JP7521404B2 - Electrostatic Chuck Device - Google Patents
Electrostatic Chuck Device Download PDFInfo
- Publication number
- JP7521404B2 JP7521404B2 JP2020207360A JP2020207360A JP7521404B2 JP 7521404 B2 JP7521404 B2 JP 7521404B2 JP 2020207360 A JP2020207360 A JP 2020207360A JP 2020207360 A JP2020207360 A JP 2020207360A JP 7521404 B2 JP7521404 B2 JP 7521404B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- dielectric layer
- electrostatic chuck
- electrode layer
- interface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 claims description 38
- 239000013078 crystal Substances 0.000 claims description 33
- 238000005245 sintering Methods 0.000 claims description 11
- 238000001179 sorption measurement Methods 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 229910017083 AlN Inorganic materials 0.000 claims 1
- 229910010413 TiO 2 Inorganic materials 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 172
- 239000011810 insulating material Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000013007 heat curing Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 2
- 229910039444 MoC Inorganic materials 0.000 description 2
- 229910034327 TiC Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- -1 Si 3 N 4 Chemical compound 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- JAGQSESDQXCFCH-UHFFFAOYSA-N methane;molybdenum Chemical compound C.[Mo].[Mo] JAGQSESDQXCFCH-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 150000003377 silicon compounds Chemical group 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、静電チャック装置に関する。 The present invention relates to an electrostatic chuck device.
半導体製造工程では、真空環境下で半導体ウエハを保持する静電チャック装置が用いられている。静電チャック装置は、載置面に半導体ウエハ等の板状試料を載置し、板状試料と内部電極との間に静電気力を発生させて、板状試料を吸着固定する(例えば、特許文献1)。 In the semiconductor manufacturing process, an electrostatic chuck device is used to hold a semiconductor wafer in a vacuum environment. In the electrostatic chuck device, a plate-shaped sample such as a semiconductor wafer is placed on the mounting surface, and an electrostatic force is generated between the plate-shaped sample and the internal electrode to attract and fix the plate-shaped sample (for example, Patent Document 1).
従来の静電チャック装置において、誘電層の絶縁性セラミックス(例えば、アルミナ基焼結体)に導電性セラミックスを添加することで誘電率などの特性を向上させることが考えられる。しかしながら、導電性セラミックスを添加することで誘電層と電極層との接合強度が低下し、これらの間の剥離が生じやすくなるという問題があった。 In conventional electrostatic chuck devices, it has been thought that adding conductive ceramics to the insulating ceramics (e.g., alumina-based sintered body) of the dielectric layer could improve properties such as the dielectric constant. However, adding conductive ceramics reduces the bond strength between the dielectric layer and the electrode layer, which increases the likelihood of peeling between them.
本発明は、上記事情に鑑みてなされたものであって、誘電層と電極層との接合強度を高めた静電チャック装置の提供を目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide an electrostatic chuck device that improves the bonding strength between the dielectric layer and the electrode layer.
上記の課題を解決するため、本発明の一態様は、主相としての絶縁性セラミックスおよび副相としての導電性セラミックスを含む誘電層と、前記誘電層を支持する支持層と、前記誘電層と前記支持層との間に挟まれる電極層と、を備え、前記誘電層と前記電極層との界面は、凹凸形状を有し、最大高さRzが前記絶縁性セラミックスの平均結晶粒径より小さく、且つ、前記導電性セラミックスの平均結晶粒径より大きい、静電チャック装置である。 In order to solve the above problems, one aspect of the present invention is an electrostatic chuck device comprising a dielectric layer containing insulating ceramics as a main phase and conductive ceramics as a subphase, a support layer supporting the dielectric layer, and an electrode layer sandwiched between the dielectric layer and the support layer, wherein the interface between the dielectric layer and the electrode layer has an uneven shape and a maximum height Rz is smaller than the average crystal grain size of the insulating ceramics and larger than the average crystal grain size of the conductive ceramics.
本発明の一態様においては、前記誘電層と前記電極層との界面の凹凸形状は曲面からなる構成としてもよい。 In one aspect of the present invention, the uneven shape of the interface between the dielectric layer and the electrode layer may be configured to be a curved surface.
本発明の一態様においては、前記支持層は、主相としての絶縁性セラミックスおよび副相としての導電性セラミックスを含み、前記支持層と前記電極層との界面は、凹凸形状を有し、最大高さRzが前記絶縁性セラミックスの平均結晶粒径より小さく、且つ、前記導電性セラミックスの平均結晶粒径より大きい構成としてもよい。 In one aspect of the present invention, the support layer may include insulating ceramics as a main phase and conductive ceramics as a subphase, and the interface between the support layer and the electrode layer may have an uneven shape, with a maximum height Rz smaller than the average crystal grain size of the insulating ceramics and larger than the average crystal grain size of the conductive ceramics.
本発明の一態様においては、前記絶縁性セラミックスは、Al2O3、AlN、Si3N4、YAG、およびSmAlO3からなる群から選択される少なくとも1種である構成としてもよい。 In one aspect of the present invention, the insulating ceramic may be at least one selected from the group consisting of Al 2 O 3 , AlN, Si 3 N 4 , YAG, and SmAlO 3 .
本発明の一態様においては、前記導電性セラミックスは、SiC、TiO2、TiN、TiC、W、WC、Mo、Mo2CおよびCからなる群から選択される少なくとも1種である構成としてもよい。 In one aspect of the present invention, the conductive ceramic may be at least one selected from the group consisting of SiC, TiO2 , TiN, TiC, W, WC, Mo, Mo2C and C.
本発明の一態様においては、前記誘電層は、焼結助剤を含み、前記焼結助剤は、Y2O3、MgOおよびSiO2からなる群から選択される少なくとも1種である構成としてもよい。 In one aspect of the present invention, the dielectric layer may include a sintering aid, and the sintering aid may be at least one selected from the group consisting of Y 2 O 3 , MgO, and SiO 2 .
本発明の一態様においては、前記電極層は、静電吸着電極、ヒータ電極、およびRF電極の何れかとして機能する構成としてもよい。 In one aspect of the present invention, the electrode layer may be configured to function as either an electrostatic adsorption electrode, a heater electrode, or an RF electrode.
本発明によれば、誘電層と電極層との接合強度を高めた静電チャック装置を提供することができる。 The present invention provides an electrostatic chuck device that improves the bonding strength between the dielectric layer and the electrode layer.
以下、図面を参照して本発明に係る静電チャック装置について説明する。なお、以下の説明で用いる図面は、便宜上、特徴となる部分を拡大して示しており、各構成要素の寸法比率等は、実際とは異なる場合がある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更できる。 The electrostatic chuck device according to the present invention will be described below with reference to the drawings. Note that the drawings used in the following description show enlarged views of characteristic parts for the sake of convenience, and the dimensional ratios of each component may differ from the actual ones. Furthermore, the materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited to them, and may be modified as appropriate without changing the gist of the invention.
図1は、本実施形態の静電チャック装置1の断面図である。
静電チャック装置1は、円板状の静電チャック部2と、静電チャック部2を下側から支持するとともに静電チャック部2を所望の温度に調整する温度調整用ベース部3と、静電チャック部2と温度調整用ベース部3とを接合する接着剤層4と、を備える。
FIG. 1 is a cross-sectional view of an
The
以下の説明においては、誘電層11の載置面11s側を「上」、温度調整用ベース部3側を「下」として記載し、各構成の相対位置を表すことがある。しかしながら、ここでの上下方向は、あくまで説明の簡素化のために用いる方向であって、静電チャック装置1の使用時の姿勢を限定するものではない。
In the following description, the
静電チャック部2は、上面が半導体ウエハ等の板状試料を載置する載置面11sとされたセラミックスからなる誘電層11と、誘電層11の載置面11sとは反対側に設けられた支持層12と、これら誘電層11と支持層12との間に挟持された電極層13と、誘電層11と支持層12とに挟持され電極層13の周囲を囲む環状の絶縁材14と、電極層13に接するように支持層12の貫通孔15内に設けられた給電端子16と、温度調整用ベース部3の固定孔17内に設けられた電極ピン18と、を有する。
The
誘電層11は、上下方向と直交する平面に沿う板状である。誘電層11は、半導体ウエハ等の板状試料を支持する載置面11sを有する。載置面11sには、直径が板状試料の厚みより小さい突起(図示略)が複数所定の間隔で形成され、これらの突起が板状試料Wを支える。
The
誘電層11の厚さは、0.3mm以上かつ3.0mm以下であることが好ましく、0.5mm以上かつ1.5mm以下であることがより好ましい。誘電層11の厚さが0.3mm以上であれば、耐電圧性に優れる。一方、誘電層11の厚さが3.0mm以下であれば、静電チャック部2の静電吸着力が低下することがなく、搭載される板状試料と温度調整用ベース部3との間の熱伝導性が低下することもなく、処理中の板状試料の温度を好ましい一定の温度に保つことができる。
The thickness of the
支持層12は、上下方向と直交する平面に沿う板状である。支持層12は、誘電層11の下側に配置される。支持層12は、誘電層11と電極層13を下側から支持する。
The
支持層12の厚さは、0.3mm以上かつ3.0mm以下であることが好ましく、0.5mm以上かつ1.5mm以下であることがより好ましい。支持層12の厚さが0.3mm以上であれば、充分な耐電圧を確保することができる。一方、支持層12の厚さが3.0mm以下であれば、静電チャック部2の静電吸着力が低下することがなく、板状試料と温度調整用ベース部3との間の熱伝導性が低下することもなく、処理中の板状試料の温度を好ましい一定の温度に保つことができる。
The thickness of the
電極層13は、誘電層11と支持層12との間に挟まれる。本実施形態において、電極層13は、静電吸着電極として機能する。電極層13では、電圧を印加することにより、誘電層11の載置面11sに板状試料を保持する静電吸着力が生じる。
なお、電極層13は、ヒータ電極として機能するものであってもよい。この場合、ヒータ電極としての電極層13は、電流が流されることで発熱する。さらに、電極層13は、RF(Radio Frequency、高周波)電極として機能するものであってもよい。この場合、RF電極としての電極層13は、電圧が付与されることで、板状試料上にプラズマを生成する。すなわち、電極層13は、静電吸着電極、ヒータ電極、およびRF電極の何れかとして機能すればよい。
The
The
電極層13の厚さは、5μm以上かつ200μm以下であることが好ましく、10μm以上かつ100μm以下であることがより好ましい。電極層13の厚さが5μm以上であれば、充分な導電性を確保することができる。一方、電極層13の厚さが200μm以下であれば、板状試料と温度調整用ベース部3との間の熱伝導性が低下することがなく、処理中の板状試料の温度を望ましい一定の温度に保つことができる。また、プラズマ透過性が低下することがなく、安定にプラズマを発生させることができる。
The thickness of the
誘電層11、支持層12、および電極層13の構成については、後段において図2を基に詳細に説明する。
The configurations of the
絶縁材14は、電極層13を囲み、電極層13とともに誘電層11と支持層12との間に配置される。誘電層11と支持層12とは、絶縁材14によって、電極層13を挟んで接合一体化されている。絶縁材14は、電極層13を腐食性ガスおよびプラズマから電極層13を保護する。
The
絶縁材14は、絶縁性物質からなる。絶縁材14を構成する絶縁性物質は、特に限定されないが、誘電層11および支持層12の主成分と同じにすることが好ましい。
The
給電端子16および電極ピン18は、電極層13に電圧を印加するために設けられる。給電端子16の数、形状等は、電極層13の形態、すなわち単極型か、双極型かにより決定される。
The
温度調整用ベース部3は、金属およびセラミックスの少なくとも一方からなる厚みのある円板状のものである。温度調整用ベース部3の躯体は、プラズマ発生用内部電極を兼ねた構成とされている。温度調整用ベース部3の躯体の内部には、水、Heガス、N2ガス等の冷却媒体を循環させる流路21が形成されている。
The temperature
温度調整用ベース部3の躯体は、外部の高周波電源22に接続されている。また、温度調整用ベース部3の固定孔17内には、その外周が絶縁材料23により囲繞された電極ピン18が、絶縁材料23を介して固定されている。電極ピン18は、外部の直流電源24に接続されている。
The body of the
温度調整用ベース部3を構成する材料は、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限されるものではない。温度調整用ベース部3を構成する材料としては、例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)、チタン(Ti)等が好適に用いられる。
温度調整用ベース部3における少なくともプラズマに曝される面は、アルマイト処理またはポリイミド系樹脂による樹脂コーティングが施されていることが好ましい。また、温度調整用ベース部3の全面が、前記のアルマイト処理または樹脂コーティングが施されていることがより好ましい。
The material constituting the temperature
At least the surface of the
温度調整用ベース部3にアルマイト処理または樹脂コーティングを施すことにより、温度調整用ベース部3の耐プラズマ性が向上するとともに、異常放電が防止される。したがって、温度調整用ベース部3の耐プラズマ安定性が向上し、また、温度調整用ベース部3の表面傷の発生も防止することができる。
By applying anodizing or resin coating to the temperature
接着剤層4は、静電チャック部2と、温度調整用ベース部3とを接着一体化するものである。接着剤層4は、例えば、シリコーン系樹脂組成物を加熱硬化した硬化体、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂等で形成されている。
シリコーン系樹脂組成物は、シロキサン結合(Si-O-Si)を有するケイ素化合物であり、耐熱性、弾性に優れた樹脂であるので、より好ましい。
The adhesive layer 4 bonds and integrates the
A silicone-based resin composition is more preferred because it is a silicon compound having a siloxane bond (Si--O--Si) and is a resin with excellent heat resistance and elasticity.
このようなシリコーン系樹脂組成物としては、特に、熱硬化温度が70℃~140℃のシリコーン樹脂が好ましい。
ここで、熱硬化温度が70℃を下回ると、静電チャック部2と温度調整用ベース部3とを対向させた状態で接合する際に、接合過程で硬化が十分に進まないことから、作業性に劣ることになるため好ましくない。一方、熱硬化温度が140℃を超えると、静電チャック部2および温度調整用ベース部3との熱膨張差が大きく、静電チャック部2と温度調整用ベース部3との間の応力が増加し、これらの間で剥離が生じることがあるため好ましくない。
As such a silicone-based resin composition, a silicone resin having a heat curing temperature of 70°C to 140°C is particularly preferred.
Here, if the heat curing temperature is below 70° C., when the
図2は、誘電層11、支持層12および電極層13を示す模式図である。
誘電層11および支持層12は、機械的な強度を有し、かつ腐食性ガスおよびそのプラズマに対する耐久性を有する複合焼結体からなる。
FIG. 2 is a schematic diagram showing the
The
誘電層11は、主相11aとしての絶縁性セラミックスおよび副相11bとしての導電性セラミックスを含む。同様に、支持層12は、主相12aとしての絶縁性セラミックスおよび副相12bとしての導電性セラミックスを含む。
The
本実施形態において、誘電層11と支持層12とは、同材料からなる。したがって、誘電層11および支持層12の主相11a、12aは、互いに同材料である。また、誘電層11および支持層12の副相11b、12bは、互いに同材料である。しかしながら、誘電層11と支持層12とは、互いに異なる材料から構成されていてもよい。
In this embodiment, the
主相11a、12aとしての絶縁性セラミックスは、Al2O3、AlN、Si3N4、YAG、およびSmAlO3からなる群から選択される少なくとも1種である。
The insulating ceramics as the
主相11a、12aの絶縁性セラミックスの平均結晶粒径Dは、1.0μm以上15μm以下であることが好ましい。焼結体である誘電層11と支持層12において、主相11a、12aの平均結晶粒径Dが1.0μm以上であることにより、主相11a、12aの粒子自体の抵抗率が低下し過ぎることなく、十分な絶縁効果を発現させることができる。また、主相11a、12aの平均結晶粒径Dが15μm以下であることにより、得られる焼結体の機械的強度が十分高いものとなり、欠け(チッピング)が生じ難くなる。
The average crystal grain size D of the insulating ceramics of the
主相11a、12aの平均結晶粒径Dは、焼結温度を制御することにより調節可能である。焼結温度が高くなると、主相11a、12aの平均結晶粒径Dが大きくなる傾向にあり、焼結温度が低くなると、主相11a、12aの平均結晶粒径Dが小さくなる傾向にある。
The average crystal grain size D of the
副相11b、12bとしての導電性セラミックスは、SiC、TiO2、TiN、TiC、W、WC、Mo、Mo2CおよびCからなる群から選択される少なくとも1種である。 The conductive ceramics as the subphases 11b and 12b are at least one selected from the group consisting of SiC, TiO2 , TiN, TiC, W, WC, Mo, Mo2C and C.
副相11b、12bの導電性セラミックスの平均結晶粒径は、0.1μm以上5μm以下であると好ましい。副相11b、12bの結晶粒は、主相11a、12aの結晶粒内および主相11a、12aの結晶粒界に分散していることが好ましい。
The average crystal grain size of the conductive ceramics of the subphases 11b and 12b is preferably 0.1 μm or more and 5 μm or less. The crystal grains of the subphases 11b and 12b are preferably dispersed within the crystal grains of the
なお、主相11a、12aおよび副相11b、12bの平均結晶粒径は、以下の手順によって測定される。
まず、誘電層11又は支持層12を構成する焼結体の表面を、砥粒の平均粒径3μm(粒度表示:#8000)のダイヤモンドペーストで鏡面研磨した後、アルゴン雰囲気下、1400℃で30分サーマルエッチングを施す。
次いで、得られた焼結体の表面を、走査型電子顕微鏡(日立ハイテクノロジー株式会社製、型番:S-4000)を用いて、拡大倍率10000倍で組織観察を行う。
さらに、得られた電子顕微鏡写真を画像解析式粒度分布測定ソフトウェア(Mac-View Version4、株式会社マウンテック製)に取り込み、200個以上の主相11a、12aおよび副相11b、12bの結晶粒のヘイウッド径を算出する。得られた各結晶粒のヘイウッド径の算術平均値を、「平均結晶粒径」とする。
The average crystal grain sizes of the
First, the surface of the sintered body constituting the
Next, the surface of the obtained sintered body is subjected to structural observation at a magnification of 10,000 times using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, model number: S-4000).
The obtained electron microscope photographs are then imported into image analysis-based grain size distribution measurement software (Mac-View Version 4, manufactured by Mountec Co., Ltd.) to calculate the Heywood diameters of 200 or more crystal grains of the
誘電層11および支持層12は、主相11a、12aおよび副相11b、12bに加えて、焼結助剤11cを含んでいてもよい。この場合、焼結助剤11cは、Y2O3、MgOおよびSiO2からなる群から選択される少なくとも1種である。
The
電極層13は、絶縁性物質と導電性物質の複合体である。
電極層13に含まれる絶縁性物質は、特に限定されないが、例えば、酸化アルミニウム(Al2O3)、窒化アルミニウム(AlN)、窒化ケイ素(Si3N4)、酸化イットリウム(III)(Y2O3)、イットリウム・アルミニウム・ガーネット(YAG)およびSmAlO3からなる群から選択される少なくとも1種であることが好ましい。
The
The insulating material contained in the
電極層13に含まれる導電性物質は、炭化モリブデン(Mo2C)、モリブデン(Mo)、炭化タングステン(WC)、タングステン(W)、炭化タンタル(TaC)、タンタル(Ta)、炭化ケイ素(SiC)、カーボンブラック、カーボンナノチューブおよびカーボンナノファイバーからなる群から選択される少なくとも1種であることが好ましい。
The conductive material contained in the
ここで、誘電層11と電極層13との界面を第1界面5と呼ぶ。また、支持層12と電極層13との界面を第2界面6と呼ぶ。
Here, the interface between the
第1界面5は、凹凸形状を有する。第1界面5を凹凸形状とすることで、誘電層11と電極層13との接触面積が増加する。また、誘電層11の表面と電極層13の表面とが互いに食い込んで接触する。これにより、アンカー効果を得ることができ、誘電層11と電極層13との接合強度が高められる。結果的に、誘電層11と電極層13との間の剥離を効果的に抑制できる。
The
第1界面5において、電極層13の山部13pの先端同士の距離は、1μm以上、100μm以下であることが好ましい。山部13pの先端同士の距離を1μm以上とすることで、山部13pの間に誘電層11の一部が入り込みやすくなり、電極層13と誘電層11との間にアンカー効果を得やすくなる。また、山部13pの先端同士の距離を100μm以下とすることで、電極層13と誘電層11との界面の表面積を十分に広く確保することができアンカー効果を得やすくなる。
At the
第1界面5の凹凸形状は曲面からなることが好ましい。第1界面5を凹凸形状とする場合に、電極層13の山部13pが、アンテナのように機能して、誘電層11の厚さ方向に放電しやすくなる。本実施形態によれば、第1界面5の凹凸形状を曲面とすることで、電極層13の山部13pを滑らかな湾曲面とすることができる。これによって、電極層13の山部13pからの放電が抑制され、静電チャック部2の耐電圧を高めることができる。
The uneven shape of the
第1界面5の凹凸形状の曲面は、曲率半径が1μm以上のものであることが好ましい。これにより、電極層13の山部13pの曲率半径も1μm以上とすることができ、山部13pからの放電を効果的に抑制できる。
It is preferable that the curved surface of the uneven shape of the
第1界面5の算術平均粗さRaは、0.1μm以上、10μm以下であることが好ましい。第1界面5の算術平均粗さRaを0.1μm以上とすることで、界面において誘電層11と電極層13との接触面積を広く確保することができ、大きなアンカー効果を得ることができる。また、第1界面5の算術平均粗さRaを10μm以下とすることで、電極層13の山部13pからの放電を抑制できる。
The arithmetic mean roughness Ra of the
第1界面5の最大高さRzは、0.1μm以上、10μm以下であることが好ましい。第1界面5の最大高さRzを0.1μm以上とすることで、界面において誘電層11と電極層13とを互いに入り組んで接触させることができ、大きなアンカー効果を得ることができる。また、第1界面5の最大高さRzを10μm以下とすることで、電極層13の山部13pからの放電を抑制できる。
It is preferable that the maximum height Rz of the
なお、第1界面5および第2界面6の算術平均粗さRaおよび最大高さRzは、以下の手順によって測定される。
まず、日本電子社製の電解放出型走査電子顕微鏡(FE-SEM)で、誘電層、内部電極、支持層の厚み方向の切断面を観察し、画像解析ソフトによりその切断面の画像を解析し界面の位置を特定する。
次いで、界面の曲線からその平均線の方向に100μm抜き取り、抜き取り部分の平均線の方向にX軸を、縦方向にY軸を取り、下記の式(1)に従って算術平均粗さRaを、式(2)に従って最大高さRzを算出する。
また、測定は載置面の中心部、外周部、および中間部(中心部+外周部/2)の3箇所にて実施し、3点の平均をそれぞれRa、Rzとした。
Ra=1/L∫0
L|f(x)|dx ・・・(1)
Rz=Rp+Rv ・・・(2)
なお、式(1)において、Lは測定長さ(ここでは、100μm)である。
また、式(2)において、Rpは測定範囲内で最も高い山の高さであり、Rvは測定範囲内で最も深い谷の深さである。
The arithmetic mean roughness Ra and maximum height Rz of the
First, the cross sections of the dielectric layer, internal electrode, and support layer in the thickness direction are observed using a field emission scanning electron microscope (FE-SEM) manufactured by JEOL Ltd., and the images of the cross sections are analyzed using image analysis software to identify the positions of the interfaces.
Next, a 100 μm section is removed from the interface curve in the direction of the mean line, the X axis is plotted in the direction of the mean line of the removed section, and the Y axis is plotted vertically. The arithmetic mean roughness Ra is calculated according to the following formula (1), and the maximum height Rz is calculated according to formula (2).
The measurements were performed at three locations on the mounting surface: the center, the outer periphery, and the middle (center+outer periphery/2), and the averages of the three locations were taken as Ra and Rz, respectively.
Ra=1/L∫ 0 L | f(x) | dx ... (1)
Rz = Rp + Rv ... (2)
In the formula (1), L is the measurement length (here, 100 μm).
In addition, in formula (2), Rp is the height of the highest peak within the measurement range, and Rv is the depth of the deepest valley within the measurement range.
本実施形態において、第1界面5の最大高さRzは、誘電層11の主相11aを構成する絶縁性セラミックスの平均結晶粒径Dより小さい。誘電層11に電圧を印加すると、電子は主相11aの粒界に沿って移動しやすい。すなわち、誘電層11は、主相11aの粒界において最も電流を流しやすい。本実施形態によれば、主相11aの平均結晶粒径Dが第1界面5の最大高さRzより大きいため、主相11aの結晶粒が電極層13の山部13pを覆いやすい。このため、放電の生じやすい山部13pの先端と、電流を流しやすい主相11aの粒界とが重なる確率を低減することができ、静電チャック部2の耐電圧を高めることができる。
In this embodiment, the maximum height Rz of the
本実施形態において、第1界面5の最大高さRzは、誘電層11の副相11bを構成する導電性セラミックスの平均結晶粒径dより大きい。副相11bを構成する導電性セラミックスは、導電体である。このため、副相11bの平均結晶粒径dが第1界面5の最大高さRzより大きいと、電極層13の表面上に形成される副相11bの結晶粒が、電極層13の山部13pよりも高いアンテナ形状を構成し、静電チャック部2の耐電圧を低下させる虞がある。本実施形態によれば、副相11bの平均結晶粒径dを、山部13pに対して小さくすることで、山部13pの高さに対する副相11bの結晶粒の影響を小さくして、静電チャック部2の耐電圧を確保できる。
In this embodiment, the maximum height Rz of the
第2界面6は、第1界面5と同様の構成を有することが好ましい。すなわち、第2界面6は、第1界面5と同様に、凹凸形状を有する。第2界面6を凹凸形状とすることで、アンカー効果によって支持層12と電極層13との接合強度が高められる。第2界面6においても、電極層13の山部13pの先端同士の距離は、1μm以上、100μm以下であることが好ましい。また、第2界面6の凹凸形状は曲面からなることが好ましい。また、第2界面6の凹凸形状の曲面は、曲率半径が1μm以上のものであることが好ましい。
It is preferable that the
第2界面6の算術平均粗さRaは、第1界面5と同様に、0.1μm以上、10μm以下であることが好ましい。また、第2界面6の最大高さRzは、第1界面5と同様に、0.1μm以上、10μm以下であることが好ましい。
The arithmetic mean roughness Ra of the
本実施形態において、第2界面6の最大高さRzは、支持層12の主相12aを構成する絶縁性セラミックスの平均結晶粒径Dより小さい。これにより、放電の生じやすい電極層13の山部13pの先端と、電流を流しやすい主相12aの粒界とが重なる確率を低減することができ、静電チャック部2の耐電圧を高めることができる。
In this embodiment, the maximum height Rz of the
本実施形態において、第2界面6の最大高さRzは、支持層12の副相12bを構成する導電性セラミックスの平均結晶粒径dより大きい。これにより、山部13pの高さに対する副相11bの結晶粒の影響を小さくして、静電チャック部2の耐電圧を確保できる。
In this embodiment, the maximum height Rz of the
次に、図3を基に、本実施形態の静電チャック部2の製造方法を説明する。なお、以下に説明する製造方法は、一例であり、静電チャック部2は、その他の方法で製造されていてもよい。
Next, a method for manufacturing the
まず、予備工程として、板状の誘電層11と支持層12とを焼結することによって成形する。
次に、支持層12の上面に、スクリーン印刷法等の塗工法により、電極層形成用ペーストを用いて凸部13aを形成する。このとき、電極層形成用ペーストを粘度調整して曲面状の凸部13aを形成する。さらに、その上から、電極層形成用ペーストを複数回塗り重ねて塗工層13bを形成し、その上に、再度凸部13aを形成する。また、図示を省略するが、塗工層13bの周囲には、誘電層11および支持層12と同材料から構成される絶縁材14を配置する。
First, as a preliminary step, the plate-shaped
Next, the
次に、支持層12および電極層形成用ペーストの塗工層13bの上に、誘電層11を積層する。さらに、誘電層11、支持層12、絶縁材14、および電極層形成用ペーストを加熱しながら厚さ方向に加圧する。積層体を、加熱しながら、厚さ方向に加圧する際の雰囲気は、真空、あるいはAr、He、N2等の不活性雰囲気が好ましい。
Next, the
以上の工程を経ることで、本実施形態の静電チャック部2を形成できる。本実施形態の製造方法では、電極層形成用ペーストによって形成された凸部13aが硬化する際に、誘電層11および支持層12を加熱および加圧する。これにより、誘電層11および支持層12が電極層13の凸部13aに沿って再成形されて、凹凸形状の第1界面5および第2界面6が形成される。
By going through the above steps, the
以上に、本発明の実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although the embodiments of the present invention have been described above, each configuration and their combinations in the embodiments are merely examples, and additions, omissions, substitutions and other modifications of configurations are possible without departing from the spirit of the present invention. Furthermore, the present invention is not limited to the embodiments.
1…静電チャック装置、5…第1界面(界面)、6…第2界面(界面)、11…誘電層、11a,12a…主相、11b,12b…副相、11c…焼結助剤、12…支持層、13…電極層、d,D…平均結晶粒径 1...electrostatic chuck device, 5...first interface (interface), 6...second interface (interface), 11...dielectric layer, 11a, 12a...main phase, 11b, 12b...subphase, 11c...sintering aid, 12...support layer, 13...electrode layer, d, D...average crystal grain size
Claims (7)
前記誘電層を支持する支持層と、
前記誘電層と前記支持層との間に挟まれる電極層と、を備え、
前記誘電層と前記電極層との界面は、凹凸形状を有し、最大高さRzが前記絶縁性セラミックスの平均結晶粒径より小さく、且つ、前記導電性セラミックスの平均結晶粒径より大きい、
静電チャック装置。 a dielectric layer including an insulating ceramic as a main phase and a conductive ceramic as a subphase;
a support layer supporting the dielectric layer;
an electrode layer sandwiched between the dielectric layer and the support layer;
the interface between the dielectric layer and the electrode layer has an uneven shape, and a maximum height Rz is smaller than an average crystal grain size of the insulating ceramic and is larger than an average crystal grain size of the conductive ceramic;
Electrostatic chuck device.
請求項1に記載の静電チャック装置。 The uneven shape of the interface between the dielectric layer and the electrode layer is a curved surface.
2. The electrostatic chuck device of claim 1.
前記支持層と前記電極層との界面は、凹凸形状を有し、最大高さRzが前記絶縁性セラミックスの平均結晶粒径より小さく、且つ、前記導電性セラミックスの平均結晶粒径より大きい、
請求項1又は2に記載の静電チャック装置。 The support layer includes an insulating ceramic as a main phase and a conductive ceramic as a subphase,
the interface between the support layer and the electrode layer has an uneven shape, and a maximum height Rz is smaller than the average crystal grain size of the insulating ceramic and is larger than the average crystal grain size of the conductive ceramic;
3. The electrostatic chuck device according to claim 1 or 2.
請求項1~3の何れか一項に記載の静電チャック装置。 The insulating ceramic is at least one selected from the group consisting of Al2O3 , AlN , Si3N4 , YAG, and SmAlO3 ;
The electrostatic chuck device according to any one of claims 1 to 3.
請求項1~4の何れか一項に記載の静電チャック装置。 The conductive ceramic is at least one selected from the group consisting of SiC, TiO 2 , TiN, TiC, W, WC, Mo, Mo 2 C, and C;
The electrostatic chuck device according to any one of claims 1 to 4.
前記焼結助剤は、Y2O3、MgOおよびSiO2からなる群から選択される少なくとも1種である、
請求項1~5の何れか一項に記載の静電チャック装置。 the dielectric layer comprises a sintering aid;
The sintering aid is at least one selected from the group consisting of Y2O3 , MgO and SiO2 ;
The electrostatic chuck device according to any one of claims 1 to 5.
請求項1~6の何れか一項に記載の静電チャック装置。 the electrode layer functions as any one of an electrostatic adsorption electrode, a heater electrode, and an RF electrode;
The electrostatic chuck device according to any one of claims 1 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020207360A JP7521404B2 (en) | 2020-12-15 | 2020-12-15 | Electrostatic Chuck Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020207360A JP7521404B2 (en) | 2020-12-15 | 2020-12-15 | Electrostatic Chuck Device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022094463A JP2022094463A (en) | 2022-06-27 |
JP7521404B2 true JP7521404B2 (en) | 2024-07-24 |
Family
ID=82162712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020207360A Active JP7521404B2 (en) | 2020-12-15 | 2020-12-15 | Electrostatic Chuck Device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7521404B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003015157A1 (en) | 2001-08-10 | 2003-02-20 | Ibiden Co., Ltd. | Ceramic joint body |
JP2008227190A (en) | 2007-03-13 | 2008-09-25 | Toto Ltd | Electrostatic chuck, method of manufacturing the same, and substrate processing apparatus |
JP2014138061A (en) | 2013-01-16 | 2014-07-28 | Sumitomo Osaka Cement Co Ltd | Dielectric material |
JP2017178663A (en) | 2016-03-30 | 2017-10-05 | 住友大阪セメント株式会社 | Electrostatic chuck device |
WO2019189141A1 (en) | 2018-03-30 | 2019-10-03 | 住友大阪セメント株式会社 | Electrostatic chuck device and method for manufacturing same |
WO2020004564A1 (en) | 2018-06-28 | 2020-01-02 | 京セラ株式会社 | Method for producing member for semiconductor production apparatuses, and member for semiconductor production apparatuses |
JP2020150169A (en) | 2019-03-14 | 2020-09-17 | 住友大阪セメント株式会社 | Electrostatic chuck device and manufacturing method therefor |
WO2020235651A1 (en) | 2019-05-22 | 2020-11-26 | 住友大阪セメント株式会社 | Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for manufacturing composite sintered body |
-
2020
- 2020-12-15 JP JP2020207360A patent/JP7521404B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003015157A1 (en) | 2001-08-10 | 2003-02-20 | Ibiden Co., Ltd. | Ceramic joint body |
JP2008227190A (en) | 2007-03-13 | 2008-09-25 | Toto Ltd | Electrostatic chuck, method of manufacturing the same, and substrate processing apparatus |
JP2014138061A (en) | 2013-01-16 | 2014-07-28 | Sumitomo Osaka Cement Co Ltd | Dielectric material |
JP2017178663A (en) | 2016-03-30 | 2017-10-05 | 住友大阪セメント株式会社 | Electrostatic chuck device |
WO2019189141A1 (en) | 2018-03-30 | 2019-10-03 | 住友大阪セメント株式会社 | Electrostatic chuck device and method for manufacturing same |
WO2020004564A1 (en) | 2018-06-28 | 2020-01-02 | 京セラ株式会社 | Method for producing member for semiconductor production apparatuses, and member for semiconductor production apparatuses |
JP2020150169A (en) | 2019-03-14 | 2020-09-17 | 住友大阪セメント株式会社 | Electrostatic chuck device and manufacturing method therefor |
WO2020235651A1 (en) | 2019-05-22 | 2020-11-26 | 住友大阪セメント株式会社 | Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for manufacturing composite sintered body |
Also Published As
Publication number | Publication date |
---|---|
JP2022094463A (en) | 2022-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7619870B2 (en) | Electrostatic chuck | |
JP5994772B2 (en) | Electrostatic chuck device | |
KR102508959B1 (en) | electrostatic chuck device | |
JP6064908B2 (en) | Electrostatic chuck device | |
US8284538B2 (en) | Electrostatic chuck device | |
US10622239B2 (en) | Electrostatic chuck device | |
JP4943086B2 (en) | Electrostatic chuck apparatus and plasma processing apparatus | |
US11551962B2 (en) | Ceramic substrate and susceptor | |
JP2020035905A (en) | Electrostatic chuck device and manufacturing method therefor | |
JP7322922B2 (en) | Manufacturing method of ceramic joined body | |
JP5011736B2 (en) | Electrostatic chuck device | |
JP2019165184A (en) | Electrostatic chuck device | |
US20080062610A1 (en) | Electrostatic chuck device | |
JP7388573B2 (en) | Ceramic bonded body, electrostatic chuck device, manufacturing method of ceramic bonded body | |
JP2008042138A (en) | Electrostatic chuck device | |
JP7521404B2 (en) | Electrostatic Chuck Device | |
JP2008042137A (en) | Electrostatic chuck device | |
JP7064987B2 (en) | Ceramic joint | |
JP7400854B2 (en) | Electrostatic chuck member, electrostatic chuck device, and method for manufacturing electrostatic chuck member | |
JP4241571B2 (en) | Manufacturing method of bipolar electrostatic chuck | |
JP7388575B2 (en) | Ceramic bonded body, electrostatic chuck device | |
JP4069875B2 (en) | Wafer holding member | |
JP7327713B1 (en) | Ceramic bonded body, electrostatic chuck device, and method for manufacturing ceramic bonded body | |
JP2024028544A (en) | electrostatic chuck device | |
JP7608871B2 (en) | Composite conductive member, sample holder, electrostatic chuck device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240611 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240624 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7521404 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |