JPH04238877A - Jointed form made up of aln member and cu member and production thereof - Google Patents
Jointed form made up of aln member and cu member and production thereofInfo
- Publication number
- JPH04238877A JPH04238877A JP1148191A JP1148191A JPH04238877A JP H04238877 A JPH04238877 A JP H04238877A JP 1148191 A JP1148191 A JP 1148191A JP 1148191 A JP1148191 A JP 1148191A JP H04238877 A JPH04238877 A JP H04238877A
- Authority
- JP
- Japan
- Prior art keywords
- aln
- foil
- bonding
- bonded
- intermediate layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000011888 foil Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 239000010949 copper Substances 0.000 description 43
- 239000000463 material Substances 0.000 description 21
- 239000000758 substrate Substances 0.000 description 16
- 230000005496 eutectics Effects 0.000 description 10
- 229910052726 zirconium Inorganic materials 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 238000009736 wetting Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 230000008646 thermal stress Effects 0.000 description 6
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 238000005304 joining Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- -1 and if necessary Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Ceramic Products (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、パワー半導体モジュー
ル等の電子回路形成用セラミック基板等に適用されるA
lN 部材とCu部材との接合体およびその製造方法に
関する。[Industrial Application Field] The present invention is applied to ceramic substrates for forming electronic circuits such as power semiconductor modules.
The present invention relates to a joined body of an IN member and a Cu member and a method for manufacturing the same.
【0002】0002
【従来の技術】電子回路等においては、通常、基板とな
るセラミックスと、導体等の回路および素子との組立て
のための接合が行われるが、いずれの場合にあってもセ
ラミックスと金属との接合が問題となる。従来技術にお
けるこれらセラミックスと金属との接合に関しては多く
の研究が行われているが、その要点は■接合界面での濡
れの確保、■接合界面に生成する層の制御、■熱応力に
よる割れの防止が挙げられる。酸化物系セラミックス(
たとえばAl2O3 を主成分とするもの)では、これ
らの課題がかなり解決されている。しかし、窒化物系セ
ラミックスでは、金属との接合界面での濡れの確認が容
易でなく、また金属との熱膨張差も大きくなるため熱応
力による割れも発生しやすくなるという問題が存在する
。[Prior Art] In electronic circuits, ceramics serving as substrates are usually joined to circuits and elements such as conductors for assembly, but in any case, the joining of ceramics and metals is becomes a problem. Many studies have been conducted on the bonding of ceramics and metals using conventional technology, but the key points are: ■ ensuring wetting at the bonding interface, ■ controlling the layer that forms at the bonding interface, and ■ preventing cracking due to thermal stress. prevention. Oxide ceramics (
For example, in the case of materials containing Al2O3 as the main component, these problems have been largely solved. However, nitride-based ceramics have problems in that it is not easy to check wetting at the bonding interface with metal, and the difference in thermal expansion with metal is large, making them more likely to crack due to thermal stress.
【0003】一方、電子回路セラミックス基板として、
大電力化を図るためには、従来用いられているAl2O
3 系材料に比べ放熱効率の優れた AlN(窒化物系
)材料を用いた基板の開発が望まれている。特に、大型
電子回路装置における放熱効率の改善は今日強く求めら
れているところである。AlN 基板とCuよりなる回
路との接合技術としては、AlNとCuとの間にTi層
を介在せしめ加熱して接合する方法が、特開昭60−1
77634号公報に開示されている。この方法では、T
i−Cuの共晶とAlN との濡れを利用しており、T
iの介在手段としては、■Ti箔の介在、■蒸着、メッ
キ、スパッタリングによるTi堆積、等が示されている
。また、これとは別に特開昭60−32343 号公報
には前記Tiの他にZr等の活性金属と銅の合金層を設
けた基板が開示されている。On the other hand, as an electronic circuit ceramic substrate,
In order to increase the power consumption, conventionally used Al2O
It is desired to develop a substrate using AlN (nitride-based) material, which has superior heat dissipation efficiency compared to 3-based materials. In particular, there is a strong demand for improvement in heat dissipation efficiency in large electronic circuit devices. As a bonding technique for bonding an AlN substrate and a circuit made of Cu, a method of interposing a Ti layer between AlN and Cu and bonding by heating is disclosed in Japanese Patent Laid-Open No. 60-1.
It is disclosed in Japanese Patent No. 77634. In this method, T
It utilizes the wetting of i-Cu eutectic and AlN, and T
Examples of intervening means include (i) interposition of Ti foil, (ii) deposition of Ti by vapor deposition, plating, and sputtering. Separately from this, Japanese Patent Application Laid-Open No. 60-32343 discloses a substrate provided with an alloy layer of an active metal such as Zr and copper in addition to the above-mentioned Ti.
【0004】0004
【発明が解決しようとする課題】しかしながら、前記の
公知方法ではAlN 基板とCu導体回路の間にTiを
介在させて約1000℃に加熱して接合する必要があり
、このため接合界面に生ずる熱応力が大きく、接合界面
での反応層厚さの制御のバラツキによっては、割れが発
生するという欠点があった。また、熱ひずみによる変形
も大きくなる。上記の特開昭60−177634号公報
および特開昭−32343 号公報の詳細な説明には約
880 〜1082℃の加熱でよい旨の記載がある。前
記の点について、本発明者らが追試検討したところによ
れば、880 ℃付近では接合できず、該公報の実施例
にあるように1000℃(具体的には990 ℃)付近
でないと接合はできないことが確認された。また、該公
報の技術では10分間程の短時間での接合は不可能であ
る。[Problems to be Solved by the Invention] However, in the above-mentioned known method, it is necessary to interpose Ti between the AlN substrate and the Cu conductor circuit and heat it to about 1000°C for bonding. The stress is large, and cracks may occur depending on variations in the control of the thickness of the reaction layer at the bonding interface. Furthermore, deformation due to thermal strain also increases. The detailed explanations in the above-mentioned Japanese Patent Application Laid-Open Nos. 60-177634 and 32343/1987 state that heating at about 880 to 1082°C is sufficient. Regarding the above point, the inventors conducted additional tests and found that bonding is not possible at temperatures around 880°C, and bonding is not possible at temperatures around 1000°C (specifically, 990°C), as shown in the examples in the publication. It was confirmed that this is not possible. Further, with the technique disclosed in the publication, it is impossible to bond in a short time of about 10 minutes.
【0005】前述した従来技術の問題点として、例えば
次の点が挙げられる。
(1)Cu導体回路と接合するAlN 基板の濡れ確保
を短時間に実現するためには、約1000℃での加熱接
合が必要である。その結果、接合界面での熱応力が大き
くなり、接合界面で割れが発生しやすく(反応層厚さに
対する許容限界が小さい)、さらに、熱ひずみによる変
形も大きいこと。
(2)共晶反応層を形成させるために必要なTiの介在
方法が非効率的であること。本発明は上記のような従来
技術における問題点を解消し、電子回路に使用するAl
N 部材とCu部材との確実な接合体およびその製造方
法を提供することを目的としている。[0005] Problems with the prior art described above include, for example, the following points. (1) AlN bonded to Cu conductor circuit In order to ensure wetting of the substrate in a short time, heating bonding at approximately 1000° C. is required. As a result, the thermal stress at the bonding interface becomes large, making it easy for cracks to occur at the bonding interface (the tolerance limit for the reaction layer thickness is small), and furthermore, deformation due to thermal strain is large. (2) The method of intervening Ti necessary to form a eutectic reaction layer is inefficient. The present invention solves the problems in the prior art as described above, and improves the quality of aluminum used in electronic circuits.
