方
程式から生成し状態方程式構造が安定するまで繰り返
す。
For the third problem, a means for determining the structure of the state equation by the following repetition is provided. The initial value structure of the state equation is determined using the conventional method. Then, the Kalman filter means for obtaining the state variable at the time point t using only the time points 1 to t of the asset price, which is the observed value, as the data of the state variable is generated from the observation equation and the state equation, and the state equation structure is stabilized. Repeat until.

【0012】[0012]

【作用】本発明の予測方法では、予測したい資産を指定
した場合、以下のように動作する。
The predicting method of the present invention operates as follows when an asset to be predicted is specified.

【0013】資産のグループ化部では、入力された資産
と、それ以外の複数の資産を一様乱数を発生させて選
ぶ。資産の価格予測部では、観測方程式と状態方程式か
らなる状態空間モデルを過去の資産価格から推定し、当
該資産に関する予測可能性を観測方程式の推定された係
数から算定される有効共通性を用いて判断し、予測可能
と判断した場合、推定した状態変数の時系列構造を示す
状態方程式に基づき、状態変数を予測し、予測状態変数
に基づき観測方程式から資産価格を予測する。この予測
したい資産を含む異なる複数の資産群に対し該手続き繰
り返して実施し、各資産群において算出された予測値を
基に、予測値の平均値、標準偏差などの統計量を求める
ことができ、予測値の信頼性を知ることができる。
In the asset grouping unit, the input asset and a plurality of other assets are selected by generating a uniform random number. In the asset price prediction part, a state space model consisting of an observation equation and a state equation is estimated from past asset prices, and the predictability of the asset is calculated using the effective commonality calculated from the estimated coefficient of the observation equation. If it is determined that it is predictable, the state variable is predicted based on the state equation showing the time series structure of the estimated state variable, and the asset price is predicted from the observation equation based on the predicted state variable. This procedure is repeated for different asset groups that include the asset you want to predict, and based on the predicted values calculated for each asset group, you can obtain statistics such as the average value and standard deviation of the predicted values. , It is possible to know the reliability of the predicted value.

【0014】観測方程式と状態方程式からなる状態空間
のモデル構造の決定は次のようにされる。観測方程式
は、過去の資産価格から因子分析により推定する。状態
方程式は、まず、構造方程式から状態変数の近似値を求
め、状態方程式の定常時系列解析により近似構造を求め
る。そして、観測データである過去の資産価格と観測方
程式と状態方程式から生成より生成されるカルマンフィ
ルタにより状態変数の改良値を求め、改良値に基づき状
態変数の時系列構造を再推定する。この手続きを構造が
安定するまで繰り返すことにより、より精度の高い資産
価格構造が求められる。
The model structure of the state space consisting of the observation equation and the state equation is determined as follows. The observation equation is estimated by factor analysis from past asset prices. For the state equation, first, the approximate value of the state variable is obtained from the structural equation, and the approximate structure is obtained by the steady time series analysis of the state equation. Then, the improved value of the state variable is obtained by the Kalman filter generated from the past asset price which is the observed data, the observation equation and the state equation, and the time series structure of the state variable is re-estimated based on the improved value. By repeating this procedure until the structure becomes stable, a more accurate asset price structure is required.

【0015】[0015]

【実施例】以下、本発明の金融資産予測システムにおけ
る一実施例を図面を参照しつつ説明する。ここでは、対
象金融資産として証券を例に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the financial asset forecasting system of the present invention will be described below with reference to the drawings. Here, a security will be described as an example of the target financial asset.

【0016】図1は、本発明による金融資産予測システ
ムのブロック図、図2、3、4は、証券価格のモデル化
と予測方式を示す詳細図である。
FIG. 1 is a block diagram of a financial asset forecasting system according to the present invention, and FIGS. 2, 3 and 4 are detailed diagrams showing the modeling and forecasting method of securities prices.

【0017】処理1で予測所望の証券を指定する。処理
2では、入力された証券と、それ以外にN−1個の証券
銘柄を一様乱数を発生させて選ぶ。例えば、選択する母
集団として東証1部上場の構成銘柄(約1000)とす
る場合,Nとして50程度がよい。処理3では、該グル
ープN銘柄の過去T期間の株価データを株価データベー
ス5から読み込み、後で説明する方法により過去T期間
内の価格構造を示す方程式を決定し、指定された銘柄の
価格を予測する。Tとしては、T>Nの条件が必要であ
る。Nの2倍程度の期間を設定するのが望ましい。処理
2、3を、当該証券を含むN銘柄からなるグループに対
して、相互の証券間の影響を考慮して株価予測を行う
が、これをグループの構成銘柄を変えてLL回繰り返し
てシミュレーションを行う。繰り返し回数は多い方が望
ましい。この場合1000回以上が適当である。そし
て、LL回のシミュレーションの後、処理4において処
理3で求められた予測株価の平均値などの統計量を出力
して終了する。このような処理はスーパコンピュータの
ような高性能計算機を用いて初めて実用的になるもので
ある。
In the process 1, a security desired to be predicted is designated. In process 2, the input securities and N-1 securities issues other than that are generated by generating uniform random numbers and selected. For example, when the selected population is the constituents (about 1000) listed on the First Section of the Tokyo Stock Exchange, N is preferably about 50. In the process 3, the stock price data of the N issues in the past T period is read from the stock price database 5, the equation showing the price structure in the past T period is determined by the method described later, and the price of the designated issue is predicted. To do. As T, the condition of T> N is required. It is desirable to set the period about twice N. Stock price forecasting is performed for the group consisting of N issues including the securities in consideration of the mutual influence of securities, but this is repeated LL times by changing the constituents of the group to perform the simulation. To do. It is desirable that the number of repetitions is large. In this case, 1000 times or more is suitable. Then, after LL times of simulation, in process 4, the statistical value such as the average value of the predicted stock price obtained in process 3 is output, and the process ends. Such processing is practical only when a high-performance computer such as a super computer is used.

【0018】次に、証券N銘柄の価格構造の決定法の処
理を述べる。刈谷武昭著 「ポートフォリオ計量分析の
基礎」 東洋経済新報社p50−p51に述べられてい
る状態空間モデルがある。N銘柄の時刻tの株価収益率
(1円あたりの収益)Xt=(x1t,x2t,..,
Nt)の背後には、q個の共通変動要因としての共通因
子変数ft=(f1t,f2t,...,fqt)がある。そ
の共通因子の変動によってX#が変動するモデルであ
る。以後、これまで状態変数と呼んでいた変数を共通因
子変数と呼ぶことにする。この時、以下の2つの方程式
からなる。
Next, the processing of the method for determining the price structure of the N issue of securities will be described. Takeaki Kariya "Basics of Portfolio Econometric Analysis" There is a state space model described in Toyo Keizai, Inc. p50-p51. Price-earnings ratio of the time t of N stocks (revenue per 1 yen) X t = (x 1t, x 2t, ..,
Behind (x Nt ), there are q common factor variables f t = (f 1t , f 2t , ..., F qt ) as common fluctuation factors. This is a model in which X # varies depending on the variation of the common factor. Hereafter, the variables that have been called state variables until now will be called common factor variables. At this time, it consists of the following two equations.

【0019】1.観測方程式:Xtとftの関係を表現す
るモデル
1. Observation equation: A model expressing the relationship between X t and f t

【0020】[0020]

【数1】 [Equation 1]

【0021】ここで、εitは白色雑音である。Here, ε it is white noise.

【0022】2.状態方程式:共通因子ftの時間的変
動構造を表現するモデル
2. State equation: A model that expresses the time-varying structure of the common factor f t

【0023】[0023]

【数2】 [Equation 2]

【0024】ここで、ηitは白色雑音である。Here, η it is white noise.

【0025】処理3は観測方程式、状態方程式の構造を
決定し、指定された銘柄の予測可能性をチェックし予測
値を求める処理である。図2、図3、図4にそれぞれの
詳細を示す。
Process 3 is a process of determining the structure of the observation equation and the state equation, checking the predictability of the designated brand, and obtaining the predicted value. 2, 3 and 4 show the details of each.

【0026】図2を用いて観測方程式の決定方法を説明
する。
A method of determining the observation equation will be described with reference to FIG.

【0027】処理11にて対象のグループのN個の銘柄
の期間1からTの株価を株価データベース5より読み込
む。即ち、銘柄iの時刻tの株価をPitとすると、Pit
(i=1,..,N,t=1,...,T)が設定され
る。
In process 11, the stock prices of N stocks of the target group from period 1 to T are read from the stock price database 5. That is, if the stock price of the stock i at time t is P it , then P it
(I = 1, ..., N, t = 1, ..., T) are set.

【0028】処理12では、株価の連続利回りである連
続収益率xxitを以下の式でもとめる。
In process 12, the continuous rate of return xx it , which is the continuous yield of stock prices, is determined by the following formula.

【0029】[0029]

【数3】 [Equation 3]

【0030】処理13では、各銘柄ごとに、期間1から
T−1の処理12で求めた連続収益率データから平均値
μ及び標準偏差σを求め、基準化された連続収益率xit
を以下の式で求める。
In the process 13, the average value μ and the standard deviation σ are obtained from the continuous rate of return data obtained in the process 12 of the period 1 to T-1 for each issue, and the standardized continuous rate of return x it
Is calculated by the following formula.

【0031】[0031]

【数4】 [Equation 4]

【0032】以下では、簡単のため基準化された連続収
益率を単に収益率と呼ぶことにする。
In the following, for simplicity, the standardized continuous rate of return will be simply referred to as the rate of return.

【0033】処理14では、〈数1〉に対して公知の因
子分析モデル(例えば、多変量解析ハンドブック 第7
章p183−p223 現代数学社)を適用する。入力
としては、処理13で求めた各銘柄ごとのT−1個の収
益率データである。因子分析の結果、共通因子の個数
q,因子負荷量行列aij(i=1,..,N,j=
1,..,q),因子得点(共通因子の値)fit(i=
1,..,q,t=1,..,T−1),そして各銘柄
ごとの独自項εitの分散の大きさVar(εi)が求ま
る。
In process 14, a known factor analysis model (for example, Multivariate Analysis Handbook 7
Chapter p183-p223 Hyundai Mathematics Co., Ltd.) is applied. The input is T-1 pieces of profit rate data for each issue obtained in the process 13. As a result of the factor analysis, the number q of common factors and the factor load matrix a ij (i = 1, ..., N, j =
1 ,. . , Q), factor score (value of common factor) f it (i =
1 ,. . , Q, t = 1 ,. . , T-1), and the magnitude of variance Var (ε i ) of the unique term ε it for each issue.

【0034】次に、図3を用いて状態方程式〈数2〉の
決定方法を説明する。
Next, a method of determining the state equation <Equation 2> will be described with reference to FIG.

【0035】処理21では処理14で求められた共通因
子の値を用いて、それぞれの共通因子に対し、時系列モ
デルとして知られるARモデル(自己回帰モデル)によ
り推定する。この方法は、例えば、山本拓 著「経済の
時系列分析」p56−p76創文社 に記述がある。こ
れにより、〈数2〉における、時系列構造を示す 第j
因子の時系列構造の次数kjと係数bjk(k=
1,..,kj),擾乱項ηjtの分散の大きさVar
(ηj)が求まる。これを、状態方程式構造の近似値と
する。
In process 21, the common factor values obtained in process 14 are used to estimate each common factor by an AR model (autoregressive model) known as a time series model. This method is described in, for example, Taku Yamamoto, "Economy Time Series Analysis," p56-p76, Sobunsha. As a result, the j-th time-series structure in <Equation 2> is shown.
The order kj of the time series structure of factors and the coefficient b jk (k =
1 ,. . , Kj), the magnitude of the variance of the disturbance term η jt Var
j ) is obtained. This is an approximate value of the state equation structure.

【0036】処理22では、先に求めた状態方程式と、
処理14で求めた観測方程式から生成されるカルマンフ
ィルタによる算法により、共通因子fjt(j=
1,..,q,t=1,..,T−1)を再推定する。
カルマンフィルタによる算法は観測値であるxit(i=
1,..,N,t=1,..,T−1)から、状態変数
である共通因子のもっとも良い推定量を導くものであ
る。本算法は、例えば 有本卓著「カルマンフィルタ
ー」 第3章 産業図書 に記述されている。
In the process 22, the state equation previously obtained and
Using the Kalman filter algorithm generated from the observation equation obtained in process 14, the common factor f jt (j =
1 ,. . , Q, t = 1 ,. . , T-1) is re-estimated.
The Kalman filter algorithm is the observed value x it (i =
1 ,. . , N, t = 1 ,. . , T-1), the best estimator of the common factor, which is a state variable, is derived. This arithmetic method is described, for example, in Taku Arimoto, “Kalman Filter,” Chapter 3, Industrial Books.

【0037】処理23では再推定された共通因子f
jt(j=1,..,q,t=1,..,T−1)に対し
て、処理21と同様に,それぞれの共通因子に対し、A
Rモデル
In the process 23, the re-estimated common factor f
For jt (j = 1, .., q, t = 1, .., T-1), similar to the process 21, for each common factor, A
R model

【0038】(自己回帰モデル)により状態方程式構造
を推定する。これにより、
The state equation structure is estimated by (autoregressive model). This allows

【数2】における、時系列構造を示す第j因子の時系列
構造の次数kjと係数bjk(k=1,..,kj),擾
乱項ηjtの分散の大きさVar(ηj)が求まる。これ
を、状態方程式構造の改良値とする。
In Equation 2, the order kj of the time series structure of the j-th factor indicating the time series structure, the coefficient b jk (k = 1, ..., kj), and the magnitude of the variance Var (η j ) of the disturbance term η jt. Is required. This is the improved value of the state equation structure.

【0039】判定24では、状態方程式の時系列構造が
収束したかどうかを判定する。判定の条件は、各共通因
子の時系列構造の次数が不変な事および係数bjk(j=
1,...q,k=1,..,kj)の変化が一定値以
下になったとき収束した状態方程式を得たと判断する。
収束しない場合、再び、処理22、23を繰り返して、
改良された構造をもとめる。
In the decision 24, it is decided whether or not the time series structure of the state equation has converged. The judgment conditions are that the order of the time series structure of each common factor is invariant and that the coefficient b jk (j =
1 ,. . . q, k = 1 ,. . , Kj) is below a certain value, it is determined that a converged equation of state is obtained.
If not converged, the processings 22 and 23 are repeated again,
Seeking improved structure.

【0040】図4で予測したい銘柄を含む株式銘柄のグ
ループ化による予測可能性のチェックを行う。予測可能
性があるための条件は、当該銘柄に関する共通因子によ
って説明できる割合が大きいこと、及び共通因子が時系
列構造をもつことである。
In FIG. 4, the predictability is checked by grouping the stocks including the stock to be predicted. The conditions for predictability are that the ratio that can be explained by the common factors related to the issue is large, and that the common factors have a time series structure.

【0041】判定31では、上記の条件を示した有効共
通性が一定値(1以下)以上かどうかを判定する。一定
値以上の時は、このグループ化による予測可能性は低い
と判断し、棄却する。一定値以上の時は、処理32の予
測処理へ進む。有効予測性は以下のように計算する。
In the judgment 31, it is judged whether or not the effective commonality showing the above condition is a fixed value (1 or less) or more. If it is over a certain value, it is judged that the predictability of this grouping is low and it is rejected. When the value is equal to or larger than the certain value, the process proceeds to the prediction process of process 32. Effective predictability is calculated as follows.

【0042】[0042]

【数5】 [Equation 5]

【0043】即ち、共通因子fjtの状態方程式の時系列
の次数が0(この時は、白色雑音で予測可能性なし)以
外の、当該銘柄iに関する因子負荷量行列の要素の自乗
和である。また、一定値の値としては、例えば0.4程
度の値とする。一般にこの値を大きくすれば予測可能性
が高いが、条件を満たす場合少なく棄却される場合が多
くなる。
That is, it is the sum of squares of the elements of the factor loading matrix for the relevant stock i except for the degree of the time series of the state equation of the common factor f jt other than 0 (at this time, white noise has no predictability). .. The value of the constant value is, for example, about 0.4. Generally, if this value is made large, the predictability is high, but if the condition is satisfied, it will be rejected less often.

【0044】処理32では、m期先の株価を予測する。
まず、期間TからT+m−1期まで順に共通因子変数を
予測する。この時、右辺に将来のデータがきたときは、
前に求めた予測値で置き換える。また、時系列構造がな
い因子に対して式からもあきらかなように0が設定され
る。次に、指定された銘柄の期間TからT+m−1期の
間の収益率の間の予測を行う。そして、m期先の銘柄i
の株価PiT+mは現在の株価PiTと、期間TからT+m−
1期までの予測収益率を基に求められる。ここで、μ、
σは〈数〉4で示したように、解析期間(1、..,
T)における株データの平均値及び標準偏差である。
In process 32, the stock price in the m-th future is predicted.
First, the common factor variable is predicted in order from the period T to the period T + m-1. At this time, when future data comes to the right side,
Replace with the predicted value obtained previously. In addition, 0 is set for a factor having no time-series structure, as is clear from the equation. Next, a prediction is made for the rate of return of the designated brand from the period T to the period T + m-1. And the brand i of m-term ahead
The stock price P iT + m is the current stock price P iT and the period T to T + m−
It is calculated based on the forecast rate of return until the first quarter. Where μ,
σ is, as shown in <Numerical expression> 4, the analysis period (1, ...,
It is an average value and standard deviation of stock data in T).

【0045】図1に戻り処理4の説明を行う。上述のよ
うに、銘柄iを含むグループに対して多変量解析による
予測を処理2と処理3で行い、予測可能性ある場合、銘
柄iの株価を予測した。処理4では、複数の試行による
予測結果から、銘柄iに関する株価予測値の平均値、標
準偏差、t値などの統計量を求め出力して、株価の予測
を終了する。ユーザは平均値から、株価の予測値の平均
を知ることができ、標準偏差から予測値のばらつきの具
合を知ることができ信頼区間を知ることができる。
Returning to FIG. 1, the processing 4 will be described. As described above, the prediction by the multivariate analysis was performed on the group including the stock i in the processing 2 and the processing 3, and the stock price of the stock i was predicted when the prediction was possible. In process 4, statistics such as the average value, standard deviation, and t value of the stock price forecast values for issue i are calculated and output from the forecast results of a plurality of trials, and the stock price forecast ends. The user can know the average of the predicted values of the stock price from the average value, can know the degree of dispersion of the predicted values from the standard deviation, and can know the confidence interval.

【0046】[0046]

【発明の効果】本発明の金融資産の予測システムによれ
ば、以下の効果がある。
The financial asset prediction system of the present invention has the following effects.

【0047】第1に、個別の資産の予測を複数の資産と
多変量解析を用いて関連づけて予測性を高め、かつ、推
定された状態空間モデルに基づく価格構造に基づき、予
測したい資産の予測可能性があるかどうかを判断できる
方法を与えた。そして、スーパコンピュータを用いるこ
とにより予測したい資産を含む資産群に対するシミュレ
ーションを多数回実行することが可能となり、各回のシ
ミュレーションにより求められた予測価格を基に、統計
処理を行うため、その予測値の信頼度等の統計量を知る
ことができる特徴がある。
First, the prediction of an individual asset is associated with a plurality of assets using multivariate analysis to improve the predictability, and the prediction of the asset desired to be predicted is made based on the price structure based on the estimated state space model. Giving a way to determine if there is a possibility. Then, by using a super computer, it is possible to execute a large number of simulations for a group of assets including assets to be predicted, and since statistical processing is performed based on the predicted price obtained by each simulation, the predicted value There is a feature that you can know statistics such as reliability.

【0048】第2に、状態方程式の構造を、観測方程式
と状態方程式に基づくカルマンフィルタにより状態変数
を精度よく推定できるため、予測可能性が高くなった。
Secondly, since the structure of the state equation can be accurately estimated by the Kalman filter based on the observation equation and the state equation, the predictability is increased.

【0049】本発明を、日経平均を構成する株式に適用
したところ、従来法に比べて、予測誤差の分散を5%改
良することができた。
When the present invention was applied to the stocks constituting the Nikkei 225, the variance of the prediction error could be improved by 5% compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の金融資産の予測システムの
ブロック図である。
FIG. 1 is a block diagram of a financial asset prediction system according to an embodiment of the present invention.

【図2】観測方程式の推定方法である。FIG. 2 is a method of estimating an observation equation.

【図3】状態方程式の推定方法である。FIG. 3 is a method of estimating a state equation.

【図4】予測可能性のチェックと予測方式である。FIG. 4 is a predictability check and prediction method.

【符号の説明】[Explanation of symbols]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】価格予測したい金融資産を指定する手段
と、該資産と一様乱数を発生させて選定した別の複数の
資産からなる資産群を作成する手段と、該資産群に対
し、資産価格と状態変数で記述された観測方程式と状態
方程式からなる状態空間モデルに基づき、該資産群を構
成する資産の過去の価格からその構造を推定する手段
と、当該資産に関する予測可能性を、推定された該観測
方程式の係数から算定される有効共通性の大きさで判断
し、予測可能と判断した場合、該状態方程式に基づき状
態変数を予測する手段と、該予測状態変数に基づき該観
測方程式より資産価格を予測する手段と、該資産群に対
する該一連の手続きを多数回実施し、該資産群が算出し
た予測値を基に、予測値の平均値、標準偏差などの統計
量を求める手段とを具備することを特徴とする金融資産
価格予測システム。
1. A means for designating a financial asset whose price is to be predicted, a means for generating a uniform random number together with the asset to create an asset group composed of a plurality of other selected assets, and an asset for the asset group. Based on a state space model consisting of observation equations and state equations described by prices and state variables, a means for estimating the structure of the assets that make up the asset group from the past prices, and estimating the predictability of the assets. When it is judged that the effective commonality calculated from the coefficient of the observed equation is determined and it is predictable, a means for predicting a state variable based on the state equation, and the observation equation based on the predicted state variable A means for more predicting the asset price, and a means for carrying out the series of procedures for the asset group a number of times to obtain a statistic such as an average value or standard deviation of the forecast values based on the forecast values calculated by the asset group Equipped with Financial asset price prediction system according to claim Rukoto.
【請求項2】請求項1における該状態空間モデルにおけ
る該観測方程式の構造推定を、該資産群を構成する資産
の過去の価格から因子分析モデルを用いて決定すること
を特徴とする資産価格予測システム。
2. The asset price prediction, wherein the structure estimation of the observation equation in the state space model according to claim 1 is determined from a past price of assets constituting the asset group using a factor analysis model. system.
【請求項3】請求項1における該状態空間モデルにおけ
る該状態方程式の構造推定を、構造推定済みの該構造方
程式から状態変数の近似値を求め、当該近似状態変数デ
ータに対する定常時系列解析により状態方程式の近似構
造を求め、観測データである過去の資産価格と該観測方
程式と該状態方程式から生成より生成されるカルマンフ
ィルタにより状態変数の改良値を求め、該改良値に対し
定常時系列解析により状態方程式の構造を再推定し、該
手続きを状態方程式構造が収束するまで繰り返すことを
特徴とする資産価格予測システム。
3. The structure estimation of the state equation in the state space model according to claim 1, the approximate value of the state variable is obtained from the structural equation for which structure estimation has been completed, and the state is determined by a steady time series analysis on the approximate state variable data. The approximate structure of the equation is obtained, the past asset price as the observation data, the improved value of the state variable is obtained by the Kalman filter generated from the observed equation and the state equation, and the state is obtained by the steady time series analysis for the improved value. An asset price forecasting system characterized by re-estimating the structure of an equation and repeating the procedure until the state equation structure converges.
JP26356291A 1991-10-11 1991-10-11 Estimating system for financial property price Pending JPH05108652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26356291A JPH05108652A (en) 1991-10-11 1991-10-11 Estimating system for financial property price

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26356291A JPH05108652A (en) 1991-10-11 1991-10-11 Estimating system for financial property price

Publications (1)

Publication Number Publication Date
JPH05108652A true JPH05108652A (en) 1993-04-30

Family

ID=17391274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26356291A Pending JPH05108652A (en) 1991-10-11 1991-10-11 Estimating system for financial property price

Country Status (1)

Country Link
JP (1) JPH05108652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468546B1 (en) * 2000-07-15 2005-01-29 이밸류(주) Method for estimating price of assets by using yield smoothing model
KR100477014B1 (en) * 2000-07-15 2005-03-17 이밸류(주) Method for estimating price of risky assets by using reduced-form model

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468546B1 (en) * 2000-07-15 2005-01-29 이밸류(주) Method for estimating price of assets by using yield smoothing model
KR100477014B1 (en) * 2000-07-15 2005-03-17 이밸류(주) Method for estimating price of risky assets by using reduced-form model

Similar Documents

Publication Publication Date Title
Wirawan et al. Short term prediction on bitcoin price using ARIMA method
Nguyen et al. Stock investment of agriculture companies in the Vietnam stock exchange market: An AHP integrated with GRA-TOPSIS-MOORA approaches
Kabaivanov et al. Artificial intelligence in real estate market analysis
Ayitey Junior et al. Forex market forecasting with two-layer stacked Long Short-Term Memory neural network (LSTM) and correlation analysis
Moedjahedy et al. Stock price forecasting on telecommunication sector companies in Indonesia Stock Exchange using machine learning algorithms
Mahadik et al. Stock price prediction using lstm and arima
Alkhodhairi et al. Bitcoin candlestick prediction with deep neural networks based on real time data
CN116934160A (en) Method and system for evaluating asset value of data element
Ptak-Chmielewska et al. Application of the random survival forests method in the bankruptcy prediction for small and medium enterprises
Singh A long memory pattern modelling and recognition system for financial time-series forecasting
CN115841345B (en) Cross-border big data intelligent analysis method, system and storage medium
Chen et al. Modeling recovery rate for leveraged loans
Hwang et al. A two-stage probit model for predicting recovery rates
KR102519878B1 (en) Apparatus, method and recording medium storing commands for providing artificial-intelligence-based risk management solution in credit exposure business of financial institution
Adesi et al. VaR without correlations for portfolios of derivative securities
Das Macroeconomic uncertainty and FDI in developing countries.
Kumar Prediction of gold and silver prices in an emerging economy: Comparative analysis of linear, nonlinear, hybrid, and ensemble models
JPH05108652A (en) Estimating system for financial property price
Niknya et al. Financial distress prediction of Tehran Stock Exchange companies using support vector machine
Kuznietsova et al. Some methods for estimating financial risks in banking
Das Performance evaluation of modified adaptive Kalman filters, least means square and recursive least square methods for market risk beta and VaR estimation
Emamverdi et al. FORECASTING THE TOTAL INDEX OF TEHRAN STOCK EXCHANGE.
Taufik et al. A comparative study of time-series models for forecasting the Indonesian gold price
Kenrick et al. Prediction Calculation of PT. Indofood Sukses Makmur Tbk. Stock using R Studio with Autoregressive Integrated Moving Average (ARIMA) Method
Emam et al. The artificial neural network for forecasting foreign exchange rates