Nothing Special   »   [go: up one dir, main page]

JPH04326990A - Sewage treatment plant and bacterial bonded and living biological shelf - Google Patents

Sewage treatment plant and bacterial bonded and living biological shelf

Info

Publication number
JPH04326990A
JPH04326990A JP3121931A JP12193191A JPH04326990A JP H04326990 A JPH04326990 A JP H04326990A JP 3121931 A JP3121931 A JP 3121931A JP 12193191 A JP12193191 A JP 12193191A JP H04326990 A JPH04326990 A JP H04326990A
Authority
JP
Japan
Prior art keywords
water
shelf
jet pump
sewage
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3121931A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Akiyama
秋山 吉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIYOUYUU SOKEN KK
Original Assignee
RIYOUYUU SOKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIYOUYUU SOKEN KK filed Critical RIYOUYUU SOKEN KK
Priority to JP3121931A priority Critical patent/JPH04326990A/en
Publication of JPH04326990A publication Critical patent/JPH04326990A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To purify lakes and marshes, a basin or the source of water supply or to treat sewage such as industrial waste water or household waste water and, especially, to purify sewage with BOD of 3000ppm or less to obtain purified water with BOD of 5ppm or less. CONSTITUTION:A jet pump 1 whose air take-in port is extended above the surface of the water is arranged and a biological shelf 5 on which bacteria are bonded and live is arranged within the arrival range of the water stream from the jet pump 1 and bacteria efficiently decomposing org. matter in sewage are charged in a treatment tank 2 if necessary. The biological shelf 5 is constituted by forming a string material composed of fine yarns made of polypropylene or polyvinylidene chloride into a desired shape and arranging the same to a frame body 10.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、湖沼,池,水道用水
源池等の浄化や、工場排水,家庭排水等の汚水の処理を
目的としており、特にBOD3000ppm以下の汚水
を5ppm以下に浄化することを目的としている。
[Industrial Application Field] The purpose of this invention is to purify lakes, ponds, water source ponds, etc., and to treat wastewater such as industrial wastewater and domestic wastewater.In particular, it purifies wastewater with a BOD of 3000 ppm or less to 5 ppm or less. The purpose is to

【0002】0002

【従来の技術】従来からも各種の汚水処理法が採用され
ている。例えば、活性汚泥法,生物膜法,浄化槽,微生
物投入法等が採用されている。
BACKGROUND OF THE INVENTION Various sewage treatment methods have been employed heretofore. For example, the activated sludge method, biofilm method, septic tank, microbial injection method, etc. have been adopted.

【0003】0003

【発明が解決しようとする課題】活性汚泥法ではBOD
20ppm以下の低濃度の汚水を浄化できず、また余剰
汚泥が出る。
[Problem to be solved by the invention] In the activated sludge method, BOD
It is not possible to purify sewage with a low concentration of 20 ppm or less, and excess sludge is produced.

【0004】生物膜法では、処理量が少なく、大量の水
を短期間に浄化できないので、ごく限られた場所での汚
水処理にしか使用できない。
[0004] The biofilm method has a small treatment volume and cannot purify a large amount of water in a short period of time, so it can only be used for wastewater treatment in very limited places.

【0005】浄化槽では、BOD10ppm以下とする
ような浄化をできず、浄化能力が十分とは言えない。
[0005] A septic tank cannot purify to a BOD of 10 ppm or less, and its purification ability cannot be said to be sufficient.

【0006】微生物投入法では、微生物の着床が不完全
であるので大雨が降ると流れてしまい、また従来使用し
ている微生物では温度が摂氏10度以下では殆ど効果が
ない。そして、油分は分解しにくく、殺菌剤が流入する
と、微生物が殆ど死滅してしまうという問題があった。
[0006] In the microorganism injection method, the microorganisms do not settle completely, so they wash away when it rains heavily, and the microorganisms conventionally used have little effect at temperatures below 10 degrees Celsius. Another problem is that oil is difficult to decompose, and when a disinfectant flows in, most of the microorganisms are killed.

【0007】また、水中ポンプと酸素増加装置を組み合
わせた浄化方法もあるが、この方法では急激な水の変化
に対応できなかった。
[0007] There is also a purification method that combines a submersible pump and an oxygen increase device, but this method cannot cope with sudden changes in water.

【0008】[0008]

【課題を解決するための手段】すなわち、大量の水を短
期間に浄化でき、しかも水温が10度以下となるような
冬の池水の浄化能力も低下せず、また油分や殺菌剤等に
も効果的であり、しかも余剰汚泥を出さずにBOD5p
pm以下まで浄化できるような浄化方式が最適であるこ
とになる。
[Means for solving the problem] In other words, a large amount of water can be purified in a short period of time, and the ability to purify winter pond water when the water temperature is below 10 degrees does not decrease, and it is also resistant to oil and disinfectants. Effective and reduces BOD5p without producing excess sludge
A purification method that can purify to below pm is optimal.

【0009】そこで、この発明に係る汚水処理方式は、
空気取入れ口を水面上に延出したジェットポンプを水中
に配設するとともに、ジェットポンプの水流の到達範囲
に微生物を付着・棲息させた生物棚を配設したものであ
り、また汚水中に含まれる有機物を効率的に分解する微
生物を、必要に応じて処理槽に投入するようにしたもの
である。
[0009] Therefore, the sewage treatment method according to the present invention is as follows:
A jet pump with an air intake extending above the water surface is installed underwater, and a biological shelf with microorganisms attached and inhabited is installed within the reach of the water flow of the jet pump. Microorganisms that efficiently decompose organic matter are introduced into the treatment tank as needed.

【0010】また、この発明に係る微生物付着・棲息用
生物棚は、ポリプロピレン又は塩化ビニリデンの細糸を
カールさせ紐状にしたものを所望形状に形成したものを
枠体に配設したのもである。
[0010] Furthermore, the biological shelf for attaching and inhabiting microorganisms according to the present invention is one in which thin threads of polypropylene or vinylidene chloride are curled into a string shape and arranged in a frame. be.

【0011】[0011]

【作用】汚水内にジェットポンプを設け、水面上に延出
した空気取入れ口より空気を取り入れて大量の酸素を水
中に溶かし込み、DOが3mg/l〜7mg/lとなる
ようにジェットポンプの稼動時間を調整する。
[Operation] A jet pump is installed in the wastewater, and air is taken in from the air intake port extending above the water surface to dissolve a large amount of oxygen into the water. Adjust operating hours.

【0012】そして、このポンプで約50mの長さの水
流を作り、生物棚にこの水流が到達するようにして、汚
水を処理浄化する。好ましくは、生物棚を通過する水の
流れの早さを6m/分程度に調節する。
[0012] Then, this pump creates a water stream with a length of about 50 m, and this water stream reaches the biological shelf to process and purify the wastewater. Preferably, the flow rate of water passing through the biological shelf is adjusted to about 6 m/min.

【0013】生物棚は、表面積を大きくするためにポリ
プロピレンや塩化ビニリデンの細糸をカールさせさらに
紐状にしたようなものを、水流が抵抗なく通過できるよ
うに枠体に配設して構成する。
[0013] In order to increase the surface area, the biological shelf is constructed by curling thin threads of polypropylene or vinylidene chloride into a string shape and placing them on a frame so that water flow can pass through them without resistance. .

【0014】生物棚には余剰生物が発生しないように酸
素の供給量を加減し、有用微生物を水質に合わせて年2
回以上投入し、良好なプランクトンの状態を保つ。例え
ば、Melosiraglanulata が安定して
繁殖するようにする。
[0014] Adjust the amount of oxygen supplied to the biological shelf so that surplus organisms do not occur, and add useful microorganisms to the biological shelf twice a year depending on the water quality.
Keep the plankton in good condition by adding more than once. For example, ensure stable reproduction of Melosira granulata.

【0015】生物棚に付着・棲息させる微生物の例とし
ては、好気性バクテリア,嫌気性バクテリア,Zoog
lea ,殺藻効果のある放線菌,乳酸菌及び動植物プ
ランクトン酵母等が使用できる。
[0015] Examples of microorganisms that adhere to and live on the biological shelf include aerobic bacteria, anaerobic bacteria, Zoog.
lea, actinomycetes with algicidal effects, lactic acid bacteria, and zooplankton yeasts can be used.

【0016】農薬を分解するためには、Zooglea
 属のramigra や、filipendula 
や放線菌や真菌を農薬の多い土壌から分離したもので、
フェノール化合物,殺虫剤,除草剤,殺菌剤を分解する
菌を使う。
[0016] In order to decompose pesticides, Zooglea
Genus ramigra and filipendula
, actinomycetes, and fungi isolated from soil with a lot of pesticides.
It uses bacteria that degrade phenolic compounds, pesticides, herbicides, and fungicides.

【0017】低温で増殖する低温バクテリア等を使用し
、5度以下でも浄化作用が行われるようにする。
[0017] By using low-temperature bacteria that proliferate at low temperatures, the purification effect can be achieved even below 5 degrees Celsius.

【0018】油脂,洗剤(ABS),有機化合物を分解
するには、酵母,バクテリア,輪虫を使用する。
Yeast, bacteria, and rotifers are used to decompose fats and oils, detergents (ABS), and organic compounds.

【0019】そして、ゴルフ状の調整池,汚染の激しい
河川の底地,湖沼の汚泥中より分離培養し、その効果を
確認した有用微生物489種類を混合培養したものを1
08m/lにし、 目安として1000m3に対して1
0リットルの割合で混入する。
[0019] A mixed culture of 489 types of useful microorganisms isolated and cultured from golf-shaped regulating ponds, heavily polluted river bottoms, and lake sludge, and whose effects have been confirmed.
08m/l, as a guideline 1 for 1000m3
Mix at a rate of 0 liters.

【0020】[0020]

【実施例】次に、この発明に係る汚水処理方式の一実施
例を図面に基づいて説明する。
[Embodiment] Next, an embodiment of the sewage treatment system according to the present invention will be explained based on the drawings.

【0021】1は汚水処理槽2の水中に配設したジェッ
トポンプである。ジェットポンプ1には、開口部を水面
上に延出した空気取入れ口3が接続してある。ジェット
ポンプ1の吐出口4の前方には生物棚5が配設してある
。生物棚5には微生物を付着・棲息させてあり、汚水の
処理が微生物により行われるようにするために、生物棚
5はジェットポンプ1からの水流の到達範囲内に設ける
ようにする。
Reference numeral 1 denotes a jet pump disposed in the water of the sewage treatment tank 2. The jet pump 1 is connected to an air intake port 3 whose opening extends above the water surface. A biological shelf 5 is arranged in front of the discharge port 4 of the jet pump 1. Microorganisms are attached to and inhabit the biological shelf 5, and the biological shelf 5 is provided within the reach of the water flow from the jet pump 1 so that the microorganisms can treat wastewater.

【0022】生物棚5は、菌体が付着し易く、大きさの
割に表面積が大きくでき、しかも水流が抵抗なく通過で
きるようなものが望ましい。材質としてはポリプロピレ
ンや塩化ビニリデンの細糸をカールさせ、さらに紐状体
6にしたようなものが望ましい。ただし、菌体が付着で
きればよいのであり、このような材質や形状に何ら限定
されるものではない。
[0022] The biological shelf 5 is preferably one that allows bacterial cells to easily adhere to it, has a large surface area relative to its size, and allows water flow to pass through it without resistance. As for the material, a material such as a string-like body 6 made by curling thin threads of polypropylene or vinylidene chloride is preferable. However, it is only necessary that the bacterial cells can attach thereto, and the material and shape are not limited in any way.

【0023】そして例えば図5に示すように、この紐状
体6にしたものを、その両端を少し間隙を設けて長さ1
m位の中心棒7に固着し、直径約6cm位の輪状体8と
なるようにし、これを一本の中心棒7に適当な間隔を設
け多数固着して一本の生物膜路床棒9とする。
For example, as shown in FIG. 5, this string-like body 6 is made into a length of 1 with a slight gap between both ends.
A ring-shaped body 8 with a diameter of about 6 cm is formed by fixing it to a center rod 7 of about m length, and a large number of these are fixed to one center rod 7 at appropriate intervals to form a single biofilm subgrade rod 9. shall be.

【0024】なお、中心棒7を設けずに、輪状体8相互
を連結することにより、一本の生物膜路床棒9となるよ
うにしてもよい。この場合には、中心部に3〜10mm
くらいの隙間ができるようにする。
[0024] Note that the center rod 7 may not be provided, and the ring-like bodies 8 may be interconnected to form a single biofilm roadbed rod 9. In this case, 3 to 10 mm in the center
Make sure there is a gap of about

【0025】このように構成した生物膜路床棒9を、図
2に示すように、金属製の枠体10に多数適当な方法に
より固定する。枠体10の大きさは一辺が1mの立方体
とし、これに25〜50本位の生物膜路床棒9を配設す
る。相隣接する生物膜路床棒9は、5cm以上離れるよ
うにする。
The biofilm subgrade rods 9 thus constructed are fixed to a metal frame 10 using a number of suitable methods, as shown in FIG. The size of the frame 10 is a cube with one side of 1 m, and about 25 to 50 biofilm subgrade rods 9 are arranged therein. Adjacent biofilm subgrade rods 9 should be separated by at least 5 cm.

【0026】枠体10はプラスチック製でもよいが、そ
の場合には重錘11を枠体10の底部に固定する。なお
、生物棚5はこの大きさに限定されるものではなく、ま
た、生物膜路床棒9の大きさや本数もこの例に限定され
るものではなく、流入水や設置場所の状況に応じて、適
宜変更することができる。
The frame 10 may be made of plastic, in which case the weight 11 is fixed to the bottom of the frame 10. Note that the biological shelf 5 is not limited to this size, and the size and number of biofilm subgrade rods 9 are also not limited to this example, but may vary depending on the inflow water and the conditions of the installation location. , can be changed as appropriate.

【0027】生物棚5は、また図3に示すように、枠体
10に紐状体6の両端を枠体10に固定したものでもよ
い。また、図6に示すように、その一端だけを枠体10
に固定して吹き流し状にしたものでもよい。また、ドー
ナツ状等に形成することもできる。なお、矢印は水流の
方向を示したものである。
The biological shelf 5 may also have a frame 10 with both ends of string-like bodies 6 fixed to the frame 10, as shown in FIG. Further, as shown in FIG. 6, only one end of the frame body 10
It may also be fixed to a windsock shape. Moreover, it can also be formed into a donut shape or the like. Note that the arrows indicate the direction of water flow.

【0028】次に、本発明に係る汚水処理方式による実
験例について説明する、
Next, an experimental example using the sewage treatment method according to the present invention will be explained.

【0029】『実験例1』 「実験目的」汚水処理状態を示す各種データについて、
測定を行いその効果を確認し、また未処理池都の比較を
行うこと。
``Experiment Example 1'' ``Experiment Purpose'' Regarding various data showing the state of sewage treatment,
Measurements should be taken to confirm the effects and also to compare untreated ponds.

【0030】「実験方法」 [実験池]図6に示すような、下記の大きさの池で行っ
た。長辺約45m,短辺約40m,表面積約1600m
2 ,平均水深1.5m
"Experimental Method" [Experimental Pond] The experiment was carried out in a pond of the following size as shown in FIG. Long side approx. 45m, short side approx. 40m, surface area approx. 1600m
2. Average water depth 1.5m

【0031】[実験期間]8月〜2月の約半年間につい
て行った。
[Experiment period] The experiment was conducted for about half a year from August to February.

【0032】[実験設備]次のものを、上記実験池の水
中に図6に示したように配設した。ジェットポンプ(3
馬力)を4台,生物棚(図2に示す形式のもの,一辺の
長さ1m)を4基
[Experimental equipment] The following equipment was placed in the water of the experimental pond as shown in FIG. Jet pump (3
4 biological shelves (of the type shown in Figure 2, side length 1 m)

【0033】[使用菌体]20リットル(菌数108 
/ml )/1600m2
[Bacterial cells used] 20 liters (bacteria number 108
/ml)/1600m2

【0034】「実験内容」2か月毎に実験池の一定箇所
より採水し、各種の分析を行い、また対照池(上記池の
一部を、ビニールシートにより区切ったもの)とのデー
タの比較を行った。
``Experiment Contents'' Water was sampled from a certain point in the experimental pond every two months, various analyzes were conducted, and the data was compared with that of the control pond (a part of the pond mentioned above separated by a vinyl sheet). I made a comparison.

【0035】「実験結果」実験結果は下記のとおりであ
った。
"Experimental Results" The experimental results were as follows.

【0036】   採  水  日    8月10日  10月10
日  12月10日  2月10日  対照池2月10
日  水  温(度)     32        
20        8         5    
           5  透視度(cm)    
 10        50      100以上 
  100以上          20  pH  
            8.7       9.0
      8.7       8.5      
       8.7  COD mg/l     
300       110        3   
      3             102  
BOD mg/l      20         
5        3         2     
         15  T−N mg/l    
  28         8.2     12.0
       4.5            26 
 T−P mg/l      35        
28       18         0.06 
          20  cl   mg/l  
    35        15       10
        10              3
8  油  分(ppm)     15      
   7        1         1  
            15  ABS mg/l 
     11.0       1.5      
0.7       0.2            
 9.0
Water sampling date August 10th October 10th
Sun December 10th February 10th Contrarian Pond February 10th
Day Water temperature (degrees) 32
20 8 5
5 Transparency (cm)
10 50 100 or more
100 or more 20 pH
8.7 9.0
8.7 8.5
8.7 COD mg/l
300 110 3
3 102
BOD mg/l 20
5 3 2
15 T-N mg/l
28 8.2 12.0
4.5 26
T-P mg/l 35
28 18 0.06
20 cl mg/l
35 15 10
10 3
8 Oil content (ppm) 15
7 1 1
15 ABS mg/l
11.0 1.5
0.7 0.2
9.0

【0037】「考察」 上記実験結果から下記のことが言える。 ■  透視度は10cmのものが100cm以上になっ
たが、対照池は20cmと改善しない。 ■  油分は93%の除去率である。 ■  T−Nの除去率は98%である。 ■  T−Pの除去率は82%である。 ■  BODの除去率は90%である。 ■  ABSの除去率は98%である。
"Consideration" The following can be said from the above experimental results. ■ The visibility has increased from 10cm to over 100cm, but the control pond has no improvement at 20cm. ■ Oil removal rate is 93%. ■ The removal rate of TN is 98%. ■ The removal rate of T-P is 82%. ■ BOD removal rate is 90%. ■ ABS removal rate is 98%.

【0038】『実験例2』 「実験目的」農薬の分解状況について、その効果を確認
し、また未処理池との比較を行うこと。
``Experiment Example 2'' ``Experimental Purpose'' To confirm the effect of the decomposition of pesticides and to compare with untreated ponds.

【0039】「実験方法」 [実験池]面積約300坪,深さ1.2mの池で行った
"Experimental Method" [Experimental Pond] The experiment was conducted in a pond with an area of approximately 300 tsubo and a depth of 1.2 m.

【0040】[実験期間]9月10日〜9月20日の1
0日間について行った。
[Experiment period] September 10th to September 20th
I followed it for 0 days.

【0041】[実験設備]次のものを、上記実験池の水
中にに配設した。ジェットポンプ(2馬力)を2台,生
物棚(図2に示す形式のもの,一辺の長さ1m)を2基
[Experimental equipment] The following items were placed in the water of the experimental pond. Two jet pumps (2 horsepower) and two biological shelves (of the type shown in Figure 2, side length 1 m).

【0042】[使用菌体]4リットル(菌数108 個
/ml )
[Bacteria used] 4 liters (108 bacteria/ml)

【0043】「実験内容」3,4日毎に実験池の一定箇
所より採水し、環境庁方式により各種の測定を行い、ま
た対照池(上記池の一部を、ビニールシートにより区切
ったもの)とのデータの比較を行った。
``Experiment Contents'' Water was sampled from a certain point in the experimental pond every 3 to 4 days, and various measurements were carried out according to the Environment Agency method, and a control pond (a part of the pond mentioned above separated by vinyl sheets) was used. We compared the data with

【0044】「実験結果」実験結果は下記のとおりであ
った。
"Experimental Results" The experimental results were as follows.

【0045】   採  水  日    9月10日  9月14日
  9月17日  9月20日  対照池9月20日 
 TPN(ppm)     3.0       1
.5      0.3       0.02   
         2.7   CAT(ppm)  
   3.5       1.0      0.0
2      0.001           3.
0   MEP(ppm)     5.0     
  2.0      0.01        − 
             1.2
Water sampling date September 10th September 14th September 17th September 20th Control pond September 20th
TPN (ppm) 3.0 1
.. 5 0.3 0.02
2.7 CAT (ppm)
3.5 1.0 0.0
2 0.001 3.
0 MEP (ppm) 5.0
2.0 0.01 -
1.2

【0046】「考察
」上記実験結果から下記のことが言える。 ■  TPN(ダコニール(殺菌剤))の環境庁指針値
は0.4ppm以下であり、厚生省指針値は0.04p
pm以下であるが、測定値はそれらを十分に下回る値と
なった。 ■  CAT(シマジン(除草剤))の環境庁指針値は
0.03ppm以下であり、厚生省指針値も0.03p
pm以下であるが、測定値はそれを十分に下回る値とな
った。 ■  MEP(スミチオン(殺虫剤))の環境庁指針値
は0.1ppm以下であり、厚生省指針値は0.03p
pm以下であるが、測定値はそれらを十分に下回る値と
なった。
"Discussion" The following can be said from the above experimental results. ■ The Environment Agency guideline value for TPN (Daconyl (fungicide)) is 0.4ppm or less, and the Ministry of Health and Welfare guideline value is 0.04p.
pm or less, but the measured values were well below them. ■ The Environment Agency guideline value for CAT (simazine (herbicide)) is 0.03ppm or less, and the Ministry of Health and Welfare guideline value is also 0.03ppm.
pm or less, but the measured value was well below that. ■ The Environment Agency guideline value for MEP (Sumithion (insecticide)) is 0.1ppm or less, and the Ministry of Health and Welfare guideline value is 0.03p.
pm or less, but the measured values were well below them.

【0047】[0047]

【発明の効果】以上述べたように、この発明に係る汚水
処理方式によれば空気取入れ口を水面上に延出したジェ
ットポンプを水中に配設するとともに、ジェットポンプ
の水流の到達範囲に微生物を付着・棲息させた生物棚を
配設したので、大量酸素を水中に溶かし込むことができ
、好気的生物膜法が効率的に行うことができ、大量の水
を短期間に浄化できるので、流入量が急激に増加した場
合でも、十分に対応できる。そして、食物連鎖を完結さ
せることにより、汚泥を現在よりも30〜80%減少さ
せることができる。
Effects of the Invention As described above, according to the sewage treatment method of the present invention, a jet pump with an air intake extending above the water surface is disposed underwater, and microorganisms are removed within the reach of the water flow of the jet pump. Since we have installed a biological shelf with biomass attached and inhabited, it is possible to dissolve a large amount of oxygen into the water, and the aerobic biofilm method can be carried out efficiently, making it possible to purify a large amount of water in a short period of time. , even if the inflow volume increases rapidly, it can be adequately handled. By completing the food chain, sludge can be reduced by 30 to 80% compared to the current level.

【0048】また、汚水中に含まれる有機物を効率的に
分解する微生物を、必要に応じて処理槽に投入するよう
にしたので、あらゆる汚水に対して、確実にその処理効
果を上げることができる。摂氏10度以下のような低温
でも浄化作用を行うことができる。そして、油分も効率
的に分解でき、しかも殺菌剤が流入しても、殺菌剤を分
解できる。
[0048] Furthermore, since microorganisms that efficiently decompose organic matter contained in wastewater are introduced into the treatment tank as necessary, the treatment effect can be reliably increased for all types of wastewater. . Purification can be performed even at low temperatures, such as 10 degrees Celsius or lower. In addition, oil can be efficiently decomposed, and even if a disinfectant flows in, the disinfectant can be decomposed.

【0049】一方、この発明に係る微生物付着・棲息用
生物棚によればポリプロピレン又は塩化ビニリデンの細
糸をカールさせ紐状にしたものを所望形状に形成し、こ
れを枠体に配設するようにしたので、菌体が付着・棲息
し易い構造となり大雨が降っても菌体が流出せず、また
接触表面積を大きくできるので、生物処理が効率的に行
われる。
On the other hand, according to the biological shelf for attaching and inhabiting microorganisms according to the present invention, fine threads of polypropylene or vinylidene chloride are curled to form a string shape, and this is arranged in a frame. As a result, the structure makes it easy for bacterial cells to attach and inhabit, and the bacterial cells do not flow out even in heavy rain, and the contact surface area can be increased, so biological treatment can be performed efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の汚水処理方式の説明図である。FIG. 1 is an explanatory diagram of the sewage treatment system of the present invention.

【図2】本発明で使用する生物棚の実施例を示す斜視図
である。
FIG. 2 is a perspective view showing an embodiment of a biological shelf used in the present invention.

【図3】本発明で使用する生物棚の他例を示す斜視図で
ある。
FIG. 3 is a perspective view showing another example of a biological shelf used in the present invention.

【図4】本発明で使用する生物棚の他例を示す斜視図で
ある。
FIG. 4 is a perspective view showing another example of a biological shelf used in the present invention.

【図5】図2の実施例で使用する生物膜路床棒の正面図
である。
FIG. 5 is a front view of the biofilm subgrade rod used in the embodiment of FIG. 2;

【図6】実験例1の実験池の平面概念図である。FIG. 6 is a conceptual plan view of an experimental pond in Experimental Example 1.

【符号の説明】[Explanation of symbols]

1  ジェットポンプ 2  処理槽 3  空気取入れ口 4  吐出口 5  生物棚 6  紐状体 7  中心棒 8  輪状体 9  生物膜路床棒 10  枠体 11  重錘 1 Jet pump 2 Processing tank 3 Air intake 4 Discharge port 5 Biological shelf 6 String-like body 7 Center rod 8 Ring-shaped body 9 Biofilm subgrade rod 10 Frame body 11 Weight

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  空気取入れ口を水面上に延出したジェ
ットポンプを水中に配設するとともに、ジェットポンプ
の水流の到達範囲に微生物を付着・棲息させた生物棚を
配設したことを特徴とする汚水処理方式。
[Claim 1] A jet pump with an air intake extending above the water surface is disposed underwater, and a biological shelf on which microorganisms are attached and inhabit is disposed within the reach of the water flow of the jet pump. Sewage treatment method.
【請求項2】  汚水中に含まれる有機物を効率的に分
解する微生物を、必要に応じて処理槽に投入する請求項
1記載の汚水処理方式。
2. The sewage treatment system according to claim 1, wherein microorganisms that efficiently decompose organic matter contained in the sewage are introduced into the treatment tank as necessary.
【請求項3】  ポリプロピレン又は塩化ビニリデンの
細糸をカールさせ紐状にしたものを所望形状に形成し、
これを枠体に配設したことを特徴とする微生物付着・棲
息用生物棚。
3. Curling thin threads of polypropylene or vinylidene chloride into a string shape,
A biological shelf for attaching and inhabiting microorganisms, characterized in that this is arranged in a frame.
JP3121931A 1991-04-25 1991-04-25 Sewage treatment plant and bacterial bonded and living biological shelf Pending JPH04326990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121931A JPH04326990A (en) 1991-04-25 1991-04-25 Sewage treatment plant and bacterial bonded and living biological shelf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121931A JPH04326990A (en) 1991-04-25 1991-04-25 Sewage treatment plant and bacterial bonded and living biological shelf

Publications (1)

Publication Number Publication Date
JPH04326990A true JPH04326990A (en) 1992-11-16

Family

ID=14823478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121931A Pending JPH04326990A (en) 1991-04-25 1991-04-25 Sewage treatment plant and bacterial bonded and living biological shelf

Country Status (1)

Country Link
JP (1) JPH04326990A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136243A (en) * 2002-10-21 2004-05-13 Geo Front:Kk Water cleaning method
EP1587762A2 (en) * 2003-01-06 2005-10-26 TVT US Corporation Process for treating a body of water
JP2011088075A (en) * 2009-10-22 2011-05-06 Ohbayashi Corp Method and system for preserving function of stone stack purifying embankment
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136243A (en) * 2002-10-21 2004-05-13 Geo Front:Kk Water cleaning method
JP4620323B2 (en) * 2002-10-21 2011-01-26 株式会社ジオフロント Water purification method
EP1587762A2 (en) * 2003-01-06 2005-10-26 TVT US Corporation Process for treating a body of water
EP1587762A4 (en) * 2003-01-06 2011-05-04 Tvt Us Corp Process for treating a body of water
JP2011088075A (en) * 2009-10-22 2011-05-06 Ohbayashi Corp Method and system for preserving function of stone stack purifying embankment
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae

Similar Documents

Publication Publication Date Title
US10342189B2 (en) Aerobic, bioremediation treatment system comprising floating inert media in an aqueous environment
US5863433A (en) Reciprocating subsurface-flow constructed wetlands for improving wastewater treatment
CN104857747B (en) It is used for the system for handling water for industrial purposes
US4169050A (en) Buoyant contact surfaces in waste treatment pond
TWI335833B (en) Process to implement and maintain water bodies larger than 15,000 m3 for recreational use, such as lakes or artificial lagoons, with excellent color, transparency and cleanness properties at low cost, and structure to contain the water bodies
Greenway Constructed Wetlands for Water Pollution Control‐Processes, Parameters and Performance
de Oliveira et al. Evidence of improved water quality and biofilm control by slow sand filters in aquaculture–a case study
EP0604588A1 (en) Waste-water treatment system
Alade et al. Purification of domestic sewage by water-hyacinth (Eichhornia crassipes)
JPH04326990A (en) Sewage treatment plant and bacterial bonded and living biological shelf
US4263142A (en) Process and system for purifying water
JP7369412B1 (en) aquaponics system
Abeliovich Water pollution and bioremediation by microalgae: Water purification: Algae in wastewater oxidation ponds
CN109896713A (en) A method of sewage is handled using ABS microbial bacterial agent
Abdelfatah et al. Mechanical filtration pretreatment effect on ammonia biofiltration performance indicators in fish aquaculture wastewater
EP1109749A1 (en) In situ treatment for contaminated surface waters and products therefor
Banowati et al. Revitalization model of tapioca industry through environmental awareness reinforcement for minimizing water body contamination
Mankin Wetlands: Treatment System Use
CN203794700U (en) Combined type biological suspended bed
CN208362134U (en) New Type of Sewage Treatment System
Abdelbary Bioremediation of fish wastewater using a modified aerated beads biological filter
Kasimovich Fish Farming in Indoor Water Supply Systems
Boltz et al. A review of operational control strategies for snails and other macro-fauna infestations in trickling filters
KR20170059835A (en) Microorganism raise and water purification system and microorganism raise and water purification method using the same
Massot et al. Co-epuration of winery and pesticides effluents, activated sludge with tertiary nanofiltration, two new technologies for pesticides effluents treatment