The object of the present invention is to provide a reliable joined body of an N member and a Cu member and a method for manufacturing the same.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
、本発明者らは鋭意研究を重ねた結果、電子回路セラミ
ックス基板としてのAlN 基板に対し、回路パターン
Cu部材を接合するにあたり、両者の間にTi、Zrを
複合介在させることによりCu−Ti−Zrの低温の三
元共晶を形成させ、低温での接合が可能となることを知
見し、本発明を完成するに至った。さらに、Ti、Zr
に対しNiを添加すると反応層の熱膨張係数を小さく(
AlN との差を小さく)し、熱応力低減に有効である
ことがわかった。すなわち、本発明は、電子回路用のA
lN 部材とCu部材の接合体であって、前記AlN
部材とCu部材との間に重量%でZr:10〜90%お
よびTi:10〜90%を含有し残部Cuから成る中間
層を介在させて成ることを特徴とする電子回路用AlN
部材とCu部材の接合体である。[Means for Solving the Problems] In order to achieve the above object, the present inventors have conducted intensive research and have found that when bonding a circuit pattern Cu member to an AlN substrate as an electronic circuit ceramics substrate, it is possible to It was discovered that a low-temperature ternary eutectic of Cu-Ti-Zr was formed by interposing a composite of Ti and Zr therebetween, thereby enabling bonding at low temperatures, and the present invention was completed. Furthermore, Ti, Zr
When Ni is added to the reaction layer, the thermal expansion coefficient of the reaction layer becomes smaller (
It was found that it is effective in reducing thermal stress. That is, the present invention provides A for electronic circuits.
A joined body of an IN member and a Cu member, the AlN
AlN for electronic circuits, characterized in that an intermediate layer containing Zr: 10-90% and Ti: 10-90% by weight % and the balance consisting of Cu is interposed between a member and a Cu member.
This is a joined body of a member and a Cu member.
【0007】前記中間層はさらに重量%でNi:30%
以下を含んでいてもよい。また別の面からは、本発明は
、Cu部材の表面に実質的にTiからなる箔体およびZ
rからなる箔体を重ねた後、圧延接合させて、さらに、
前記箔体側にAlN 部材を重ねて加熱接合することを
特徴とする電子回路におけるAlN 部材とCu部材の
接合体の製造方法である。Cu部材からのCuと箔体の
Ti、Zrが相互に拡散してCu−Ti−Zr三元共晶
の中間層を形成する。上記Tiからなる箔体およびZr
からなる箔体にさらに、実質的にCuからなる箔体およ
びNiからなる箔体の1種以上の箔体を重ねた後、Al
N 部材とCu部材を圧延接合してもよい。これら箔体
の積層順位は特に制限されないが、Cu部材側からNi
箔体、Cu箔体、Zr箔体、そしてTi箔体をこの順位
で積層するのが好ましい。[0007] The intermediate layer further contains Ni: 30% by weight.
May contain the following: From another aspect, the present invention provides a foil body substantially made of Ti and a Z
After overlapping the foil bodies made of r, they are rolled and joined, and further,
This is a method for manufacturing a joined body of an AlN member and a Cu member in an electronic circuit, characterized in that an AlN member is stacked on the foil side and bonded by heat. Cu from the Cu member and Ti and Zr from the foil are mutually diffused to form a Cu-Ti-Zr ternary eutectic intermediate layer. The foil body made of Ti and Zr
Further, one or more foil bodies consisting of a foil body consisting of Cu and a foil body consisting of Ni are further stacked on the foil body consisting of Al.
The N member and the Cu member may be joined by rolling. The stacking order of these foils is not particularly limited, but Ni
It is preferable to laminate the foil, Cu foil, Zr foil, and Ti foil in this order.
【0008】[0008]
【作用】本発明において接合体の構成材料および製造方
法等の条件を限定した理由は次のとおりである。
(1)Cuは経済性、導電性、加工性等すべての点から
みて回路基板用導体の部材として最適であるから、これ
を採用する。
(2)AlN は、Al2O3 に比べ熱伝導性に優れ
、強度も大であるため基板材料として使用する。
(3)中間層の厚さは、Cu箔、Ni箔を使用する場合
、便宜上図1(a) のように積層した素材を、同(b
) に示すように回路用のCu部材と圧延接合された後
の箔材層合計の厚みとして、好ましくは5μm以上50
μm以下とする。
厚さの下限はAlN との濡れ性確保の可能な限界であ
り、上限は形成された反応層の割れを防止する上で必要
な範囲として決定した。[Operation] The reasons for limiting the conditions such as the constituent materials and manufacturing method of the joined body in the present invention are as follows. (1) Cu is used because it is optimal as a material for conductors for circuit boards in terms of economy, conductivity, workability, etc. (2) AlN is used as a substrate material because it has superior thermal conductivity and strength compared to Al2O3. (3) The thickness of the intermediate layer is determined when Cu foil or Ni foil is used.
), the total thickness of the foil material layer after being rolled and bonded to the Cu member for the circuit is preferably 5 μm or more.
It should be less than μm. The lower limit of the thickness was determined as the possible limit to ensure wettability with AlN, and the upper limit was determined as the range necessary to prevent cracking of the formed reaction layer.
【0009】(4)中間層の成分構成(重量%)はTi
:10〜90、Zr:10〜90を含有し残部Cuから
なり、さらに必要によりNi:30%以下を含有する。
Ti、Zrは接合の際の加熱により、Cu部材のCuま
たは予め接合されているCuと反応して低温共晶を形成
し、AlN との濡れに寄与する。
上記組成範囲内のZr、Ti量であれば、中間層の溶融
温度は850 ℃付近となり、低温接合が可能となる。
この組成範囲外(上、下限の外)では、共に中間層の溶
融温度が高くなり、本発明の利点である低温での接合が
不可能となる。共晶はCu接合体に箔状で積層一体化さ
れたTi、ZrがCu接合体のCuと反応して生成する
が、箔材層の中にCu箔材をも含有させると、この反応
を促進させ接合時間の短縮化に有効であり、箔材層への
Cu添加はより効果的といえる。AlN 部材とCu部
材の接合に寄与した共晶は、接合中間層として残存する
。この接合中間層の熱膨張係数を小さくするためにNi
を添加することができる。しかし、Niの過剰添加は、
共晶の融点の上昇を招くため30%以下とする。(4) The composition (weight %) of the intermediate layer is Ti.
: 10 to 90, Zr: 10 to 90, and the balance is Cu, and if necessary, Ni: 30% or less. Due to heating during bonding, Ti and Zr react with Cu of the Cu member or with previously bonded Cu to form a low-temperature eutectic and contribute to wetting with AlN. If the amounts of Zr and Ti are within the above composition range, the melting temperature of the intermediate layer will be around 850° C., making low-temperature bonding possible. Outside this composition range (outside the upper and lower limits), the melting temperature of both intermediate layers becomes high, making it impossible to bond at low temperatures, which is an advantage of the present invention. Eutectic is generated when Ti and Zr, which are laminated and integrated into a Cu bonded body in the form of a foil, react with the Cu of the Cu bonded body, but if the Cu foil material is also included in the foil material layer, this reaction can be suppressed. The addition of Cu to the foil material layer can be said to be more effective. The eutectic that contributed to the bonding of the AlN member and the Cu member remains as a bonding intermediate layer. In order to reduce the thermal expansion coefficient of this bonding intermediate layer, Ni
can be added. However, excessive addition of Ni
The content is set to 30% or less because it causes an increase in the melting point of the eutectic.
【0010】(5)なお、箔体を重ねた後に圧延接合す
る圧延は、冷間圧延、温間圧延(200℃以下) どち
らでもよい。
(6) 接合温度はCu−Ti−Zr共晶の融点以上(
概ね850℃)で、950℃以下とするのが好ましい。
共晶の融点以下ではAlN との濡れ性が確保されない
。一方、950 ℃を超えると、熱応力が大きくなるた
め接合層に割れを発生するおそれがある。なお、上記
AlN部材とCu部材を接合するための接合雰囲気は不
活性ガス雰囲気、真空雰囲気等が使用され、その雰囲気
中で被処理物を加熱する。本発明によれば、複雑な配線
パターンであっても、箔材が接合された導体用Cu板か
ら回路配線パターンを切り抜いて、それをAlN 基板
上に置いて前記雰囲気中で加熱するだけで回路配線と基
板との接合が容易に行える。(5) Note that rolling to join the foil bodies after stacking them may be either cold rolling or warm rolling (at 200° C. or lower). (6) The bonding temperature is higher than the melting point of Cu-Ti-Zr eutectic (
(approximately 850°C), preferably 950°C or less. If the temperature is below the melting point of the eutectic, wettability with AlN is not ensured. On the other hand, if the temperature exceeds 950° C., the thermal stress increases and there is a risk that cracks will occur in the bonding layer. In addition, the above
An inert gas atmosphere, a vacuum atmosphere, or the like is used as the bonding atmosphere for bonding the AlN member and the Cu member, and the object to be processed is heated in this atmosphere. According to the present invention, even if the wiring pattern is complicated, the circuit wiring pattern can be cut out from a conductive Cu board to which a foil material is bonded, placed on an AlN substrate, and heated in the atmosphere. Wiring and board can be easily joined.
【0011】[0011]
【実施例】本発明を実施例により詳細に説明するが、こ
れによって本発明が限定されるものではない。図1(a
)のように導体用Cu板の上に、Ti、Zr、Ni、C
uの箔を重ねて冷間圧延することによりこれらを接合し
て、箔材層と接合されたCu部材を製造した(図1(b
)。初期の各箔材の厚さ、および圧延接合時の圧下比を
変えることにより、Cu板に接合された箔材層の組成お
よび厚みの異なるCu板と箔材の接合体を作製すること
ができる。この接合体から 0.3×40×40mmの
板を切り出し1×50×50ミリのAlN 基板上に、
箔材層側がAlN と接するように配置し、0.1kg
f/mm2 の加圧力を加えAr雰囲気内の炉中に入れ
て加熱し図2に示されるように接合した。接合後には、
AlN とCuのそれぞれの部材間に中間層が形成され
る。接合強度の評価は、接合体の隅に図3に示すように
1φmmの銅線をはんだ付けし、銅線を上方に引張って
接合部の引きはがしテストにより行った。結果を第1表
に示す。EXAMPLES The present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto. Figure 1 (a
), Ti, Zr, Ni, and C are placed on a Cu plate for conductors.
A Cu member bonded to the foil material layer was manufactured by overlapping and cold-rolling the u foils to produce a Cu member bonded to the foil material layer (Fig.
). By changing the initial thickness of each foil material and the rolling reduction ratio during rolling joining, it is possible to create a bonded body of Cu plate and foil material with different compositions and thicknesses of the foil material layer bonded to the Cu plate. . A 0.3 x 40 x 40 mm plate was cut out from this bonded body and placed on a 1 x 50 x 50 mm AlN substrate.
Arranged so that the foil material layer side is in contact with AlN, and weighs 0.1 kg.
A pressurizing force of f/mm2 was applied, the pieces were placed in a furnace in an Ar atmosphere, heated, and bonded as shown in FIG. 2. After joining,
An intermediate layer is formed between each of the AlN and Cu members. The bonding strength was evaluated by soldering a 1φmm copper wire to the corner of the bonded body as shown in FIG. 3, and performing a peel test of the bonded portion by pulling the copper wire upward. The results are shown in Table 1.
【0012】0012
【表1】[Table 1]
【0013】本発明例のA1〜A3に示すようにTi、
Zrを適正量存在する層を介在して接合されたものは、
850 ℃という比較的低温にて良好なる接合強度が得
られた。また、Cu添加により接合時間の短縮化(A1
〜3 に比較してA4は時間が短い) がなされ、Ni
添加により箔材層を厚くしても割れが発生しない(A5
)ことが確認された。一方、比較例における箔材層なし
(B1)、箔材層の厚さ不足(B5)では、濡れが十分
確保されず、またTi単独添加(B2)のものは、85
0 ℃では接合されなかった。また、適正成分の箔材層
を用いて接合してもその厚みが大きすぎる場合(B4)
には、濡れが確保されても熱応力が大きくなり、割れが
発生した。以上の結果から、本発明によれば、AlN
よりなる基板とCuよりなる回路配線が低温にて安定し
た接合が行えることが確認された。As shown in A1 to A3 of the examples of the present invention, Ti,
Those bonded with a layer containing an appropriate amount of Zr are
Good bonding strength was obtained at a relatively low temperature of 850°C. In addition, the bonding time is shortened by adding Cu (A1
A4 takes a shorter time compared to ~3), and Ni
No cracks will occur even if the foil material layer is made thicker by adding it (A5
) was confirmed. On the other hand, in the comparative example, with no foil material layer (B1) and with an insufficient thickness of the foil material layer (B5), sufficient wetting was not ensured, and with Ti only added (B2), 85%
Bonding was not possible at 0°C. Also, if the thickness is too large even if a foil material layer with appropriate components is used for bonding (B4)
Even though wetting was ensured, thermal stress increased and cracks occurred. From the above results, according to the present invention, AlN
It was confirmed that stable bonding between a substrate made of Cu and a circuit wiring made of Cu can be performed at low temperatures.
【0014】[0014]
【発明の効果】本発明は、以上説明したように構成され
ているから、電子回路における信頼性の高い基板のAl
N 部材と導体であるCu部材の接合体およびその製造
方法が確立され、これにより高性能な製品の提供が可能
となって、産業上極めて有用である。[Effects of the Invention] Since the present invention is constructed as described above, it is possible to use Al for highly reliable substrates in electronic circuits.
A bonded body of an N member and a Cu member, which is a conductor, and a method for manufacturing the same have been established, which makes it possible to provide high-performance products and is extremely useful industrially.
【図1】図1(a)、(b)は、本発明で使用する回路
用Cu板と箔体とのそれぞれ圧延結合前(a)、後(b
)の説明図である。[Fig. 1] Figs. 1(a) and 1(b) show the circuit Cu plate used in the present invention and the foil body before (a) and after (b) rolling bonding, respectively.
) is an explanatory diagram.
【図2】AlN基板と回路用Cu板との接合体の断面図
である。FIG. 2 is a sectional view of a joined body of an AlN substrate and a Cu board for circuits.
【図3】接合部の強度試験を実施する際の斜視図である
。FIG. 3 is a perspective view when performing a strength test of a joint.
Claims (4)
の接合体であって、前記AlN 部材とCu部材との間
に重量%でZr:10〜90%およびTi:10〜90
%を含有し残部がCuより成る中間層を介在させて成る
ことを特徴とする電子回路用AlN 部材とCu部材の
接合体。1. A joined body of an AlN member and a Cu member for an electronic circuit, wherein the AlN member and the Cu member contain Zr: 10 to 90% and Ti: 10 to 90% by weight.
A joined body of an AlN member and a Cu member for an electronic circuit, characterized by interposing an intermediate layer containing % of AlN and the remainder consisting of Cu.
0%以下を含む請求項1記載のAlN 部材とCu部材
の接合体。2. The intermediate layer further comprises Ni:3 by weight%.
The joined body of the AlN member and Cu member according to claim 1, which contains 0% or less.
る箔体およびZrからなる箔体を重ねた後、圧延接合さ
せて、さらに、前記箔体側にAlN 部材を重ねて加熱
接合することを特徴とする電子回路用AlN 部材とC
u部材の接合体の製造方法。3. A foil body made essentially of Ti and a foil body made of Zr are stacked on the surface of the Cu member, and then rolled and bonded.Furthermore, an AlN member is stacked on the foil body side and heat bonded. Features of AlN members for electronic circuits and C
A method for manufacturing a joined body of u members.
箔体にさらに、実質的にCuからなる箔体および/また
はNiからなる箔体の1種以上の箔体を重ねた後、圧延
接合させる請求項3記載の電子回路用AlN 部材とC
u部材の接合体の製造方法。4. The foil body made of Ti and the foil body made of Zr are further laminated with one or more foil bodies consisting of a foil body substantially made of Cu and/or a foil body made of Ni, and then rolled and bonded. AlN member for electronic circuit according to claim 3 and C
A method for manufacturing a joined body of u members.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1148191A JPH04238877A (en) | 1991-01-08 | 1991-01-08 | Jointed form made up of aln member and cu member and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1148191A JPH04238877A (en) | 1991-01-08 | 1991-01-08 | Jointed form made up of aln member and cu member and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04238877A true JPH04238877A (en) | 1992-08-26 |
Family
ID=11779248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1148191A Withdrawn JPH04238877A (en) | 1991-01-08 | 1991-01-08 | Jointed form made up of aln member and cu member and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04238877A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010535632A (en) * | 2007-08-07 | 2010-11-25 | 韓国生産技術研究院 | Zr-Ti-Ni (Cu) -based low melting point brazing filler metal alloy composition for titanium brazing |
CN107787259A (en) * | 2015-06-02 | 2018-03-09 | 罗杰斯德国有限公司 | Method for manufacturing composite |
WO2019008003A1 (en) * | 2017-07-04 | 2019-01-10 | Rogers Germany Gmbh | Soldering material for active soldering and method for active soldering |
-
1991
- 1991-01-08 JP JP1148191A patent/JPH04238877A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010535632A (en) * | 2007-08-07 | 2010-11-25 | 韓国生産技術研究院 | Zr-Ti-Ni (Cu) -based low melting point brazing filler metal alloy composition for titanium brazing |
CN107787259A (en) * | 2015-06-02 | 2018-03-09 | 罗杰斯德国有限公司 | Method for manufacturing composite |
JP2018524250A (en) * | 2015-06-02 | 2018-08-30 | ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH | Method for making a composite material |
WO2019008003A1 (en) * | 2017-07-04 | 2019-01-10 | Rogers Germany Gmbh | Soldering material for active soldering and method for active soldering |
CN110891733A (en) * | 2017-07-04 | 2020-03-17 | 罗杰斯德国有限公司 | Welding material for active welding and method for active welding |
US11338397B2 (en) | 2017-07-04 | 2022-05-24 | Rogers Germany Gmbh | Soldering material for active soldering and method for active soldering |
CN110891733B (en) * | 2017-07-04 | 2022-05-27 | 罗杰斯德国有限公司 | Welding material for active welding and method for active welding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI619207B (en) | Bonded body, power module substrate, power module and method of producing bonded body | |
JP6753869B2 (en) | How to make composites | |
WO2021033421A1 (en) | Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board | |
JP7337987B2 (en) | Method for manufacturing semi-finished metal products and method for manufacturing metal-ceramic substrates | |
WO2015163232A1 (en) | Process for producing united object and process for producing substrate for power module | |
JP6343993B2 (en) | Power module substrate and manufacturing method thereof | |
JP4951932B2 (en) | Power module substrate manufacturing method | |
JPH0810202Y2 (en) | Lightweight substrates for semiconductor devices | |
JP6432373B2 (en) | Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink | |
JPH04238877A (en) | Jointed form made up of aln member and cu member and production thereof | |
JP2607700Y2 (en) | Lightweight substrates for semiconductor devices | |
JP2705689B2 (en) | Method of manufacturing lightweight substrate for semiconductor device | |
JPH0723964Y2 (en) | Lightweight substrate for semiconductor device | |
KR102392568B1 (en) | Manufacturing method of insulated circuit board with heat sink attached | |
JP2689685B2 (en) | Lightweight substrates for semiconductor devices | |
JP2001203299A (en) | Aluminium board and ceramics circuit board using the same | |
JP2503779B2 (en) | Substrate for semiconductor device | |
JPH0597533A (en) | Composition for bonding ceramic-metal and bonded product of ceramic-metal | |
JP2607699Y2 (en) | Lightweight substrates for semiconductor devices | |
JP2503778B2 (en) | Substrate for semiconductor device | |
JP6769169B2 (en) | Method for manufacturing a bonded body of a ceramic substrate and an aluminum-impregnated silicon carbide porous body | |
JP5691580B2 (en) | Manufacturing apparatus and manufacturing method for power module substrate | |
JPH05201777A (en) | Ceramic-metal joined body | |
JPH06329480A (en) | Joined body of ceramics and metal and its production | |
JP7400109B2 (en) | Methods of producing metal-ceramic substrates and metal-ceramic substrates produced by such methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |