Nothing Special   »   [go: up one dir, main page]

JPH0460292A - Manufacture of fiber reinforced resin pipe - Google Patents

Manufacture of fiber reinforced resin pipe

Info

Publication number
JPH0460292A
JPH0460292A JP2171723A JP17172390A JPH0460292A JP H0460292 A JPH0460292 A JP H0460292A JP 2171723 A JP2171723 A JP 2171723A JP 17172390 A JP17172390 A JP 17172390A JP H0460292 A JPH0460292 A JP H0460292A
Authority
JP
Japan
Prior art keywords
pipe
fiber
resin
tube
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2171723A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawara
宏 菅原
Kiyoyasu Fujii
藤井 清康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2171723A priority Critical patent/JPH0460292A/en
Publication of JPH0460292A publication Critical patent/JPH0460292A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/36Bending and joining, e.g. for making hollow articles
    • B29C53/38Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges
    • B29C53/48Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of indefinite length, i.e. bending a strip progressively
    • B29C53/50Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of indefinite length, i.e. bending a strip progressively using internal forming surfaces, e.g. mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/68Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels with rotatable winding feed member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • B29C63/08Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically
    • B29C63/10Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles
    • B29C63/105Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles continuously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To improve fiber reinforcing effect and dimensional accuracy of a pipe, in which the fusion of internal layered pipe and fiber reinforcing complex is excellent, by coating the surface of the extension core of a mold to extrude an internal layered pipe made of thermoplastic resin with fluorine contained resin and winding fiber complex on the outer surface of the internal layered pipe. CONSTITUTION:Rolls 5 and 8 comprising sheets 6 and 9, on which polyethylene resin powder fused, wound around glass fibers, for example, are set to winding devices 17 and 18. Polyethylene resin is fed from an extruder 1 to a mold 2, and an internal layer pipe 16a is extruded along the outer peripheral surface of an extension core 3, to which fluorine contained resin process is applied, and fiber complex is wound around the internal layer pipe 16 with the surface heated by heaters 13a and 13b. This is introduced to a cross-head die and is coated and layered by the polyethylene extruded from an extruder 11. In the next step, this is cooled and hardened in a cooling bath 14 and taken up by a take-up machine 15 becoming a three layered structure reinforced resin pipe 16. As a result, a fiber reinforced resin pipe which is accurate in dimensions can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温加圧下で好適に使用される繊維強化樹脂
管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a fiber-reinforced resin pipe that is suitably used under high temperature and pressure conditions.

〔従来の技術〕[Conventional technology]

軽量で錆びず、且つ耐圧性及び耐衝撃性を持たせた合成
樹脂管として、例えば特開昭63〜152786号公報
に記載の如く、熱可塑性樹脂から形成された内層管の外
面に、繊維で補強した繊維強化熱可塑性樹脂からなる強
化層を設け、更にこの強化層の外面に熱可塑性樹脂層を
被覆する繊維強化樹脂管の製造方法が提案されている。
As a synthetic resin pipe that is lightweight, does not rust, and has pressure and impact resistance, for example, as described in JP-A-63-152786, fibers are used on the outer surface of an inner pipe made of thermoplastic resin. A method of manufacturing a fiber-reinforced resin pipe has been proposed in which a reinforcing layer made of a reinforced fiber-reinforced thermoplastic resin is provided and the outer surface of the reinforcing layer is further coated with a thermoplastic resin layer.

この繊維強化樹脂管の製造方法は、芯材となる内層管を
表面が溶融する温度まで加熱しながら、内層管の外周に
、フィラメント間に熱可塑性樹脂を含浸したストランド
状の補強繊維を巻回して、両者の樹脂間を融着する方法
や、補強繊維を内層管の外面に巻回した後、内層管を表
面に融着する温度まで加熱して融着する等により、強化
層を設けた後、この強化層の外周に熱可塑性樹脂を押し
出して被覆する方法である。
The manufacturing method for this fiber-reinforced resin tube involves heating the inner layer tube, which serves as the core material, to a temperature that melts the surface, and then winding a strand-shaped reinforcing fiber impregnated with thermoplastic resin between the filaments around the outer circumference of the inner layer tube. Then, a reinforcing layer was provided by fusing the two resins together, or by winding reinforcing fibers around the outer surface of the inner pipe and then heating the inner pipe to a temperature that fuses it to the surface. After that, a thermoplastic resin is extruded and coated on the outer periphery of this reinforcing layer.

〔発明が解決しよ、うとする課題〕[Problem that the invention attempts to solve]

しかし上記従来の製造方法では、熱可塑性樹脂から成形
された内層管の外面に補強繊維を融着させるためには、
内層管の表面に融着する温度になるまで管を加熱する必
要がある。その場合、加熱により軟化した内層管は、巻
回する補強繊維の張力によって変形し易く、そのため寸
法精度の高い繊維強化樹脂管を得ることが困難であると
いう問題がある。
However, in the conventional manufacturing method described above, in order to fuse the reinforcing fibers to the outer surface of the inner layer pipe molded from thermoplastic resin,
It is necessary to heat the tube to a temperature that fuses it to the surface of the inner tube. In this case, there is a problem in that the inner layer tube softened by heating is easily deformed by the tension of the reinforcing fibers wound around it, making it difficult to obtain a fiber-reinforced resin tube with high dimensional accuracy.

本発明は、上述した従来技術の問題点を解消し、熱可塑
性樹脂製の内層管と繊維強化複合体との融着が良好で繊
維補強効果が優れ、しかも内層管の変形が起こらない、
寸法精度の優れた繊維強化樹脂管を提供しようとするも
のである。
The present invention solves the above-mentioned problems of the prior art, has good fusion between the thermoplastic resin inner tube and the fiber-reinforced composite, has an excellent fiber reinforcing effect, and does not cause deformation of the inner tube.
The purpose is to provide a fiber reinforced resin pipe with excellent dimensional accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

本発明繊維強化樹脂管の製造方法は、熱可塑性樹脂を押
し出して内層管を形成し、該内層管の外面に、多数のフ
ィラメントよりなる補強繊維に熱可塑性樹脂を保持させ
るかまたは融着せしめた繊維複合体を巻回あるいは囲繞
して、両者の樹脂間を融着せしめる繊維強化樹脂管の製
造方法において、前記内層管を押し出す金型の押出方向
に延長コアが突出され、該延長コアの表面がフッ素樹脂
で被覆され、この延長コア上で前記内層管の外面に前記
繊維複合体を巻回あるいは囲繞することを特徴とするも
のであって、このことにより上記目的が達成される。
The method for producing a fiber-reinforced resin pipe of the present invention involves extruding a thermoplastic resin to form an inner layer tube, and making the thermoplastic resin held or fused to reinforcing fibers made of a large number of filaments on the outer surface of the inner layer tube. In a method for manufacturing a fiber-reinforced resin pipe by winding or surrounding a fiber composite to fuse the two resins, an extension core is protruded in the extrusion direction of a mold for extruding the inner layer pipe, and the surface of the extension core is is coated with a fluororesin, and the fiber composite is wound or surrounded on the outer surface of the inner tube on the extended core, thereby achieving the above object.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、繊維強化樹脂管の内層に形成する内層
管の原料として使用する熱可塑性樹脂としては、例えば
、ポリ塩化ビニル、塩素化ポリ塩化ビニル、ポリエチレ
ン、ポリプロピレン、ポリスチレン、ポリアミド、ポリ
カーボネート、ポリフェニレンサルファイド、ポリスル
ホン、ポリエーテルケトン等が挙げられ、管状に押出成
形可能であれば特に限定されず、樹脂管の使用目的に適
した熱可塑性樹脂が適宜使用される。これら熱可塑性樹
脂は単独あるいは複数の混合物として用いてもよい。ま
た、これらの熱可塑性樹脂に熱安定剤、可塑剤、滑剤、
酸化防止剤、紫外線吸収剤、顔料、無機充填材、強化繊
維等の添加剤、充填材、加工助剤、改質剤等の使用目的
に応じて加えてもよい。また、内層管は上記から選択し
た熱可塑性樹脂を複数層に積層してなる積層体であって
もよい。 内層管の外面に巻回あるいは囲繞する繊維複
合体は、多数の連続するフィラメントからなる補強繊維
に熱可塑性樹脂が含浸等により保持されてなるもの、ま
たはその熱可塑性樹脂が溶融されシート状とされたもの
が使用される。用いられる補強繊維としては、ガラス繊
維、炭素繊維、金属繊維、またはアラミド繊維もしくは
ビニロン繊維等の各種の合成繊維等が例示され、これら
の繊維は、直径1〜40pmの連続フィラメント数十〜
数千本より構成されるロービングまたはヤーンから形成
される紐状、テープ状のものが一般的に使用される。繊
維複合体の厚みは薄すぎると強度に欠け、2mを越え厚
すぎると巻回が困難となるので、0.1〜2mの範囲カ
好適に用いられる0幅は5〜5(1+s程度である。
In the present invention, thermoplastic resins used as raw materials for the inner layer of the fiber-reinforced resin tube include, for example, polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, polyphenylene sulfide. , polysulfone, polyetherketone, etc., and there is no particular limitation as long as it can be extruded into a tubular shape, and a thermoplastic resin suitable for the intended use of the resin pipe can be used as appropriate. These thermoplastic resins may be used alone or in combination. In addition, these thermoplastic resins contain heat stabilizers, plasticizers, lubricants,
Additives such as antioxidants, ultraviolet absorbers, pigments, inorganic fillers, reinforcing fibers, fillers, processing aids, modifiers, etc. may be added depending on the purpose of use. Moreover, the inner layer tube may be a laminate formed by laminating a plurality of layers of thermoplastic resins selected from the above. The fiber composite wound around or surrounding the outer surface of the inner tube may be one in which reinforcing fibers consisting of a large number of continuous filaments are impregnated with a thermoplastic resin, or the thermoplastic resin may be melted and made into a sheet. is used. Examples of the reinforcing fibers used include glass fibers, carbon fibers, metal fibers, and various synthetic fibers such as aramid fibers and vinylon fibers.
Rovings made up of several thousand strands or string-like or tape-like ones made from yarn are generally used. If the thickness of the fiber composite is too thin, it lacks strength, and if it exceeds 2 m, it becomes difficult to wind. .

補強繊維に含浸等により保持されるか融着される熱可塑
性樹脂としては、上記内層管と融着可能であれば特に制
限されないが、内層管と相溶性が高く、かつ内層管の樹
脂と同等もしくはそれ以下の温度で溶融あるいは軟化す
る熱可塑性樹脂が好ましい。即ち、上記内層管の原料と
して用いられる熱可塑性樹脂の中から内層管よりも融点
あるいは熱変形温度が低くなるような樹脂を使用するの
が好ましい。
The thermoplastic resin that is retained or fused to the reinforcing fibers by impregnation or the like is not particularly limited as long as it can be fused to the inner layer tube, but it must be highly compatible with the inner layer tube and equivalent to the resin of the inner layer tube. A thermoplastic resin that melts or softens at a temperature higher than that or lower is preferable. That is, from among the thermoplastic resins used as raw materials for the inner layer tube, it is preferable to use a resin whose melting point or thermal deformation temperature is lower than that of the inner layer tube.

繊維複合体は、フィラメントからなるロービングまたは
ヤーン等のストランド状の補強繊維を、(1)粉体状熱
可塑性樹脂の流動床中を通過させ、フィラメント間に熱
可塑性樹脂を含浸する、(2)粉体状熱可塑性樹脂を分
散した液体の槽中を通過させた後乾燥する、(3)溶融
した熱可塑性樹脂の槽中を通過して繊維間に熱可塑性樹
脂を付着させた後乾燥し、そのまま繊維複合体とするか
、または加熱された加圧ロールによって一体化し、紐状
あるいはテープ状に成形してもよい。
The fiber composite is produced by (1) passing strand-shaped reinforcing fibers such as rovings or yarns made of filaments through a fluidized bed of powdered thermoplastic resin to impregnate the spaces between the filaments with the thermoplastic resin; (3) pass through a bath of molten thermoplastic resin to adhere the thermoplastic resin between the fibers, and then dry; The fiber composite may be formed as is, or it may be integrated using a heated pressure roll and formed into a string or tape shape.

(1)、(2)の方法による場合には、フィラメント間
に含浸された熱可塑性樹脂は粉末状の使用に供すること
もできる。繊維複合体中の補強繊維と熱可塑性樹脂の比
率としては、補強繊維の量が5〜80容量%の範囲で適
宜の量が選ばれる。
In the case of methods (1) and (2), the thermoplastic resin impregnated between the filaments can also be used in powder form. The ratio of the reinforcing fibers and the thermoplastic resin in the fiber composite is selected as appropriate within the range of 5 to 80% by volume of the reinforcing fibers.

補強繊維による補強効果が得られ難く、8o容量%を越
えると内層樹脂管の界面とは融着可能でなくなり、充分
に融着した強度の大きい繊維強化管が得られにくい。こ
こでいう融着可能とは、双方の樹脂を溶融状態になるま
で加熱し圧着したものが、冷却後に融着した界面が容易
に切断されない状態をいう。
It is difficult to obtain a reinforcing effect by the reinforcing fibers, and if the content exceeds 80% by volume, it becomes impossible to fuse the inner layer resin pipe with the interface, making it difficult to obtain a sufficiently fused fiber-reinforced pipe with high strength. The term fusion-bondable as used herein refers to a state in which both resins are heated until they become molten and pressed together, and the fused interface is not easily cut after cooling.

第1図は、本発明の一実施例を説明する正面図である。FIG. 1 is a front view illustrating an embodiment of the present invention.

本発明の一実施例において用いる製造装置は、熱可塑性
樹脂を押し出す押出機1と、この押出機1の先端に取り
付けられており、中空の熱可塑性樹脂管16aを押し出
す金型2と、金型2より押し出した内層管16aの外面
に繊維複合体6.9を巻回する巻回装置17.18と、
内層管16aの外面に繊維複合体6.9を巻回した筒状
体16bの外面に、さらに樹脂層を被讃するために樹脂
を押し出す押出機11と、この押出機Ifの先端に取り
付けられたクロスヘツドダイ12と、水槽等の冷却装置
14と、引き取り機15とを備えている。成形金型2の
押出方向に延長コア3が突出され、延長コア3の表面に
フッ素樹脂が被覆されている。ここで、被覆されるフッ
素樹脂としては、例えば、ポリテトラフルオロエチレン
、ポリテトラフルオロエチレン−ヘキサフルオロプロピ
レン共重合体、テトラフルオロエチレン−パーフルオロ
アルキルビニルエーテル共重合体、テトラフルオロエチ
レン−エチレン共重合体、ポリクロロトリフルオロエチ
レン等が挙げられ、耐熱性があり、コア芯金と強固に接
着し、表面摩擦係数の低いものが、上記の問題点を解決
する上で特に好適である。
The manufacturing apparatus used in one embodiment of the present invention includes an extruder 1 for extruding a thermoplastic resin, a mold 2 attached to the tip of the extruder 1 for extruding a hollow thermoplastic resin tube 16a, and a mold 2 for extruding a hollow thermoplastic resin tube 16a. a winding device 17.18 for winding the fiber composite 6.9 around the outer surface of the inner layer tube 16a extruded from the inner layer tube 16a;
An extruder 11 for extruding resin to form a resin layer is attached to the outer surface of the cylindrical body 16b in which the fiber composite 6.9 is wound around the outer surface of the inner tube 16a, and an extruder 11 is attached to the tip of the extruder If. A crosshead die 12, a cooling device 14 such as a water tank, and a take-up machine 15 are provided. An extension core 3 protrudes in the extrusion direction of the molding die 2, and the surface of the extension core 3 is coated with a fluororesin. Here, examples of the fluororesin to be coated include polytetrafluoroethylene, polytetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and tetrafluoroethylene-ethylene copolymer. , polychlorotrifluoroethylene, etc., and those that are heat resistant, firmly adhere to the core metal, and have a low surface friction coefficient are particularly suitable for solving the above problems.

また、この延長コア3の突出長さは特に限定されないが
、内層管16aの外面に繊維複合体6.9を巻回する位
置まで、延長されておればよい。
Further, the protrusion length of the extension core 3 is not particularly limited, but it may be extended to a position where the fiber composite 6.9 is wound around the outer surface of the inner layer tube 16a.

巻回装置17.18は、繊維複合体6,9が巻回された
ロール5,8を支持する支軸4,7を有しており、内層
管16aの周囲を回転することで、各ロール5.8から
繊維複合体6.9が順次巻回されるようになっている。
The winding devices 17 and 18 have spindles 4 and 7 that support rolls 5 and 8 around which the fiber composites 6 and 9 are wound, and rotate around the inner layer tube 16a to rotate each roll. The fiber composites 5.8 to 6.9 are wound in sequence.

第1図に示すように、巻回装置17.18は内層管16
aの両側に一対配設され、ロール5゜8から巻き出され
た繊維複合体6.9が内層管16aの軸方向に対して傾
斜するように巻回装置17.18の支軸4.7は適宜角
度をもって配設されており、かつ両ロール5.8は内層
管16aの回りを互いに反対方向に回転するように構成
されている。このようにすれば、第2図に示すように、
内層管16aの外面に繊維複合体6.9は組紐状に巻回
されることになり、耐内圧性の優れた繊維強化樹脂管1
6が得られる、巻回装置17.18としては、通常用い
られる総組成形機が用いられる。また、巻回装置は1個
だけ設けてもよく、また3個以上設けてもよい、加熱装
置3a、3bは繊維複合体6.9が巻回される部分に配
設されている。
As shown in FIG.
A pair of spindles 4.7 of the winding devices 17.18 are arranged on both sides of the winding device 17.a so that the fiber composite 6.9 unwound from the rolls 5°8 is inclined with respect to the axial direction of the inner layer tube 16a. are arranged at a suitable angle, and both rolls 5.8 are arranged to rotate in opposite directions around the inner tube 16a. In this way, as shown in Figure 2,
The fiber composite 6.9 is wound like a braid around the outer surface of the inner layer pipe 16a, resulting in a fiber reinforced resin pipe 1 with excellent internal pressure resistance.
As the winding devices 17 and 18 for obtaining 6, a commonly used total composition forming machine is used. Further, the heating devices 3a, 3b may be provided with only one winding device or three or more winding devices, and are arranged in the portion where the fiber composite 6.9 is wound.

クロスへラドダイ12の導入口の形状は、筒状体16b
の外径よりやや大きく設定され、また押出機11より押
し出される樹脂は押出jli1から押し出される樹脂と
同様、熱可塑性樹脂が用いられる。
The shape of the introduction port of the rad die 12 to the cross is the cylindrical body 16b.
The resin extruded from the extruder 11 is a thermoplastic resin, similar to the resin extruded from the extruder jli1.

押出IIIから押し出された熱可塑性樹脂は、金型2を
通過することで、内層管16aが成形される。なお、内
層管16aの形状は、金型2の形状によって円筒状の他
、角筒状等であってもよい。
The thermoplastic resin extruded from the extrusion III passes through the mold 2 to form the inner layer tube 16a. Note that the shape of the inner layer tube 16a may be cylindrical or rectangular, etc. depending on the shape of the mold 2.

次に、内層管16aの外面に巻回装置17゜18から熱
可塑性樹脂を含浸した繊維複合体6゜9を巻回すると共
に、加熱装置13a、13bで樹脂を溶融させて内層管
16aと繊維複合体6.9とを一体化させる。
Next, a fiber composite 6°9 impregnated with a thermoplastic resin is wound around the outer surface of the inner pipe 16a from a winding device 17°18, and the resin is melted using heating devices 13a and 13b to separate the inner pipe 16a and the fibers. Integrate with complex 6.9.

次に、内層管16aの外面に巻回された繊維複合体6.
9は加熱装置13a、13bによって内層管16aの外
面で加熱されて、内層管工6aの表面に沿うように軟化
され、内層管16aと融着一体化される。ここで、繊維
複合体6゜9の融着強度を上げるために、ロール状の押
し付けて繊維複合体6,9を押圧しながら内層管16a
に巻回融着させてもよい。
Next, the fiber composite 6. is wound around the outer surface of the inner layer tube 16a.
9 is heated on the outer surface of the inner pipe 16a by the heating devices 13a and 13b, softened along the surface of the inner pipe 6a, and fused and integrated with the inner pipe 16a. Here, in order to increase the fusion strength of the fiber composites 6.9, the inner layer tube 16a is pressed while pressing the fiber composites 6, 9 with a roll-shaped pressing.
It may be wound and fused.

次に、このようにして繊維複合体6,9が巻回された筒
状体16bは、クロスヘッドタ゛イ12へ導かれて筒状
体16bの外面に、合成樹脂が被覆されて外層16Cが
形成される。ここでは、繊維複合体6,9に含浸された
熱可塑性樹脂と同質の熱可塑性樹脂が被覆されるの力く
好ましく、外層16Cは筒状体16bの外面に強固に接
着することになる。その後、冷却装置14へ供給されて
冷却され、続いて引取機15で引き取られて繊維強化樹
脂管16が得られる。
Next, the cylindrical body 16b around which the fiber composites 6 and 9 are wound in this manner is guided to the crosshead tie 12, and the outer surface of the cylindrical body 16b is coated with synthetic resin to form an outer layer 16C. be done. Here, it is highly preferable that the fiber composites 6 and 9 be coated with a thermoplastic resin of the same quality as the thermoplastic resin impregnated, and the outer layer 16C will be firmly adhered to the outer surface of the cylindrical body 16b. Thereafter, it is supplied to a cooling device 14 to be cooled, and then taken off by a take-off machine 15 to obtain a fiber-reinforced resin pipe 16.

このようにして、内層管16aの外面に繊維複合体6,
9が被覆一体化された耐圧強度の高い繊維強化樹脂管1
6が得られる。
In this way, the fiber composite 6,
Fiber-reinforced resin pipe 1 with high pressure resistance and integrated coating 9
6 is obtained.

第3図は、本発明の別の実施例を説明する正面図である
FIG. 3 is a front view illustrating another embodiment of the present invention.

内金型22の後より後方よりシート状繊維複合体24を
連続的に内金型22の外周と賦形ロール25.26によ
り形成される環状の隙間を通過させて供給し、連続繊維
が長手方向に配置された筒状体30aを形成する(第4
図参照)。
The sheet-like fiber composite 24 is continuously fed from behind the inner mold 22 through an annular gap formed by the outer periphery of the inner mold 22 and the shaping rolls 25 and 26, so that the continuous fibers are Form a cylindrical body 30a arranged in the direction (fourth
(see figure).

この時、加熱手段37により、シート状繊維複合体24
を加熱すると、筒状体30aの形成を容易にすることが
でき、また賦形ロール2526をシート状繊維複合体2
4の軟化温度以上に加熱してもよい。
At this time, the sheet-like fiber composite 24 is heated by the heating means 37.
By heating the cylindrical body 30a, the forming roll 2526 can be heated to facilitate the formation of the cylindrical body 30a.
It may be heated to a temperature higher than the softening temperature of No. 4.

続いて、筒状体30aは内コア221、外型222とで
形成される環状の空間に導入される。
Subsequently, the cylindrical body 30a is introduced into the annular space formed by the inner core 221 and the outer mold 222.

ここで押出機21から押し出された熱可塑性樹脂は内コ
ア221により筒状に形成され、内コア221内で筒状
体30a内部に内層の熱可塑性樹脂を押し出し積層して
2層管30bを形成する。
Here, the thermoplastic resin extruded from the extruder 21 is formed into a cylindrical shape by an inner core 221, and the inner layer thermoplastic resin is extruded and laminated inside the cylindrical body 30a within the inner core 221 to form a two-layer tube 30b. do.

続いて、2層管30bの周囲に巻回装置28を回転させ
て繊維複合体29を巻回し、その表面加熱手段38によ
り加熱して眉間を融着し、連続繊維を管の周方向に配置
した強化層を設けた3層管30cを形成する。
Next, the winding device 28 is rotated to wind the fiber composite 29 around the two-layer tube 30b, and the fiber composite 29 is heated by the surface heating means 38 to fuse the glabella, and the continuous fibers are arranged in the circumferential direction of the tube. A three-layer pipe 30c provided with a reinforced layer is formed.

この際、内コア221の押出方向に突設されその表面が
フッ素樹脂で被覆された延長コア23の外側において、
3N管30Cの外面に繊維複合体29を巻回する方法を
採用し、繊維複合体29の巻回時、2層管30bが変形
するのを防止する。
At this time, on the outside of the extension core 23 that protrudes in the extrusion direction of the inner core 221 and whose surface is coated with fluororesin,
A method of winding the fiber composite 29 on the outer surface of the 3N pipe 30C is adopted to prevent the two-layer pipe 30b from being deformed when the fiber composite 29 is wound.

続いて、3層管30cの外周に、熱可塑性樹脂を押出機
31から被覆金型32を経て導入し被覆層を設けた後、
水槽等の冷却装置34により冷却サイジングして繊維強
化樹脂管30を製造し、引取機35により引き取る。
Subsequently, a thermoplastic resin is introduced from the extruder 31 through the coating mold 32 to form a coating layer around the outer periphery of the three-layer pipe 30c, and then
A fiber-reinforced resin pipe 30 is produced by cooling and sizing using a cooling device 34 such as a water tank, and then taken by a taking machine 35 .

〔作用〕[Effect]

本発明繊維複合管の製造方法は、内層管を押し出す金型
の押出方向に延長コアが突出され、該延長コアの表面が
フッ素樹脂で被覆され、この延長コア上で内層管の外面
に繊維複合体を巻回あるいは囲繞するので、押し出され
た内層層がコアに密着する事を防ぎ、内層管の外面に強
化繊維層を巻回する際に内層管の変形を有効に防止し、
かつ成形した管とコアとの摩擦抵抗を大幅に低減して、
管を引取装置にて先端方向に引っ張って、強化樹脂管を
変形させることなく移動させることができる。
In the method for manufacturing a fiber composite tube of the present invention, an extension core is protruded in the extrusion direction of a mold for extruding an inner layer tube, the surface of the extension core is coated with a fluororesin, and a fiber composite tube is coated on the outer surface of the inner layer tube on this extension core. Because it wraps or surrounds the body, it prevents the extruded inner layer from coming into close contact with the core, and effectively prevents the inner tube from deforming when the reinforcing fiber layer is wound around the outer surface of the inner tube.
In addition, the frictional resistance between the molded tube and the core is significantly reduced,
The reinforced resin tube can be moved without deforming it by pulling the tube in the distal direction with a pulling device.

〔実施例〕〔Example〕

1隻1 第1図に図示した装置を用い、巻回装置17゜18の支
軸4.7に、それぞれ、ガラス繊維にポリエチレン樹脂
粉末を付着させて融着したシート6.9を巻回したロー
ル5,8をセットした。このシート6.9の厚みは0.
3観、幅は30閣であった。
1 ship 1 Using the device shown in Figure 1, sheets 6.9 made by adhering polyethylene resin powder to glass fibers and fusing them were wound around the spindles 4.7 of the winding devices 17 and 18, respectively. Rolls 5 and 8 were set. The thickness of this sheet 6.9 is 0.
It had three views and a width of 30 temples.

押出機1から180°Cに温度制御された金型2にポリ
エチレン樹脂を送り、フッ素樹脂加工させた延長コア3
(外径90mm)の外周面に沿って外径100醜の内層
管16aを押し出し、内層管16aの表面にヒーター1
3a及び13bで約180°Cに加熱しながら巻き付け
た。これを180℃に温度制御したクロスへラドダイに
導き、押出機11より押し出したポリエチレン樹脂を被
覆積層した。次いで、冷却槽14に導き冷却固化し、引
取機15により引き取って、3層構造の強化樹脂管16
を得た。得られた強化樹脂管16の外径は108■であ
った。この際、内NNがコアに密着することなく、また
強化樹脂層の巻回時及び引取機による引き取り時に、繊
維強化樹脂管が変形してしまうことがなく、寸法精度の
よい繊維強化樹脂管を製造することができた。
Polyethylene resin is sent from extruder 1 to mold 2 whose temperature is controlled at 180°C, and extension core 3 is processed with fluororesin.
(outer diameter 90 mm), push out the inner layer tube 16a with an outer diameter of 100 mm, and place the heater 1 on the surface of the inner layer tube 16a.
3a and 13b while heating to about 180°C. This was introduced into a cloth whose temperature was controlled at 180°C through a Rad die, and then covered with a polyethylene resin extruded from an extruder 11 and laminated thereon. Next, it is introduced into a cooling tank 14 to be cooled and solidified, and taken out by a take-up machine 15 to form a reinforced resin pipe 16 with a three-layer structure.
I got it. The outer diameter of the obtained reinforced resin tube 16 was 108 cm. At this time, the inner NN does not come into close contact with the core, and the fiber-reinforced resin tube does not deform when the reinforced resin layer is wound or taken off by a take-off machine, and the fiber-reinforced resin tube has good dimensional accuracy. could be manufactured.

〔効果〕〔effect〕

本発明繊維強化樹脂管の製造方法は、内層管を押し出す
金型の押出方向に延長コアが突出され、該延長コアの表
面がフッ素樹脂で被覆され、この延長コア上で前記内層
管の外面上に前記繊維複合体を巻回あるいは囲繞するも
のであるので、内層樹脂層がコアに密着することなく、
また強化樹脂層の巻回時及び引取機による引き取り時に
、繊維強化樹脂管が変形してしまうことがなく、寸法精
度のよい繊維強化樹脂管を製造することができる。
In the method for manufacturing a fiber-reinforced resin pipe of the present invention, an extension core is protruded in the extrusion direction of a mold for extruding an inner layer pipe, the surface of the extension core is coated with a fluororesin, and the outer surface of the inner layer pipe is coated on the extension core. Since the fiber composite is wound or surrounded by the core, the inner resin layer does not come into close contact with the core.
Further, the fiber reinforced resin tube is not deformed when the reinforced resin layer is wound and taken off by a take-off machine, and a fiber reinforced resin tube with good dimensional accuracy can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明する正面図、第2図は
第1図の実施例により製造した複合管を示す一部切り欠
き正面図、第3図は本発明の別の実施例を説明する正面
図、第4図は第3図の実施例において、内コアと賦形ロ
ールとの間で強化繊維層を囲繞して繊維複合体を形成す
る状態を示す平面図である。 1.21・・・押出機、2,22・・・金型、3.23
・・・延長コア、6.9.24.29・強化複合体、1
1.31・・・押出機、12.32・・・クロスへラド
ダイ、14.34・・・冷却装置、15.35・・・引
取機、16.30・・・繊維強化樹脂管。
FIG. 1 is a front view illustrating one embodiment of the present invention, FIG. 2 is a partially cutaway front view showing a composite pipe manufactured according to the embodiment of FIG. 1, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a front view for explaining an example, and FIG. 4 is a plan view showing a state in which a reinforcing fiber layer is surrounded between an inner core and a forming roll to form a fiber composite in the embodiment of FIG. 3. 1.21... Extruder, 2,22... Mold, 3.23
...Extended core, 6.9.24.29・Reinforced composite, 1
1.31...Extruder, 12.32...Cross rad die, 14.34...Cooling device, 15.35...Take-off machine, 16.30...Fiber reinforced resin pipe.

Claims (1)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂を押し出して内層管を形成し、該内
層管の外面に、多数のフィラメントよりなる補強繊維に
熱可塑性樹脂を保持させるかまたは融着せしめた繊維複
合体を巻回あるいは囲繞して、両者の樹脂間を融着せし
める繊維強化樹脂管の製造方法において、前記内層管を
押し出す金型の押出方向に延長コアが突出され、該延長
コアの表面がフッ素樹脂で被覆され、この延長コア上で
前記内層管の外面上に前記繊維複合体を巻回あるいは囲
繞することを特徴とする繊維強化樹脂管の製造方法。
(1) A thermoplastic resin is extruded to form an inner layer tube, and a fiber composite in which the thermoplastic resin is held or fused to reinforcing fibers made of a large number of filaments is wound or surrounded on the outer surface of the inner layer tube. In the method for manufacturing a fiber-reinforced resin pipe in which both resins are fused together, an extension core is protruded in the extrusion direction of a mold for extruding the inner layer pipe, the surface of the extension core is coated with a fluororesin, and this A method for manufacturing a fiber-reinforced resin pipe, comprising winding or surrounding the fiber composite on the outer surface of the inner layer pipe on an extended core.
JP2171723A 1990-06-28 1990-06-28 Manufacture of fiber reinforced resin pipe Pending JPH0460292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171723A JPH0460292A (en) 1990-06-28 1990-06-28 Manufacture of fiber reinforced resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171723A JPH0460292A (en) 1990-06-28 1990-06-28 Manufacture of fiber reinforced resin pipe

Publications (1)

Publication Number Publication Date
JPH0460292A true JPH0460292A (en) 1992-02-26

Family

ID=15928478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171723A Pending JPH0460292A (en) 1990-06-28 1990-06-28 Manufacture of fiber reinforced resin pipe

Country Status (1)

Country Link
JP (1) JPH0460292A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522568B1 (en) * 2002-08-26 2005-10-18 주식회사 세운티.엔.에스 Water-vaporable adibatiz pipe by using glass fiber and its manufacturing method
EP2667072A1 (en) * 2012-05-21 2013-11-27 MIR Arastima ve Gelistime A.S. Thermoplastic pipe having longitudinally arranged continuous fiber reinforcement and production method thereof
JP2014129838A (en) * 2012-12-28 2014-07-10 Kuraray Plastics Co Ltd Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material
WO2018010599A1 (en) * 2016-07-15 2018-01-18 王庆昭 Continuous production device and method for glass fiber reinforced belt polyethylene composite pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522568B1 (en) * 2002-08-26 2005-10-18 주식회사 세운티.엔.에스 Water-vaporable adibatiz pipe by using glass fiber and its manufacturing method
EP2667072A1 (en) * 2012-05-21 2013-11-27 MIR Arastima ve Gelistime A.S. Thermoplastic pipe having longitudinally arranged continuous fiber reinforcement and production method thereof
JP2014129838A (en) * 2012-12-28 2014-07-10 Kuraray Plastics Co Ltd Flexible pipe material, method for manufacturing the same and sound absorption pipe material made of flexible material
WO2018010599A1 (en) * 2016-07-15 2018-01-18 王庆昭 Continuous production device and method for glass fiber reinforced belt polyethylene composite pipe
US10780619B2 (en) 2016-07-15 2020-09-22 Qingzhao Wang Continuous production device and method for glass fiber reinforced tape polyethylene composite pipe

Similar Documents

Publication Publication Date Title
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP3117492B2 (en) Method for producing fiber reinforced thermoplastic resin tube
JPH0460292A (en) Manufacture of fiber reinforced resin pipe
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH03243333A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07117178B2 (en) Composite pipe
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JP2726123B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH0692127B2 (en) Method for producing fiber reinforced thermoplastic resin pipe
JPH086847B2 (en) Composite pipe and manufacturing method thereof
JP3214892B2 (en) Method for producing hollow cross-section shaped body
JPH04201547A (en) Manufacture of fiber reinforced resin pipe
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07232394A (en) Manufacture of fiber reinforced thermoplastic resin composite pipe
JPH03146326A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH08323882A (en) Manufacture of fiber-reinforced thermosetting resin composite pipe
JPH05154936A (en) Method and apparatus for manufacturing fiber reinforced thermoplastic resin pipe
JPH048983A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH07266436A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH04201548A (en) Manufacture of fiber reinforced resin pipe
JPH05138758A (en) Production of fiber reinforced thermoplastic resin pipe