Nothing Special   »   [go: up one dir, main page]

JPH04152583A - Distorted quantum well semiconductor laser - Google Patents

Distorted quantum well semiconductor laser

Info

Publication number
JPH04152583A
JPH04152583A JP27629090A JP27629090A JPH04152583A JP H04152583 A JPH04152583 A JP H04152583A JP 27629090 A JP27629090 A JP 27629090A JP 27629090 A JP27629090 A JP 27629090A JP H04152583 A JPH04152583 A JP H04152583A
Authority
JP
Japan
Prior art keywords
quantum well
layer
strained quantum
semiconductor laser
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27629090A
Other languages
Japanese (ja)
Other versions
JP3204969B2 (en
Inventor
Kazuhisa Uomi
魚見 和久
Tomonobu Tsuchiya
朋信 土屋
Masahiro Aoki
雅博 青木
So Otoshi
創 大歳
Naoki Kayane
茅根 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17567392&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04152583(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27629090A priority Critical patent/JP3204969B2/en
Publication of JPH04152583A publication Critical patent/JPH04152583A/en
Application granted granted Critical
Publication of JP3204969B2 publication Critical patent/JP3204969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To simultaneously utilize the quantum size effect and the distortion effect by having an active layer with at least one distorted quantum well layer, a special relationship between the lattice constant of this distorted quantum well layer and the semiconductor substrate, and the distorted quantum well layer formed by four-section mixed crystals. CONSTITUTION:The MOCVD method is used to grow in order a distorted quantum well active layer 2 and a p-InP layer 3 on an n-InP substrate 1. This distorted quantum well layer 2 has a thickness of 4nm or larger and a 4-section structure that consists of a 5-7nm In0.9Ga0.1As0.7P0.3 distorted quantum well active layer 2a (distortion amount +1.8%) and a non-distorted InGaAs barrier layer 2b. After that, in order to keep the active layer width at about 1mum, a reverse mesa-shaped mesa stripe is formed, this is filled by a p-InP layer 4 and an n-InP layer 5 to create a BH structure, and a p electrode 6 and an n electrode 7 are formed. A relationship of (aw-as)/as>=0.8% is established between the distorted quantum well layer 2 lattice constant aw and the semiconductor substrate 1 lattice constant as.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は、光フアイバ通信用の半導体レーザに係り、特
にポスト10Gbit/sの超高速光通信、あるいはコ
ヒーレント多重光通信に用いる半導体レーザに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser for optical fiber communication, and particularly to a semiconductor laser for use in post-10 Gbit/s ultra-high-speed optical communication or coherent multiplex optical communication. It is.

〔従来の技術〕[Conventional technology]

歪量子井戸半導体レーザは、次次世代光通信応用半導体
レーザの観点で、多重量子井戸(MQW)レーザの後継
型として着目されている。特に波長1.5〜1.6μm
帯は光ファイバの損失が最も低く長距離化の観点で重要
であり、従来の歪量子井戸レーザの歪量子井戸はInG
aAs三元混晶で形成されていた。例えばエレクトロニ
クス・レターズ第26巻465〜467頁(1990年
)(Electronics Letters、 Vo
l、26.P、465−467 (1990))に開示
されている。
Strained quantum well semiconductor lasers are attracting attention as a successor to multiple quantum well (MQW) lasers from the perspective of semiconductor lasers for next-generation optical communication applications. Especially wavelength 1.5~1.6μm
The strained quantum well of the conventional strained quantum well laser is InG.
It was formed of aAs ternary mixed crystal. For example, Electronics Letters, Vol. 26, pp. 465-467 (1990)
l, 26. P, 465-467 (1990)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術では、その歪量子井戸層が、膜厚
2.5nm のInGaAsで形成され、その歪量は+
1.53%であり、この構造の最大の問題として歪量子
井戸層の膜厚が薄すぎて量子サイズ効果が小さくなって
しまうという問題点があった。
However, in the above conventional technology, the strained quantum well layer is formed of InGaAs with a film thickness of 2.5 nm, and the strain amount is +
1.53%, and the biggest problem with this structure was that the strained quantum well layer was too thin, reducing the quantum size effect.

第7図を用いて上記問題点をさらに説明する。The above problem will be further explained using FIG. 7.

同図は量子サイズ効果の指標となる微分利得の平方根の
量子井戸膜厚依存性の計算値である。量子井戸膜厚の低
減とともに、微分利得は増大するが5〜7nmで最大値
をとり、4nm以下で急激に低下する。これは量子井戸
層膜厚が薄すぎると電子の波動関数がかなリバリャ層に
もれだすために。
The figure shows the calculated value of the quantum well film thickness dependence of the square root of the differential gain, which is an index of the quantum size effect. As the quantum well film thickness decreases, the differential gain increases, but reaches a maximum value between 5 and 7 nm, and rapidly decreases below 4 nm. This is because if the quantum well layer is too thin, the wave function of electrons leaks into the Kana River layer.

電子の量子井戸層への閉じ込めが悪くなるためである。This is because the confinement of electrons in the quantum well layer becomes worse.

従って上記従来技術では約1.55の歪量を反映して歪
効果は第8図のように発揮されるが、2.5nm と量
子井戸層膜厚が薄いために量子サイズ効果を十分引き出
すことはできない。
Therefore, in the conventional technology described above, the strain effect is exhibited as shown in Figure 8, reflecting the strain amount of about 1.55, but since the quantum well layer film thickness is thin at 2.5 nm, it is difficult to fully bring out the quantum size effect. I can't.

以上の問題点は、歪量子井戸をInGaAsで構成して
いるがゆえに1発光波長を光フアイバ通信に用いる1、
5〜1.6μmにするために薄い量子井戸層を使わざる
を得なかったことに起因している。
The above problem arises because the strained quantum well is made of InGaAs, so one emission wavelength is used for optical fiber communication.
This is due to the fact that a thin quantum well layer had to be used in order to achieve a thickness of 5 to 1.6 μm.

つまり、歪効果が充分に出る歪量+1%以上のInGa
As 3元混晶において、量子効果が十分に出る量子井
戸膜厚5〜7nmに設定すると、その発光波長は1.7
〜1.8μmと長くなってしまう、従って、従来技術で
は、量子効果と歪効果の両方を備えた歪量子井戸レーザ
の実現は不可能であった。
In other words, InGa with a strain amount of +1% or more that produces a sufficient strain effect.
In the As ternary mixed crystal, when the quantum well film thickness is set to 5 to 7 nm to produce sufficient quantum effects, the emission wavelength is 1.7 nm.
Therefore, with the conventional technology, it was impossible to realize a strained quantum well laser having both a quantum effect and a strain effect.

本発明の目的は、量子サイズ効果と歪効果を両立して発
揮できる歪量子井戸半導体レーザを提供することにある
An object of the present invention is to provide a strained quantum well semiconductor laser that can exhibit both a quantum size effect and a strain effect.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明者らは、InGaA
sよりも禁制帯幅の広い、すなわち1発光波長短かいI
nGaAsPあるいはInGaA (l As 4元混
晶を歪量子井戸層に導入することが極めて有効であるこ
とを見出した。この時、歪効果を十分に得るためにIn
GaAsPあるいはInGaA Q As 4元混晶歪
量子弁戸層の歪量は少なくとも+0.8%に設定する必
要があるにれは第8図の微分利得の平方根の歪量依存性
に見られるように、+0.8%以上において歪効果によ
る微分利得の増大が顕著に現われることに起因している
。さらに量子サイズ効果を十分に引き出すために歪量子
井戸層の膜厚は少なくとも4nm以上、望ましくは5〜
7nmに設定する。
In order to achieve the above object, the present inventors have developed an InGaA
I has a wider forbidden band width than s, that is, one emission wavelength shorter than I.
We have found that it is extremely effective to introduce nGaAsP or InGaA (lAs) quaternary mixed crystal into the strained quantum well layer.
The amount of strain in the GaAsP or InGaA Q As quaternary mixed crystal strained quantum valve layer must be set to at least +0.8%, as shown in the dependence of the square root of the differential gain on the amount of strain in Figure 8. , +0.8% or more, the increase in differential gain due to the distortion effect appears significantly. Furthermore, in order to fully bring out the quantum size effect, the thickness of the strained quantum well layer should be at least 4 nm or more, preferably 5 nm or more.
Set to 7nm.

〔作用〕[Effect]

以上の構成により、波長1.5〜1.6μmで発光し、
かつ歪量を+0.8%以上有し、さらには歪量子井戸層
の膜厚として4nm以上、あるいは5〜7nmからなる
歪量子井戸層を有する歪量子井戸半導体レーザを製作で
きた。これは、禁制帯幅がInGaAsよりも大きい4
元混晶(InGaAsP 。
With the above configuration, light is emitted at a wavelength of 1.5 to 1.6 μm,
In addition, a strained quantum well semiconductor laser having a strain amount of +0.8% or more and a strained quantum well layer having a thickness of 4 nm or more, or 5 to 7 nm could be manufactured. This means that the forbidden band width is larger than that of InGaAs4.
Original mixed crystal (InGaAsP.

InGaA Q As )を採用したために、その材料
自体の発光波長がInGaAsよりも短いために、ある
程度厚い(5〜7nm)歪量子井戸層において発光波長
1.5〜1.6μmを実現することが可能となった。
Since the material itself has a shorter emission wavelength than InGaAs, it is possible to achieve an emission wavelength of 1.5 to 1.6 μm in a somewhat thick (5 to 7 nm) strained quantum well layer. It became.

本発明における歪量子井戸層へのInGaAsP 、お
よびInGaA Q As 4元混晶の適用範囲を第4
図、第5図の4元混晶相図に示した。まず In、 −xGaxAs、−yPyではO<x<0.2
5,0.15゜y<0.55の範囲、また(A Q v
Gal−V)WIn1−wAsではV>0.2、0.2
<W<0.4  の範囲が本発明の4元組成である。
The scope of application of InGaAsP and InGaA QAs quaternary mixed crystals to the strained quantum well layer in the present invention is explained in the fourth section.
This is shown in the quaternary mixed crystal phase diagram shown in FIG. First, for In, -xGaxAs, -yPy, O<x<0.2
5,0.15゜y<0.55, and (A Q v
Gal-V) V>0.2, 0.2 for WIn1-wAs
The range of <W<0.4 is the quaternary composition of the present invention.

以上の如く量子サイズ効果と歪効果を両立した歪量子井
戸半導体レーザを実現できた。
As described above, a strained quantum well semiconductor laser that has both quantum size effect and strain effect was realized.

さらに、この歪量子井戸への変調ドーピング(P、ある
いはn型)も極めて有効であり、歪効果、量子サイズ効
果、変調ドープ効果の3効果を同時に引き出すことに成
功した。
Furthermore, modulation doping (P or n-type) to this strained quantum well is extremely effective, and we succeeded in simultaneously bringing out the three effects of strain effect, quantum size effect, and modulation doping effect.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図は本発明による歪量子井戸半導体レーザの断面図
である。n −I n P基板1上にMOCVD法によ
り、歪量子井戸活性層2、p−InP層3を順次成長し
た。ここで歪量子井戸活性層2は円内に拡大図示したよ
うに膜厚6nmの In、 、−5Gao 、□As、−7plI n3歪
量子井戸層2a(歪量+1.8%)と膜厚15nmの無
歪のInGaAsPバリヤ層2b(15〜1.32m)
の4周期構造である。
Example 1 FIG. 1 is a sectional view of a strained quantum well semiconductor laser according to the present invention. A strained quantum well active layer 2 and a p-InP layer 3 were successively grown on an n-InP substrate 1 by MOCVD. Here, the strained quantum well active layer 2 consists of a strained quantum well layer 2a (strain amount +1.8%) and a film thickness of 15 nm. strain-free InGaAsP barrier layer 2b (15-1.32 m)
It has a four-periodic structure.

その後、活性層幅が1μm程度になるように、逆メサ状
のメサストライプを形成し、p−InP層4、n−In
P層5で埋めこみ、BH構造とした。さらにp電極6.
n電極7を形成し、共振器長約300μmにへき関した
Thereafter, an inverted mesa-like mesa stripe is formed so that the active layer width is about 1 μm, and the p-InP layer 4 and the n-InP layer 4 are
It was filled with a P layer 5 to form a BH structure. Furthermore, the p-electrode 6.
An n-electrode 7 was formed to provide a resonator with a length of about 300 μm.

試作した素子は十分な歪効果と量子サイズ効果を反映し
て約2mAと極めて小さいしきい電流で発振し、また光
出力10mW時の緩和振動周波数は30GHzと極めて
高い値を示した。
The prototype device oscillated with an extremely small threshold current of approximately 2 mA, reflecting sufficient strain effects and quantum size effects, and exhibited an extremely high relaxation oscillation frequency of 30 GHz when the optical output was 10 mW.

実施例2 本発明による別の実施例を第2図(a)の断面図、第2
図(b)の断面図((a)のA−A’線)を用いて説明
する。周期的240nmの回折格子8を有したn−In
P基板1上に、n −InGsAsP(無歪、18〜1
.2μm)光ガイド層、膜厚5.5nmのIn、 −9
2GaD−asAso +5SPD +3S歪量子井戸
層(歪量:+1.5%)と膜厚10nmのInGaAs
Pバリヤ層(無歪、λt〜1.25μm)の2〜10周
期構造からなる歪量子井戸活性層2、p−InP層3を
順次、ガスソースMBE法により成長した。
Embodiment 2 Another embodiment of the present invention is shown in the cross-sectional view of FIG.
This will be explained using the cross-sectional view of Figure (b) (line AA' in (a)). n-In with periodic 240 nm diffraction grating 8
On the P substrate 1, n-InGsAsP (unstrained, 18~1
.. 2 μm) light guide layer, 5.5 nm thick In, -9
2GaD-asAso +5SPD +3S strained quantum well layer (strain amount: +1.5%) and InGaAs with a film thickness of 10 nm
A strained quantum well active layer 2 and a p-InP layer 3 consisting of a 2-10 periodic structure of a P barrier layer (unstrained, λt~1.25 μm) were grown in sequence by gas source MBE.

次に活性層幅的1μmの逆メサストライプを形成後、F
eドープInP層(膜厚〜4μm)10をMOCVD法
により埋め込み成長した。最後にp電極6.n電極7を
形成後、共振器長約200μmにへき関した。
Next, after forming a reverse mesa stripe with a width of 1 μm in the active layer, F
An e-doped InP layer (film thickness ~4 μm) 10 was buried and grown by MOCVD. Finally, p electrode 6. After forming the n-electrode 7, the resonator length was about 200 μm.

試作した素子は約1.5mA で発振し、回折格子によ
るDFB構造を反映して波長1.55μmで幅モード抑
圧比40dB以上の単一スペクトルを得た。また、十分
な量子効果と歪効果を反映して、光出力10mW時の緩
和振動周波数は約30GHzであり、FeドープInP
埋め込みによる低容量化構造をも反映して、300bi
t/sの超高速動作が可能となった。また、その時の2
0dBダウンのチャーピング量は約2人と従来を1桁下
まわる値であった。さらに光出力20mW時のスペクト
ル線幅は50kHzと極めて小さい値を示した。
The prototype device oscillated at approximately 1.5 mA and obtained a single spectrum with a width mode suppression ratio of 40 dB or more at a wavelength of 1.55 μm, reflecting the DFB structure using the diffraction grating. In addition, reflecting sufficient quantum effects and strain effects, the relaxation oscillation frequency at an optical output of 10 mW is approximately 30 GHz, and the Fe-doped InP
Reflecting the low capacity structure due to embedding, the 300bi
Ultra high speed operation of t/s is now possible. Also, at that time 2
The chirping amount for 0 dB down was approximately 2 people, which is an order of magnitude lower than the conventional value. Furthermore, the spectral linewidth at an optical output of 20 mW was extremely small at 50 kHz.

実施例3 第3図は本発明による別の実施例であり、InGaA 
Q Asを用い、さらに変調ドープを行ったものである
。n−1nP基板1上に膜厚4〜7nmの(A Q0.
、G aw、s)。、3 I naw7A S  歪量
子井戸層11a(歪量:+1.2%)と膜厚20nmの
InGaA Q Asバリヤ層11b(無歪、λg=1
.2μm)の2〜8周期構造からなる変調ドープ歪量子
井戸活性層11、p −I n Pクラッド層3、n−
InP層12を順次MOCVD法により成長した。この
時、バリヤ層には、MgあるいはBeいずれかを2 X
 10”an−3ドーピングした。この後S i O2
膜13を形成し、選択的に5in2を除去し、Zn拡散
領域14を設け、p電極6.n電極7を形成した利得導
波ストライプ型とした。
Example 3 FIG. 3 shows another example according to the present invention, in which InGaA
It uses QAs and is further subjected to modulation doping. A film with a thickness of 4 to 7 nm (A Q0.
, Gaw, s). , 3 I naw7A S strained quantum well layer 11a (strain amount: +1.2%) and InGaA Q As barrier layer 11b with a film thickness of 20 nm (unstrained, λg=1
.. Modulation doped strained quantum well active layer 11 consisting of a 2 to 8 periodic structure of 2 μm), p - I n P cladding layer 3, n -
InP layers 12 were grown sequentially by MOCVD. At this time, either Mg or Be is added to the barrier layer by 2
10"an-3 doping. After this, S i O2
A film 13 is formed, a 5in2 layer is selectively removed, a Zn diffusion region 14 is provided, and a p-electrode 6. A gain waveguide stripe type was used in which an n-electrode 7 was formed.

試作した素子では、歪素子、量子サイズ効果、変調ドー
プ効果の3者を同時に反映した効果が顕著であり、光出
力10mWで、緩和振動周波数は50 G Hzと大き
な値を示した。
In the prototype device, effects that simultaneously reflected the three factors of the strain element, quantum size effect, and modulation doping effect were remarkable, and the relaxation oscillation frequency showed a large value of 50 GHz at an optical output of 10 mW.

実施例4 第6図は本発明の歪量子井戸半導体レーザを光通信に応
用した実施例の模式図である。歪量子井戸半導体レーザ
15にはパイアイ電源15と信号源17がつながってお
り、これによりレーザ光が変調される。レーザ光22は
光ファイバ18を通り、その出射光19は光検出器20
により電気信号に変換され、復号器21で処理される。
Embodiment 4 FIG. 6 is a schematic diagram of an embodiment in which the strained quantum well semiconductor laser of the present invention is applied to optical communication. A pie-eye power source 15 and a signal source 17 are connected to the strained quantum well semiconductor laser 15, and the laser beam is modulated by these. The laser beam 22 passes through an optical fiber 18, and the emitted light 19 is sent to a photodetector 20.
The signal is converted into an electrical signal and processed by the decoder 21.

本実施例では400bit/ s  、ファイバ長40
kmとした6 〔発明の効果〕 本発明によれば、歪量子井戸半導体レーザの歪効果と量
子サイズ効果を同時に引き出すことができ、半導体レー
ザの超高速化ができるので、超高速(大容量)光通信の
光源として、大いなる効果があった。
In this example, the speed is 400 bit/s, and the fiber length is 40
km [Effects of the Invention] According to the present invention, the strain effect and quantum size effect of a strained quantum well semiconductor laser can be simultaneously brought out, and the semiconductor laser can be made to operate at an ultra-high speed. It had great effects as a light source for optical communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の実施例のレーザ素子の断
面図、第4図、第5図は本発明による4元混晶歪量子弁
戸層の組成領域を示す図、第6図は本発明の光通信シス
テムの一実施例の模式図、第7図、第8図は本発明の詳
細な説明する特性図である。 2・・・歪量子井戸活性層、8・・・回折格子、11・
・・変第 区 第 築 図 1遍−χ cr久χ A、5l−y fメ 図 第 乙 図 1’7 拓 図 童)神戸層F4に厚(ガザン 烹 区 歪量 (忰)
1 to 3 are cross-sectional views of laser devices according to embodiments of the present invention, FIGS. 4 and 5 are diagrams showing compositional regions of quaternary mixed crystal strained quantum valve layers according to the present invention, and FIG. is a schematic diagram of an embodiment of the optical communication system of the present invention, and FIGS. 7 and 8 are characteristic diagrams explaining the present invention in detail. 2...Strained quantum well active layer, 8...Diffraction grating, 11.
... Hendaiku No. 1 construction map 1-χ crkuχ A, 5l-y

Claims (1)

【特許請求の範囲】 1、半導体基板上に、少なくとも光を発生する活性層と
光を閉込めるクラッド層を有する半導体レーザにおいて
、上記活性層が少なくとも一層の歪量子井戸層を有し、
該歪量子井戸層の格子定数a_wと上記半導体基板の格
子定数a_sとの間に(a_w−a_s)/a_s≧0
.8%の関係があり、かつ歪量子井戸層が四元混晶で形
成されていることを特徴とする歪量子井戸半導体レーザ
。 2、発光波長が1.5〜1.6μmの範囲のいずれかで
ある請求項1記載の歪量子井戸半導体レーザ。 3、半導体基板上に、少なくとも光を発生する活性層と
光を閉じ込めるクラッド層を有する半導体レーザにおい
て、波長1.5〜1.6μmの範囲で発光し、その活性
層が少なくとも1層の歪量子井戸から成り該歪量子井戸
層の格子定数a_wと上記半導体基板の格子定数a_s
との間に(a_w−a_s)/a_s≧0.8%の関係
があり、かつ歪量子井戸層の膜厚が4nm以上であるこ
とを特徴とする歪量子井戸半導体レーザ。 4、特に歪量子井戸層の膜厚が5〜7nmの範囲にある
請求項3記載の歪量子井戸半導体レーザ。 5、請求項1ないし4記載のレーザにおいて、歪量子井
戸層に隣接するバリヤ層が、1×10^1^0cm^−
^3以上の密度で導電型不純物をドーピングした領域を
有することを特徴とする歪量子井戸半導体レーザ。 6、請求項1ないし5記載のレーザにおいて、光を帰還
させるための共振器として、へき開面からなる反射面を
有するか、あるいは上記活性層上下の少なくとも一方側
に隣接する光ガイド層上に形成した回折格子を有するこ
とを特徴とする歪量子井戸半導体レーザ。 7、請求項1ないし6記載のレーザにおいて、上記半導
体基板がInP、かつ歪量子井戸層がInGaAsPあ
るいはInGaAlAsであることを特徴とする歪量子
井戸半導体レーザ。 8、請求項7記載のInGaAsPの4元組成を、In
_1_−_xGa_xAs_1_−_yP_yとした時
に、x、yが0<x<0.25、0.15<y<0.5
5の範囲を満足することを特徴とする歪量子井戸半導体
レーザ。 9、請求項7記載のInGaAlAsの4元組成を(A
l_VGa_1_−_V)_WIn_1_−_WAsと
した時に、V、WがV>0.2、0.2<W0.4の範
囲を満足することを特徴とする歪量子井戸半導体レーザ
。 10、請求項1ないし9までのいずれかに記載の歪量子
井戸半導体レーザと、該歪量子井戸半導体レーザに電気
信号を入力する手段と、該歪量子井戸半導体レーザから
のレーザ光を伝送する手段と、該レーザ光を受信する受
信部を有することを特徴とする光通信システム。
[Claims] 1. A semiconductor laser having at least an active layer that generates light and a cladding layer that confines light on a semiconductor substrate, wherein the active layer has at least one strained quantum well layer;
Between the lattice constant a_w of the strained quantum well layer and the lattice constant a_s of the semiconductor substrate, (a_w-a_s)/a_s≧0.
.. A strained quantum well semiconductor laser having a relationship of 8% and having a strained quantum well layer formed of a quaternary mixed crystal. 2. The strained quantum well semiconductor laser according to claim 1, wherein the emission wavelength is within a range of 1.5 to 1.6 μm. 3. In a semiconductor laser having at least an active layer that generates light and a cladding layer that confines light on a semiconductor substrate, the active layer emits light in the wavelength range of 1.5 to 1.6 μm, and the active layer has at least one strain quantum layer. The lattice constant a_w of the strained quantum well layer consisting of wells and the lattice constant a_s of the semiconductor substrate
A strained quantum well semiconductor laser characterized in that there is a relationship of (a_w−a_s)/a_s≧0.8%, and the film thickness of the strained quantum well layer is 4 nm or more. 4. The strained quantum well semiconductor laser according to claim 3, wherein the strained quantum well layer has a thickness in a range of 5 to 7 nm. 5. The laser according to claims 1 to 4, wherein the barrier layer adjacent to the strained quantum well layer has a thickness of 1×10^1^0 cm^-
A strained quantum well semiconductor laser characterized by having a region doped with conductivity type impurities at a density of ^3 or more. 6. In the laser according to claims 1 to 5, the resonator for returning light has a reflecting surface made of a cleavage plane, or is formed on a light guide layer adjacent to at least one side above and below the active layer. A strained quantum well semiconductor laser characterized by having a diffraction grating. 7. A strained quantum well semiconductor laser according to claim 1, wherein the semiconductor substrate is made of InP and the strained quantum well layer is made of InGaAsP or InGaAlAs. 8. The quaternary composition of InGaAsP according to claim 7 is
When _1_-_xGa_xAs_1_-_yP_y, x and y are 0<x<0.25, 0.15<y<0.5
A strained quantum well semiconductor laser characterized by satisfying the following range. 9. The quaternary composition of InGaAlAs according to claim 7 is (A
1. A strained quantum well semiconductor laser characterized in that V and W satisfy the range of V>0.2 and 0.2<W0.4 when 1_VGa_1_-_V)_WIn_1_-_WAs. 10. A strained quantum well semiconductor laser according to any one of claims 1 to 9, means for inputting an electric signal to the strained quantum well semiconductor laser, and means for transmitting laser light from the strained quantum well semiconductor laser. and a receiving section that receives the laser beam.
JP27629090A 1990-10-17 1990-10-17 Semiconductor laser and optical communication system Expired - Lifetime JP3204969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27629090A JP3204969B2 (en) 1990-10-17 1990-10-17 Semiconductor laser and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27629090A JP3204969B2 (en) 1990-10-17 1990-10-17 Semiconductor laser and optical communication system

Publications (2)

Publication Number Publication Date
JPH04152583A true JPH04152583A (en) 1992-05-26
JP3204969B2 JP3204969B2 (en) 2001-09-04

Family

ID=17567392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27629090A Expired - Lifetime JP3204969B2 (en) 1990-10-17 1990-10-17 Semiconductor laser and optical communication system

Country Status (1)

Country Link
JP (1) JP3204969B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042685A1 (en) * 1999-01-11 2000-07-20 The Furukawa Electric Co., Ltd. n-TYPE MODULATION DOPE MULTIPLE QUANTUM WELL SEMICONDUCTOR LASER
US6396861B1 (en) 1999-01-11 2002-05-28 The Furukawa Electric Co., Ltd. N-type modulation-doped multi quantum well semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042685A1 (en) * 1999-01-11 2000-07-20 The Furukawa Electric Co., Ltd. n-TYPE MODULATION DOPE MULTIPLE QUANTUM WELL SEMICONDUCTOR LASER
US6396861B1 (en) 1999-01-11 2002-05-28 The Furukawa Electric Co., Ltd. N-type modulation-doped multi quantum well semiconductor laser device

Also Published As

Publication number Publication date
JP3204969B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US20050045868A1 (en) Optical semiconductor device and method for fabricating the same
JPH0653547A (en) Ultrahigh-brightness light-emitting diode
JP2001308451A (en) Semiconductor light emitting element
JP2724827B2 (en) Infrared light emitting device
JPS6254489A (en) Semiconductor light emitting element
JP2010232424A (en) Semiconductor optical amplifier, and optical module
JPH06232503A (en) Blue-green injection laser device
US5042049A (en) Semiconductor optical device
US6472691B2 (en) Distributed feedback semiconductor laser device
JPH05226789A (en) Product including distortion layer quantum well laser
EP0280281B1 (en) Variable oscillation wavelength semiconductor laser device
JP4690515B2 (en) Optical modulator, semiconductor optical device, and manufacturing method thereof
JP2536714B2 (en) Optical modulator integrated multiple quantum well semiconductor laser device
Dutta et al. Linewidth enhancement factor in strained quantum well lasers
JPH02130988A (en) Quantum well semiconductor laser element
JPH0677587A (en) Semiconductor laser
JPH04152583A (en) Distorted quantum well semiconductor laser
JPS606119B2 (en) Composite semiconductor device
JPH0621578A (en) Semiconductor integrated modulation light source device
JPH06188510A (en) Semiconductor laser element
JPH09148682A (en) Semiconductor optical device
JP2682474B2 (en) Semiconductor laser device
JP2630035B2 (en) Tunable semiconductor laser
JPH0945989A (en) Semiconductor laser element
JPS62249496A (en) Semiconductor laser device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 10