Nothing Special   »   [go: up one dir, main page]

JPH04322744A - Catalyst for combustion of hydrocarbon - Google Patents

Catalyst for combustion of hydrocarbon

Info

Publication number
JPH04322744A
JPH04322744A JP11784991A JP11784991A JPH04322744A JP H04322744 A JPH04322744 A JP H04322744A JP 11784991 A JP11784991 A JP 11784991A JP 11784991 A JP11784991 A JP 11784991A JP H04322744 A JPH04322744 A JP H04322744A
Authority
JP
Japan
Prior art keywords
catalyst
combustion
zirconia
air
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11784991A
Other languages
Japanese (ja)
Other versions
JP3340138B2 (en
Inventor
Hidekazu Kikuchi
英一 菊地
Takeshi Matsuda
剛 松田
Yukio Aizawa
幸雄 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP11784991A priority Critical patent/JP3340138B2/en
Publication of JPH04322744A publication Critical patent/JPH04322744A/en
Application granted granted Critical
Publication of JP3340138B2 publication Critical patent/JP3340138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To offer a catalyst for combustion of hydrocarbon high in combustion activity and excellent in heat resistance. CONSTITUTION:The catalyst for combustion of hydrocarbon obtained by making a metal of platinum group carried on a catalyst carrier containing alumina, zirconia or these double oxide sintered at >=1200 deg.C is used.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は炭化水素の燃焼用触媒に
関するものであり、特にボイラー、航空機用ジェットエ
ンジン、自動車用ガスタービン、発電用ガスタービンな
どの高温燃焼器に使用可能な燃焼活性が高く、耐熱性に
優れた炭化水素の燃焼用触媒に関するものである。
[Field of Industrial Application] The present invention relates to a catalyst for the combustion of hydrocarbons, and in particular a catalyst with high combustion activity that can be used in high-temperature combustors such as boilers, jet engines for aircraft, gas turbines for automobiles, and gas turbines for power generation. This invention relates to a hydrocarbon combustion catalyst with high heat resistance.

【0002】0002

【従来の技術】炭化水素を酸素の存在下、炭酸ガスと水
蒸気に完全酸化させる触媒としては白金、パラジウムな
どの白金属をアルミナ、シリカ等の無機耐熱材料を担体
として担持させた触媒が最も活性が高いとされ広く使用
されている。さらに、燃焼活性および耐熱性を改良する
ために広く研究され、種々の触媒も提案されている。例
えば、特開昭60−222145号公報に示されている
ように、アルミナにLaなどの希土類元素を添加して耐
熱性を改良する方法が提案されている。しかし、これら
のアルミナ、シリカ等の無機耐熱材料を担体とした触媒
を高温燃焼に用いた場合、燃焼活性は著しく低下してし
まう問題点がある。
[Prior Art] The most active catalyst for completely oxidizing hydrocarbons into carbon dioxide gas and water vapor in the presence of oxygen is a catalyst in which platinum metals such as platinum and palladium are supported on inorganic heat-resistant materials such as alumina and silica. It is widely used because of its high Furthermore, various catalysts have been widely studied and proposed to improve combustion activity and heat resistance. For example, as disclosed in JP-A-60-222145, a method has been proposed in which a rare earth element such as La is added to alumina to improve heat resistance. However, when a catalyst using an inorganic heat-resistant material such as alumina or silica as a carrier is used for high-temperature combustion, there is a problem in that the combustion activity is significantly reduced.

【0003】0003

【発明が解決しようとする問題点】一般に燃焼活性は触
媒活性金属の分散性に依存し、また、触媒活性金属の分
散性は担体表面積に依存すると考えられている。このよ
うな観点から、高温燃焼用触媒の開発には高温でも大き
な表面積を有し、耐熱性に優れた触媒担体の開発が重要
となっている。
[Problems to be Solved by the Invention] It is generally believed that combustion activity depends on the dispersibility of the catalytically active metal, and that the dispersibility of the catalytically active metal also depends on the surface area of the carrier. From this point of view, in the development of catalysts for high-temperature combustion, it is important to develop catalyst carriers that have a large surface area even at high temperatures and have excellent heat resistance.

【0004】本発明は、上記従来技術の問題点を解決し
、触媒燃焼方式の高温燃焼器などに用いる高温でも高い
活性を有し、耐熱性に優れた炭化水素の燃焼用触媒を提
供することを目的とする。
The present invention solves the above-mentioned problems of the prior art and provides a hydrocarbon combustion catalyst that has high activity even at high temperatures and has excellent heat resistance for use in catalytic combustion type high-temperature combustors. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明者らは炭化水素の
燃焼用触媒について鋭意研究した結果、特定の触媒担体
に触媒活性金属を担持する前に特定の温度で焼成するこ
とにより燃焼活性が高く、かつ耐熱性に優れた炭化水素
の燃焼用触媒が得られることを見出し、この知見に基づ
いて本発明を達成することができた。
[Means for Solving the Problems] As a result of extensive research into catalysts for hydrocarbon combustion, the present inventors found that combustion activity can be increased by firing at a specific temperature before supporting a catalytically active metal on a specific catalyst carrier. It was discovered that a hydrocarbon combustion catalyst with high heat resistance and excellent heat resistance can be obtained, and the present invention was achieved based on this knowledge.

【0006】すなわち、本発明は温度1200℃以上で
焼成したアルミナ、ジルコニアあるいはこれらの複合酸
化物を含む触媒担体に白金族金属を担持させて得られる
炭化水素の燃焼用触媒に関する。
That is, the present invention relates to a catalyst for combustion of hydrocarbons obtained by supporting a platinum group metal on a catalyst carrier containing alumina, zirconia, or a composite oxide thereof that has been calcined at a temperature of 1200° C. or higher.

【0007】本発明でいうアルミナ、ジルコニアあるい
はこれらの複合酸化物は触媒担体として用いられる。
Alumina, zirconia, or a composite oxide thereof as used in the present invention is used as a catalyst carrier.

【0008】アルミナとしてはα、β、γ、δ、η、θ
、κ、χ等のいずれの結晶形態のものが使用できる。 好ましくはα、β、γ、η等が用いられる。特にγ、η
が好ましい。
[0008] As alumina, α, β, γ, δ, η, θ
, κ, χ, etc. crystal forms can be used. Preferably, α, β, γ, η, etc. are used. Especially γ, η
is preferred.

【0009】本発明においてアルミナとジルコニアの混
合割合は30〜70wt%:70〜30wt%が好まし
い。
In the present invention, the mixing ratio of alumina and zirconia is preferably 30 to 70 wt%:70 to 30 wt%.

【0010】本発明において触媒担体には少量のシリカ
、マグネシア、チタニア等の耐火性無機酸化物を含んで
もよい。
In the present invention, the catalyst carrier may contain a small amount of a refractory inorganic oxide such as silica, magnesia or titania.

【0011】本発明の触媒において白金族金属は活性金
属として用いられる。白金族金属としてはルテニウム(
Ru)、ロジウム(Rh)、パラジウム(Pd)、オス
ミニウム(Os)、イリジウム(Ir)、白金(Pt)
が挙げられる。活性金属は単独でも2種以上を混合して
用いてもよい。パラジウム、ロジウム、白金が好ましい
が、特にパラジウムが好ましい。
A platinum group metal is used as the active metal in the catalyst of the present invention. Ruthenium (
Ru), rhodium (Rh), palladium (Pd), osminium (Os), iridium (Ir), platinum (Pt)
can be mentioned. The active metals may be used alone or in combination of two or more. Palladium, rhodium, and platinum are preferred, with palladium being particularly preferred.

【0012】本発明の触媒調製法について述べる。まず
、アルミナ、ジルコニアあるいはこれらの複合酸化物を
空気中で温度1200℃以上、好ましくは1300〜1
800℃の範囲で焼成して、触媒担体を製造する。12
00℃未満の温度で焼成した場合には使用中に触媒担体
の表面積が減少し、それと共に燃焼活性も低下する。 この理由は明らかではないが、燃焼反応中に担体が高温
により焼結し、触媒活性金属が担体層中に埋もれてしま
うことが考えられる。
[0012] The catalyst preparation method of the present invention will be described. First, alumina, zirconia, or a composite oxide thereof is heated in air at a temperature of 1200°C or higher, preferably 1300°C to 1300°C.
A catalyst carrier is produced by firing at a temperature of 800°C. 12
When calcined at a temperature below 00°C, the surface area of the catalyst carrier decreases during use, and the combustion activity also decreases. Although the reason for this is not clear, it is thought that the carrier is sintered at high temperature during the combustion reaction, and the catalytically active metal is buried in the carrier layer.

【0013】触媒担体の形状は押し出し品、錠剤、球粒
、顆粒、粉末、ハニカム構造等のいずれのものも所望の
大きさにして用いることができる。
[0013] The shape of the catalyst carrier may be any of extruded products, tablets, spherules, granules, powders, honeycomb structures, etc., and can be used in any desired size.

【0014】次に、該触媒担体に白金族金属を担持させ
る。担持方法は通常の方法が用いられる。例えば、白金
族金属塩を含んだ水溶液に触媒担体を浸して含浸させる
含浸法が好ましく用いられる。塩としては塩化物、硝酸
塩等が好ましい。
Next, a platinum group metal is supported on the catalyst carrier. A conventional method can be used for supporting the particles. For example, an impregnation method is preferably used in which the catalyst carrier is immersed in an aqueous solution containing a platinum group metal salt. Preferred salts include chlorides and nitrates.

【0015】白金族金属の担持量は酸化物として触媒重
量(触媒担体と活性金属の合計重量)の0.01〜20
wt%が好ましく、さらに、0.1〜10wt%が好ま
しい。
The amount of platinum group metal supported as an oxide is 0.01 to 20 of the catalyst weight (total weight of catalyst carrier and active metal).
It is preferably 0.1 to 10 wt%, more preferably 0.1 to 10 wt%.

【0016】次に、空気中で、好ましくは温度200〜
500℃で乾燥し、さらに空気中で好ましくは温度90
0〜1300℃の範囲で焼成することにより触媒を得る
ことができる。
Next, in air, preferably at a temperature of 200 to
Dry at 500°C, preferably in air at a temperature of 90°C.
A catalyst can be obtained by firing at a temperature in the range of 0 to 1300°C.

【0017】本発明でいう炭化水素とは、高温燃焼器の
燃料として用いることのできる、メタン、プロパン、ブ
タンあるいは都市ガス、天然ガス、灯油、軽油等である
Hydrocarbons as used in the present invention include methane, propane, butane, city gas, natural gas, kerosene, light oil, etc., which can be used as fuel for high-temperature combustors.

【0018】[0018]

【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はこれらの実施例のみに限定されるものでは
ない。本発明に使用される担体材料としてはアルミナ、
ジルコニアあるいはこれらの複合酸化物などが挙げられ
る。
EXAMPLES The present invention will be explained in detail below with reference to Examples, but the present invention is not limited to these Examples. Support materials used in the present invention include alumina,
Examples include zirconia and composite oxides thereof.

【0019】実施例−1 空気中1300℃で焼成したジルコニア粉末を塩化パラ
ジウムを含有する水溶液に含浸し、乾燥して空気中90
0℃で焼成して、ジルコニア100g当たりパラジウム
として0.5gを担持せしめて完成触媒Aを得た。
Example 1 Zirconia powder calcined at 1300°C in air was impregnated with an aqueous solution containing palladium chloride, dried and heated at 90°C in air.
A completed catalyst A was obtained by firing at 0° C. and supporting 0.5 g of palladium per 100 g of zirconia.

【0020】実施例−2 空気中1600℃で焼成したジルコニア粉末を塩化パラ
ジウムを含有する水溶液に含浸し、乾燥して空気中90
0℃で焼成して、ジルコニア100g当たりパラジウム
として0.5gを担持せしめて完成触媒Bを得た。
Example 2 Zirconia powder calcined at 1600°C in air was impregnated with an aqueous solution containing palladium chloride, dried and heated at 90°C in air.
A completed catalyst B was obtained by firing at 0° C. and supporting 0.5 g of palladium per 100 g of zirconia.

【0021】実施例−3 空気中1600℃で焼成したジルコニア粉末を塩化パラ
ジウムを含有する水溶液に含浸し、乾燥して空気中13
00℃で焼成して、ジルコニア100g当たりパラジウ
ムとして0.5gを担持せしめて完成触媒Cを得た。
Example 3 Zirconia powder calcined at 1600°C in air was impregnated with an aqueous solution containing palladium chloride, dried and heated at 1300°C in air.
A completed catalyst C was obtained by firing at 00° C. and supporting 0.5 g of palladium per 100 g of zirconia.

【0022】実施例−4 空気中1300℃で焼成したアルミナ粉末を塩化パラジ
ウムを含有する水溶液に含浸し、乾燥して空気中900
℃で焼成して、アルミナ100g当たりパラジウムとし
て0.5gを担持せしめて完成触媒Dを得た。
Example 4 Alumina powder calcined at 1300°C in air was impregnated with an aqueous solution containing palladium chloride, dried and heated at 900°C in air.
C. to support 0.5 g of palladium per 100 g of alumina to obtain a finished catalyst D.

【0023】実施例−5 空気中1600℃で焼成したアルミナ粉末を塩化パラジ
ウムを含有する水溶液に含浸し、乾燥して空気中900
℃で焼成して、アルミナ100g当たりパラジウムとし
て0.5gを担持せしめて完成触媒Eを得た。
Example 5 Alumina powder calcined at 1600°C in air was impregnated with an aqueous solution containing palladium chloride, dried and heated at 900°C in air.
C. to support 0.5 g of palladium per 100 g of alumina to obtain a finished catalyst E.

【0024】実施例−6 空気中1300℃で焼成した混合割合50重量%:50
重量%から成るジルコニアとアルミナとの混合物粉末を
塩化パラジウムを含有する水溶液に含浸し、乾燥して空
気中900℃で焼成して、ジルコニア−アルミナ混合物
100g当たりパラジウムとして0.5gを担持せしめ
て完成触媒Fを得た。
Example 6 Mixing ratio 50% by weight, fired at 1300°C in air: 50
A mixture powder of zirconia and alumina consisting of % by weight is impregnated in an aqueous solution containing palladium chloride, dried and calcined in air at 900°C to support 0.5 g of palladium per 100 g of the zirconia-alumina mixture. Catalyst F was obtained.

【0025】実施例−7 空気中1600℃で焼成した混合割合50重量%:50
重量%から成るジルコニアとアルミナとの混合物粉末を
塩化パラジウムを含有する水溶液に含浸し、乾燥して空
気中900℃で焼成して、ジルコニア−アルミナ混合物
100g当たりパラジウムとして0.5gを担持せしめ
て完成触媒Gを得た。
Example-7 Mixing ratio 50% by weight, fired at 1600°C in air: 50
A mixture powder of zirconia and alumina consisting of % by weight is impregnated in an aqueous solution containing palladium chloride, dried and calcined in air at 900°C to support 0.5 g of palladium per 100 g of the zirconia-alumina mixture. Catalyst G was obtained.

【0026】比較例−1 空気中1100℃で焼成したジルコニア粉末を塩化パラ
ジウムを含有する水溶液に含浸し、乾燥して空気中90
0℃で焼成して、ジルコニア100g当たりパラジウム
として0.5gを担持せしめて完成触媒Hを得た。
Comparative Example-1 Zirconia powder calcined at 1100°C in air was impregnated with an aqueous solution containing palladium chloride, dried and heated at 90°C in air.
The catalyst was fired at 0° C. to support 0.5 g of palladium per 100 g of zirconia to obtain a finished catalyst H.

【0027】比較例−2 空気中1150℃で焼成したジルコニア粉末を塩化パラ
ジウムを含有する水溶液に含浸し、乾燥して空気中90
0℃で焼成して、ジルコニア100g当たりパラジウム
として0.5gを担持せしめて完成触媒Iを得た。
Comparative Example-2 Zirconia powder calcined at 1150°C in air was impregnated with an aqueous solution containing palladium chloride, dried and heated at 90°C in air.
The catalyst was calcined at 0° C. to support 0.5 g of palladium per 100 g of zirconia to obtain a completed catalyst I.

【0028】比較例−3 空気中1100℃で焼成したアルミナ粉末を塩化パラジ
ウムを含有する水溶液に含浸し、乾燥して空気中900
℃で焼成して、アルミナ100g当たりパラジウムとし
て0.5gを担持せしめて完成触媒Jを得た。
Comparative Example 3 Alumina powder calcined at 1100°C in air was impregnated with an aqueous solution containing palladium chloride, dried and heated at 900°C in air.
C. to support 0.5 g of palladium per 100 g of alumina to obtain a completed catalyst J.

【0029】比較例−4 空気中1100℃で焼成した混合割合50重量%:50
重量%から成るジルコニアとアルミナとの混合物粉末を
塩化パラジウムを含有する水溶液に含浸し、乾燥して空
気中900℃で焼成して、ジルコニア−アルミナ混合物
100g当たりパラジウムとして0.5gを担持せしめ
て完成触媒Kを得た。
Comparative Example-4 Baked in air at 1100°C Mixing ratio 50% by weight: 50
A mixture powder of zirconia and alumina consisting of % by weight is impregnated in an aqueous solution containing palladium chloride, dried and calcined in air at 900°C to support 0.5 g of palladium per 100 g of the zirconia-alumina mixture. Catalyst K was obtained.

【0030】以上実施例−1から実施例−7および比較
例−1から比較例−4で得た触媒を円筒型燃焼器に0.
3g充填し、5容量%のメタンを含有するメタン−空気
混合気体を1時間当たり9リッター導入して燃焼活性を
測定した。メタン転化率は入口ガス中のメタン濃度と出
口ガス中のメタン濃度差から求めた。表1にメタン転化
率10%および90%となる反応温度を示す。
The catalysts obtained in Example 1 to Example 7 and Comparative Example 1 to Comparative Example 4 were placed in a cylindrical combustor at 0.0.
The combustion activity was measured by charging 3 g of methane-air mixture gas containing 5% by volume of methane and introducing 9 liters per hour. The methane conversion rate was determined from the difference in the methane concentration in the inlet gas and the methane concentration in the outlet gas. Table 1 shows the reaction temperatures at which the methane conversion was 10% and 90%.

【0031】[0031]

【表1】[Table 1]

【0032】実施例および比較例から明らかなように、
触媒焼成温度を900〜1300℃にした場合、触媒担
体を温度1200℃以上の範囲で焼成した触媒担体に白
金族金属を担持させて得られた触媒は1200℃未満温
度で焼成した触媒よりも燃焼活性が高く、また、耐熱性
が優れていることがわかる。
As is clear from the examples and comparative examples,
When the catalyst firing temperature is 900 to 1300°C, a catalyst obtained by supporting a platinum group metal on a catalyst carrier fired at a temperature of 1200°C or higher has a higher combustion rate than a catalyst fired at a temperature below 1200°C. It can be seen that it has high activity and excellent heat resistance.

【0033】[0033]

【発明の効果】アルミナ、ジルコニアあるいはこれらの
複合酸化物を温度1200℃以上で焼成した触媒担体に
活性金属を担持することにより、燃焼活性の高い、かつ
耐熱性に優れた炭化水素の燃焼用触媒が得られる。
[Effect of the invention] A hydrocarbon combustion catalyst with high combustion activity and excellent heat resistance is obtained by supporting an active metal on a catalyst carrier made of alumina, zirconia, or a composite oxide thereof calcined at a temperature of 1200°C or higher. is obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  温度1200℃以上で焼成したアルミ
ナ、ジルコニアあるいはこれらの複合酸化物を含む触媒
担体に白金族金属を担持させて得られる炭化水素の燃焼
用触媒。
1. A catalyst for combustion of hydrocarbons obtained by supporting a platinum group metal on a catalyst carrier containing alumina, zirconia, or a composite oxide thereof calcined at a temperature of 1200° C. or higher.
JP11784991A 1991-04-23 1991-04-23 Catalyst for combustion of hydrocarbons Expired - Fee Related JP3340138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11784991A JP3340138B2 (en) 1991-04-23 1991-04-23 Catalyst for combustion of hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11784991A JP3340138B2 (en) 1991-04-23 1991-04-23 Catalyst for combustion of hydrocarbons

Publications (2)

Publication Number Publication Date
JPH04322744A true JPH04322744A (en) 1992-11-12
JP3340138B2 JP3340138B2 (en) 2002-11-05

Family

ID=14721803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11784991A Expired - Fee Related JP3340138B2 (en) 1991-04-23 1991-04-23 Catalyst for combustion of hydrocarbons

Country Status (1)

Country Link
JP (1) JP3340138B2 (en)

Also Published As

Publication number Publication date
JP3340138B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
KR910001929B1 (en) Combustion catalyst
JP3191013B2 (en) Palladium partial combustion catalyst and method of use
JPS61283348A (en) Oxidizing catalyst
JPS6133233A (en) Combustion catalyst for methane fuel and combustion system using said catalyst
JPH07500659A (en) Multistage combustion method for fuel mixtures
JPS61252408A (en) Method of igniting methane fuel
JPS6366258B2 (en)
KR19990035866A (en) Catalyst supports and catalysts for use at high temperatures and catalyst methods using them
US5216875A (en) Catalytic combustion process using supported palladium oxide catalysts
JPS6279847A (en) Catalyst system for combustion of lower hydrocarbon fuel and combustion method using said system
JPS61252409A (en) Method of igniting methane fuel
JPS6380849A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH04322744A (en) Catalyst for combustion of hydrocarbon
JPH0512021B2 (en)
JPH02268830A (en) Catalyst for combustion of kerosene type fuel
JPS6380847A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JP3318352B2 (en) Catalyst for combustion of hydrocarbons
JP2002121007A (en) Hydrogen generating device
JP6315569B2 (en) Combustion catalyst system
JP3364254B2 (en) Catalyst for combustion of hydrocarbons
JPS634852A (en) Catalyst for combustion
JP3318351B2 (en) Catalyst for combustion of hydrocarbons
JPH05309268A (en) Catalyst for combustion of hydrocarbon
JPH04161253A (en) Composite catalyst for high temperature combustion
JPH06159631A (en) Method for igniting combustion gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees