JPH0477307A - Fine graphite powder and its production - Google Patents
Fine graphite powder and its productionInfo
- Publication number
- JPH0477307A JPH0477307A JP2189672A JP18967290A JPH0477307A JP H0477307 A JPH0477307 A JP H0477307A JP 2189672 A JP2189672 A JP 2189672A JP 18967290 A JP18967290 A JP 18967290A JP H0477307 A JPH0477307 A JP H0477307A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- graphite
- fine powder
- fine
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 103
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 45
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 38
- 239000010439 graphite Substances 0.000 claims abstract description 38
- 239000000835 fiber Substances 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims description 28
- 150000001339 alkali metal compounds Chemical class 0.000 claims description 10
- 238000005087 graphitization Methods 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 8
- 239000003575 carbonaceous material Substances 0.000 abstract description 7
- 150000001721 carbon Chemical class 0.000 abstract description 3
- 238000006555 catalytic reaction Methods 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 239000013528 metallic particle Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 24
- 229910052783 alkali metal Inorganic materials 0.000 description 7
- 150000001340 alkali metals Chemical class 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 208000005156 Dehydration Diseases 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 229910002090 carbon oxide Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- -1 Organic acid salts Chemical class 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の属する技術分野]
本発明は、黒鉛微粉に関するもので、より詳しくは炭素
網面が一方向に揃った黒鉛微粉とその製造法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to fine graphite powder, and more particularly to fine graphite powder in which carbon mesh surfaces are aligned in one direction, and a method for producing the same.
[従来の技術1
黒鉛微粉は、電気伝導性、熱伝導性、慴動性、耐熱性、
化学的安定性に優れ、導電性塗剤、工業用潤滑剤、帯電
防止剤、さらには電池材料、放熱材、各種複合材用添加
剤などとして広く用いられている。[Conventional technology 1 Graphite fine powder has electrical conductivity, thermal conductivity, mobility, heat resistance,
It has excellent chemical stability and is widely used as conductive coatings, industrial lubricants, antistatic agents, battery materials, heat dissipation materials, and additives for various composite materials.
これらの用途に関して、黒鉛微粉の大きさが1μm以下
であることを要求されることが多い。For these applications, it is often required that the graphite fine powder has a size of 1 μm or less.
従来の黒鉛微粉の製造方法としては、天然黒鉛あるいは
人造黒鉛の塊を機械的に粉砕・分級するのが一般的であ
るが、黒鉛は発達した炭素網面が積層した異方性の大き
な材料であって、炭素網面自体は壊れ難く、それに対し
て網面の積層方向に関しては柔らかく、滑り易い性質を
持っており、このような材料を三次元方向のいずれの方
向についても1μm以下に粉砕することは困難である。The conventional method for producing fine graphite powder is to mechanically crush and classify lumps of natural graphite or artificial graphite, but graphite is a highly anisotropic material made of laminated layers of developed carbon networks. Therefore, the carbon mesh surface itself is difficult to break, but on the other hand, the layered direction of the mesh surface is soft and slippery, and such materials can be crushed to 1 μm or less in any three-dimensional direction. That is difficult.
また、このように機械的粉砕によりlμm以下の微粉と
することは、部分的には可能でも全体として1¥1m以
下にすることは非常に困難であるうえ、粉砕してこのよ
うな微細な黒鉛微粉を得るためには、その粉砕エネルギ
ーも極めて大きなものが必要となる。In addition, although it is possible to reduce the particle size to 1 μm or less by mechanical crushing in this way, it is extremely difficult to reduce the total size to 1 μm or less. In order to obtain fine powder, an extremely large amount of crushing energy is required.
これを解決するための手段としては、粉砕しやすい炭素
粉末、例えばコークスなどを粉砕したものを黒鉛化する
方法や、もともと粒径1μm以下の炭素微粉であるカー
ボンブラックを熱処理する等の方法が知られている。As a means to solve this problem, there are known methods such as graphitizing carbon powder that is easy to crush, such as coke, and heat treating carbon black, which is originally a fine carbon powder with a particle size of 1 μm or less. It is being
[発明が解決しようとする課題]
しかしながらコークス等を用いる方法では、黒鉛化処理
中に凝集・合体してしまうため所期の目的であるサブミ
クロンオーダーの黒鉛微粉を得ることは難かしい。[Problems to be Solved by the Invention] However, in the method using coke or the like, it is difficult to obtain submicron-order fine graphite powder, which is the intended purpose, because it aggregates and coalesces during the graphitization process.
一方カーボンブラックを黒鉛化処理する方法でも、黒鉛
化度を高めること自身にも問題があり−、さらにコーク
ス粉砕法と同様に、黒鉛化処理中の凝集・合体の問題が
ある。On the other hand, even in the method of graphitizing carbon black, increasing the degree of graphitization itself has its own problems - and, like the coke crushing method, there is also the problem of agglomeration and coalescence during the graphitization process.
またいずれの場合にも、その黒鉛微粉のミクロ構造に着
目して見ると、炭素網面がきれいに積層したグラファイ
ト構造ではなく乱雑な構造となっており、いわゆるグラ
ファイトと呼ばれるときにイメージされる構造とは異な
った構造となっているものが多い。In both cases, when we focus on the microstructure of the fine graphite powder, we find that it is not a graphite structure in which the carbon network surfaces are neatly layered, but a disordered structure, which is different from the structure that is imagined when we call it graphite. Many have different structures.
さらにいずれの場合も、黒鉛化処理に際しては2000
°C以上の高温で処理する必要があり、取扱性を含めた
装置上の制約の他、生産コストの面からも難点があった
。Furthermore, in both cases, 2000
It is necessary to process at a high temperature of .degree. C. or higher, which poses difficulties in terms of production costs as well as limitations in terms of equipment, including handling.
[課題を解決するための手段]
そこで本発明者らは、鋭意検討した結果、出発炭素材料
としてもともと微細なグラファイト網面が集まったよう
な構造のものを選んでそれを解砕すれば、上記のような
従来技術では解決が困難であった課題が解決できるばか
りでなく、これまで不可能と考えられていたほぼ理想に
近い形態とミクロ構造を有する黒鉛微粉の製造を可能に
出来ることに思い至り、本発明を完成した。[Means for Solving the Problem] As a result of intensive study, the inventors of the present invention found that if they selected a starting carbon material with a structure in which fine graphite networks were originally gathered together and crushed it, the above-mentioned results could be achieved. Not only can we solve problems that were difficult to solve with conventional technology, but we are also able to produce graphite fine powder with an almost ideal morphology and microstructure, which was previously thought to be impossible. As a result, the present invention was completed.
すなわち本発明の目的は、粒径がサブミクロンオーダで
、しかもグラファイト網面が一方向に配向したような制
御されたミクロ構造を有するという、これまでにない黒
鉛微粉およびその製造方法を提供することにある。That is, an object of the present invention is to provide an unprecedented graphite fine powder having a particle size on the order of submicrons and a controlled microstructure in which the graphite network surface is oriented in one direction, and a method for producing the same. It is in.
かかる目的は、炭素網面が実質的に一方向に積層してな
る黒鉛微粉であって、該黒鉛微粉の炭素網面の積層高さ
が0.5μm以下であり、その面間距離(d002)が
3.354〜3.470人で、かつ該黒鉛微粉の積層方
向に対して垂直な断面の面積が1μm2以下であって、
該断面の形状が矩形あるいは扁平な楕円状を示し、その
長軸が短軸の2倍以上であることを特徴とする黒鉛微粉
、及び繊維の長さ方向に対して炭素網面が実質的に垂直
に積層した繊維状炭素を該炭素網面に沿って解砕するこ
とにより、炭素網面が実質的に一方向に積層してなる黒
鉛微粉であって、該黒鉛微粉の炭素網面の積層高さが0
.5μm以下であり、その面間距離(d002)が3.
354〜3.470人で、かつ該黒鉛微粉の積層方向に
対して垂直な断面の面積が1μm2以下であって、該断
面の形状が短形あるいは扁平な楕円状を示し、その長軸
が短軸の2倍以上であることを特徴とする黒鉛微粉の製
造方法、により容易に達成される。This purpose is to provide a fine graphite powder in which carbon mesh surfaces are substantially stacked in one direction, the stacking height of the carbon mesh surfaces of the graphite fine powder is 0.5 μm or less, and the distance between the surfaces (d002) is 3.354 to 3.470 people, and the area of the cross section perpendicular to the stacking direction of the graphite fine powder is 1 μm or less,
Graphite fine powder is characterized in that the cross-sectional shape is rectangular or flat elliptical, and the major axis is at least twice as long as the minor axis, and the carbon network surface is substantially in the longitudinal direction of the fiber. Graphite fine powder is obtained by crushing vertically stacked fibrous carbon along the carbon network plane, so that the carbon network planes are substantially stacked in one direction, and the carbon network planes of the graphite fine powder are stacked. Height is 0
.. 5 μm or less, and the distance between the surfaces (d002) is 3.
354 to 3.470 people, and the area of the cross section perpendicular to the stacking direction of the graphite fine powder is 1 μm2 or less, the shape of the cross section is rectangular or flat elliptical, and the long axis is short. This can be easily achieved by a method for producing graphite fine powder characterized in that the particle size is at least twice that of the shaft.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
本発明で用いる出発炭素材料は、微細なグラファイト網
面が集まったような構造の炭素材料であれば特に限定さ
れるものではないが、グラファイト網面が一次元方向に
積層したミクロ構造を持ったものが望ましい。The starting carbon material used in the present invention is not particularly limited as long as it has a structure in which fine graphite network surfaces are assembled, but it has a microstructure in which graphite network surfaces are stacked in a one-dimensional direction. Something is desirable.
このような炭素材料として、例えば本発明者等が特許出
願しているリボン状炭素繊維(特願平1−286673
)を挙げることができる。Examples of such carbon materials include ribbon-shaped carbon fibers (patent application No. 1-286673) for which the present inventors have applied for a patent.
) can be mentioned.
該炭素繊維は、−酸化炭素を原料として金属超微粒子の
触媒作用により生成する微細な繊維状炭素で、繊維の幅
が0.05〜0.7μm、長さが数〜数十μmであり、
繊維軸に対して炭素網面が一様に垂直に積層するという
非常に特徴的なミクロ構造を有するとともに、比較的低
温で生成するにもかかわらず黒鉛化度が高いものとなっ
ている。The carbon fibers are fine fibrous carbon produced by the catalytic action of ultrafine metal particles using carbon oxide as a raw material, and have a fiber width of 0.05 to 0.7 μm and a length of several to several tens of μm,
It has a very characteristic microstructure in which the carbon network planes are uniformly stacked perpendicular to the fiber axis, and has a high degree of graphitization even though it is produced at a relatively low temperature.
例えば700°Cの反応により得た繊維のd002(炭
素網面間の距離)は3.366人であり、黒鉛単結晶の
値3.354人に非常に近い値で、MeringとMe
ireの式より計算すると黒鉛化度は86%と見積もら
れる。For example, the d002 (distance between carbon network planes) of the fiber obtained by the reaction at 700°C is 3.366, which is very close to the value of 3.354 for graphite single crystal, and the value of Mering and Me
The degree of graphitization is estimated to be 86% when calculated from the ire formula.
このように高度な黒鉛化炭素を得るには通常2500〜
3000°Cの熱処理を必要とすることを考えると、異
例の低い温度で直接黒鉛化度の高い繊維が得られている
。To obtain such highly graphitized carbon, it is usually 2500~
Considering that heat treatment at 3000°C is required, fibers with a high degree of direct graphitization were obtained at an unusually low temperature.
該繊維状炭素は、−酸化炭素と水素の混合ガス(混合比
1:1)とともに繊維成長の触媒原料として全炭素原子
重量を100として、鉄重量が1〜20になるよう鉄ペ
ンタカルボニルを添加した原料ガスを、550〜800
°Cに設定した電気炉中に設置した反応管に60e /
hr前後の割合で連続挿入して得ることができる。(
特願平1−286673 )。The fibrous carbon is used together with a mixed gas of carbon oxide and hydrogen (mixing ratio 1:1) as a catalyst raw material for fiber growth. Iron pentacarbonyl is added so that the total carbon atom weight is 100 and the iron weight is 1 to 20. 550 to 800
60e/in a reaction tube placed in an electric furnace set at °C
It can be obtained by continuous insertion at a rate of around hr. (
Patent application No. 1-286673).
このようにして得たサブミクロンオーダーのグラファイ
トが一次元方向に積層して繊維状になった、黒鉛微粉を
得るための出発物質として理想的なミクロ構造と形態を
有する繊維状炭素を、第1図に示すように解砕すること
によってミクロ構造の制御された黒鉛微粉を得るもので
ある。Fibrous carbon, which has an ideal microstructure and morphology as a starting material for obtaining fine graphite powder, in which submicron-order graphite obtained in this manner is laminated in a one-dimensional direction to form a fiber, is first By crushing as shown in the figure, fine graphite powder with a controlled microstructure is obtained.
該繊維状炭素を解砕する方法として、種々検討した結果
、例えばジェットミルを用いたり、あるいは超音波を利
用するなどの機械的な解砕法でもよいが、この繊維の高
い黒鉛化性を利用して層間にアルカリ金属を挿入させて
熱処理することにより解砕するのが特に好ましい。As a method of crushing the fibrous carbon, after various studies, it was found that mechanical crushing methods such as using a jet mill or using ultrasonic waves may be used. It is particularly preferable to disintegrate by intercalating an alkali metal between the layers and heat treating.
用いるアルカリ金属は特に限定されるものではないが、
炭素層間を押し広げて侵入することにより該繊維状炭素
を解砕することを考えると、黒鉛の層間に挿入するもの
で、しかもなるべく原子半径の大きなもの、例えばカリ
ウムなどが好ましい。The alkali metal used is not particularly limited, but
Considering that the fibrous carbon is crushed by expanding and penetrating between the carbon layers, it is preferable to use a material that is inserted between the graphite layers and has as large an atomic radius as possible, such as potassium.
また、該繊維状炭素の解砕にあたっては、アルカリ金属
の蒸気に該繊維状炭素をさらして層間にアルカリ金属を
挿入させた後、これを急激に加熱して破壊してもよいが
、もっと簡単に、アルカリ金属あるいはアルカリ金属化
合物と該繊維状炭素を混合したものを加熱する方法があ
る。In addition, when crushing the fibrous carbon, it is possible to expose the fibrous carbon to alkali metal vapor to insert the alkali metal between the layers, and then rapidly heat it to destroy it, but it is easier. Another method is to heat a mixture of an alkali metal or an alkali metal compound and the fibrous carbon.
後者の方法は、ヤシ殻チャー、石油コークス、石炭など
の炭材やリグニンをKOHとともに加熱乾留することに
より高表面積活性炭の得られることが近年知られており
(例えば、山口達明;日本化学会誌、1988 (2)
、p217〜220、H,Marsh and D。In the latter method, it has recently been known that activated carbon with a high surface area can be obtained by heating and carbonizing lignin and carbonaceous materials such as coconut shell char, petroleum coke, and coal together with KOH (for example, Tatsuaki Yamaguchi; Journal of the Chemical Society of Japan; 1988 (2)
, p217-220, H, Marsh and D.
Crawford、 Carbon 20.419 (
1982) )、その際に一般的に用いられている方法
である。Crawford, Carbon 20.419 (
(1982)), which is a commonly used method.
後者の方が簡単であるばかりでなく、時間的にも短くて
すみ、装置的にも単純なものにすることができ好ましい
。The latter method is preferable because it is not only simpler, but also requires less time and a simpler device.
アルカリ金属化合物としては、水酸化物の他、塩化物、
臭化物などのハロゲン化物や酸化物、あるいは硝酸塩、
硫酸塩、炭酸塩などの無機塩、または酢酸、シュウ酸、
石炭酸などの有機酸塩、もしくはアルコキシドなどの化
合物を用いることができる。In addition to hydroxide, alkali metal compounds include chloride,
Halides and oxides such as bromide, or nitrates,
Inorganic salts such as sulfates and carbonates, or acetic acid, oxalic acid,
Organic acid salts such as carbolic acid or compounds such as alkoxides can be used.
該繊維状炭素とアルカリ金属化合物との配合については
、炭素1モルに対してアルカリ金属が0.01〜100
モル、より好ましくは0.1〜10モルとなるようにア
ルカリ金属あるいはアルカリ金属化合物を添加するのが
望ましい。Regarding the blending of the fibrous carbon and the alkali metal compound, the amount of the alkali metal is 0.01 to 100 per mole of carbon.
It is desirable to add the alkali metal or alkali metal compound in an amount of mol, more preferably 0.1 to 10 mol.
該繊維状炭素とアルカリ金属化合物の混合においては、
固体状態のままで混合してもよいが、アルカリ金属化合
物を水溶液やアルコール溶液などとして該繊維状炭酸と
混合し、その後乾燥させる方法をとるとより効率的であ
る。In mixing the fibrous carbon and the alkali metal compound,
Although it is possible to mix the alkali metal compound in a solid state, it is more efficient to mix the alkali metal compound with the fibrous carbonic acid as an aqueous solution, alcoholic solution, etc., and then dry it.
次にこの該繊維状炭素とアルカリ金属化合物の混合物を
所定温度で熱処理する。熱処理温度は500〜1200
°C1より好ましくは600〜1000°Cが望ましい
。Next, this mixture of fibrous carbon and alkali metal compound is heat treated at a predetermined temperature. Heat treatment temperature is 500-1200
The temperature is preferably 600 to 1000°C rather than 1°C.
また、昇温過程でいったん所定温度に保ち、脱水処理を
することも望ましい。この脱水処理温度は100〜60
0°C1より好ましくは200〜500°Cが望ましい
。Further, it is also desirable to temporarily maintain the temperature at a predetermined temperature during the heating process and perform dehydration treatment. This dehydration treatment temperature is 100 to 60
The temperature is more preferably 200 to 500°C than 0°C.
この熱処理した混合物を十分水洗し、乾燥することによ
り黒鉛微粉を得る。This heat-treated mixture is thoroughly washed with water and dried to obtain fine graphite powder.
この方法によれば、該繊維状炭素の積層した炭素層を数
十人〜数百人の厚さに解砕出来るため、また該繊維の幅
が1μm以下であることから、黒鉛の塊を粉砕する際に
問題となる炭素網面方向の微細化であるとか、全体をl
μm以下にする困難さの問題は存在せず、確実にサブミ
クロンオーダーの微粉とすることができる。According to this method, the stacked carbon layers of the fibrous carbon can be crushed to a thickness of several tens to hundreds of layers, and since the width of the fibers is 1 μm or less, the graphite lump can be crushed. There may be problems with refinement in the direction of the carbon network, or if the overall
There is no problem of difficulty in reducing the powder to micrometers or less, and it is possible to reliably produce a fine powder on the submicron order.
また、該繊維状炭素は遷移金属の特異な触媒効果を利用
して生成させるため数百度で得ることができ、これまで
必要であった2000°C以上の黒鉛化処理工程を必要
としない。解砕も1000°C以下で行なうことにより
、全工程を通じて1000°C以下というエネルギー的
にも装置的にも非常に有利な方法とすることができる。In addition, since the fibrous carbon is generated by utilizing the unique catalytic effect of transition metals, it can be obtained at several hundred degrees Celsius, and there is no need for the graphitization process at 2000 degrees Celsius or higher, which has been necessary in the past. By performing the crushing at a temperature of 1000°C or less, the entire process can be kept at 1000°C or less, making it a very advantageous method in terms of energy and equipment.
さらにそればかりではなく、本方法はこれまで不可能で
あった黒鉛網面が一方向にきちんと配向したミクロ構造
を有する黒鉛微粉が得られるものである。Furthermore, this method makes it possible to obtain fine graphite powder having a microstructure in which graphite network surfaces are properly oriented in one direction, which has not been possible until now.
このようにして得た黒鉛微粉の粒子構造を第2図に、ま
た該黒鉛微粉の炭素網面の粒子構造を第3図に示す。The particle structure of the graphite fine powder thus obtained is shown in FIG. 2, and the particle structure of the carbon mesh surface of the graphite fine powder is shown in FIG.
[実施例]
実施例1
リボン状炭素繊維(濃塩酸煮沸処理により繊維成長触媒
鉄化合物を取り除いたもの)に水/エタノール混合溶液
(50150)に溶解した水酸化カリウム(重量比にし
て繊維状炭素の4倍)を加えてよくかき混ぜ、115°
Cで乾燥した。[Example] Example 1 Ribbon-shaped carbon fibers (fiber growth catalyst iron compound removed by boiling in concentrated hydrochloric acid) were mixed with potassium hydroxide (fibrous carbon in weight ratio) dissolved in water/ethanol mixed solution (50150). ), stir well, and heat to 115°.
It was dried at C.
この混合物を磁性ルツボに入れ、窒素気流下で20°C
/分で昇温し400°Cで30分脱水後、同じく20°
C/分で昇温して800°Cとし1時間保った。反応液
内容物を取り出し、十分水洗いを繰り返しアルカリ分を
溶出させた後に115°Cで乾燥した。This mixture was placed in a magnetic crucible at 20°C under a nitrogen stream.
After heating at 400°C for 30 minutes, the temperature was increased at 20°C.
The temperature was increased to 800°C at a rate of C/min and maintained for 1 hour. The contents of the reaction solution were taken out, thoroughly washed with water repeatedly to elute the alkaline content, and then dried at 115°C.
実施例2
800°Cでの保持時間を3時間とした他は実施例1と
同様にして行なった。Example 2 The same procedure as Example 1 was carried out except that the holding time at 800°C was changed to 3 hours.
実施例3
熱処理温度を900°Cとした他は実施例1と同様にし
て行なった。Example 3 The same procedure as Example 1 was carried out except that the heat treatment temperature was 900°C.
実施例4
昇温速度を1°C/分とした他は実施例1と同様にして
行なった。Example 4 The same procedure as in Example 1 was carried out except that the temperature increase rate was 1°C/min.
実施例1〜4で得られた黒鉛微粉の物性を表1に示す。Table 1 shows the physical properties of the graphite fine powder obtained in Examples 1 to 4.
比表面積は、窒素吸着法によって求めた。The specific surface area was determined by the nitrogen adsorption method.
X線回折は、学振法に基づき、シリコン単結晶粉末を内
部標準として用い、ステンブスキャンニング法で測定し
た。X-ray diffraction was measured by the stainless steel scanning method based on the Jakushin method using silicon single crystal powder as an internal standard.
出発原料であるリボン状炭素繊維の5BETが110m
2/g、 d002が3.37人、Lcが230人であ
ることを考えると、該繊維に比べて生成した黒鉛微粉は
比表面積(5BET )が増大し、dooz値が比較的
小さく保たれたまま、すなわちミクロ構造の配向性を保
ったまま、積層したグラファイト層の厚み(Lc)が著
しく小さくなっていることがわかる。5 BET of ribbon carbon fiber which is the starting material is 110m
2/g, d002 of 3.37 people, and Lc of 230 people, the graphite fine powder produced had an increased specific surface area (5BET) compared to the fiber, and the dooz value was kept relatively small. It can be seen that the thickness (Lc) of the stacked graphite layers is significantly reduced while maintaining the orientation of the microstructure.
表1
[発明の効果1
本発明によれば、黒鉛化度の高い炭素網面が繊維の長さ
方向に対して実質的に垂直に積層した繊維状炭素を好ま
しくはアルカリ金属化合物を用いて解砕することにより
、粒径がサブミクロンオーダーで、しかも炭素網面が一
方向に配向したような制御されたミクロ構造を有すると
いうこれまでにない黒鉛微粉を確実に、しかも比較的低
温条件で簡便に製造することができる。Table 1 [Effect of the Invention 1 According to the present invention, fibrous carbon in which highly graphitized carbon network surfaces are laminated substantially perpendicularly to the longitudinal direction of the fibers is preferably dissolved using an alkali metal compound. By crushing, we can reliably produce graphite fine powder, which is unprecedented in that its particle size is on the order of submicrons and has a controlled microstructure in which the carbon network surface is oriented in one direction, and it is easy to use at relatively low temperatures. can be manufactured.
そして得られた本発明の黒鉛微粉は、導電性塗剤、工業
用潤滑剤、帯電防止剤、さらには電池材料、
放熱材、
各種複合材用添加剤などとして広く
使用される。The obtained graphite fine powder of the present invention is widely used as a conductive coating agent, an industrial lubricant, an antistatic agent, a battery material, a heat dissipating material, an additive for various composite materials, and the like.
第1図は本発明における黒鉛微粉の製造方法の概念図で
あり、FIG. 1 is a conceptual diagram of the method for producing graphite fine powder in the present invention,
Claims (3)
粉であって、該黒鉛微粉の炭素網面の積層高さが0.5
μm以下であり、その面間距離(d_0_0_2)が3
.354〜3.470Åで、かつ該黒鉛微粉の積層方向
に対して垂直な断面の面積が1μm^2以下であって、
該断面の形状が矩形あるいは扁平な楕円状を示し、その
長軸が短軸の2倍以上であることを特徴とする黒鉛微粉
。(1) Graphite fine powder in which carbon mesh surfaces are substantially stacked in one direction, and the stacking height of the carbon mesh surfaces of the graphite fine powder is 0.5
μm or less, and the distance between the surfaces (d_0_0_2) is 3
.. 354 to 3.470 Å, and the area of the cross section perpendicular to the stacking direction of the graphite fine powder is 1 μm^2 or less,
Graphite fine powder characterized in that the cross-sectional shape is rectangular or flat elliptical, and the major axis is at least twice as long as the minor axis.
に積層した繊維状炭素を該炭素網面に沿って解砕するこ
とにより、炭素網面が実質的に一方向に積層してなる黒
鉛微粉であって、該黒鉛微粉の炭素網面の積層高さが0
.5μm以下であり、その面間距離(d_0_0_2)
が3.354〜3.470Åで、かつ該黒鉛微粉の積層
方向に対して垂直な断面の面積が1μm^2以下であっ
て、該断面の形状が矩形あるいは扁平な楕円状を示し、
その長軸が短軸の2倍以上であることを特徴とする黒鉛
微粉の製造方法。(2) By crushing fibrous carbon in which the carbon mesh surfaces are stacked substantially perpendicularly to the length direction of the fibers, the carbon mesh surfaces are stacked substantially in one direction. A fine graphite powder made of
.. 5 μm or less, and the distance between the surfaces (d_0_0_2)
is 3.354 to 3.470 Å, and the area of the cross section perpendicular to the stacking direction of the graphite fine powder is 1 μm^2 or less, and the cross section has a rectangular or flat elliptical shape,
A method for producing fine graphite powder, characterized in that its long axis is at least twice as long as its short axis.
る請求項2記載の黒鉛微粉の製造方法。(3) The method for producing graphite fine powder according to claim 2, wherein the crushing treatment includes adding an alkali metal compound and heat-treating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2189672A JPH0477307A (en) | 1990-07-18 | 1990-07-18 | Fine graphite powder and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2189672A JPH0477307A (en) | 1990-07-18 | 1990-07-18 | Fine graphite powder and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0477307A true JPH0477307A (en) | 1992-03-11 |
Family
ID=16245247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2189672A Pending JPH0477307A (en) | 1990-07-18 | 1990-07-18 | Fine graphite powder and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0477307A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001092151A1 (en) * | 2000-05-31 | 2001-12-06 | Showa Denko K.K. | Electrically conductive fine carbon composite, catalyst for solid polymer fuel cell and fuel battery |
US6780388B2 (en) | 2000-05-31 | 2004-08-24 | Showa Denko K.K. | Electrically conducting fine carbon composite powder, catalyst for polymer electrolyte fuel battery and fuel battery |
JP2016130212A (en) * | 2010-02-19 | 2016-07-21 | 株式会社インキュベーション・アライアンス | Flaky graphite crystal aggregate |
-
1990
- 1990-07-18 JP JP2189672A patent/JPH0477307A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001092151A1 (en) * | 2000-05-31 | 2001-12-06 | Showa Denko K.K. | Electrically conductive fine carbon composite, catalyst for solid polymer fuel cell and fuel battery |
US6780388B2 (en) | 2000-05-31 | 2004-08-24 | Showa Denko K.K. | Electrically conducting fine carbon composite powder, catalyst for polymer electrolyte fuel battery and fuel battery |
JP2016130212A (en) * | 2010-02-19 | 2016-07-21 | 株式会社インキュベーション・アライアンス | Flaky graphite crystal aggregate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Furdin | Exfoliation process and elaboration of new carbonaceous materials | |
KR102506112B1 (en) | Microwave systems and methods for producing graphene | |
US10850496B2 (en) | Chemical-free production of graphene-reinforced inorganic matrix composites | |
JP5519503B2 (en) | Highly efficient method for producing exfoliated graphene | |
EP2038209B1 (en) | Production of nano-structures | |
JP2003227039A (en) | Fine carbon fiber, method for producing the same and use thereof | |
Tsai et al. | Preparation of expandable graphite using a hydrothermal method and flame-retardant properties of its halogen-free flame-retardant HDPE composites | |
CN109790033A (en) | Highly conductive graphite film and production method | |
Inagaki | Carbon materials structure, texture and intercalation | |
He et al. | Comparison of ultrafine-grain isotropic graphite prepared from microcrystalline graphite and pitch coke | |
JP2922096B2 (en) | Method for producing hexagonal boron nitride powder | |
JP2005505904A (en) | Electrochemical battery | |
Li et al. | Synthesis of potassium hexatitanate whiskers with high thermal stability from Ti-bearing electric arc furnace molten slag | |
Baiju et al. | Hydrothermal synthesis, dielectric properties of barium titanate, cobalt doped barium titanate, and their graphene nanoplatelet composites | |
TWI640472B (en) | Method for manufacturing graphene nanoplatelets by ultrasonic waves | |
JP2008247643A (en) | Graphite particle and method for producing the same | |
JPH0477307A (en) | Fine graphite powder and its production | |
CN106629826B (en) | A kind of two-dimensional structure nm-class barium titanate material and preparation method thereof | |
US11339054B2 (en) | Continuous process and apparatus for producing graphene | |
Niu et al. | Synthesis of silicon carbide nanoparticles from amorphous carbon: Based on the domain structure of electrically calcined anthracite | |
Jose et al. | A new combustion process for nanosized YBa2ZrO5. 5 powders | |
Zhang et al. | Negative thermal expansion coefficient of Sc-doped indium tungstate ceramics synthesized by co-precipitation | |
JP3018428B2 (en) | Manufacturing method of graphite fine powder | |
Ran et al. | Shock synthesis of nanocrystalline La2Ti2O7 powder | |
Athawale et al. | A soft solution process to synthesize nanocrystalline barium zirconate via reactive solid state precursors |