Nothing Special   »   [go: up one dir, main page]

JP7565698B2 - Motor-operated valve and refrigeration cycle system - Google Patents

Motor-operated valve and refrigeration cycle system Download PDF

Info

Publication number
JP7565698B2
JP7565698B2 JP2020047605A JP2020047605A JP7565698B2 JP 7565698 B2 JP7565698 B2 JP 7565698B2 JP 2020047605 A JP2020047605 A JP 2020047605A JP 2020047605 A JP2020047605 A JP 2020047605A JP 7565698 B2 JP7565698 B2 JP 7565698B2
Authority
JP
Japan
Prior art keywords
valve
motor
rolling bearing
holder
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020047605A
Other languages
Japanese (ja)
Other versions
JP2021148183A (en
Inventor
剛 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2020047605A priority Critical patent/JP7565698B2/en
Publication of JP2021148183A publication Critical patent/JP2021148183A/en
Application granted granted Critical
Publication of JP7565698B2 publication Critical patent/JP7565698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は、冷凍サイクルシステムなどに使用する電動弁及び冷凍サイクルシステムに関する。 The present invention relates to an electrically operated valve for use in a refrigeration cycle system and a refrigeration cycle system.

従来、ステッピングモータなどの駆動部によってロータ軸などの回転軸を回転駆動し、この回転軸の回転運動をねじ送り機構によって直線運動に変換し、弁を開閉する電動弁が利用されている(例えば、特許文献1,2等を参照)。この種の電動弁では、弁体の供回りと、弁体の弁座部への過度の押付けと、を抑制して、弁の着座による耐久性を向上させるために、弁体とねじ送り機構との間に、軸受と、弁ばねと、が内蔵された弁ホルダが設けられている。このような弁ホルダに内蔵される軸受には、転がり軸受と、滑り軸受の2種類があるが、転がり軸受の方が、回転負荷が小さく、回転駆動部の必要な出力が小さくて済む高効率な電動弁となる。 Conventionally, motorized valves have been used in which a rotating shaft such as a rotor shaft is rotated by a drive unit such as a stepping motor, and the rotational motion of the rotating shaft is converted to linear motion by a screw feed mechanism to open and close the valve (see, for example, Patent Documents 1 and 2). In this type of motorized valve, a valve holder incorporating a bearing and a valve spring is provided between the valve body and the screw feed mechanism to suppress the co-rotation of the valve body and excessive pressing of the valve body against the valve seat and to improve durability due to the seating of the valve. There are two types of bearings that are incorporated in such valve holders: rolling bearings and sliding bearings. Rolling bearings have a smaller rotational load and require less output from the rotation drive unit, resulting in a highly efficient motorized valve.

特許第6472637号公報Patent No. 6472637 中国実用新案登録第208519284号公報China Utility Model Registration No. 208519284

しかしながら、特許文献1,2に開示されたような従来の電動弁では、ねじ送り機構等から生ずる削りカスなどの不純物が、弁ホルダの隙間から転がり軸受内部に入り込み、作動の不具合を生じる虞があった。 However, in conventional motor-operated valves such as those disclosed in Patent Documents 1 and 2, there was a risk that impurities such as shavings generated by the screw feed mechanism could get into the rolling bearing through the gaps in the valve holder, causing operational problems.

本発明の目的は、不純物が転がり軸受内部に入り込むことに起因する不具合を抑制することができる電動弁及び冷凍サイクルシステムを提供することである。 The object of the present invention is to provide an electric valve and a refrigeration cycle system that can suppress malfunctions caused by impurities entering the inside of a rolling bearing.

本発明の電動弁は、弁室及び弁座部を構成する弁本体と、前記弁座部と軸線方向で接離して弁ポートの開度を変更する弁体と、回転軸を回転駆動させる駆動部と、前記回転軸の回転運動を前記軸線方向の直線運動に変換して前記弁体に伝えるねじ送り機構と、前記弁体と前記回転軸とに亘る弁ホルダと、弁閉方向に前記弁体を付勢する弁ばねと、を備えた電動弁であって、前記弁体は、転がり軸受のみによって軸線方向に係止された状態で、前記転がり軸受を介して前記弁ホルダ接続され、前記弁体が弁閉後に、前記回転軸がさらに弁閉方向に移動した際、前記転がり軸受及び前記弁体が、前記弁ばねの付勢力を受けることを特徴とする。 The motor-operated valve of the present invention comprises a valve body which constitutes a valve chamber and a valve seat portion, a valve element which moves axially towards and away from the valve seat portion to change the opening degree of the valve port, a drive unit which rotationally drives a rotating shaft, a screw feed mechanism which converts the rotational motion of the rotating shaft into linear motion in the axial direction and transmits it to the valve element, a valve holder which spans the valve element and the rotating shaft, and a valve spring which urges the valve element in a valve closing direction, wherein the valve element is connected to the valve holder via the rolling bearing while being engaged in the axial direction only by the rolling bearing , and when the rotating shaft moves further in the valve closing direction after the valve element is closed, the rolling bearing and the valve element are subjected to the urging force of the valve spring.

このような本発明によれば、弁ホルダと弁体とが転がり軸受を介して接続され、この転がり軸受が弁体側に設けられていることで、削りカスなどが生ずるねじ送り機構と転がり軸受との距離を離すことができ、ねじ送り機構の削りカスなどの不純物が転がり軸受内部に入り込むことに起因する不具合を抑制することができる。 According to the present invention, the valve holder and the valve body are connected via a rolling bearing, and this rolling bearing is provided on the valve body side, so that the screw feed mechanism, where shavings and the like are generated, can be spaced apart from the rolling bearing, and problems caused by impurities such as shavings from the screw feed mechanism getting into the rolling bearing can be suppressed.

この際、前記弁ホルダは、前記回転軸の先端部を挿通させる挿通孔を有し、前記回転軸の先端部と相対回転可能に係合されていることが好ましい。 In this case, it is preferable that the valve holder has an insertion hole through which the tip of the rotating shaft is inserted and is engaged with the tip of the rotating shaft so as to be capable of relative rotation.

また、前記回転軸の先端部と前記弁ホルダとが、一体的に形成されるか、又は、互いに接合されていることが好ましい。 It is also preferable that the tip of the rotating shaft and the valve holder are integrally formed or joined to each other.

また、前記転がり軸受は、前記弁体に取り付けられるか又は前記弁体と一体に形成される第1部材と、前記第1部材に転動部材を介して接続される第2部材と、を有し、前記第1部材がばね受を介して前記弁ばねで付勢されることが好ましい。 The rolling bearing preferably has a first member attached to the valve body or formed integrally with the valve body, and a second member connected to the first member via a rolling member, and the first member is biased by the valve spring via a spring bearing.

また、前記転がり軸受は、前記弁ホルダに取り付けられるか又は前記弁ホルダと一体に形成される第2部材と、前記第2部材に転動部材を介して接続される第1部材と、を有し、前記第1部材に前記弁体が案内されるとともに、前記第1部材に対して前記弁体が前記弁ばねで付勢されることが好ましい。
また、電動弁は、弁室及び弁座部を構成する弁本体と、前記弁座部と軸線方向で接離して弁ポートの開度を変更する弁体と、回転軸を回転駆動させる駆動部と、前記回転軸の回転運動を前記軸線方向の直線運動に変換して前記弁体に伝えるねじ送り機構と、前記弁体と前記回転軸とに亘る弁ホルダと、弁閉方向に前記弁体を付勢する弁ばねと、を備えた電動弁であって、前記弁体は、転がり軸受のみによって軸線方向に係止された状態で、前記転がり軸受を介して前記弁ホルダ接続され、前記転がり軸受は、前記弁体に取り付けられるか又は前記弁体と一体に形成される第1部材と、前記第1部材に転動部材を介して接続される第2部材と、を有し、前記第2部材が前記弁ばねで付勢されることを特徴とする。
It is also preferable that the rolling bearing has a second member attached to the valve holder or formed integrally with the valve holder, and a first member connected to the second member via a rolling member, and that the valve body is guided by the first member and biased against the first member by the valve spring.
Further, an electrically operated valve includes a valve body constituting a valve chamber and a valve seat portion, a valve element which moves axially toward and away from the valve seat portion to change the opening degree of a valve port, a drive portion which rotates a rotating shaft, a screw feed mechanism which converts the rotational motion of the rotating shaft into linear motion in the axial direction and transmits it to the valve element, a valve holder which spans the valve element and the rotating shaft, and a valve spring which biases the valve element in a valve closing direction, wherein the valve element is connected to the valve holder via the rolling bearing in a state in which it is axially engaged only by the rolling bearing, and the rolling bearing has a first member which is attached to the valve element or formed integrally with the valve element, and a second member which is connected to the first member via a rolling member, and the second member is biased by the valve spring.

本発明の冷凍サイクルシステムは、圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、前記いずれかの電動弁が、前記膨張弁として用いられていることを特徴とする。 The refrigeration cycle system of the present invention is a refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, and is characterized in that any one of the motor-operated valves is used as the expansion valve.

このような本発明によれば、上記した電動弁のように、ねじ送り機構の削りカスなどの不純物が転がり軸受内部に入り込むことに起因する不具合を抑制することができるので、運転時の不具合が生じ難い冷凍サイクルシステムとすることができる。 According to the present invention, as with the motor-operated valve described above, it is possible to suppress malfunctions caused by impurities such as shavings from the screw feed mechanism entering the inside of the rolling bearing, resulting in a refrigeration cycle system that is less likely to malfunction during operation.

本発明の電動弁および冷凍サイクルシステムによれば、不純物が転がり軸受内部に入り込むことに起因する作動の不具合を抑制することができる。 The motor-operated valve and refrigeration cycle system of the present invention can suppress operational problems caused by impurities entering the rolling bearing.

本発明の第1実施形態に係る電動弁を示す縦断面図である。1 is a vertical cross-sectional view showing a motor-operated valve according to a first embodiment of the present invention. 前記電動弁の要部を簡略して示す縦断面図である。2 is a vertical cross-sectional view showing a simplified view of a main part of the motor-operated valve. FIG. 本発明の第2実施形態に係る電動弁の要部を示す縦断面図である。FIG. 6 is a vertical cross-sectional view showing a main portion of a motor-operated valve according to a second embodiment of the present invention. 本発明の第3実施形態に係る電動弁の要部を示す縦断面図である。FIG. 11 is a vertical cross-sectional view showing a main part of a motor-operated valve according to a third embodiment of the present invention. 本発明の第4実施形態に係る電動弁の要部を示す縦断面図である。FIG. 10 is a vertical cross-sectional view showing a main portion of a motor-operated valve according to a fourth embodiment of the present invention. 本発明の第5実施形態に係る電動弁の要部を示す縦断面図である。FIG. 13 is a longitudinal sectional view showing a main part of a motor-operated valve according to a fifth embodiment of the present invention. 本発明の冷凍サイクルシステムの一例を示す図である。1 is a diagram showing an example of a refrigeration cycle system of the present invention.

本発明の第1実施形態に係る電動弁を図1及び図2に基づいて説明する。図1に示すように、本実施形態の電動弁10は、弁本体1と、弁体2と、弁ホルダ6と、駆動部としてのステッピングモータ3と、を備えている。なお、以下の説明における「上下」の概念は図1の図面における上下に対応する。 The motor-operated valve according to the first embodiment of the present invention will be described with reference to Figs. 1 and 2. As shown in Fig. 1, the motor-operated valve 10 according to this embodiment includes a valve body 1, a valve element 2, a valve holder 6, and a stepping motor 3 as a drive unit. Note that the concept of "upper and lower" in the following description corresponds to the upper and lower in the drawing of Fig. 1.

弁本体1は、筒状の弁ハウジング部材1Aと、弁ハウジング部材1Aの上端開口部に固定される支持部材5と、を有している。 The valve body 1 has a cylindrical valve housing member 1A and a support member 5 that is fixed to the upper end opening of the valve housing member 1A.

弁ハウジング部材1Aは、その内部に略円筒状の弁室1Cが形成され、側面側から弁室1Cに連通する第1の継手管11が取り付けられている。また、弁ハウジング部材1Aには、底面側から略円筒状の弁座部材15が挿入され、ろう付けにより固定される弁座部材15によって弁座部13が構成されている。弁座部13には、弁口である弁ポート14が形成されている。さらに、弁ハウジング部材1Aの底面側には、弁座部材15の内側面の下端部となだらかに連続するように、第2の継手管12が、弁ハウジング部材1Aの底部にろう付けにより固定されている。第1の継手管11から流体としての冷媒が流入した場合には、弁室1Cを介して弁ポート14を通過した冷媒が第2の継手管12から流出される。また、第2の継手管12から冷媒が流入した場合には、弁ポート14を介して弁室1Cを通過した冷媒が第1の継手管11から流出される。 The valve housing member 1A has a substantially cylindrical valve chamber 1C formed therein, and a first coupling tube 11 is attached to the side surface of the valve housing member 1A, which communicates with the valve chamber 1C. A substantially cylindrical valve seat member 15 is inserted into the valve housing member 1A from the bottom surface side, and the valve seat member 15 is fixed by brazing to form a valve seat portion 13. A valve port 14, which is a valve opening, is formed in the valve seat portion 13. Furthermore, a second coupling tube 12 is fixed to the bottom of the valve housing member 1A by brazing on the bottom surface side of the valve housing member 1A so as to be smoothly continuous with the lower end of the inner surface of the valve seat member 15. When a refrigerant as a fluid flows in from the first coupling tube 11, the refrigerant that has passed through the valve port 14 via the valve chamber 1C flows out from the second coupling tube 12. In addition, when refrigerant flows in from the second joint pipe 12, the refrigerant that passes through the valve chamber 1C via the valve port 14 flows out from the first joint pipe 11.

支持部材5は、弁ハウジング部材1Aの上端開口部に固定金具41を介して溶接固定されている。この支持部材5の上側の中心には、弁ポート14等の軸線Lと同軸に形成された雌ねじ部5aが設けられており、下方に雌ねじ部5aの外周よりも径の大きな円筒状のガイド孔5cが形成されている。 The support member 5 is welded to the upper end opening of the valve housing member 1A via a fixing bracket 41. A female threaded portion 5a is provided at the center of the upper side of the support member 5, which is formed coaxially with the axis L of the valve port 14, etc., and a cylindrical guide hole 5c with a diameter larger than the outer periphery of the female threaded portion 5a is formed below.

弁体2は、下側先端にニードル部21が設けられたロッド軸22を有している。ロッド軸22の上端部には、フランジ部23が形成されている。ロッド軸22の外周面には、転がり軸受8(後述)が固定され、ロッド軸22の上端部が拡大されたフランジ部23によって転がり軸受8が抜け止めされている。 The valve body 2 has a rod shaft 22 with a needle portion 21 at its lower end. A flange portion 23 is formed at the upper end of the rod shaft 22. A rolling bearing 8 (described later) is fixed to the outer circumferential surface of the rod shaft 22, and the rolling bearing 8 is prevented from coming loose by the flange portion 23, which is an enlarged portion of the upper end of the rod shaft 22.

ステッピングモータ3は、キャン4と、キャン4内に設けられたマグネットロータ31と、ロータ軸32と、不図示のステータコイルと、ステッピングモータ3の回転ストッパ機構7と、を有している。 The stepping motor 3 has a can 4, a magnet rotor 31 provided in the can 4, a rotor shaft 32, a stator coil (not shown), and a rotation stopper mechanism 7 for the stepping motor 3.

キャン4は、弁ハウジング1Aの上端に溶接などによって気密に固定され、支持部材5、後述するマグネットロータ31及び回転ストッパ機構7を収納している。マグネットロータ31は、その外周部が多極に着磁されており、その中心にロータ軸32が固定されている。ロータ軸32は、その下端部が、弁ホルダ6及び転がり軸受8を介して、弁体2のロッド軸22と連結されている。また、ロータ軸32は、その中間部の上側表面に雄ねじ部32aが形成されている。この雄ねじ部32aは、支持部材5の雌ねじ部5aに螺合され、これらの雄ねじ部32a及び雌ねじ部5aによって、駆動部のねじ送り機構16が構成されている。ねじ送り機構16は、ステッピングモータ3の回転運動をロータ軸32直線運動に変換し、これにより弁体2が軸線L方向に進退駆動されるようになっている。ステータコイルは、キャン4の外周に配設されており、このステータコイルにパルス信号が与えられることにより、そのパルス数に応じてマグネットロータ31が回転されてロータ軸32が回転するようになっている。 The can 4 is fixed airtightly to the upper end of the valve housing 1A by welding or the like, and houses the support member 5, the magnet rotor 31 described later, and the rotation stopper mechanism 7. The magnet rotor 31 has its outer periphery magnetized with multiple poles, and the rotor shaft 32 is fixed to its center. The rotor shaft 32 has its lower end connected to the rod shaft 22 of the valve body 2 via the valve holder 6 and the rolling bearing 8. The rotor shaft 32 also has a male thread 32a formed on the upper surface of its middle part. This male thread 32a is screwed into the female thread 5a of the support member 5, and these male thread 32a and female thread 5a constitute the screw feed mechanism 16 of the drive unit. The screw feed mechanism 16 converts the rotational motion of the stepping motor 3 into linear motion of the rotor shaft 32, thereby driving the valve body 2 forward and backward in the axial L direction. The stator coil is arranged on the outer periphery of the can 4, and when a pulse signal is given to this stator coil, the magnet rotor 31 rotates according to the number of pulses, causing the rotor shaft 32 to rotate.

ステッピングモータ3の回転ストッパ機構7は、キャン4の天井部にガイド支持体7Aが固定され、ガイド支持体7Aには、キャン4の天井部の中心軸芯に沿って垂下された円筒状のガイド76と、ガイド76の外周に固定された螺旋ガイド77と、螺旋ガイド77にガイドされて回転かつ上下動可能な可動スライダ78と、を備えている。可動スライダ78には、径方向外側に突出した爪部78aが設けられ、マグネットロータ31には、上方に延びて爪部78aと当接する延長部31aが設けられ、マグネットロータ31が回転すると、延長部31aが爪部78aを押すことで、可動スライダ78が螺旋ガイド77に倣って回転かつ上下するようになっている。また、円筒状のガイド76内部にはロータ軸32の上部をガイドする筒部材7B が嵌合されている。 The rotation stopper mechanism 7 of the stepping motor 3 has a guide support 7A fixed to the ceiling of the can 4, and the guide support 7A has a cylindrical guide 76 suspended along the central axis of the ceiling of the can 4, a screw guide 77 fixed to the outer periphery of the guide 76, and a movable slider 78 that can rotate and move up and down guided by the screw guide 77. The movable slider 78 has a claw portion 78a protruding radially outward, and the magnet rotor 31 has an extension portion 31a that extends upward and abuts against the claw portion 78a. When the magnet rotor 31 rotates, the extension portion 31a presses the claw portion 78a, causing the movable slider 78 to rotate and move up and down following the screw guide 77. In addition, a tube member 7B that guides the upper part of the rotor shaft 32 is fitted inside the cylindrical guide 76.

螺旋ガイド77には、マグネットロータ31の最上端位置を規定する上端ストッパ77aと、マグネットロータ31の最下端位置を規定する下端ストッパ77bと、が形成されている。マグネットロータ31の正回転に伴って下降した可動スライダ78が下端ストッパ77bに当接すると、この当接した位置で可動スライダ78が回転不能となり、これによりマグネットロータ31の回転が規制され、弁体2の下降も停止される。一方、マグネットロータ31の逆回転に伴って上昇した可動スライダ78が上端ストッパ77aに当接すると、この当接した位置で可動スライダ78が回転不能となり、これによりマグネットロータ31の回転が規制され、弁体2の上昇も停止される。 The spiral guide 77 is formed with an upper end stopper 77a that determines the uppermost position of the magnet rotor 31, and a lower end stopper 77b that determines the lowermost position of the magnet rotor 31. When the movable slider 78, which has descended in association with the forward rotation of the magnet rotor 31, abuts against the lower end stopper 77b, the movable slider 78 becomes unable to rotate at this abutting position, thereby restricting the rotation of the magnet rotor 31 and stopping the descent of the valve body 2. On the other hand, when the movable slider 78, which has ascended in association with the reverse rotation of the magnet rotor 31, abuts against the upper end stopper 77a, the movable slider 78 becomes unable to rotate at this abutting position, thereby restricting the rotation of the magnet rotor 31 and stopping the ascent of the valve body 2.

図2に示すように、弁ホルダ6は、筒状のホルダ本体61の上面部中央に、ロータ軸32の下側先端部を挿通させる挿通孔61aを有し、ロータ軸32の下側先端部と相対回転可能に係合されている。また、ロータ軸32の下側先端部には、鍔部32bが設けられており、ホルダ本体61内から抜けないようになっている。ロータ軸32の鍔部32bの下面には弁ばね9の上端が当接されている。転がり軸受8は、弁体2のロッド軸22の外周面に固定されるリング状の第1部材81と、複数個の転動部材としての鋼球8aを介して接続されるリング状の第2部材82と、を有したベアリングによって構成されている。この転がり軸受8は、第2部材82が弁ばね9で付勢され、第2部材82の下端部がホルダ本体61の下端部(圧入部材63)に当接するようになっている。弁ホルダ6は、ホルダ本体61の下面中央に挿通孔61bを有し、弁体2のロッド軸22が挿通孔61bに挿通されている。また、挿通孔61bには、図1に示すように、リング状の圧入部材63が圧入され、この圧入部材63によって弁ホルダ6からの弁体2及び転がり軸受8の抜け止めがされている。なお、ここでは、ホルダ本体61の下端部を圧入部材63を圧入したものを例示したが、これに代わりホルダ本体61の下端部にリング状の部材(止め輪等)を溶接や、かしめ等で固定してもよく、転がり軸受8の抜け止めが可能な構造であればこれらに限らない。 2, the valve holder 6 has an insertion hole 61a in the center of the upper surface of the cylindrical holder body 61 through which the lower end of the rotor shaft 32 is inserted, and is engaged with the lower end of the rotor shaft 32 so as to be rotatable relative to the rotor shaft 32. A flange 32b is provided at the lower end of the rotor shaft 32 so as not to come out of the holder body 61. The upper end of the valve spring 9 abuts against the lower surface of the flange 32b of the rotor shaft 32. The rolling bearing 8 is composed of a bearing having a ring-shaped first member 81 fixed to the outer circumferential surface of the rod shaft 22 of the valve body 2 and a ring-shaped second member 82 connected via a plurality of steel balls 8a as rolling members. In this rolling bearing 8, the second member 82 is biased by the valve spring 9, and the lower end of the second member 82 abuts against the lower end of the holder body 61 (press-in member 63). The valve holder 6 has an insertion hole 61b in the center of the bottom surface of the holder body 61, and the rod shaft 22 of the valve body 2 is inserted into the insertion hole 61b. In addition, as shown in FIG. 1, a ring-shaped press-in member 63 is pressed into the insertion hole 61b, and this press-in member 63 prevents the valve body 2 and the rolling bearing 8 from coming out of the valve holder 6. Note that here, the press-in member 63 is pressed into the bottom end of the holder body 61, but instead, a ring-shaped member (such as a retaining ring) may be fixed to the bottom end of the holder body 61 by welding or crimping, and is not limited to these as long as the structure is capable of preventing the rolling bearing 8 from coming out.

ステッピングモータ3の駆動によって弁体2が下降し、ニードル部21が弁座部13に着座したときは、転がり軸受8の第2部材82にロータ軸32の鍔部32aから弁ばね9を介して回転力が伝わっても、鋼球8aを介して第1部材81に回転力が殆ど伝わらないようになっている。また、ロータ軸31と弁体2が剛体として連結されておらず、弁ばね9を介して連結されているため、弁体2のニードル部21が弁座部13に着座したときに、さらにマグネットロータ31が回転してロータ軸32が下降しても、弁ばね9が収縮することで、ニードル部21に過度な押付け力が働かないようになっている。 When the valve body 2 is lowered by the drive of the stepping motor 3 and the needle portion 21 is seated on the valve seat portion 13, even if a rotational force is transmitted from the flange portion 32a of the rotor shaft 32 to the second member 82 of the rolling bearing 8 via the valve spring 9, almost no rotational force is transmitted to the first member 81 via the steel ball 8a. In addition, since the rotor shaft 31 and the valve body 2 are not connected as rigid bodies but are connected via the valve spring 9, when the needle portion 21 of the valve body 2 is seated on the valve seat portion 13, even if the magnet rotor 31 further rotates and the rotor shaft 32 descends, the valve spring 9 contracts, so that an excessive pressing force is not applied to the needle portion 21.

以上の本実施形態によれば、弁ホルダ6と弁体2とが転がり軸受8を介して接続され、この転がり軸受8が弁体2側に設けられていることで、削りカスなどが生ずるねじ送り機構16と転がり軸受8との距離(図2にAで示す距離)を離すことができ、ねじ送り機構16の削りカスなどの不純物が転がり軸受8内部に入り込むことに起因する作動の不具合を抑制することができる。 According to the present embodiment described above, the valve holder 6 and the valve body 2 are connected via the rolling bearing 8, and by providing this rolling bearing 8 on the valve body 2 side, the distance (distance A in FIG. 2) between the screw feed mechanism 16, where shavings and the like are generated, and the rolling bearing 8 can be increased, thereby suppressing operational problems caused by impurities such as shavings from the screw feed mechanism 16 getting into the rolling bearing 8.

次に、図3に基づき、本発明の第2実施形態に係る電動弁について説明する。本実施形態の電動弁は、第1実施形態の電動弁10と同様に、弁本体1と、弁体2と、弁ホルダ6と、駆動部としてのステッピングモータ3と、を備えている。本実施形態の電動弁では、弁ホルダ6の一部構成が第1実施形態の電動弁10と相違している。以下、相違点について詳しく説明する。 Next, a motor-operated valve according to a second embodiment of the present invention will be described with reference to FIG. 3. The motor-operated valve of this embodiment, like the motor-operated valve 10 of the first embodiment, comprises a valve body 1, a valve element 2, a valve holder 6, and a stepping motor 3 as a drive unit. In the motor-operated valve of this embodiment, a portion of the configuration of the valve holder 6 differs from that of the motor-operated valve 10 of the first embodiment. The differences will be described in detail below.

本実施形態の電動弁では、ロータ軸32の下端部に鍔部32bがなく、弁ホルダ6のホルダ本体61の上側の挿通孔61aもなく、ロータ軸32の下端部と、ホルダ本体61の上面の中心部とが一体的に連結され、ホルダ本体61の円筒内部の天井面に弁ばね9の上端が当接している点が第1実施形態の電動弁10と相違している。なお、ロータ軸32とホルダ本体61とは、一体的に連結されたものに限らず、別体で形成されて適宜な接合手段によって接合されていてもよい。 The motor-operated valve of this embodiment differs from the motor-operated valve 10 of the first embodiment in that there is no flange 32b at the lower end of the rotor shaft 32, there is no insertion hole 61a on the upper side of the holder body 61 of the valve holder 6, the lower end of the rotor shaft 32 and the center of the upper surface of the holder body 61 are integrally connected, and the upper end of the valve spring 9 abuts against the ceiling surface inside the cylinder of the holder body 61. Note that the rotor shaft 32 and the holder body 61 are not limited to being integrally connected, and may be formed as separate bodies and joined by an appropriate joining means.

以上の本実施形態の電動弁の弁ホルダ6においては、ねじ送り機構16と転がり軸受8との直線的な距離(図3にAで示す距離)が離されているとともに、ロータ軸32の下端部と弁ホルダ6のホルダ本体61とが一体的に形成され、ホルダ本体61の上面に内部と連通する孔等の隙間がないことから、ねじ送り機構16と転がり軸受8との弁ホルダ6の表面に沿った距離(図3にBで示す距離)も離されているので、第1実施形態の電動弁10よりも、ねじ送り機構16の削りカスなどの不純物が転がり軸受8内部に入り込むことに起因する作動の不具合をさらに抑制することができる。 In the valve holder 6 of the motor-operated valve of this embodiment, the linear distance between the screw feed mechanism 16 and the rolling bearing 8 (distance indicated by A in FIG. 3) is large, and the lower end of the rotor shaft 32 and the holder body 61 of the valve holder 6 are integrally formed, and there are no gaps such as holes communicating with the inside on the upper surface of the holder body 61, so the distance along the surface of the valve holder 6 between the screw feed mechanism 16 and the rolling bearing 8 (distance indicated by B in FIG. 3) is also large. Therefore, operational problems caused by impurities such as shavings from the screw feed mechanism 16 getting into the rolling bearing 8 can be further suppressed than in the motor-operated valve 10 of the first embodiment.

次に、図4に基づき、本発明の第3実施形態に係る電動弁について説明する。本実施形態の電動弁は、第1実施形態の電動弁10と同様に、弁本体1と、弁体2と、弁ホルダ6と、駆動部としてのステッピングモータ3と、を備えている。本実施形態の電動弁では、弁ホルダ6の一部構成が第1実施形態の電動弁10と相違している。以下、相違点について詳しく説明する。 Next, a motor-operated valve according to a third embodiment of the present invention will be described with reference to FIG. 4. The motor-operated valve of this embodiment, like the motor-operated valve 10 of the first embodiment, comprises a valve body 1, a valve element 2, a valve holder 6, and a stepping motor 3 as a drive unit. In the motor-operated valve of this embodiment, a portion of the configuration of the valve holder 6 differs from that of the motor-operated valve 10 of the first embodiment. The differences will be described in detail below.

本実施形態の電動弁において、転がり軸受8は、第1部材81が弁体2のロッド軸22と一体の円板状に形成されるとともに、第1部材81の下面に複数の鋼球8aが転動可能に設けられ、複数の鋼球8aの下側に第2部材82が設けられている。この転がり軸受8は、第1部材81がばね受62を介して弁ばね9で付勢されているとともに、第2部材82がホルダ本体61の下端部(圧入部材63)に当接することで、弁ホルダ6に対して抜け止めされている。なお、ロッド軸22と転がり軸受8の第1部材81とは、一体的に連結されたものに限らず、別体で形成されて適宜な接合手段によって接合されていてもよい。 In the motor-operated valve of this embodiment, the rolling bearing 8 has a first member 81 formed in a disk shape integral with the rod shaft 22 of the valve body 2, a plurality of steel balls 8a are provided on the underside of the first member 81 so as to be able to roll, and a second member 82 is provided below the plurality of steel balls 8a. The first member 81 of the rolling bearing 8 is biased by the valve spring 9 via the spring bearing 62, and the second member 82 abuts against the lower end (press-in member 63) of the holder main body 61, so that the rolling bearing 8 is prevented from coming off the valve holder 6. The rod shaft 22 and the first member 81 of the rolling bearing 8 are not limited to being integrally connected, but may be formed as separate bodies and joined by an appropriate joining means.

以上の本実施形態の電動弁では、弁ばね9の付勢力をばね受62を介して転がり軸受8の第1部材81及び弁体2に伝達することで、ばね受62と第1部材81とが摺動することにより、ロータ軸32の回転力が弁体2に殆ど伝わらないようになっている。また、弁体2のニードル部21が弁座部13に着座したときに、弁ばね9が収縮することでニードル部21に過度な押付け力が働かないようになっている。従って、本実施形態の電動弁によれば、第1実施形態の電動弁10と同様の作用効果を奏することができる。 In the motor-operated valve of this embodiment, the biasing force of the valve spring 9 is transmitted to the first member 81 of the rolling bearing 8 and the valve body 2 via the spring bearing 62, and the spring bearing 62 and the first member 81 slide against each other, so that the rotational force of the rotor shaft 32 is hardly transmitted to the valve body 2. In addition, when the needle portion 21 of the valve body 2 is seated on the valve seat portion 13, the valve spring 9 contracts, so that excessive pressing force is not applied to the needle portion 21. Therefore, the motor-operated valve of this embodiment can achieve the same effect as the motor-operated valve 10 of the first embodiment.

次に、図5に基づき、本発明の第4実施形態に係る電動弁について説明する。本実施形態の電動弁は、第3実施形態の電動弁と同様に、弁本体1と、弁体2と、弁ホルダ6と、駆動部としてのステッピングモータ3と、を備えている。本実施形態の電動弁では、弁ホルダ6の一部構成が第3実施形態の電動弁と相違している。以下、相違点について詳しく説明する。 Next, a motor-operated valve according to a fourth embodiment of the present invention will be described with reference to FIG. 5. The motor-operated valve of this embodiment, like the motor-operated valve of the third embodiment, comprises a valve body 1, a valve element 2, a valve holder 6, and a stepping motor 3 as a drive unit. In the motor-operated valve of this embodiment, a portion of the configuration of the valve holder 6 differs from that of the motor-operated valve of the third embodiment. The differences will be described in detail below.

本実施形態の電動弁では、ロータ軸32の下端部に鍔部32bがなく、弁ホルダ6のホルダ本体61の上側の挿通孔61aもなく、ロータ軸32の下端部と、ホルダ本体61の上面の中心部とが一体的に形成されている点が第3実施形態と相違し、転がり軸受8の第1部材81が弁体2のロッド軸22と一体的に形成されるとともに、第1部材81がばね受62を介して弁ばね9で付勢されている点は第3実施形態と同様である。 The motor-operated valve of this embodiment differs from the third embodiment in that there is no flange 32b at the lower end of the rotor shaft 32, there is no insertion hole 61a on the upper side of the holder body 61 of the valve holder 6, and the lower end of the rotor shaft 32 and the center of the upper surface of the holder body 61 are formed integrally. The first member 81 of the rolling bearing 8 is formed integrally with the rod shaft 22 of the valve body 2, and the first member 81 is biased by the valve spring 9 via the spring bearing 62, as in the third embodiment.

以上の本実施形態の電動弁の弁ホルダ6においては、第2実施形態と同様、ねじ送り機構16と転がり軸受8との直線的な距離(図5にAで示す距離)が離されているとともに、ホルダ本体61の上面に内部と連通する孔等の隙間がないことから、削りカスなどが生ずるねじ送り機構16と転がり軸受8とのホルダ6の表面に沿った距離(図5にBで示す距離)も更に離すことができるので、第3実施形態の電動弁よりも、不純物が転がり軸受8内部に入り込むことに起因する作動の不具合を抑制することができる。 In the valve holder 6 of the motor-operated valve of this embodiment, as in the second embodiment, the linear distance between the screw feed mechanism 16 and the rolling bearing 8 (distance indicated by A in FIG. 5) is large, and since there are no gaps such as holes communicating with the inside on the upper surface of the holder body 61, the distance along the surface of the holder 6 between the screw feed mechanism 16 and the rolling bearing 8 (distance indicated by B in FIG. 5), where shavings and the like are generated, can be further increased, so that malfunctions in operation caused by impurities getting into the rolling bearing 8 can be suppressed more than in the motor-operated valve of the third embodiment.

なお、図4、図5の実施形態において転がり軸受8は、第1部材81が弁体2のロッド軸22と一体の円板状に形成されるものを例示したが、これに限らず、第1部材81の上部凸状部がばね受け62と当接するものであれば、第1部材81が弁体2と別体としてロッド軸22に嵌合されたものでもよい。 In the embodiment of Figures 4 and 5, the rolling bearing 8 is illustrated as being formed in a disk shape with the first member 81 integral with the rod shaft 22 of the valve body 2, but this is not limited thereto. As long as the upper convex portion of the first member 81 abuts against the spring bearing 62, the first member 81 may be a separate member from the valve body 2 that is fitted to the rod shaft 22.

次に、図6に基づき、本発明の第5実施形態に係る電動弁について説明する。本実施形態の電動弁は、第1実施形態の電動弁10と同様に、弁本体1と、弁体2と、弁ホルダ6と、駆動部としてのステッピングモータ3と、を備えている。本実施形態の電動弁では、弁ホルダ6の一部構成が第1実施形態の電動弁10と相違している。以下、相違点について詳しく説明する。 Next, a motor-operated valve according to a fifth embodiment of the present invention will be described with reference to FIG. 6. The motor-operated valve of this embodiment, like the motor-operated valve 10 of the first embodiment, comprises a valve body 1, a valve element 2, a valve holder 6, and a stepping motor 3 as a drive unit. In the motor-operated valve of this embodiment, a portion of the configuration of the valve holder 6 differs from that of the motor-operated valve 10 of the first embodiment. The differences will be described in detail below.

本実施形態の電動弁10では、ロータ軸32の下端部に鍔部32bがなく、弁ホルダ6のホルダ本体61の上側の挿通孔61aもなく、ロータ軸32の下端部と、ホルダ本体61の上面の中心部とが一体的に形成されており、さらに、弁体2のロッド軸22の下側の大部分が、ホルダ本体61の外部に位置して設けられている。転がり軸受8は、その第2部材82がホルダ本体61の内側に固定されている。弁ばね9は、弁体2のニードル部21と転がり軸受8の第1部材81との間に圧縮状態で設けられ、弁ホルダ6及び転がり軸受8に対して弁体2が下向きに付勢されている。弁体2のロッド軸22は、転がり軸受8の第1部材81に挿通され、弁体2は軸線方向Lに沿って変位可能に支持されている。 In the motor-operated valve 10 of this embodiment, there is no flange 32b at the lower end of the rotor shaft 32, and there is no through hole 61a on the upper side of the holder body 61 of the valve holder 6. The lower end of the rotor shaft 32 and the center of the upper surface of the holder body 61 are integrally formed, and further, most of the lower side of the rod shaft 22 of the valve body 2 is located outside the holder body 61. The second member 82 of the rolling bearing 8 is fixed inside the holder body 61. The valve spring 9 is provided in a compressed state between the needle portion 21 of the valve body 2 and the first member 81 of the rolling bearing 8, and the valve body 2 is biased downward relative to the valve holder 6 and the rolling bearing 8. The rod shaft 22 of the valve body 2 is inserted into the first member 81 of the rolling bearing 8, and the valve body 2 is supported so as to be displaceable along the axial direction L.

以上の本実施形態の電動弁の弁ホルダ6においては、第2実施形態の電動弁と同様、ねじ送り機構16と転がり軸受8との直線的な距離(図6にAで示す距離)が離されているとともに、ロータ軸32の下端部と弁ホルダ6のホルダ本体61とが一体的に形成されていることで、ホルダ本体61の上面に内部と連通する孔等の隙間がないことから、削りカスなどが生ずるねじ送り機構16と転がり軸受8とのホルダ6の表面に沿った距離(図6にBで示す距離)も更に離すことができるので、ねじ送り機構16の削りカスなどの不純物が転がり軸受8内部に入り込むことに起因する作動の不具合を更に抑制することができる。 In the valve holder 6 of the motor-operated valve of this embodiment, as in the motor-operated valve of the second embodiment, the linear distance between the screw feed mechanism 16 and the rolling bearing 8 (distance indicated by A in FIG. 6) is increased, and since the lower end of the rotor shaft 32 and the holder body 61 of the valve holder 6 are integrally formed, there are no gaps such as holes communicating with the inside on the upper surface of the holder body 61, so the distance along the surface of the holder 6 between the screw feed mechanism 16 and the rolling bearing 8 (distance indicated by B in FIG. 6), where shavings and the like are generated, can be further increased, so that malfunctions in operation caused by impurities such as shavings of the screw feed mechanism 16 entering the inside of the rolling bearing 8 can be further suppressed.

次に、本発明の冷凍サイクルシステムを図7に基づいて説明する。図7は、本発明の冷凍サイクルシステムの一例を示す図である。図7において、符号100は前記各実施形態の電動弁10を用いた膨張弁であり、200は室外ユニットに搭載された室外熱交換器、300は室内ユニットに搭載された室内熱交換器、400は四方弁を構成する流路切換弁、500は圧縮機である。電動弁100、室外熱交換器200、室内熱交換器300、流路切換弁400、および圧縮機500は、それぞれ導管によって図示のように接続され、ヒートポンプ式の冷凍サイクルを構成している。なお、アキュムレータ、圧力センサ、温度センサ等は図示を省略してある。 Next, the refrigeration cycle system of the present invention will be described with reference to FIG. 7. FIG. 7 is a diagram showing an example of the refrigeration cycle system of the present invention. In FIG. 7, reference numeral 100 denotes an expansion valve using the motor-operated valve 10 of each of the above-mentioned embodiments, 200 denotes an outdoor heat exchanger mounted on an outdoor unit, 300 denotes an indoor heat exchanger mounted on an indoor unit, 400 denotes a flow path switching valve constituting a four-way valve, and 500 denotes a compressor. The motor-operated valve 100, the outdoor heat exchanger 200, the indoor heat exchanger 300, the flow path switching valve 400, and the compressor 500 are each connected by conduits as shown in the figure, constituting a heat pump type refrigeration cycle. Note that the accumulator, pressure sensor, temperature sensor, etc. are omitted from the illustration.

冷凍サイクルの流路は、流路切換弁400により冷房運転時の流路と暖房運転時の流路の2通りに切換えられる。冷房運転時には、図7に実線の矢印で示したように、圧縮機500で圧縮された冷媒は流路切換弁400から室外熱交換器200に流入され、この室外熱交換器200は凝縮器として機能し、室外熱交換器200から流出された液冷媒は膨張弁100を介して室内熱交換器300に流入され、この室内熱交換器300は蒸発器として機能する。 The flow path of the refrigeration cycle is switched between two paths, one for cooling operation and one for heating operation, by the flow path switching valve 400. During cooling operation, as shown by the solid arrows in Figure 7, the refrigerant compressed by the compressor 500 flows from the flow path switching valve 400 into the outdoor heat exchanger 200, which functions as a condenser, and the liquid refrigerant flowing out of the outdoor heat exchanger 200 flows into the indoor heat exchanger 300 via the expansion valve 100, which functions as an evaporator.

一方、暖房運転時には、図7に破線の矢印で示したように、圧縮機500で圧縮された冷媒は流路切換弁400から室内熱交換器300、膨張弁100、室外熱交換器200、流路切換弁400、そして、圧縮機500の順に循環され、室内熱交換器300が凝縮器として機能し、室外熱交換器200が蒸発器として機能する。膨張弁100は、冷房運転時に室外熱交換器200から流入する液冷媒、または暖房運転時に室内熱交換器300から流入する液冷媒を、それぞれ減圧膨張し、さらにその冷媒の流量を制御する。なお、図7においては、冷房運転時に室外熱交換器200から液冷媒が膨張弁100の第1の継手管101に流入し、暖房運転時には、室内熱交換器300からの液冷媒が膨張弁100の第2の継手管102に流入するように冷凍サイクルに膨張弁100を設けているが、これに限らず、冷房運転時に室外熱交換器200からの液冷媒が膨張弁100の第2の継手管102に流入し、暖房運転時には室内熱交換器300からの液冷媒が膨張弁100の第1の継手管101に流入するように膨張弁100を冷凍サイクルに設けてもよい。 On the other hand, during heating operation, as shown by the dashed arrows in Figure 7, the refrigerant compressed by the compressor 500 is circulated from the flow path switching valve 400 to the indoor heat exchanger 300, the expansion valve 100, the outdoor heat exchanger 200, the flow path switching valve 400, and then to the compressor 500, with the indoor heat exchanger 300 functioning as a condenser and the outdoor heat exchanger 200 functioning as an evaporator. The expansion valve 100 reduces the pressure and expands the liquid refrigerant flowing in from the outdoor heat exchanger 200 during cooling operation, or the liquid refrigerant flowing in from the indoor heat exchanger 300 during heating operation, and further controls the flow rate of the refrigerant. In FIG. 7, the expansion valve 100 is provided in the refrigeration cycle so that liquid refrigerant from the outdoor heat exchanger 200 flows into the first joint pipe 101 of the expansion valve 100 during cooling operation, and liquid refrigerant from the indoor heat exchanger 300 flows into the second joint pipe 102 of the expansion valve 100 during heating operation. However, the present invention is not limited to this. The expansion valve 100 may be provided in the refrigeration cycle so that liquid refrigerant from the outdoor heat exchanger 200 flows into the second joint pipe 102 of the expansion valve 100 during cooling operation, and liquid refrigerant from the indoor heat exchanger 300 flows into the first joint pipe 101 of the expansion valve 100 during heating operation.

以上の本発明の冷凍サイクルシステムによれば、上記したように、本実施形態の電動弁10は、ねじ送り機構16の削りカスなどの不純物が転がり軸受内部に入り込むことに起因する作動の不具合を生じる虞を低減させることができるので、運転時に作動の不具合を生じ難い冷凍サイクルシステムとすることができる。 As described above, according to the refrigeration cycle system of the present invention, the motor-operated valve 10 of this embodiment can reduce the risk of operational malfunctions caused by impurities such as shavings from the screw feed mechanism 16 entering the inside of the rolling bearing, resulting in a refrigeration cycle system that is less likely to experience operational malfunctions during operation.

以上、図面を参照して、本発明を実施するための形態を第1~5実施形態に基づいて詳述してきたが、具体的な構成は、これらの実施形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。 The above describes in detail the first to fifth embodiments of the present invention with reference to the drawings, but the specific configuration is not limited to these embodiments, and design changes that do not deviate from the gist of the present invention are included in the present invention.

例えば、上記した第1~5実施形態では、電動弁10を、冷凍サイクルシステムの膨張弁として使用したが、これに限定されず、例えば、ビル用のマルチエアコン等の室内機側の絞り装置等、他のシステムにも適用することができる。 For example, in the first to fifth embodiments described above, the motor-operated valve 10 is used as an expansion valve in a refrigeration cycle system, but the present invention is not limited to this and can also be applied to other systems, such as a throttling device on the indoor unit side of a multi-air conditioner for a building.

10 電動弁
1 弁本体
1A 弁ハウジング部材
1C 弁室
2 弁体
21 ニードル部
3 ステッピングモータ(駆動部)
6 弁ホルダ
61 ホルダ本体
62 ばね受
8 転がり軸受
81 第1部材
82 第2部材
8a 鋼球(転動部材)
9 弁ばね
13 弁座部
14 弁ポート
16 ねじ送り機構
32 ロータ軸(回転軸)
100 膨張弁
200 室外熱交換器(凝縮器、蒸発器)
300 室内熱交換器(凝縮器、蒸発器)
400 流路切換弁
500 圧縮機
REFERENCE SIGNS LIST 10 Motor-operated valve 1 Valve body 1A Valve housing member 1C Valve chamber 2 Valve body 21 Needle portion 3 Stepping motor (drive portion)
6 Valve holder 61 Holder body 62 Spring bearing 8 Rolling bearing 81 First member 82 Second member 8a Steel ball (rolling member)
9 Valve spring 13 Valve seat portion 14 Valve port 16 Screw feed mechanism 32 Rotor shaft (rotating shaft)
100 Expansion valve 200 Outdoor heat exchanger (condenser, evaporator)
300 Indoor heat exchanger (condenser, evaporator)
400 Flow path switching valve 500 Compressor

Claims (7)

弁室及び弁座部を構成する弁本体と、前記弁座部と軸線方向で接離して弁ポートの開度を変更する弁体と、回転軸を回転駆動させる駆動部と、前記回転軸の回転運動を前記軸線方向の直線運動に変換して前記弁体に伝えるねじ送り機構と、前記弁体と前記回転軸とに亘る弁ホルダと、弁閉方向に前記弁体を付勢する弁ばねと、を備えた電動弁であって、
前記弁体は、転がり軸受のみによって軸線方向に係止された状態で、前記転がり軸受を介して前記弁ホルダ接続され、
前記弁体が弁閉後に、前記回転軸がさらに弁閉方向に移動した際、前記転がり軸受及び前記弁体が、前記弁ばねの付勢力を受けることを特徴とする電動弁。
an electrically operated valve comprising: a valve body which defines a valve chamber and a valve seat; a valve element which moves axially towards and away from the valve seat to change an opening degree of a valve port; a drive unit which rotationally drives a rotary shaft; a screw feed mechanism which converts the rotational motion of the rotary shaft into linear motion in the axial direction and transmits the linear motion to the valve element; a valve holder which spans between the valve element and the rotary shaft; and a valve spring which biases the valve element in a valve closing direction,
The valve body is connected to the valve holder via a rolling bearing in a state in which the valve body is axially engaged only by the rolling bearing ,
2. The motor-operated valve according to claim 1, wherein when the rotary shaft moves further in the valve closing direction after the valve body is closed, the rolling bearing and the valve body are subjected to the biasing force of the valve spring.
前記弁ホルダは、前記回転軸の先端部を挿通させる挿通孔を有し、前記回転軸の先端部と相対回転可能に係合されていることを特徴とする請求項1に記載の電動弁。 The motor-operated valve according to claim 1, characterized in that the valve holder has an insertion hole through which the tip of the rotating shaft is inserted and is engaged with the tip of the rotating shaft so as to be capable of relative rotation. 前記回転軸の先端部と前記弁ホルダとが、一体的に形成されるか、又は、互いに接合されていることを特徴とする請求項1に記載の電動弁。 The motor-operated valve according to claim 1, characterized in that the tip of the rotating shaft and the valve holder are integrally formed or joined to each other. 前記転がり軸受は、前記弁体に取り付けられるか又は前記弁体と一体に形成される第1部材と、前記第1部材に転動部材を介して接続される第2部材と、を有し、前記第1部材がばね受を介して前記弁ばねで付勢されることを特徴とする請求項1乃至3のいずれか1項に記載の電動弁。 The motor-operated valve according to any one of claims 1 to 3, characterized in that the rolling bearing has a first member attached to the valve body or formed integrally with the valve body, and a second member connected to the first member via a rolling member, and the first member is biased by the valve spring via a spring bearing. 前記転がり軸受は、前記弁ホルダに取り付けられるか又は前記弁ホルダと一体に形成される第2部材と、前記第2部材に転動部材を介して接続される第1部材と、を有し、前記第1部材に前記弁体が案内されるとともに、前記第1部材に対して前記弁体が前記弁ばねで付勢されることを特徴とする請求項1乃至3のいずれか1項に記載の電動弁。 The motor-operated valve according to any one of claims 1 to 3, characterized in that the rolling bearing has a second member attached to the valve holder or formed integrally with the valve holder, and a first member connected to the second member via a rolling member, and the valve body is guided by the first member and biased against the first member by the valve spring. 弁室及び弁座部を構成する弁本体と、前記弁座部と軸線方向で接離して弁ポートの開度を変更する弁体と、回転軸を回転駆動させる駆動部と、前記回転軸の回転運動を前記軸線方向の直線運動に変換して前記弁体に伝えるねじ送り機構と、前記弁体と前記回転軸とに亘る弁ホルダと、弁閉方向に前記弁体を付勢する弁ばねと、を備えた電動弁であって、
前記弁体は、転がり軸受のみによって軸線方向に係止された状態で、前記転がり軸受を介して前記弁ホルダ接続され、
前記転がり軸受は、前記弁体に取り付けられるか又は前記弁体と一体に形成される第1部材と、前記第1部材に転動部材を介して接続される第2部材と、を有し、前記第2部材が前記弁ばねで付勢されることを特徴とする電動弁。
an electrically operated valve comprising: a valve body which defines a valve chamber and a valve seat; a valve element which moves axially towards and away from the valve seat to change an opening degree of a valve port; a drive unit which rotationally drives a rotary shaft; a screw feed mechanism which converts the rotational motion of the rotary shaft into linear motion in the axial direction and transmits the linear motion to the valve element; a valve holder which spans between the valve element and the rotary shaft; and a valve spring which biases the valve element in a valve closing direction,
The valve body is connected to the valve holder via a rolling bearing in a state in which the valve body is axially engaged only by the rolling bearing ,
The rolling bearing has a first member attached to the valve body or formed integrally with the valve body, and a second member connected to the first member via a rolling member, and the second member is biased by the valve spring.
圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1乃至6のいずれか1項に記載の電動弁が、前記膨張弁として用いられていることを特徴とする冷凍サイクルシステム。 A refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, characterized in that the motor-operated valve according to any one of claims 1 to 6 is used as the expansion valve.
JP2020047605A 2020-03-18 2020-03-18 Motor-operated valve and refrigeration cycle system Active JP7565698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020047605A JP7565698B2 (en) 2020-03-18 2020-03-18 Motor-operated valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020047605A JP7565698B2 (en) 2020-03-18 2020-03-18 Motor-operated valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2021148183A JP2021148183A (en) 2021-09-27
JP7565698B2 true JP7565698B2 (en) 2024-10-11

Family

ID=77848145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020047605A Active JP7565698B2 (en) 2020-03-18 2020-03-18 Motor-operated valve and refrigeration cycle system

Country Status (1)

Country Link
JP (1) JP7565698B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014153A (en) 2001-06-26 2003-01-15 Saginomiya Seisakusho Inc Manual valve opening device for fluid control valve
JP2003148643A (en) 2001-09-03 2003-05-21 Saginomiya Seisakusho Inc Electric valve
JP2003329158A (en) 2002-05-15 2003-11-19 Saginomiya Seisakusho Inc Motor-driven valve
JP2006112522A (en) 2004-10-14 2006-04-27 Saginomiya Seisakusho Inc Motor-operated valve
JP2011021749A (en) 2009-07-17 2011-02-03 Zhejiang Sanhua Co Ltd Electric expansion valve
JP2013167273A (en) 2012-02-14 2013-08-29 Fuji Koki Corp Composite valve
JP2013224708A (en) 2012-04-23 2013-10-31 Saginomiya Seisakusho Inc Motor-operated valve
JP2016089870A (en) 2014-10-30 2016-05-23 株式会社鷺宮製作所 Solenoid valve
JP2019044880A (en) 2017-09-04 2019-03-22 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP2019219007A (en) 2018-06-20 2019-12-26 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
WO2020135162A1 (en) 2018-12-25 2020-07-02 浙江盾安人工环境股份有限公司 Electronic expansion valve and air conditioning system using same
JP2021067344A (en) 2019-10-28 2021-04-30 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
JP2021148182A (en) 2020-03-18 2021-09-27 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014153A (en) 2001-06-26 2003-01-15 Saginomiya Seisakusho Inc Manual valve opening device for fluid control valve
JP2003148643A (en) 2001-09-03 2003-05-21 Saginomiya Seisakusho Inc Electric valve
JP2003329158A (en) 2002-05-15 2003-11-19 Saginomiya Seisakusho Inc Motor-driven valve
JP2006112522A (en) 2004-10-14 2006-04-27 Saginomiya Seisakusho Inc Motor-operated valve
JP2011021749A (en) 2009-07-17 2011-02-03 Zhejiang Sanhua Co Ltd Electric expansion valve
JP2013167273A (en) 2012-02-14 2013-08-29 Fuji Koki Corp Composite valve
JP2013224708A (en) 2012-04-23 2013-10-31 Saginomiya Seisakusho Inc Motor-operated valve
JP2016089870A (en) 2014-10-30 2016-05-23 株式会社鷺宮製作所 Solenoid valve
JP6472637B2 (en) 2014-10-30 2019-02-20 株式会社鷺宮製作所 Motorized valve
JP2019044880A (en) 2017-09-04 2019-03-22 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
JP2019219007A (en) 2018-06-20 2019-12-26 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
WO2020135162A1 (en) 2018-12-25 2020-07-02 浙江盾安人工环境股份有限公司 Electronic expansion valve and air conditioning system using same
JP2021067344A (en) 2019-10-28 2021-04-30 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
JP2021148182A (en) 2020-03-18 2021-09-27 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system

Also Published As

Publication number Publication date
JP2021148183A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP6845817B2 (en) Electric valve and refrigeration cycle system
JP7499587B2 (en) Motor-operated valve and refrigeration cycle system
JP5022120B2 (en) Motorized valves for air conditioning systems
JP2019132347A (en) Motor-operated valve and refrigeration cycle system
JP6857624B2 (en) Electric valve and refrigeration cycle system
JP6209231B2 (en) Motorized valve
JP4570484B2 (en) Composite valve, heat pump type air conditioner and control method thereof
CN111810653B (en) Electric valve and refrigeration cycle system
JP4476775B2 (en) Electric control valve and refrigeration cycle equipment
JP7254678B2 (en) Electric valve and refrigeration cycle system
JP2022095807A (en) Motor-operated valve and refrigerating cycle system
JP7481562B2 (en) Motor-operated valve and refrigeration cycle system
JP7565698B2 (en) Motor-operated valve and refrigeration cycle system
JP7509961B2 (en) Motor-operated valve and refrigeration cycle system
JP2020169661A (en) Electric valve and refrigeration cycle system
CN114076208B (en) Flow control valve and refrigeration cycle system
JP4968761B2 (en) Sliding resistance reduction device for motorized valve
JP7208127B2 (en) Electric valve and refrigeration cycle system
JP7362569B2 (en) Electric valve and refrigeration cycle system
JP2022055626A (en) Motor-operated valve and refrigeration cycle system
JP7519265B2 (en) Motor-operated valve and refrigeration cycle system
JP7491734B2 (en) Motor-operated valve and refrigeration cycle system
JP7509962B2 (en) Motor-operated valve and refrigeration cycle system
JP2023094136A (en) Motor valve and refrigeration cycle system
JP7465845B2 (en) Motor-operated valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241001

R150 Certificate of patent or registration of utility model

Ref document number: 7565698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150