JPH04238896A - Production of diamond plate by vapor process - Google Patents
Production of diamond plate by vapor processInfo
- Publication number
- JPH04238896A JPH04238896A JP3062754A JP6275491A JPH04238896A JP H04238896 A JPH04238896 A JP H04238896A JP 3062754 A JP3062754 A JP 3062754A JP 6275491 A JP6275491 A JP 6275491A JP H04238896 A JPH04238896 A JP H04238896A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- synthesized
- diamond plate
- plate
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 99
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims abstract description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 14
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 239000011651 chromium Substances 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052796 boron Inorganic materials 0.000 claims abstract description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 238000003786 synthesis reaction Methods 0.000 claims description 16
- 239000012808 vapor phase Substances 0.000 claims description 8
- 238000005520 cutting process Methods 0.000 abstract description 8
- 238000005219 brazing Methods 0.000 abstract description 2
- 238000005299 abrasion Methods 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000009760 electrical discharge machining Methods 0.000 description 2
- 238000004050 hot filament vapor deposition Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は主として切削工具に、あ
るいは耐摩耗部材に用いられるダイヤモンド板の製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a diamond plate used primarily for cutting tools or wear-resistant members.
【0002】0002
【従来の技術】ダイヤモンドは現存する物質中で最も高
い硬度を持ち、耐摩耗性に優れていることが着目して、
従来から天然ダイヤモンドあるいは高圧合成ダイヤモン
ドを原料とした切削工具、耐摩耗部材が古くから用いら
れてきた。切削工具あるいは耐摩耗部材として用いられ
るダイヤモンドとしては主に粉末のダイヤモンド粒をコ
バルトなどの金属結合材で焼結したものが用いられてい
る。[Prior Art] Noting that diamond has the highest hardness among existing materials and has excellent wear resistance,
Cutting tools and wear-resistant members made from natural diamond or high-pressure synthetic diamond have been used for a long time. Diamond used as cutting tools or wear-resistant members is mainly made by sintering powdered diamond grains with a metal binder such as cobalt.
【0003】これに対し、近年ダイヤモンドの気相合成
法が開発され、従来の方法に比べ広い面積を持つダイヤ
モンド板を製造することが可能となってきた。また、気
相合成法で合成されるダイヤモンドは結合材を含まない
ため焼結ダイヤモンドに比べ耐摩耗性が優れているとい
う特徴を持っている。このため、気相合成法でダイヤモ
ンドの板を作製し、これを成形して切削工具ないしは耐
摩耗部品として用いようという試みがなされている。ダ
イヤモンドの気相合成法としては、例えば特公昭59−
27753号公報に示される熱フィラメントCVD法、
特公昭61−3320号公報に示されるマイクロ波CV
D法、Appl.Phys.Lett.,Vol.46
, p146(1985)に示される電子衝撃熱フィ
ラメントCVD法、Appl.Phys.Lett.,
Vol.50, p728(1987)に示される直
流放電プラズマCVD法をはじめ多くの方法が用いられ
る。[0003] On the other hand, in recent years, a diamond vapor phase synthesis method has been developed, and it has become possible to manufacture diamond plates having a wider area than the conventional method. In addition, diamond synthesized using the vapor phase synthesis method does not contain a binder, so it has superior wear resistance compared to sintered diamond. For this reason, attempts have been made to produce diamond plates by vapor phase synthesis, mold them, and use them as cutting tools or wear-resistant parts. As a gas phase synthesis method for diamond, for example,
Hot filament CVD method shown in Publication No. 27753,
Microwave CV shown in Japanese Patent Publication No. 61-3320
D method, Appl. Phys. Lett. , Vol. 46
, p146 (1985), the electron impact hot filament CVD method, Appl. Phys. Lett. ,
Vol. Many methods can be used, including the DC discharge plasma CVD method shown in 50, p. 728 (1987).
【0004】0004
【発明が解決しようとする課題】ダイヤモンド板を切削
工具ないしは耐摩耗部材の基体上にろう付けして用いる
ためには強度上少なくとも30μm以上の厚さが必要で
ある。しかし、従来の方法により広い面積の厚いダイヤ
モンド板を製造しようとした場合、気相合成の途中で、
すなわちダイヤモンド板が所定の厚さに達する前に割れ
てしまい、希望する厚さや形状のものが得られないとい
う問題点があった。Problems to be Solved by the Invention In order to use a diamond plate by brazing it onto the base of a cutting tool or a wear-resistant member, it is necessary to have a thickness of at least 30 μm or more in terms of strength. However, when trying to manufacture a thick diamond plate with a wide area using the conventional method, during the vapor phase synthesis,
That is, there is a problem in that the diamond plate breaks before it reaches a predetermined thickness, making it impossible to obtain the desired thickness and shape.
【0005】また、従来から用いられている焼結ダイヤ
モンドの場合には金属を結合材として用いているため、
放電加工で希望する形状に切断、加工ができた。しかし
、従来の気相合成ダイヤモンドの特に結晶性の高いもの
は電気抵抗が大きいため放電加工が難しく、レーザーを
用いて切断しなければならないという問題点もあった。[0005] Furthermore, in the case of conventionally used sintered diamond, metal is used as a binding material, so
It was possible to cut and process the desired shape using electrical discharge machining. However, conventional vapor-phase synthetic diamonds, especially those with high crystallinity, have a high electrical resistance, making electrical discharge machining difficult, and necessitating cutting using a laser.
【0006】[0006]
【課題を解決するための手段】本発明者らはマイクロ波
CVD法、電子衝撃CVD法および 直流放電CVD
法で100μm以上の厚さのダイヤモンド板の製造を試
みたがいずれもダイヤモンド板が合成途中で割れてしま
った。そこで、この原因を調査した結果、合成したダイ
ヤモンド膜の電気抵抗が大きいためであることがわかっ
た。すなわち、合成したダイヤモンドの電気抵抗が大き
かったためダイヤモンドの成長とともに基板周辺の空間
の電場が変化し、これにともないプラズマの空間分布な
いしは電子の流れの分布も変化し、その結果基板の温度
ないしは温度分布が変わり、ダイヤモンド板と基板の間
の熱膨張係数差に起因する熱応力が発生し、これにより
ダイヤモンド板に割れが入ったのである。[Means for Solving the Problems] The present inventors have developed a microwave CVD method, an electron impact CVD method, and a direct current discharge CVD method.
Attempts were made to manufacture diamond plates with a thickness of 100 μm or more using this method, but in each case the diamond plates broke during the synthesis process. As a result of investigating the cause of this, it was found that it was due to the high electrical resistance of the synthesized diamond film. In other words, because the electrical resistance of the synthesized diamond was large, the electric field in the space around the substrate changes as the diamond grows, and the spatial distribution of plasma or the distribution of electron flow changes accordingly, resulting in changes in the temperature or temperature distribution of the substrate. As a result, thermal stress was generated due to the difference in coefficient of thermal expansion between the diamond plate and the substrate, which caused the diamond plate to crack.
【0007】そこで本発明者らはダイヤモンドの電気抵
抗を小さくすることによってこの問題点の解決を試みた
。従来よりダイヤモンド半導体薄膜を試作するためにダ
イヤモンドに不純物をドーピングする手法が用いられて
いるが、本発明ではこれを応用してダイヤモンドの電気
抵抗の低下を計りダイヤモンド板の合成を行った。ダイ
ヤモンドはIVb族化合物であるので、これにIIIb
族元素をドーピングすることによってp型ダイヤモンド
、Vb族元素をドーピングすることによってn型ダイヤ
モンドが得られる。これらの元素のドーピング手段とし
ては、例えば第48回応用物理学会学術講演会、講演予
稿集、18p−T−12、p354(1987)あるい
はJap.J.Appl.Phys.,Vol.27、
No.2(1988)L173 などに示される方法
が用いられる。The inventors of the present invention attempted to solve this problem by reducing the electrical resistance of diamond. Conventionally, a method of doping diamond with impurities has been used to prototype diamond semiconductor thin films, but in the present invention, this method was applied to reduce the electrical resistance of diamond and synthesize a diamond plate. Since diamond is a group IVb compound, it also contains IIIb.
P-type diamond can be obtained by doping with group elements, and n-type diamond can be obtained by doping with Vb group elements. Doping means for these elements can be found, for example, in the 48th Academic Conference of the Japan Society of Applied Physics, Proceedings, 18p-T-12, p354 (1987) or Jap. J. Appl. Phys. , Vol. 27,
No. 2 (1988) L173 is used.
【0008】また、別の手段として、本発明者らが調査
する過程で判明したことであるが、クロム、鉄、ニッケ
ルなどの金属元素をダイヤモンド中に含有させることに
よってもダイヤモンド板の電気抵抗を低下させることが
できることが判ったのである。これらの金属元素のドー
ピングは、高温のプラズマ中あるいは加熱されたフィラ
メントの近傍にこれらの金属または合金の線材を置くこ
とによって実現できる。この方法によりこれらの金属は
徐々に蒸発し、ダイヤモンド板中に取り込まれていくの
である。[0008] As another means, the present inventors discovered in the course of their research that the electrical resistance of the diamond plate can be reduced by incorporating metal elements such as chromium, iron, and nickel into the diamond. It was found that it was possible to reduce the Doping with these metal elements can be achieved by placing wires of these metals or alloys in a high temperature plasma or near a heated filament. This method allows these metals to gradually evaporate and become incorporated into the diamond plate.
【0009】添加元素の含有量を10ppm及至100
00ppmとしたのは10ppm以下では電気抵抗を小
さくする効果が小さく、また10000ppm以上では
ダイヤモンドの性質が失われ硬度が低下するためである
。[0009] The content of additional elements is 10 ppm to 100 ppm.
The reason why it is set at 00 ppm is that if it is less than 10 ppm, the effect of reducing electrical resistance is small, and if it is more than 10,000 ppm, the properties of diamond are lost and the hardness decreases.
【0010】0010
【作用】本発明の方法によれば、気相法で合成されるダ
イヤモンド中にほう素、クロム、鉄ないしはニッケルの
一種または二種以上を10ppm及至10000ppm
含有させて成長させることによりダイヤモンドの電気抵
抗を減少させることができ、したがってダイヤモンド層
の厚さが増しても基板周辺の電場を大きく変えることが
なく、ダイヤモンド板の製造を容易に行うことができる
。[Operation] According to the method of the present invention, one or more of boron, chromium, iron, or nickel is contained in the diamond synthesized by the vapor phase method in an amount of 10 ppm to 10,000 ppm.
By growing diamond containing diamond, the electrical resistance can be reduced, and therefore, even if the thickness of the diamond layer increases, the electric field around the substrate will not change significantly, making it possible to easily manufacture diamond plates. .
【0011】[0011]
【実施例】本発明の第1の実施例を図面に基づき説明す
る。先ず、図1に示す直流放電プラズマCVD装置にて
直径5cmのシリコン基板1上にダイヤモンド板2の合
成を行った。まず、シリコン基板1のダイヤモンドを合
成する側の化学エッチングされた面をダイヤモンド砥粒
でラップし、これを水冷された陽極3上に載せ、反応槽
7内にダイヤモンド合成用原料ガスを導入したのち、陰
極4と陽極3間に電流を流してシリコン基板上にダイヤ
モンドを合成した。ダイヤモンド合成時の反応槽内の圧
力は 20000Pa、放電電流は3A/cm2とし
た。ダイヤモンド合成用原料ガスとしてメタン6cc/
min、ジボランを100ppm添加した水素30cc
/minおよび水素270cc/minの流量比の混合
ガスを用いた。混合ガス中のジボランB2H6はダイヤ
モンド中にほう素をドープする目的で添加されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be explained based on the drawings. First, a diamond plate 2 was synthesized on a silicon substrate 1 having a diameter of 5 cm using a DC discharge plasma CVD apparatus shown in FIG. First, the chemically etched surface of the silicon substrate 1 on the side where diamond is to be synthesized is wrapped with diamond abrasive grains, this is placed on the water-cooled anode 3, and the raw material gas for diamond synthesis is introduced into the reaction tank 7. , diamond was synthesized on a silicon substrate by passing an electric current between the cathode 4 and the anode 3. The pressure in the reaction tank during diamond synthesis was 20,000 Pa, and the discharge current was 3 A/cm2. Methane 6cc/ as raw material gas for diamond synthesis
min, 30cc of hydrogen with 100ppm of diborane added
A mixed gas with a flow rate ratio of 270 cc/min and 270 cc/min of hydrogen was used. Diborane B2H6 in the mixed gas is added for the purpose of doping boron into the diamond.
【0012】この方法により長時間にわたって安定して
ダイヤモンドが合成でき、20時間の合成を行ったとこ
ろ、平均300μmの厚さの割れのないダイヤモンド板
が得られた。ダイヤモンド板中のほう素の正確な含有率
は判らないが、近似的には混合ガス中のほう素と炭素の
原子数比に比例すると推定され、これから算出すると1
000ppmとなる。またダイヤモンド板の表と裏の間
の電気抵抗を調べたところ1Ω以下であった。また、こ
のダイヤモンド板を焼結ダイヤモンドの切断に用いられ
ている放電加工機を用いて切断したところ、この装置で
容易に切断できることがわかった。By this method, diamond could be synthesized stably over a long period of time, and after 20 hours of synthesis, diamond plates with an average thickness of 300 μm and no cracks were obtained. Although the exact content of boron in the diamond plate is not known, it is estimated to be approximately proportional to the atomic ratio of boron and carbon in the mixed gas, and calculated from this.
000ppm. Furthermore, when the electrical resistance between the front and back sides of the diamond plate was examined, it was found to be less than 1Ω. Furthermore, when this diamond plate was cut using an electrical discharge machine used for cutting sintered diamond, it was found that the diamond plate could be easily cut with this device.
【0013】比較例として、ジボランを添加しない他は
上記と同じ条件でダイヤモンド板の合成を試みたところ
、合成開始から4時間後ダイヤモンド板に亀裂が入りそ
の一部が基板から剥離した。ダイヤモンド合成をその時
点で中止し電気抵抗を調べたところ1MΩ以上となり、
ほぼ絶縁状態であった。As a comparative example, a diamond plate was synthesized under the same conditions as above except that diborane was not added. However, 4 hours after the start of synthesis, cracks appeared in the diamond plate and part of the diamond plate peeled off from the substrate. When I stopped diamond synthesis at that point and checked the electrical resistance, it was over 1MΩ.
It was almost insulated.
【0014】次に、第2の実施例を示す。実施例1と同
じ装置にて直径5cmのタングステン基板上にダイヤモ
ンド板の合成を行った。まず、タングステン基板のダイ
ヤモンドを合成する側をダイヤモンド砥粒でラップし、
これを水冷された陽極上に載せ、陰極と陽極間に電流を
流してタングステン基板上にダイヤモンドを合成した。
ダイヤモンド合成用原料ガスとしてはメタン4cc/m
in、一酸化炭素2cc/minおよび水素200cc
/minの流量比の混合ガスを用い、真空槽内の圧力を
15000Paとした。さらにダイヤモンドに導電性を
持たせるために陽極と陰極の間にステンレス線(主成分
は鉄、クロム、ニッケル)を置いた。ダイヤモンド合成
時には陰極と陽極間に4.5A/cm2の電流を流した
が、これによりステンレス線は加熱およびスパッタされ
、その構成元素である鉄、クロムおよびニッケルが気相
中へ蒸発する。これによりこれらの元素をダイヤモンド
板中に含有せしめることができたのである。この方法に
より長時間にわたって安定にダイヤモンドが合成でき、
20時間の合成を行ったところ、平均250μmの厚さ
の亀裂のないダイヤモンド板が得られた。ダイヤモンド
板中に添加された微量の鉄、クロムおよびニッケルを定
量することは難しいが、ステンレス線の減耗量などから
は10ppmから100ppmであろうと推定される。
得られたダイヤモンド膜の電気抵抗を調べたところ約1
0Ωであった。また、実施例1と同様にこのダイヤモン
ド板も放電加工機での加工を試みたところ容易に加工で
きることがわかった。Next, a second embodiment will be described. Using the same apparatus as in Example 1, a diamond plate was synthesized on a tungsten substrate with a diameter of 5 cm. First, wrap the side of the tungsten substrate where diamond will be synthesized with diamond abrasive grains,
This was placed on a water-cooled anode, and a current was passed between the cathode and anode to synthesize diamond on the tungsten substrate. Methane 4cc/m as raw material gas for diamond synthesis
in, carbon monoxide 2cc/min and hydrogen 200cc
A mixed gas having a flow rate ratio of /min was used, and the pressure in the vacuum chamber was set to 15000 Pa. Furthermore, to make the diamond conductive, a stainless steel wire (mainly composed of iron, chromium, and nickel) was placed between the anode and cathode. During diamond synthesis, a current of 4.5 A/cm2 was passed between the cathode and the anode, which heated and sputtered the stainless steel wire, and its constituent elements, iron, chromium, and nickel, evaporated into the gas phase. This made it possible to incorporate these elements into the diamond plate. This method allows diamond to be synthesized stably over a long period of time.
After 20 hours of synthesis, crack-free diamond plates with an average thickness of 250 μm were obtained. Although it is difficult to quantify the minute amounts of iron, chromium, and nickel added to the diamond plate, it is estimated to be between 10 ppm and 100 ppm based on the amount of wear on the stainless steel wire. When the electrical resistance of the obtained diamond film was examined, it was approximately 1
It was 0Ω. Further, similarly to Example 1, this diamond plate was also attempted to be machined using an electric discharge machine, and it was found that it could be easily machined.
【0015】本発明外の比較例として、陰極と陽極の間
にステンレス線を置かないほかは上記と同じ条件にてダ
イヤモンド板の製造を行ったところ、放電電圧が徐々に
高くなり、合成開始後5時間でダイヤモンド板に亀裂が
入った。この時点で板の合成を中止し同様に電気抵抗を
測ったところ、ダイヤモンド膜は本発明のものに比べて
薄いにもかかわらず1MΩ以上であった。As a comparative example other than the present invention, a diamond plate was manufactured under the same conditions as above except that no stainless steel wire was placed between the cathode and anode. The diamond plate cracked after 5 hours. At this point, the synthesis of the plate was stopped and the electrical resistance was measured in the same manner, and it was found to be 1 MΩ or more, although the diamond film was thinner than that of the present invention.
【0016】さらに、第3の実施例を示す。第2図にそ
の概略を示したマイクロ波CVD法にて直径2.5cm
のタングステン基板1上にダイヤモンド板2を合成した
。ダイヤモンド合成用原料ガスとしては、メタン2cc
/min、ジボランを100ppm添加した水素5cc
/minおよび水素195cc/minの流量比の混合
ガスを用いた。そして、マイクロ波の出力350W、基
板温度900℃で48時間の合成を行ったところ、平均
厚さが50μmで電気抵抗が1Ω以下のダイヤモンド膜
が得られた。そして、このダイヤモンド板も前記本発明
の実施例と同様に放電加工機での切断が容易に行えた。
また、このダイヤモンド膜の硬度を測定したところ、H
V〜9500であり天然ダイヤモンドに近い値となった
。Furthermore, a third embodiment will be described. 2.5 cm in diameter using the microwave CVD method, the outline of which is shown in Figure 2.
A diamond plate 2 was synthesized on a tungsten substrate 1. Methane 2cc is used as raw material gas for diamond synthesis.
/min, 5cc of hydrogen with 100ppm of diborane added
A mixed gas having a flow rate ratio of 195 cc/min and 195 cc/min of hydrogen was used. When synthesis was performed for 48 hours at a microwave output of 350 W and a substrate temperature of 900° C., a diamond film with an average thickness of 50 μm and an electrical resistance of 1 Ω or less was obtained. This diamond plate could also be easily cut with an electrical discharge machine, as in the embodiments of the present invention. In addition, when we measured the hardness of this diamond film, we found that H
V~9500, which is a value close to that of natural diamond.
【0017】本発明外の比較例として、メタン2.5c
c/min、ジボランを100ppm添加した水素20
0cc/minの混合ガスとした他は上記と同じ方法で
ダイヤモンドを48時間合成し、その硬度を測定したと
ころ、HV〜6000となり硬度が低下していることが
わかった。As a comparative example other than the present invention, methane 2.5c
c/min, hydrogen 20 with 100 ppm of diborane added
Diamond was synthesized for 48 hours in the same manner as above except that the mixed gas was used at 0 cc/min, and its hardness was measured, and it was found that the hardness was HV~6000, indicating a decrease in hardness.
【0018】[0018]
【効果】本発明の方法によれば、気相法で合成されるダ
イヤモンドの電気抵抗を小さくすることができ、したが
って長時間にわたり安定にダイヤモンドが合成できるの
で厚いダイヤモンド板を容易に作成することができ、さ
らには本発明の方法によって作成されたダイヤモンド板
は従来からダイヤモンド焼結体の加工に用いられている
放電加工機でも容易に加工できるので産業上非常に有益
である。[Effects] According to the method of the present invention, it is possible to reduce the electrical resistance of diamond synthesized by the vapor phase method, and therefore diamond can be synthesized stably over a long period of time, making it possible to easily create thick diamond plates. Further, the diamond plate produced by the method of the present invention can be easily processed even with an electric discharge machine conventionally used for processing diamond sintered bodies, so it is very useful industrially.
【図1】本発明の第1および第2の実施例で用いられた
装置の概略図でありる。FIG. 1 is a schematic diagram of the apparatus used in the first and second embodiments of the invention.
【図2】本発明の第3の実施例で用いられた装置の概略
図である。1 基板
2 ダイヤモンド板
3 陽極
4 陰極
5 ガス供給口
6 排気口
7 真空槽
8 直流電源
9 基板支持台
10 マイクロ波発振器
11 導波管
12 プランジャーFIG. 2 is a schematic diagram of the apparatus used in the third embodiment of the invention. 1 Substrate 2 Diamond plate 3 Anode 4 Cathode 5 Gas supply port 6 Exhaust port 7 Vacuum chamber 8 DC power supply 9 Substrate support stand 10 Microwave oscillator 11 Waveguide 12 Plunger
Claims (1)
の一種または二種以上をダイヤモンド合成雰囲気中に1
0ppm乃至10000ppm含有させて基板に板厚が
30μm以上のダイヤモンド板を成長させることを特徴
とする気相法によるダイヤモンド板の製造方法。[Claim 1] One or more of boron, chromium, iron, and nickel is added to the diamond synthesis atmosphere.
A method for manufacturing a diamond plate by a vapor phase method, which comprises growing a diamond plate having a thickness of 30 μm or more on a substrate by containing 0 ppm to 10,000 ppm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3062754A JPH04238896A (en) | 1991-01-10 | 1991-01-10 | Production of diamond plate by vapor process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3062754A JPH04238896A (en) | 1991-01-10 | 1991-01-10 | Production of diamond plate by vapor process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04238896A true JPH04238896A (en) | 1992-08-26 |
Family
ID=13209510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3062754A Pending JPH04238896A (en) | 1991-01-10 | 1991-01-10 | Production of diamond plate by vapor process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04238896A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8859058B2 (en) | 2010-12-23 | 2014-10-14 | Element Six Limited | Microwave plasma reactors and substrates for synthetic diamond manufacture |
US8955456B2 (en) | 2010-12-23 | 2015-02-17 | Element Six Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US9142389B2 (en) | 2010-12-23 | 2015-09-22 | Element Six Technologies Limited | Microwave power delivery system for plasma reactors |
US9410242B2 (en) | 2010-12-23 | 2016-08-09 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US9637838B2 (en) | 2010-12-23 | 2017-05-02 | Element Six Limited | Methods of manufacturing synthetic diamond material by microwave plasma enhanced chemical vapor deposition from a microwave generator and gas inlet(s) disposed opposite the growth surface area |
JP2018511551A (en) * | 2015-04-16 | 2018-04-26 | トゥー‐シックス・インコーポレイテッド | Optically finished thin high aspect ratio diamond substrate or window and methods of manufacturing the same |
US10403477B2 (en) | 2010-12-23 | 2019-09-03 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US11371147B2 (en) | 2010-12-23 | 2022-06-28 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
-
1991
- 1991-01-10 JP JP3062754A patent/JPH04238896A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8859058B2 (en) | 2010-12-23 | 2014-10-14 | Element Six Limited | Microwave plasma reactors and substrates for synthetic diamond manufacture |
US8955456B2 (en) | 2010-12-23 | 2015-02-17 | Element Six Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US9142389B2 (en) | 2010-12-23 | 2015-09-22 | Element Six Technologies Limited | Microwave power delivery system for plasma reactors |
US9410242B2 (en) | 2010-12-23 | 2016-08-09 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US9637838B2 (en) | 2010-12-23 | 2017-05-02 | Element Six Limited | Methods of manufacturing synthetic diamond material by microwave plasma enhanced chemical vapor deposition from a microwave generator and gas inlet(s) disposed opposite the growth surface area |
US9738970B2 (en) | 2010-12-23 | 2017-08-22 | Element Six Limited | Microwave plasma reactors and substrates for synthetic diamond manufacture |
US10403477B2 (en) | 2010-12-23 | 2019-09-03 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US11371147B2 (en) | 2010-12-23 | 2022-06-28 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US11488805B2 (en) | 2010-12-23 | 2022-11-01 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
JP2018511551A (en) * | 2015-04-16 | 2018-04-26 | トゥー‐シックス・インコーポレイテッド | Optically finished thin high aspect ratio diamond substrate or window and methods of manufacturing the same |
US11618945B2 (en) | 2015-04-16 | 2023-04-04 | Ii-Vi Delaware, Inc. | Methods of producing optically-finished thin diamond substrates or windows of high aspect ratio |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4900628A (en) | Gaseous phase synthesized diamond and method for synthesizing same | |
TW378167B (en) | CVD diamond and abrasive tool | |
EP0597445B1 (en) | Method of making synthetic diamond film | |
US4055700A (en) | Thin composite wire saw with surface cutting crystals | |
JPWO2009107763A1 (en) | Metal-based sputtering target material | |
IE910166A1 (en) | CVD diamond workpieces and their fabrication | |
US6268045B1 (en) | Hard material coating of a cemented carbide or carbide containing cermet substrate | |
US5705271A (en) | Method for producing diamond coated member | |
JPH04238896A (en) | Production of diamond plate by vapor process | |
JP2901049B2 (en) | Al-Ti alloy target material for arc ion plating | |
JPH06322543A (en) | Improvement of adhesion between cemented carbide substrate and diamond film | |
US5626908A (en) | Method for producing silicon nitride based member coated with film of diamond | |
US4139659A (en) | Thin composite wire saw with surface cutting crystals | |
EP0721998A1 (en) | Method and apparatus for vapour deposition of diamond film | |
JP2501589B2 (en) | Vapor-phase synthetic diamond and its synthesis method | |
JP3397849B2 (en) | Diamond coated cemented carbide tool | |
JP2797612B2 (en) | Artificial diamond coated hard sintering tool member with high adhesion strength | |
JP2010284759A (en) | Surface coated cutting tool | |
JP5402155B2 (en) | Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material | |
JP5321360B2 (en) | Surface coated cutting tool | |
JPS5923929B2 (en) | metal wire for sawing | |
Landälv et al. | Influence of Si doping and O2 flow on arc-deposited (Al, Cr) 2O3 coatings | |
Anwar et al. | Structural and electrical studies of thermally annealed tungsten nitride thin film | |
JPH0657429A (en) | Cutting tool made of surface coated titanium carbon nitride base cermet excellent in chipping resistance | |
JPH068009A (en) | Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010321 |