JPH05107214A - Gas detecting element - Google Patents
Gas detecting elementInfo
- Publication number
- JPH05107214A JPH05107214A JP29824391A JP29824391A JPH05107214A JP H05107214 A JPH05107214 A JP H05107214A JP 29824391 A JP29824391 A JP 29824391A JP 29824391 A JP29824391 A JP 29824391A JP H05107214 A JPH05107214 A JP H05107214A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gas
- heater
- adhesion layer
- iron oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 82
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 76
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 74
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 41
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 37
- 238000001514 detection method Methods 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000010304 firing Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 18
- 230000035945 sensitivity Effects 0.000 abstract description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 8
- 238000010030 laminating Methods 0.000 abstract description 3
- 230000002542 deteriorative effect Effects 0.000 abstract description 2
- 230000001464 adherent effect Effects 0.000 abstract 4
- 230000006866 deterioration Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 90
- 238000012937 correction Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000012790 adhesive layer Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は小型化が容易で生産性の
高い厚膜タイプのガス検知素子に関するものであり、更
に詳しくは基板と感応部及び基板とヒーターとが強固に
密着したガス検知素子とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thick film type gas detecting element which can be easily miniaturized and has high productivity. More specifically, the present invention relates to a gas detecting element in which a substrate and a sensitive part and a substrate and a heater are firmly adhered to each other. The present invention relates to an element and a manufacturing method thereof.
【0002】[0002]
【従来の技術】大気中でのガス濃度や湿度を検知する手
段として、酸化鉄からなるガスセンサもしくは湿度セン
サを用いればよいことが知られている。なお、以下記載
の内容においては湿度もガス成分のひとつであることか
ら、ガス検知素子の意味するところの中に湿度センサを
含ませるものとする。このようなセンサとしては、バル
ク状の酸化鉄に電極を施し、ヒーターコイルで外部から
加熱するタイプのものなどが公知である。しかし、その
生産性やコストなどの点から、近年、厚膜タイプのガス
センサが検討されている。例えば、図4に示すように基
板1の上面に電極3を設け、これに酸化鉄からなるガス
感応部を設けた構造となっている。この素子はコストや
生産性の点で優れているだけでなく、応答性が早いな
ど、特性面でも優れた特徴を有している。しかしなが
ら、その反面、基板と素子とが剥離しやすいという欠点
があった。また、単に印刷,焼成後の厚膜の密着性が弱
いだけではない。一般に酸化鉄を用いた検知素子は通常
の大気中で長期間使用した場合、素子表面に吸着した水
分や雑ガスを取り除くため、加熱クリーニングされた
り、ガス選択性の向上を図るために素子を200 〜500 ℃
の範囲の最適温度で連続加熱することが行なわれてい
る。2. Description of the Related Art It is known that a gas sensor made of iron oxide or a humidity sensor may be used as a means for detecting gas concentration and humidity in the atmosphere. Since humidity is one of the gas components in the following description, the humidity sensor is included in the meaning of the gas detecting element. As such a sensor, there is known a sensor in which an electrode is applied to bulk iron oxide and heated by a heater coil from the outside. However, from the viewpoint of productivity and cost, a thick film type gas sensor has been studied in recent years. For example, as shown in FIG. 4, an electrode 3 is provided on the upper surface of the substrate 1, and a gas sensitive portion made of iron oxide is provided on the electrode 3. This element is not only excellent in cost and productivity, but also has excellent characteristics such as fast response. However, on the other hand, there is a drawback that the substrate and the element are easily separated. Moreover, the adhesion of the thick film after printing and firing is not only weak. Generally, when a sensing element using iron oxide is used for a long period of time in normal air, it is heated and cleaned to remove the moisture and miscellaneous gas adsorbed on the element surface. ~ 500 ℃
Continuous heating is carried out at the optimum temperature in the range.
【0003】上記した理由から、ガス検知素子には高温
に長期間さらされたり、急激な熱サイクル負荷が加わる
ことが多い。このような苛酷な状況下では基板と感応部
との間で、両者の熱膨脹係数の差に起因してクラックな
どが発生し、このために感応部が基板から剥離しやすい
といった問題もあった。感応部と基板との密着強度が弱
いと、機械的振動や衝撃などによっても剥離しやすく、
このような感応部と基板との密着性に起因する信頼性上
の問題は厚膜センサを実用化する際の最も重要な課題の
1つとなっていた。For the above-mentioned reasons, the gas sensing element is often exposed to a high temperature for a long period of time or is subjected to a sudden thermal cycle load. Under such a harsh condition, a crack or the like occurs between the substrate and the sensitive section due to the difference in thermal expansion coefficient between the two, and this causes a problem that the sensitive section is easily separated from the substrate. If the adhesive strength between the sensitive part and the substrate is weak, it may easily peel off due to mechanical vibration or shock.
The reliability problem due to the adhesion between the sensitive part and the substrate has been one of the most important problems in putting the thick film sensor into practical use.
【0004】また、厚膜ヒーターと基板との密着性に関
しても、同様の問題点が指摘されており、こういった問
題点を改善すべく検討が行なわれてきた。例えば、検知
素子の製造工程において、感応部を高温にて焼成せしめ
ることにより、基板と感応層の界面において反応層を生
成させることで、基板との密着性を強固なものとするこ
とが考えられるが、この方法では感応部と基板とを強固
に密着させるのにかなりの高温を必要とするため、感応
組織の焼結の進行や基板からの不純物拡散などにより、
検知特性が劣化してしまうという問題があった。また、
特願昭61−93944号では基板表面に人工的な凹凸
を設けることで、基板と検知部との密着性を高めること
が検討されてきたが、例えば、凹凸面上に厚膜状の電極
やヒーターを印刷して素子を形成した場合に、基板表面
の凹凸により断線や導通不良が生じてしまうなど、実用
上の困難が大きかった。Similar problems have also been pointed out regarding the adhesion between the thick film heater and the substrate, and studies have been conducted to improve these problems. For example, in the manufacturing process of the sensing element, it is conceivable that the sensitive portion is baked at a high temperature to generate a reaction layer at the interface between the substrate and the sensitive layer, thereby strengthening the adhesion to the substrate. However, in this method, a fairly high temperature is required to firmly adhere the sensitive part and the substrate, so that due to the progress of sintering of the sensitive structure or the diffusion of impurities from the substrate,
There is a problem that the detection characteristics deteriorate. Also,
In Japanese Patent Application No. 61-93944, it has been considered to improve the adhesion between the substrate and the detection part by providing artificial irregularities on the substrate surface. For example, a thick film electrode or When a heater is printed to form an element, unevenness on the surface of the substrate causes disconnection and defective conduction, which is a great practical difficulty.
【0005】そのほか、特願昭57−50648号や特
願昭60−142240号においては、例えば、基板と
感応部との間にSi O2 ,B2 O3 などのガラス成分か
らなる密着層を介在させることにより、基板と感応部と
の密着性を改善するなどの方法が提案されているが、こ
ういったガラス成分を含む密着層の場合には、基板と感
応部との密着強度は良好である反面、焼成時のガラス成
分と感応部との反応により感度劣化したり、長期信頼性
においてガラス成分の拡散により、やはり感度が低下す
るという問題があった。こういったことから、従来の厚
膜タイプの検知素子においては、実用上十分な感度特性
や長期の感度維持と機械的強度や熱サイクルなどの熱衝
撃に対する信頼性とを同時に解決することが困難であっ
た。[0005] In addition, in Japanese Patent Application No. Sho 57-50648 Patent and Japanese Patent Application Sho 60-142240, for example, the adhesion layer comprising a glass component such as S i O 2, B 2 O 3 between the substrate and the sensitive part A method has been proposed to improve the adhesion between the substrate and the sensitive part by interposing a glass. However, in the case of an adhesive layer containing such a glass component, the adhesion strength between the substrate and the sensitive part is On the other hand, there is a problem that the sensitivity is deteriorated due to the reaction between the glass component and the sensitive portion during firing, and the sensitivity is also lowered due to the diffusion of the glass component in long-term reliability. For these reasons, it is difficult for the conventional thick film type sensing element to simultaneously solve practically sufficient sensitivity characteristics, long-term sensitivity maintenance, and mechanical strength and reliability against thermal shock such as thermal cycling. Met.
【0006】[0006]
【発明が解決しようとする課題】本発明はかかる事情を
背景にしてなされたものであり、その目的は検知特性を
劣化させることなく、酸化鉄を主材とする感応部と基板
との密着性を強固にしたガス検知素子を提供することに
あり、また、もう1つの目的とするところは、加熱用の
厚膜ヒーターと基板との密着性を改善することで、ヒー
ター寿命の飛躍的向上を図り、長期に渡って安定に動作
するガス検知素子を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object thereof is the adhesion between a sensitive portion containing iron oxide as a main material and a substrate without deteriorating detection characteristics. It is to provide a gas detection element with a solid structure, and another purpose is to improve the adhesion between the thick film heater for heating and the substrate, thereby dramatically improving the life of the heater. The object is to provide a gas detection element that operates stably over a long period of time.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、本発明者らは酸化鉄からなるガス検知素子におい
て、感応部と基板との密着性を改善すべく、鋭意研究し
た。その結果、感応部の主材である酸化鉄からなる密着
層を基板と感応部の間に介在させることで、良好な密着
性と実用上十分高い感度を確認した。この酸化鉄からな
る密着層は感応部を積層する前に、予め厚膜印刷法によ
って基板に形成され、1250℃〜1550℃、望ましくは1300
℃〜1450℃で焼付けることにより用意される。次にその
上に、感応部を積層して焼成することで、感応部と基板
とが強固に密着すると共に、良好な感度特性を有するガ
スセンサを得ることができた。In order to achieve the above object, the inventors of the present invention have diligently studied to improve the adhesion between the sensitive portion and the substrate in the gas detection element made of iron oxide. As a result, good adhesion and practically high enough sensitivity were confirmed by interposing an adhesion layer made of iron oxide, which is the main material of the sensitive area, between the substrate and the sensitive area. The adhesion layer made of iron oxide is formed on the substrate in advance by a thick film printing method before laminating the sensitive part, and is 1250 ° C to 1550 ° C, preferably 1300 ° C.
Prepared by baking at ℃ ~ 1450 ℃. Then, by laminating and firing the sensitive portion thereon, it was possible to obtain a gas sensor having the sensitive portion firmly adhered to the substrate and having good sensitivity characteristics.
【0008】ここで、密着層の焼付け温度としては、12
50℃以下では密着層に十分な焼結強度が得られず、1550
℃を越えると、逆に基板との反応性が進行し、基板にそ
りなどが生じやすくなる。また、密着層を構成する酸化
鉄の焼結性が進行し過ぎてしまうと、この後で、感応部
を積層して焼成した際、感応部と密着層の反応性が著し
く小さく、十分な密着性が得られない。このように本発
明の特徴は感応部と基板とを密着させるために、密着層
として感応部の主材である酸化鉄を感応部と基板との間
に設けたことにある。このため良好な密着性を実現する
と共に、特性を劣化させる成分の感応部への拡散や反応
物の生成が全くみられず、実用上十分高い感度特性が得
られるに至った。Here, the baking temperature of the adhesion layer is 12
If the temperature is below 50 ° C, sufficient adhesion strength cannot be obtained for the adhesion layer.
On the other hand, if the temperature exceeds ℃, the reactivity with the substrate progresses on the contrary and the substrate is apt to warp. Further, if the sinterability of the iron oxide forming the adhesion layer is too advanced, the reactivity between the reaction part and the adhesion layer will be extremely small when the reaction part is laminated and fired after this, and sufficient adhesion will be obtained. I can't get sex. As described above, the feature of the present invention resides in that iron oxide, which is the main material of the sensitive portion, is provided as an adhesion layer between the sensitive portion and the substrate in order to bring the sensitive portion and the substrate into close contact with each other. For this reason, good adhesion was achieved, and no diffusion of components degrading the characteristics to the sensitive part or formation of reaction products was observed, resulting in obtaining sufficiently high sensitivity characteristics in practical use.
【0009】更に本発明者らはガス検知素子に設ける加
熱用ヒーターの信頼性の向上にも取り組んだ。この結
果、基板とヒーターの間に、酸化鉄に白金もしくはパラ
ジウムの一種以上を添加した密着層を介在させることに
よって、ヒーターの密着性が格段に向上すると共に、長
期の熱サイクル負荷によっても特性劣化することのない
ガスセンサ加熱用のヒーターを完成させるに至った。こ
こで、白金もしくはパラジウムを用いたのは、融点が高
く、密着層の焼付け温度において溶融もしくは著しい焼
結が起きず、均一で、微粒子状態の分散が維持できるこ
とにある。例えば、融点1063℃の金を用いた場合、金の
著しい粒成長がおきてしまい、密着性の改善は得られな
い。Further, the present inventors have made efforts to improve the reliability of the heating heater provided in the gas detection element. As a result, by interposing an adhesion layer in which one or more of platinum or palladium is added to iron oxide between the substrate and the heater, the adhesion of the heater is remarkably improved and the characteristics are deteriorated even by a long-term thermal cycle load. We have completed a heater for heating a gas sensor that does not do so. Here, platinum or palladium is used because it has a high melting point, does not melt or remarkably sinter at the baking temperature of the adhesive layer, and can maintain a uniform and fine particle state dispersion. For example, when gold having a melting point of 1063 ° C. is used, remarkable grain growth of gold occurs, and improvement in adhesion cannot be obtained.
【0010】また、添加する金属は化学的に安定であ
り、特に大気中で焼成するために耐酸化性が重要であ
る。白金は空気中で加熱しても殆んど変化しないことが
知られており、パラジウムも本焼成温度の範囲では安定
である。しかし、例えば同じ貴金属材料であってもロジ
ウムは1100℃以上に加熱すると揮発性酸化物Rh O2 の
生成による重量減少がおきることが知られており、イリ
ジウム,ルテニウムも同様に高温で揮発性酸化物を生成
してしまう。したがって、ロジウムなどを用いた場合、
非酸化性雰囲気で焼成しなければならないが、かかる条
件下では、密着層を構成する酸化鉄が還元されてしま
い、導電性をもってしまう。このため、ヒーター部の密
着層としては用いることができない。このように、本発
明においては酸化鉄に対して、白金もしくはパラジウム
を添加し、分散させることが重要である。The added metal is chemically stable, and its oxidation resistance is important especially because it is fired in the air. It is known that platinum hardly changes even when heated in air, and palladium is also stable within the range of the main firing temperature. However, for example, even if the same precious metal material is used, it is known that when rhodium is heated to 1100 ° C. or higher, weight loss occurs due to formation of volatile oxide R h O 2 , and iridium and ruthenium are also volatile at high temperatures. It produces oxides. Therefore, when rhodium or the like is used,
Although firing must be performed in a non-oxidizing atmosphere, under such conditions, the iron oxide forming the adhesion layer is reduced and becomes electrically conductive. Therefore, it cannot be used as the adhesion layer of the heater part. Thus, in the present invention, it is important to add and disperse platinum or palladium to iron oxide.
【0011】ここで、密着層を構成する酸化鉄に対し
て、添加する白金もしくはパラジウムの量は2 Vol%よ
り少ないと、熱サイクル負荷における長期の信頼性が得
られず、また40 Vol%を越えると、密着層に導通が生じ
てしまい、ヒーターの短絡が生じてしまう。このため、
添加量の範囲は2〜40 Vol%、望ましくは5〜30 Vol%
である。次に、この密着層の焼成温度は1250℃より低い
と主材である酸化鉄と基板との反応性が十分ではなく、
密着層の強度が得られない。また、焼成温度が1600℃を
越えると、逆に酸化鉄と基板との反応性が進行し過ぎて
しまい、基板にそり等が生じてしまうため、実用的では
ない。このため、焼成温度の範囲は1250℃〜1550℃、望
ましくは1300℃〜1450℃である。なお、本発明の組成物
は、酸化鉄に対して、焼結助剤等を感度特性やヒーター
の特性を阻害しない範囲で添加したものも含まれる。ま
た、白金やパラジウムを添加した密着層においては、一
部をイリジウム,ルテニウム,ロジウム,タングステン
などで添加し、合金化して用いることも含まれる。Here, if the amount of platinum or palladium added is less than 2 Vol% with respect to the iron oxide forming the adhesion layer, long-term reliability under a thermal cycle load cannot be obtained, and 40 Vol% is required. If it exceeds, conduction will occur in the adhesion layer and a short circuit of the heater will occur. For this reason,
The range of addition amount is 2 to 40 Vol%, preferably 5 to 30 Vol%
Is. Next, if the firing temperature of this adhesion layer is lower than 1250 ° C, the reactivity between the main material iron oxide and the substrate is not sufficient,
The strength of the adhesive layer cannot be obtained. If the firing temperature exceeds 1600 ° C., on the contrary, the reactivity between the iron oxide and the substrate will be excessively advanced, and the substrate will be warped, which is not practical. Therefore, the firing temperature range is 1250 ° C to 1550 ° C, preferably 1300 ° C to 1450 ° C. The composition of the present invention also includes a composition obtained by adding a sintering aid or the like to iron oxide within a range that does not impair the sensitivity characteristics and the characteristics of the heater. Further, in the adhesion layer to which platinum or palladium is added, it is also included that a part of the adhesion layer is added with iridium, ruthenium, rhodium, tungsten or the like to be alloyed and used.
【0012】[0012]
【実施例】以下図面を参照して実施例を説明する。図1
は本発明によるガス検知素子の一実施例の構成図であ
る。なお、ここで図2,図3,図4において、図1と同
一部分については同一符号を付す。4は酸化鉄を主材と
する密着層であり、感ガス層2とアルミナ基板1との間
に設ける。一方、図2及び図3は他の実施例の構成図で
あり、密着層4-1 は酸化鉄に白金もしくはパラジウムを
2〜40 Vol%添加したものである。ここで、5は白金を
含むヒーターである。以下に実施例を説明する。Embodiments will be described below with reference to the drawings. Figure 1
FIG. 1 is a configuration diagram of an embodiment of a gas detection element according to the present invention. In FIGS. 2, 3, and 4, the same parts as those in FIG. 1 are designated by the same reference numerals. Reference numeral 4 denotes an adhesion layer containing iron oxide as a main material, which is provided between the gas sensitive layer 2 and the alumina substrate 1. On the other hand, FIG. 2 and FIG. 3 are configuration diagrams of another embodiment, and the adhesion layer 4-1 is made by adding 2 to 40 vol% of platinum or palladium to iron oxide. Here, 5 is a heater containing platinum. Examples will be described below.
【0013】実施例1 本実施例では、0及び20 Vol%の白金もしくはパラジウ
ムを添加した酸化鉄にビークルを混合したペーストを密
着層として、厚み0.35 mm のアルミナ基板に印刷し、乾
燥後1200℃〜1600℃で1h焼成した。ここで用いた酸化
鉄は共沈法により硝酸鉄水溶液を炭酸ナトリウムで中和
沈殿し、十分水洗したのち凍結乾燥し、500 ℃で1h大
気中で仮焼して作製した粉末である。なお、このように
して作製した酸化鉄粉末の平均粒子径は200 オングスト
ローム〜1000オングストロームと非常に小さいため、焼
結性に優れている。また白金及びパラジウムの平均粒径
は0.5μmである。続いて、酸化鉄を主成分とする感ガ
ス層、又は白金50 Vol%を含有するヒーター層を、密着
層を施した基板に印刷し、乾燥後、650 ℃で1h焼成し
た。基板と感ガス層,ヒーター層との密着性をテープ剥
離試験により調べたところ、図5の結果を得た。図5に
示されるように、基板と感ガス層との密着性は、密着層
を設けることにより改善されることがわかる。なお、図
において○印は剥離なし、×印は剥離ありを示してい
る。又、基板とヒーター層との密着性は、密着層に白金
もしくはパラジウムを添加することにより、更に強固に
密着することも確認した。密着層の焼成温度は、1200℃
では密着層の強度不足から剥離がみられ、1600℃では基
板にそりがみられた。このため密着層の焼成温度として
は1250℃〜1550℃の範囲が望ましい。 Example 1 In this example, a paste prepared by mixing a vehicle with iron oxide added with 0 or 20 vol% of platinum or palladium was printed as an adhesion layer on an alumina substrate having a thickness of 0.35 mm and dried at 1200 ° C. Baking for 1 h at ~ 1600 ° C. The iron oxide used here is a powder produced by neutralizing and precipitating an aqueous solution of iron nitrate with sodium carbonate by a coprecipitation method, washing it thoroughly with water, freeze-drying it, and calcining it at 500 ° C. for 1 hour in the atmosphere. The iron oxide powder thus produced has an extremely small average particle diameter of 200 Å to 1000 Å, and thus has excellent sinterability. The average particle size of platinum and palladium is 0.5 μm. Subsequently, a gas-sensitive layer containing iron oxide as a main component or a heater layer containing 50% by volume of platinum was printed on the substrate provided with the adhesion layer, dried, and then baked at 650 ° C. for 1 hour. When the adhesion between the substrate and the gas-sensitive layer and the heater layer was examined by a tape peeling test, the results shown in FIG. 5 were obtained. As shown in FIG. 5, it can be seen that the adhesion between the substrate and the gas-sensitive layer is improved by providing the adhesion layer. In addition, in the figure, the mark ◯ indicates that there is no peeling, and the mark x indicates that there is peeling. It was also confirmed that the adhesion between the substrate and the heater layer was further increased by adding platinum or palladium to the adhesion layer. The firing temperature of the adhesion layer is 1200 ℃
Peeled off due to insufficient strength of the adhesion layer, and warped on the substrate at 1600 ° C. Therefore, the firing temperature of the adhesion layer is preferably in the range of 1250 ° C to 1550 ° C.
【0014】実施例2 本実施例では、0〜100 Vol %の白金もしくはパラジウ
ムを含む酸化鉄のペーストを密着層としてアルミナ基板
に印刷し、乾燥後、1400℃で1h焼成した。その後、密
着層の導電率を測定するための電極を800℃で1h焼付
けた。図6は密着層の抵抗値の測定結果である。図6に
示す通り、白金やパラジウムの含有量が増加するに従
い、密着層の抵抗値が小さくなっていく傾向が見られ
た。このように密着層の白金やパラジウムの含有量が40
Vol%を越えると密着層に導電性を生じてしまうため、
密着層の白金もしくはパラジウムの含有量としては、40
Vol%以下が望ましい。 Example 2 In this example, an iron oxide paste containing 0 to 100 Vol% platinum or palladium was printed as an adhesion layer on an alumina substrate, dried, and then baked at 1400 ° C. for 1 hour. Then, the electrode for measuring the electrical conductivity of the adhesion layer was baked at 800 ° C. for 1 hour. FIG. 6 shows the measurement results of the resistance value of the adhesive layer. As shown in FIG. 6, the resistance value of the adhesion layer tended to decrease as the platinum or palladium content increased. Thus, the content of platinum or palladium in the adhesion layer is 40%.
If it exceeds Vol%, the adhesion layer becomes conductive, so
The content of platinum or palladium in the adhesion layer is 40
Vol% or less is desirable.
【0015】実施例3 0又は20 Vol%の白金もしくはパラジウムを含む酸化鉄
のペーストを密着層としてアルミナ基板に印刷し、乾燥
後、1300℃で1h焼成した。続いて、ヒーター層を印刷
し、乾燥後、650 ℃で1h焼成して図3のヒーター素子
を構成した。このヒーターにヒーター電圧をサイクル印
加し、検知素子を350 ℃と50℃に加熱する熱サイクル試
験を行なった。ヒーター層の室温抵抗と熱サイクル数と
の関係を図7,図8に示す。なお、図7,図8において
丸印は20 Vol%の白金もしくはパラジウムを含んだ密着
層の場合、四角印は白金やパラジウムを含まない下地層
の場合、三角印は比較例として密着層なしの場合であ
る。図に示されるように密着層を施していないヒーター
層の室温抵抗は熱サイクル数の増加に伴なって増加し、
最後には断線してしまった。ところが、白金を含まない
密着層を施した基板に形成したヒーターは、抵抗変化は
あるものの、断線するものは見られなかった。更には、
密着層に白金やパラジウムを添加したものには、ヒータ
ー層の抵抗変化はほとんどみられなかった。上記実施例
によれば、密着層に白金もしくはパラジウムを添加する
ことで、ヒーター層の信頼性を著しく改善できた。 Example 3 An iron oxide paste containing 0 or 20 Vol% platinum or palladium was printed as an adhesion layer on an alumina substrate, dried, and then baked at 1300 ° C. for 1 hour. Subsequently, the heater layer was printed, dried, and then baked at 650 ° C. for 1 hour to form the heater element shown in FIG. A heater voltage was cycle-applied to this heater, and a thermal cycle test was conducted in which the sensing element was heated to 350 ° C and 50 ° C. The relationship between the room temperature resistance of the heater layer and the number of thermal cycles is shown in FIGS. 7 and 8. In FIGS. 7 and 8, circles indicate an adhesion layer containing 20 Vol% of platinum or palladium, squares indicate an underlayer containing no platinum or palladium, and triangles indicate a comparison example without an adhesion layer. This is the case. As shown in the figure, the room temperature resistance of the heater layer without the adhesion layer increases with the number of thermal cycles,
At the end, I broke the wire. However, the heater formed on the substrate provided with the adhesion layer containing no platinum showed a resistance change but no disconnection. Furthermore,
The resistance change of the heater layer was hardly seen in the one in which platinum or palladium was added to the adhesion layer. According to the above example, the reliability of the heater layer could be remarkably improved by adding platinum or palladium to the adhesion layer.
【0016】実施例4 本実施例においては、0〜40 Vol%の白金もしくはパラ
ジウムを含む酸化鉄の密着層を施したアルミナ基板にヒ
ーターと感ガス層とを積層した素子について、熱サイク
ル試験を下記の要領で行なった。まず、0〜40 Vol%の
白金もしくはパラジウムを含む酸化鉄のペーストを密着
層としてアルミナ基板に印刷し、乾燥後、1300℃で1h
焼成した。続いて、ヒーター層,ヒーター層を絶縁する
ための絶縁層,感ガス層の電気信号を取り出すための電
極層,ガスを検知する感ガス層を積層印刷し、乾燥後、
700 ℃で1h同時焼成して、図3の検知素子を構成し
た。この検知素子のヒーターにヒーター電圧をサイクル
印加し、検知部を350 ℃と50℃とにサイクル加熱して、
熱サイクル試験を行なった。ヒーター層の室温抵抗と熱
サイクル数との関係を図9及び図10に示す。なお、図9
は白金を含む密着層の場合、図10はパラジウムを含む密
着層の場合である。図の結果から、ヒーターと感ガス層
とを積層構造にした場合、密着層に含まれる白金もしく
はパラジウム含有量が1 Vol%以下のものは1万回の熱
サイクルでも断線するものがみられ、ヒーター単体で動
作させた場合とは異なる結果が得られた。これはヒータ
ーを積層構造した場合と単体で動作させた場合とでは、
熱衝撃による応力の加わり方が異なるためと思われる。
しかしながら、密着層に白金もしくはパラジウムを2〜
40 Vol%添加したものは、数万回の熱サイクルにおいて
でも断線するものはみられなかった。また、ヒーター抵
抗の変化率は密着層に添加する白金やパラジウム量の増
加に伴ない小さくなる傾向がみられた。上記実施例によ
れば、ヒーターを積層構造にした場合、基板と厚膜ヒー
ターとの間に介在させる密着層に2〜40 Vol%の白金も
しくはパラジウムを添加することで、ヒーター寿命を飛
躍的に改善でき、長期に渡って安定に動作するガス検知
素子を提供できる。 Example 4 In this example, a thermal cycle test was conducted on an element in which a heater and a gas sensitive layer were laminated on an alumina substrate provided with an adhesion layer of iron oxide containing 0 to 40 Vol% platinum or palladium. The procedure was as follows. First, an iron oxide paste containing 0 to 40 Vol% platinum or palladium is printed as an adhesion layer on an alumina substrate, dried, and then dried at 1300 ° C for 1 hour.
Baked. Subsequently, a heater layer, an insulating layer for insulating the heater layer, an electrode layer for extracting an electric signal of the gas sensitive layer, and a gas sensitive layer for detecting gas are laminated and printed, and after drying,
Simultaneous firing was performed at 700 ° C. for 1 hour to form the sensing element shown in FIG. A heater voltage is cycled to the heater of this sensing element, and the sensing part is cycle heated to 350 ° C and 50 ° C,
A heat cycle test was performed. The relationship between the room temperature resistance of the heater layer and the number of thermal cycles is shown in FIGS. 9 and 10. Note that FIG.
Shows the case of an adhesion layer containing platinum, and FIG. 10 shows the case of an adhesion layer containing palladium. From the results shown in the figure, in the case where the heater and the gas-sensitive layer have a laminated structure, it can be seen that the platinum or palladium content in the adhesion layer is 1 Vol% or less, the wire breaks even after 10,000 thermal cycles, Different results were obtained than when the heater alone was operated. This is when the heater has a laminated structure and when it is operated independently.
This is probably because the stress applied by thermal shock is different.
However, if platinum or palladium is used in the adhesion layer,
With 40 Vol% added, no wire breakage was observed even after tens of thousands of thermal cycles. The rate of change in the heater resistance tended to decrease as the amount of platinum or palladium added to the adhesion layer increased. According to the above embodiment, when the heater has a laminated structure, the heater life is dramatically increased by adding 2 to 40 Vol% of platinum or palladium to the adhesion layer interposed between the substrate and the thick film heater. It is possible to provide a gas detection element that can be improved and that operates stably over a long period of time.
【0017】[0017]
【発明の効果】以上説明したように、本発明によれば基
板と感ガス素子との間に感ガス素子成分である酸化鉄を
主材料とする密着層を介在させる構成としたので、ガス
感度を損ねることなく、十分な密着性の得られるガス検
知素子を提供できる。また、加熱用ヒーターと基板との
間に白金もしくはパラジウムを添加した密着層を介在さ
せたことで、ヒーター寿命を飛躍的に改善でき、長期に
渡って安定に動作するガス検知素子を提供できる。As described above, according to the present invention, an adhesive layer containing iron oxide, which is a gas-sensitive element component, as a main material is interposed between the substrate and the gas-sensitive element. It is possible to provide a gas detection element having sufficient adhesion without damaging the gas detection element. Further, by interposing the adhesion layer containing platinum or palladium between the heater for heating and the substrate, it is possible to dramatically improve the life of the heater and provide a gas detection element that operates stably over a long period of time.
【図1】本発明によるガス検知素子の一実施例の構成
図。FIG. 1 is a configuration diagram of an embodiment of a gas detection element according to the present invention.
【図2】他の実施例の構成図。FIG. 2 is a configuration diagram of another embodiment.
【図3】更に他の実施例の構成図。FIG. 3 is a configuration diagram of still another embodiment.
【図4】従来例を説明する図。FIG. 4 is a diagram illustrating a conventional example.
【図5】基板と感ガス層及びヒーター層とのテープ剥離
試験結果を示す図。FIG. 5 is a diagram showing the results of a tape peeling test on a substrate and a gas-sensitive layer and a heater layer.
【図6】密着層の導電率を示す図。FIG. 6 is a diagram showing the electric conductivity of an adhesion layer.
【図7】白金を含む密着層の熱サイクル試験結果を示す
図。FIG. 7 is a diagram showing a thermal cycle test result of an adhesion layer containing platinum.
【図8】パラジウムを含む密着層の熱サイクル試験結果
を示す図。FIG. 8 is a diagram showing a thermal cycle test result of an adhesion layer containing palladium.
【図9】白金を含有する場合の熱サイクル試験結果を示
す図。FIG. 9 is a diagram showing the results of a heat cycle test in the case of containing platinum.
【図10】パラジウムを含有する場合の熱サイクル試験結
果を示す図。FIG. 10 is a view showing a thermal cycle test result when palladium is contained.
【符号の説明】 1 基板 2 感ガス層 3 電極 4 密着層 5 ヒーター 6 絶縁層[Explanation of reference numerals] 1 substrate 2 gas sensitive layer 3 electrode 4 adhesion layer 5 heater 6 insulating layer
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年2月26日[Submission date] February 26, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0015[Correction target item name] 0015
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0015】 実施例3 0又は20 Vol%の白金もしくはパラジウムを含む酸化鉄
のペーストを密着層としてアルミナ基板に印刷し、乾燥
後、1300℃で1h焼成した。続いて、ヒーター層を印刷
し、乾燥後、650 ℃で1h焼成して図2のヒーター素子
を構成した。このヒーターにヒーター電圧をサイクル印
加し、検知素子を350 ℃と50℃に加熱する熱サイクル試
験を行なった。ヒーター層の室温抵抗と熱サイクル数と
の関係を図7,図8に示す。なお、図7,図8において
丸印は20 Vol%の白金もしくはパラジウムを含んだ密着
層の場合、四角印は白金やパラジウムを含まない下地層
の場合、三角印は比較例として密着層なしの場合であ
る。図に示されるように密着層を施していないヒーター
層の室温抵抗は熱サイクル数の増加に伴なって増加し、
最後には断線してしまった。ところが、白金を含まない
密着層を施した基板に形成したヒーターは、抵抗変化は
あるものの、断線するものは見られなかった。更には、
密着層に白金やパラジウムを添加したものには、ヒータ
ー層の抵抗変化はほとんどみられなかった。上記実施例
によれば、密着層に白金もしくはパラジウムを添加する
ことで、ヒーター層の信頼性を著しく改善できた。 Example 3 An iron oxide paste containing 0 or 20 Vol% platinum or palladium was printed as an adhesion layer on an alumina substrate, dried, and then baked at 1300 ° C. for 1 hour. Then, by printing a heater layer, dried, and it constitutes a heater element of Figure 2 with 1h calcined at 650 ° C.. A heater voltage was cycle-applied to this heater, and a thermal cycle test was conducted in which the sensing element was heated to 350 ° C and 50 ° C. The relationship between the room temperature resistance of the heater layer and the number of thermal cycles is shown in FIGS. 7 and 8. In FIGS. 7 and 8, circles indicate an adhesion layer containing 20 Vol% of platinum or palladium, squares indicate an underlayer containing no platinum or palladium, and triangles indicate a comparison example without an adhesion layer. This is the case. As shown in the figure, the room temperature resistance of the heater layer without the adhesion layer increases with the number of thermal cycles,
At the end, I broke the wire. However, the heater formed on the substrate provided with the adhesion layer containing no platinum showed a resistance change but no disconnection. Furthermore,
The resistance change of the heater layer was hardly seen in the one in which platinum or palladium was added to the adhesion layer. According to the above example, the reliability of the heater layer could be remarkably improved by adding platinum or palladium to the adhesion layer.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図3[Name of item to be corrected] Figure 3
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図3】 [Figure 3]
【手続補正3】[Procedure 3]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図5[Name of item to be corrected] Figure 5
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図5】 [Figure 5]
【手続補正4】[Procedure amendment 4]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図7[Name of item to be corrected] Figure 7
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図7】 [Figure 7]
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図8[Correction target item name] Figure 8
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図8】 [Figure 8]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥村 弘樹 埼玉県熊谷市大字三ケ尻5310番地 秩父セ メント株式会社内フアインセラミツクス本 部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroki Okumura 5310 Mikajiri, Kumagaya, Saitama Prefecture Chichibu Cement Co., Ltd. Huain Ceramics Division
Claims (7)
素子において、前記基板とガス検知素子との間に酸化鉄
を主材とする密着層を介在させたことを特徴とするガス
検知素子。1. A gas detecting element made of iron oxide provided on a substrate, wherein an adhesion layer containing iron oxide as a main material is interposed between the substrate and the gas detecting element. ..
1250℃〜1550℃であることを特徴とする請求項1記載の
ガス検知素子の製造方法。2. The firing temperature of the adhesion layer mainly composed of iron oxide is
The method for producing a gas detection element according to claim 1, wherein the temperature is 1250 ° C to 1550 ° C.
する密着層を介在させたことを特徴とする加熱用ヒータ
ー。3. A heating heater, wherein an adhesion layer containing iron oxide as a main material is interposed between the substrate and the heater.
する密着層を介在させたことを特徴とする請求項1記載
のガス検知素子。4. The gas detecting element according to claim 1, wherein an adhesion layer containing iron oxide as a main material is interposed between the substrate and the heater.
以上を添加することを特徴とする請求項3記載の密着
層。5. The adhesion layer according to claim 3, wherein at least one of platinum and palladium is added to iron oxide.
の添加量が2〜40 Vol%であることを特徴とする請求項
5記載の組成物。6. The composition according to claim 5, wherein the amount of platinum or palladium added to the adhesion layer is 2 to 40 Vol%.
特徴とする請求項5記載の密着層の製造方法。7. The method for producing an adhesion layer according to claim 5, wherein the firing temperature is 1250 ° C. to 1550 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29824391A JP2829552B2 (en) | 1991-10-17 | 1991-10-17 | Gas detection element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29824391A JP2829552B2 (en) | 1991-10-17 | 1991-10-17 | Gas detection element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05107214A true JPH05107214A (en) | 1993-04-27 |
JP2829552B2 JP2829552B2 (en) | 1998-11-25 |
Family
ID=17857092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29824391A Expired - Fee Related JP2829552B2 (en) | 1991-10-17 | 1991-10-17 | Gas detection element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2829552B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0727731A (en) * | 1993-07-14 | 1995-01-31 | Oki Electric Ind Co Ltd | Odor sensor and odor sensor unit |
-
1991
- 1991-10-17 JP JP29824391A patent/JP2829552B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0727731A (en) * | 1993-07-14 | 1995-01-31 | Oki Electric Ind Co Ltd | Odor sensor and odor sensor unit |
Also Published As
Publication number | Publication date |
---|---|
JP2829552B2 (en) | 1998-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0140340B1 (en) | Gas sensor with ceramics substrate and method for producing the same | |
US4053864A (en) | Thermistor with leads and method of making | |
JP2591205B2 (en) | Thermistor | |
JP2603373B2 (en) | Electrochemical element | |
JPH05107214A (en) | Gas detecting element | |
JPH0798294A (en) | Oxygen sensor, electrode formation thereof and lead-wire attaching method thereto | |
JPH03149791A (en) | Ceramic heater | |
JP2582135B2 (en) | Method of manufacturing thick film type gas sensing element | |
JPS6124178A (en) | Method of contacting conductor with conductive strip or conductive layer in thermal resistant manner | |
JP2641530B2 (en) | Manufacturing method of chip-shaped electronic component | |
JP3018925B2 (en) | Electrochemical element | |
JPH09245946A (en) | Ceramic heater | |
JP2646083B2 (en) | Ceramic heater | |
JP3487675B2 (en) | Manufacturing method of mechanical quantity sensor | |
JPS6337587A (en) | Ceramic heater | |
JPS5899741A (en) | Gas sensing element and manufacture thereof | |
CN214207211U (en) | Electronic cigarette and ceramic heating sheet for same | |
CN217789917U (en) | Thick film heating element | |
JP4700214B2 (en) | Oxygen sensor element and manufacturing method thereof | |
JPH0950904A (en) | Electrically conductive paste and ntc thermistor using it | |
JP2704687B2 (en) | Gas detection element | |
JPH07105719A (en) | Conductive paste and resistor element | |
JPH051900B2 (en) | ||
JPH10172734A (en) | Ceramic heating and manufacture thereof | |
WO2024125936A1 (en) | Ceramic sensor with metallisation layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |