Nothing Special   »   [go: up one dir, main page]

JPH0460549B2 - - Google Patents

Info

Publication number
JPH0460549B2
JPH0460549B2 JP60225439A JP22543985A JPH0460549B2 JP H0460549 B2 JPH0460549 B2 JP H0460549B2 JP 60225439 A JP60225439 A JP 60225439A JP 22543985 A JP22543985 A JP 22543985A JP H0460549 B2 JPH0460549 B2 JP H0460549B2
Authority
JP
Japan
Prior art keywords
sensitive body
substance
substrate
detected
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60225439A
Other languages
Japanese (ja)
Other versions
JPS6283641A (en
Inventor
Masaya Hijikigawa
Terue Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60225439A priority Critical patent/JPS6283641A/en
Priority to DE19863634132 priority patent/DE3634132C2/en
Priority to GB8624094A priority patent/GB2183344B/en
Publication of JPS6283641A publication Critical patent/JPS6283641A/en
Priority to US07/579,195 priority patent/US5140393A/en
Publication of JPH0460549B2 publication Critical patent/JPH0460549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、尿酸、グリコース等の生理活性物質
を検知対象としたバイオセンサに関し、検知対象
物(量)と前記バイオセンサに内蔵された化学的
または物理的な相互作用を電気信号に変換するこ
とにより検知対象物(量)を検出するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a biosensor that detects physiologically active substances such as uric acid and glycose. The object (quantity) to be detected is detected by converting physical interaction into an electrical signal.

<従来の技術> 一般にバイオセンサは酵素や抗体あるいは生体
内小器官(オルガネラ)等の生体関連物質を適当
な基体(膜)に固定化したレセプターと呼ばれる
感応体と、レセプターと測定対象物質との反応に
よつて生じたあるいは消滅したガス等の化学物質
や光、熱等の物理量を電気信号に変換するトラン
スデユーサとからなる。例えば、グルコースの検
知を行うグルコースセンサにおいては、酵素(グ
ルコースオキシダーゼ:GOD)を高分子膜に固
定化したものをレセプターとして用いる。グルコ
ースとGCD酵素とが接触すると、下記の反応式
によつて過酸化水素(H2O2)が生成される。
<Conventional technology> In general, biosensors use a sensitive body called a receptor, which is a biologically related substance such as an enzyme, an antibody, or an organelle immobilized on a suitable substrate (membrane), and a link between the receptor and the substance to be measured. It consists of a transducer that converts chemical substances such as gases generated or extinguished by reactions and physical quantities such as light and heat into electrical signals. For example, in a glucose sensor that detects glucose, an enzyme (glucose oxidase: GOD) immobilized on a polymer membrane is used as a receptor. When glucose and GCD enzyme come into contact, hydrogen peroxide (H 2 O 2 ) is produced according to the reaction formula below.

GOD グルコース+O2−→グルコン酸+H2O2 生成されたH2O2を、例えば白金をアノードと
する電気化学デバイス(トランスデユーサ)で電
気信号として検知する。即ち、生成されたH2O2
の量を検知することによつて検知対象物質である
グルコースの濃度を知ることができる。上述のよ
うに生成された化学物質をトランスデユーサで検
知する以外に、酵素と検知対象物質との反応によ
つて生ずる発光や吸熱、発熱等の熱的現象を検出
する方式等が知られている。発光現象を利用する
場合にはトランスデユーサとして光検知器が、ま
た熱的現象を検知する場合にはサーミスタ等の温
度センサが用いられる。いずれの場合も、検知対
象物質の検出濃度下限は、ほとんどの場合レセプ
ターと検知対象物質との反応量に依存する。この
ため検出感度を増大させる手段として、可能な限
り高密度に酵素等の生体関連物質を固定化するこ
とと、検知対象物質との接触面積を増加すること
とがある。
GOD Glucose + O 2 − → Gluconic acid + H 2 O 2 The generated H 2 O 2 is detected as an electrical signal by an electrochemical device (transducer) using, for example, platinum as an anode. That is, the generated H 2 O 2
By detecting the amount of glucose, the concentration of glucose, which is the substance to be detected, can be determined. In addition to detecting the chemical substances produced as described above using a transducer, there are also known methods for detecting thermal phenomena such as luminescence, endotherm, and heat generation caused by the reaction between enzymes and the substance to be detected. There is. A photodetector is used as a transducer when a luminescent phenomenon is used, and a temperature sensor such as a thermistor is used when a thermal phenomenon is detected. In either case, the lower limit of the detection concentration of the substance to be detected depends in most cases on the amount of reaction between the receptor and the substance to be detected. Therefore, as a means to increase the detection sensitivity, there are two methods: immobilizing biological substances such as enzymes at the highest possible density and increasing the contact area with the detection target substance.

このようなバイオセンサとしては例えば、特開
昭51−139289に示されているような電界効果変換
器がある。この電界効果変換器は電界効果型トラ
ンジスタ(FET)のゲート電極に感応体を形成
させ、検知対象物質と前記感応体との相互作用に
より発生する電位の変化をFETのゲート電位の
変化としてとらえる構成になつている。
An example of such a biosensor is a field effect transducer as disclosed in Japanese Patent Laid-Open No. 139289/1983. This field effect converter has a structure in which a sensitive body is formed on the gate electrode of a field effect transistor (FET), and changes in potential generated by the interaction between the substance to be detected and the sensitive body are detected as changes in the gate potential of the FET. It's getting old.

又、検知対象物質と感応体との接触面積を増大
させることによつて検出感度を増大させる方法が
種々のセンサ素子において検討されている。
Furthermore, methods of increasing detection sensitivity by increasing the contact area between the substance to be detected and the sensitive body are being studied for various sensor elements.

<解決しようとする課題> しかしながら、上述の従来技術には以下のよう
な問題点があつた。
<Problems to be Solved> However, the above-mentioned conventional technology has the following problems.

特開昭51−139289に開示されているバイオセン
サでは、感応体表面が平坦なため、検知対象物質
と感応体との接触面積が小さくなり、検出感度が
低くなるという問題がある。
In the biosensor disclosed in JP-A-51-139289, since the surface of the sensitive body is flat, there is a problem that the contact area between the substance to be detected and the sensitive body becomes small, resulting in a low detection sensitivity.

前記接触面積を大きくするために、感応体の表
面に凹凸を付与する方法が考えられるが、感応体
は酵素や抗体等の生体関連物質を基体の上に共有
結合法、吸着法等により固定化して形成している
ため、凹凸を付与した基体に単に生体関連物質を
固定化しただけでは、微細加工した基体表面に直
接生体関連物質を固定化できない場合や固定化に
適した微細加工ができない場合があり、基体に高
密度に生体関連物質を付与することができなかつ
た。従つて検知対象物質と感応体とが相互作用す
る面積を有効に増大させることができなかつた。
In order to increase the contact area, it is possible to make the surface of the sensitive material uneven, but the sensitive material is made by immobilizing biological substances such as enzymes and antibodies on the substrate by covalent bonding, adsorption, etc. Therefore, simply immobilizing bio-related substances on a substrate with unevenness may not directly immobilize bio-related substances on the microfabricated surface of the substrate, or may not be able to perform microfabrication suitable for immobilization. Therefore, it was not possible to apply bio-related substances to the substrate at high density. Therefore, it has not been possible to effectively increase the area where the substance to be detected and the sensitive body interact.

本発明は、微細な凹凸が形成された基体表面に
高密度に生体関連物質を固定化することにより、
高い検出感度の電界効果型半導体センサを提供す
ることを目的とする。
The present invention achieves the following by immobilizing bio-related substances at high density on the surface of a substrate on which fine irregularities are formed.
The purpose of the present invention is to provide a field-effect semiconductor sensor with high detection sensitivity.

<課題を解決するための手段> 本発明の電界効果型半導体センサは、半導体基
板にソース領域とドレイン領域とを形成し、更に
前記半導体基板上にソース電極とドレイン電極を
形成すると共に、前記ソース領域とドレイン領域
の間のチヤンネル層の上に感応体を形成し、この
感応体と対向する位置に被検知物が通過するため
の空間をあけて参照電極を形成した電界効果型半
導体センサにおいて、 前記感応体が微細な凹凸形状をなしている高分
子化合物からなる基体と、該基体上に形成された
LB(ラングミユア・ブロジエツト)膜と、該LB
膜に固定化された生体関連物質とからなることを
特徴とする。
<Means for Solving the Problems> A field effect semiconductor sensor of the present invention includes forming a source region and a drain region on a semiconductor substrate, further forming a source electrode and a drain electrode on the semiconductor substrate, and forming a source region and a drain region on the semiconductor substrate. In a field-effect semiconductor sensor, a sensitive body is formed on a channel layer between a region and a drain region, and a reference electrode is formed at a position facing the sensitive body with a space for the object to be detected to pass through. A substrate made of a polymer compound in which the sensitive material has a fine uneven shape, and a substrate formed on the substrate.
LB (Langmiur Blosget) membrane and the LB
It is characterized by consisting of a biologically related substance immobilized on a membrane.

<作用> 疎水性の高分子化合物からなる基体に、親水性
の酵素等の生体関連物質を固体化する場合、前記
基体表面が微細な凹凸形状であると、高密度に生
体関連物質を固定化することが困難である。
<Function> When solidifying a biological substance such as a hydrophilic enzyme on a substrate made of a hydrophobic polymer compound, if the surface of the substrate has minute irregularities, the biological substance can be immobilized at high density. difficult to do.

本発明では、LB法により成膜されたLB膜を、
上記微細な凹凸が付与された基体表面に形成する
ことにより、基体表面を親水性化しているため、
生体関連物質を高密度に固定化することができ、
検知対象物質と感応体との反応量を多くすること
ができ、高い検出感度の電界効果型半導体センサ
を得ることができる。
In the present invention, the LB film formed by the LB method is
By forming the above-mentioned fine irregularities on the substrate surface, the substrate surface is made hydrophilic.
Bio-related substances can be immobilized at high density,
The amount of reaction between the substance to be detected and the sensitive body can be increased, and a field-effect semiconductor sensor with high detection sensitivity can be obtained.

<実施例> 本実施例は、酵素やその他の生体関連物質から
なるレセプター(感応体)と測定対象物質問の反
応に基づいて測定対象物質を検出する半導体バイ
オセンサに関する。
<Example> This example relates to a semiconductor biosensor that detects a substance to be measured based on a reaction between a receptor (sensor) made of an enzyme or other biologically related substance and a question of the substance to be measured.

第1図は、本発明の電界効果型半導体センサに
使用する感応体局部の模式説明図である。予め、
合成高分子材料などからなる基体41の少なくと
も表面に化学エツチングやプラズマエツチング等
の方法によつて図のような一定周期の微細な凹凸
を形成しておく、その後、酵素等の生体関連物質
43を共有結合法あるいは吸着法によつてその表
面に固定化した感応膜42を形成してレセプター
(感応体)とする。このような構造とすることに
よつて、従来の表面が平坦なレセプターと比べ、
基体の単位面積当たりの固定化した生体関連物質
の数が増加しかつ検知対象物質との接触面積も増
大することとなる。この結果、検出感度の増大あ
るいは、従来と同一感度で良い場合には、センサ
ー全体の小型化が可能となるなどの利点が得られ
る。
FIG. 1 is a schematic explanatory diagram of a local part of a sensitive body used in a field-effect semiconductor sensor of the present invention. In advance,
At least the surface of a substrate 41 made of a synthetic polymeric material or the like is formed with fine irregularities at a constant period as shown in the figure by a method such as chemical etching or plasma etching, and then a biologically related substance 43 such as an enzyme is applied. A sensitive film 42 fixed on the surface is formed by a covalent bond method or an adsorption method to serve as a receptor (sensor). With this structure, compared to conventional receptors with flat surfaces,
The number of immobilized biological substances per unit area of the substrate increases, and the contact area with the detection target substance also increases. As a result, there are advantages such as an increase in detection sensitivity or, if the same sensitivity as in the past, it is possible to downsize the entire sensor.

感応膜42を基体41上に形成する方法の一つ
として、ラングミユア・プロジエツト(LB)法
による成膜が有効である。また、基体41に単結
晶を用いることが可能な場合には、化学エツチン
グ速度の結晶方位依存性、即ち異方性エツチング
技術を用いて微細加工することができる。上記感
応体は、電気化学デバイスや光検知器あるいは温
度センサなどのトランスデユーサと物理的に結合
してセンサを作成すれば従来にものに比べて検出
感度の高いバイオ・センサとすることができる。
As one method for forming the sensitive film 42 on the substrate 41, film formation by the Langmire-Prodget (LB) method is effective. Further, if it is possible to use a single crystal for the substrate 41, microfabrication can be performed using the crystal orientation dependence of the chemical etching rate, that is, anisotropic etching technology. If the above-mentioned sensitive body is physically combined with a transducer such as an electrochemical device, a photodetector, or a temperature sensor to create a sensor, it can be made into a biosensor with higher detection sensitivity than conventional ones. .

第2図に示すように、上記感応体を電界効果ト
ランジスタ(FET)のゲート部上な形成するこ
とによつて、本願発明のFET型のバイオ・セン
サを得ることができる。FET51のゲート絶縁
膜52上に感応体53を形成し、溶液中で参照電
極54との間で一定の電位を形成する。検知対象
物質と感応体との反応による僅かな電位変化を
FETのゲート電位の変化としてとらえ、FETの
増幅作用を利用してドレイン電流IDの大きな変化
として出力することができる。
As shown in FIG. 2, the FET type biosensor of the present invention can be obtained by forming the above-mentioned sensitive body on the gate portion of a field effect transistor (FET). A sensitive body 53 is formed on the gate insulating film 52 of the FET 51, and a constant potential is formed between it and a reference electrode 54 in a solution. Detects slight potential changes due to the reaction between the substance to be detected and the sensitive body.
This can be interpreted as a change in the gate potential of the FET, and can be output as a large change in the drain current ID by using the amplification effect of the FET.

以上のごとく本実施例の感応体は、従来から知
られているあらゆる種類のトランスデユーサと、
電気的又は物理的に結合して用いることができ、
バイオ・センサとしての性能の向上を図ることが
できる。
As described above, the sensitive body of this embodiment can be used with all kinds of conventionally known transducers.
Can be used electrically or physically coupled,
It is possible to improve the performance as a biosensor.

<発明の効果> 以上詳述したように、本発明の電界効果型半導
体センサは、感応体が微細な凹凸形状をなしてい
る基体とこの基体上に形成された感応膜とからな
り、さらに感応膜には生体関連物質が固定化され
た構成であるため、表面積が大きく、高密度に生
体関連物質が固定化された感応体を有する電界効
果型半導体センサが得られる。従つて、検出感度
が高い電界効果型半導体センサを得ることができ
る。
<Effects of the Invention> As detailed above, the field-effect semiconductor sensor of the present invention includes a base body in which the sensitive body has a fine uneven shape and a sensitive film formed on the base body. Since the membrane has a structure in which a biological substance is immobilized, a field-effect semiconductor sensor having a large surface area and a sensitive body on which a biological substance is immobilized at a high density can be obtained. Therefore, a field effect semiconductor sensor with high detection sensitivity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電界効果型半導体センサに用
いる感応体の一実施例の要部の模式説明図、第2
図は感応体を電界効果トランジスタに組み込んだ
電界効果型半導体センサの一実施例を示す模式断
面図である。 41……基体、43……生体関連物質、42…
…感応膜、53……感応体、51……FET、5
2……ゲート絶縁膜、54……参照電極。
FIG. 1 is a schematic explanatory diagram of a main part of an embodiment of a sensitive body used in a field-effect semiconductor sensor of the present invention, and FIG.
The figure is a schematic cross-sectional view showing an embodiment of a field-effect semiconductor sensor in which a sensitive body is incorporated into a field-effect transistor. 41...Substrate, 43...Bio-related substance, 42...
...Sensitive membrane, 53...Sensitive body, 51...FET, 5
2... Gate insulating film, 54... Reference electrode.

Claims (1)

【特許請求の範囲】 1 半導体基板にソース領域とドレイン領域とを
形成し、更に前記半導体基板上にソース電極とド
レイン電極を形成すると共に、前記ソース領域と
ドレイン領域の間のチヤンネル層の上に感応体を
形成し、この感応体と対向する位置に被検知物が
通過するための空間をあけて参照電極を形成した
電界効果型半導体センサにおいて、 前記感応体が微細な凹凸形状をなしている高分
子化合物からなる基体と、該基体上に形成された
LB膜と、該LB膜に固定化された生体関連物質と
からなることを特徴とする電界効果型半導体セン
サ。
[Claims] 1. A source region and a drain region are formed on a semiconductor substrate, a source electrode and a drain electrode are further formed on the semiconductor substrate, and a channel layer is formed on a channel layer between the source region and the drain region. In a field effect semiconductor sensor in which a sensitive body is formed and a reference electrode is formed at a position facing the sensitive body with a space for a detected object to pass through, the sensitive body has a fine uneven shape. A base made of a polymer compound, and a base formed on the base.
A field-effect semiconductor sensor comprising an LB film and a biologically related substance immobilized on the LB film.
JP60225439A 1985-10-08 1985-10-08 Sensor element Granted JPS6283641A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60225439A JPS6283641A (en) 1985-10-08 1985-10-08 Sensor element
DE19863634132 DE3634132C2 (en) 1985-10-08 1986-10-07 Biosensor device
GB8624094A GB2183344B (en) 1985-10-08 1986-10-08 Sensor
US07/579,195 US5140393A (en) 1985-10-08 1990-09-05 Sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60225439A JPS6283641A (en) 1985-10-08 1985-10-08 Sensor element

Publications (2)

Publication Number Publication Date
JPS6283641A JPS6283641A (en) 1987-04-17
JPH0460549B2 true JPH0460549B2 (en) 1992-09-28

Family

ID=16829380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60225439A Granted JPS6283641A (en) 1985-10-08 1985-10-08 Sensor element

Country Status (3)

Country Link
JP (1) JPS6283641A (en)
DE (1) DE3634132C2 (en)
GB (1) GB2183344B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116210A (en) * 2006-10-31 2008-05-22 Mitsumi Electric Co Ltd Sensor and detection method

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3724966C3 (en) * 1986-07-29 1996-03-21 Sharp Kk sensor
GB2224356A (en) * 1988-10-31 1990-05-02 Plessey Co Plc Biosensor device
EP0390692A3 (en) * 1989-03-29 1991-10-02 Terumo Kabushiki Kaisha Method of forming thin film, apparatus for forming thin film and sensor
FR2652652B1 (en) * 1989-10-02 1991-12-13 Commissariat Energie Atomique METHOD AND DEVICE FOR DETECTING CHEMICAL SPECIES USING A THIN FILM OF INORGANIC SEMICONDUCTOR.
EP0645621A3 (en) * 1993-09-28 1995-11-08 Siemens Ag Sensor.
US5563067A (en) 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
USRE40209E1 (en) 1994-06-13 2008-04-01 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
DE4427921C2 (en) * 1994-08-06 2002-09-26 Forschungszentrum Juelich Gmbh Chemical sensors, especially biosensors, based on silicon
DE19859998C2 (en) * 1998-12-23 2000-11-30 Siemens Ag Gas sensor and method for its production
SE0102426D0 (en) 2001-07-06 2001-07-06 Bioett Ab humidity Sensor
AU2002367135A1 (en) * 2001-12-21 2003-07-15 Bae Systems Plc Sensor system
US6852996B2 (en) * 2002-09-25 2005-02-08 Stmicroelectronics, Inc. Organic semiconductor sensor device
JP4232108B2 (en) * 2005-05-20 2009-03-04 セイコーエプソン株式会社 Target substance detection or quantification method, electrode substrate, apparatus and kit used in the method
EP1767934B1 (en) * 2005-09-21 2007-12-05 Adixen Sensistor AB Hydrogen gas sensitive semiconductor sensor
GB0522461D0 (en) 2005-11-03 2005-12-14 Immunoclin Ltd Dactyl detector
FI20060389L (en) * 2006-04-21 2007-10-22 Environics Oy Censor
JP5358061B2 (en) * 2007-02-28 2013-12-04 インフィコン エービー Improved hydrogen gas sensing semiconductor sensor
KR101337673B1 (en) * 2007-03-15 2013-12-06 인피콘 아베 Improved hydrogen gas sensistive semiconductor sensor
JP5159453B2 (en) * 2008-06-13 2013-03-06 ローム株式会社 Ion sensor
US9134270B2 (en) * 2010-03-25 2015-09-15 Stichting Imec Nederland Amorphous thin film for sensing
US20130214332A1 (en) * 2011-08-26 2013-08-22 Diagtronix, Inc. Nanogrid channel fin-fet transistor and biosensor
JP5903872B2 (en) * 2011-12-19 2016-04-13 大日本印刷株式会社 Transistor type sensor and method for manufacturing transistor type sensor
DE102014104219B4 (en) * 2014-03-26 2019-09-12 Heraeus Nexensos Gmbh Ceramic carrier and sensor element, heating element and sensor module each with a ceramic carrier and method for producing a ceramic carrier
JP6569901B2 (en) * 2015-08-28 2019-09-04 ラピスセミコンダクタ株式会社 Semiconductor device and manufacturing method of semiconductor device
DE102015220909A1 (en) * 2015-10-27 2017-04-27 Robert Bosch Gmbh Use of an ion sensitive field effect transistor to measure a concentration of hydrogen peroxide in a fluid
DE102016101248A1 (en) * 2015-11-02 2017-05-04 Epcos Ag Sensor element and method for producing a sensor element
TWI669496B (en) * 2016-09-26 2019-08-21 美商羅門哈斯電子材料有限公司 Gas sensor and method of manufacture thereof
US11092567B2 (en) * 2017-03-21 2021-08-17 International Business Machines Corporation Biosensor electrode having three-dimensional structured sensing surfaces
DE102017209269A1 (en) 2017-06-01 2018-12-06 Robert Bosch Gmbh MEMS media sensor
CN113358608B (en) * 2020-03-06 2023-03-21 中国科学院化学研究所 Gas sensor and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139289A (en) * 1975-03-12 1976-12-01 Univ Utah Chemically sensitive fe converter
JPS52139777A (en) * 1976-05-14 1977-11-21 Omron Tateisi Electronics Co Fixed enzyme membrane
JPS55140142A (en) * 1979-03-20 1980-11-01 Olympus Optical Co Ltd Field-effect semiconductor sensor and its manufacture
JPS56111454A (en) * 1980-02-06 1981-09-03 Kuraray Co Ltd Fet sensor
JPS58179348A (en) * 1982-04-14 1983-10-20 Hokuriku Denki Kogyo Kk Humidity sensor using al anodic oxidation thin film
JPS5921756B2 (en) * 1979-03-16 1984-05-22 ロボツトグルツペン・エツチ・ビイ flexible arm
JPS59120945A (en) * 1982-12-28 1984-07-12 Shinkosumosu Denki Kk Hydrogen selective sensor and its production
JPS59151051A (en) * 1983-02-17 1984-08-29 Matsushita Electric Works Ltd Biocatalyst electrode
JPS6029653A (en) * 1983-07-29 1985-02-15 Hitachi Ltd Gas sensor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE322927B (en) * 1967-09-28 1970-04-20 Asea Ab
US3616411A (en) * 1968-09-16 1971-10-26 Gen Electric Partial pressure sensor
FR2252041A5 (en) * 1973-11-16 1975-06-13 Thomson Csf
FR2273276B1 (en) * 1974-05-27 1978-08-04 Radiotechnique Compelec
GB1490066A (en) * 1974-10-07 1977-10-26 Johnson Matthey Co Ltd Gas composition detection apparatus
US4104605A (en) * 1976-09-15 1978-08-01 General Electric Company Thin film strain gauge and method of fabrication
JPS5825221B2 (en) * 1977-12-12 1983-05-26 株式会社クラレ FET reference electrode
US4313338A (en) * 1978-08-18 1982-02-02 Matsushita Electric Industrial Co., Ltd. Gas sensing device
DE3041952A1 (en) * 1979-11-13 1981-09-03 Gould Inc., 60008 Rolling Meadows, Ill. METHOD FOR PRODUCING A THIN-LAYER SENSOR ARRANGEMENT
US4340564A (en) * 1980-07-21 1982-07-20 Daryl Laboratories, Inc. Immunoadsorptive surface coating for solid-phase immunosubstrate and solid-phase immunosubstrate
ATE30780T1 (en) * 1981-06-22 1987-11-15 Battelle Memorial Institute PROCEDURE FOR DETERMINING BIOACTIVE SUBSTANCES.
GB2103786A (en) * 1981-08-14 1983-02-23 Ici Plc Fibre optic sensor
JPS5921756U (en) * 1982-08-02 1984-02-09 三菱レイヨン株式会社 enzyme electrode
CA1209681A (en) * 1982-08-04 1986-08-12 Exxon Research And Engineering Company Optically enhanced thin film photovoltaic device using lithography defined random surfaces
JPS59127879A (en) * 1983-01-12 1984-07-23 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacture thereof
US4515653A (en) * 1983-04-30 1985-05-07 Sharp Kabushiki Kaisha Method for production of a moisture sensor
JPS59206756A (en) * 1983-05-11 1984-11-22 Hitachi Ltd Fet chemical sensor combined with reference electrode
GB2142147A (en) * 1983-06-24 1985-01-09 Standard Telephones Cables Ltd Gas sensor
GB2162440B (en) * 1984-08-02 1987-10-14 Stc Plc Optical fibres
GB8423204D0 (en) * 1984-09-14 1984-10-17 Comtech Res Unit Assay technique and equipment
JPS61198040A (en) * 1984-12-08 1986-09-02 テストターム・メステヒニーク・ゲー・エム・ベー・ハー・ウント・コンパニー Optical dew point sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139289A (en) * 1975-03-12 1976-12-01 Univ Utah Chemically sensitive fe converter
JPS52139777A (en) * 1976-05-14 1977-11-21 Omron Tateisi Electronics Co Fixed enzyme membrane
JPS5921756B2 (en) * 1979-03-16 1984-05-22 ロボツトグルツペン・エツチ・ビイ flexible arm
JPS55140142A (en) * 1979-03-20 1980-11-01 Olympus Optical Co Ltd Field-effect semiconductor sensor and its manufacture
JPS56111454A (en) * 1980-02-06 1981-09-03 Kuraray Co Ltd Fet sensor
JPS58179348A (en) * 1982-04-14 1983-10-20 Hokuriku Denki Kogyo Kk Humidity sensor using al anodic oxidation thin film
JPS59120945A (en) * 1982-12-28 1984-07-12 Shinkosumosu Denki Kk Hydrogen selective sensor and its production
JPS59151051A (en) * 1983-02-17 1984-08-29 Matsushita Electric Works Ltd Biocatalyst electrode
JPS6029653A (en) * 1983-07-29 1985-02-15 Hitachi Ltd Gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116210A (en) * 2006-10-31 2008-05-22 Mitsumi Electric Co Ltd Sensor and detection method

Also Published As

Publication number Publication date
GB2183344B (en) 1990-03-14
GB2183344A (en) 1987-06-03
GB8624094D0 (en) 1986-11-12
DE3634132A1 (en) 1987-04-16
DE3634132C2 (en) 1993-10-14
JPS6283641A (en) 1987-04-17

Similar Documents

Publication Publication Date Title
JPH0460549B2 (en)
van der Schoot et al. ISFET based enzyme sensors
Karyakin et al. Potentiometric biosensors based on polyaniline semiconductor films
EP0333860B1 (en) Enzymatic sensor
US9702843B2 (en) Biosensor incorporating protein-immobilized membrane and method of immobilizing protein in biosensor
Suzuki et al. Fabrication of an oxygen electrode using semiconductor technology
Yin et al. Glucose ENFET doped with MnO2 powder
DK0878708T3 (en) Electrochemical biosensor with a lid
Liao et al. Preliminary investigations on a glucose biosensor based on the potentiometric principle
ATA12482001A (en) BIOSENSORS IN THICK FILM TECHNOLOGY
Poghossian Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure
US5387328A (en) Bio-sensor using ion sensitive field effect transistor with platinum electrode
Beyer et al. Development and application of a new enzyme sensor type based on the EIS-capacitance structure for bioprocess control
Shul'ga et al. Overall characterization of ISFET-based glucose biosensor
Murakami et al. A micro planar ampehometric glucose sensor using an isfet as a reference electrode
JP3393361B2 (en) Biosensor
JP2633281B2 (en) Electrochemical sensor and manufacturing method thereof
Hanazato et al. Multi-enzyme electrode using hydrogen-ion-sensitive field-effect transistors
JPS61218932A (en) Ion high sensitivity electric field effect transistor and its manufacture
JPH10260156A (en) Sensor
JPS62132160A (en) Biosensor using separation gate type isfet
Kudo et al. Fabrication of Si nanowire field-effect transistor for highly sensitive, label-free biosensing
JPS61120053A (en) Biosensor
Karube et al. Microbiosensors and immunosensors
Shiono et al. Advances in enzymatically coupled field effect transistors