Nothing Special   »   [go: up one dir, main page]

JP7545106B2 - Polishing composition for oxide-based substrates containing hydrogen peroxide - Google Patents

Polishing composition for oxide-based substrates containing hydrogen peroxide Download PDF

Info

Publication number
JP7545106B2
JP7545106B2 JP2020143754A JP2020143754A JP7545106B2 JP 7545106 B2 JP7545106 B2 JP 7545106B2 JP 2020143754 A JP2020143754 A JP 2020143754A JP 2020143754 A JP2020143754 A JP 2020143754A JP 7545106 B2 JP7545106 B2 JP 7545106B2
Authority
JP
Japan
Prior art keywords
polishing
polishing composition
acid
hydrogen peroxide
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020143754A
Other languages
Japanese (ja)
Other versions
JP2021038389A (en
Inventor
恒 大森
隼人 山口
響 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JP2021038389A publication Critical patent/JP2021038389A/en
Application granted granted Critical
Publication of JP7545106B2 publication Critical patent/JP7545106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明はタンタル酸リチウムやニオブ酸リチウム等の酸化物系基板の研磨用組成物に関する。 The present invention relates to a polishing composition for oxide-based substrates such as lithium tantalate and lithium niobate.

タンタル酸リチウムやニオブ酸リチウムは圧電性、焦電性、電気光学効果に優れている。
携帯電話には弾性表面波(Surface Acoustic Wave)デバイスにより、特定の周波数帯域の電気信号を取り出す素子が搭載されていて、それらには圧電体としてタンタル酸リチウム(LiTaO)、若しくはニオブ酸リチウム(LiNbO)が用いられている。例えばタンタル酸リチウムやニオブ酸リチウム等の圧電基板上に形成された櫛形電極(Inter Digital Transducer)の電気信号による表面波により特定周波数の信号が取り出される。
Lithium tantalate and lithium niobate have excellent piezoelectric, pyroelectric and electro-optical effects.
Mobile phones are equipped with elements that extract electrical signals of a specific frequency band using surface acoustic wave devices, and these use lithium tantalate ( LiTaO3 ) or lithium niobate ( LiNbO3 ) as the piezoelectric material. For example, a signal of a specific frequency is extracted by a surface wave generated by an electrical signal of a comb-shaped electrode (Inter Digital Transducer) formed on a piezoelectric substrate such as lithium tantalate or lithium niobate.

5G等の高速通信を行う上でより高周波数化(3.4~3.6GHz帯)、広帯域化、高Q値(Quality Factor:共振周波数における信号の感度)が求められている。
例えば基体上にタンタル酸リチウムやニオブ酸リチウムを形成し、タンタル酸リチウムやニオブ酸リチウムを研磨により薄膜化して弾性表面波デバイスの特性を向上している。
タンタル酸リチウムやニオブ酸リチウムは硬度が高く、化学的にも安定であるため研磨速度は一般的に遅く、パフォーマンスを発揮できる薄膜にまで薄化するためには研磨用組成物の供給、回収の繰り返しによる循環供給方式で行われているが、研磨性能の持続が問題となっていて生産性の低さが課題である。
High-speed communications such as 5G require higher frequencies (3.4 to 3.6 GHz band), wider bandwidth, and higher Q (Quality Factor: signal sensitivity at resonant frequency).
For example, lithium tantalate or lithium niobate is formed on a substrate, and the lithium tantalate or lithium niobate is polished to form a thin film, thereby improving the characteristics of the surface acoustic wave device.
Lithium tantalate and lithium niobate are hard and chemically stable, so the polishing speed is generally slow. In order to thin the film to a thickness at which it can perform well, a cyclic supply method is used in which the polishing composition is repeatedly supplied and recovered, but maintaining the polishing performance is an issue, and low productivity is an issue.

特許文献1は、水とコロイダルシリカとキレート剤を含有し、更にpH調整のためにギ酸、酢酸等の有機酸や、過酸化水素等の過酸化物を配合することができる。
特許文献2は、平均粒子径10~200nmのシリカと、脂肪族ポリカルボン酸と、水とを含有するタンタル酸リチウムやニオブ酸リチウム等の研磨剤が開示されている。
特許文献3は、酸化剤、酸、アミン、キレート化剤、フッ素を含む化合物、腐食防止剤、生物剤、界面活性剤、及び緩衝剤からなる群から選ばれる添加剤を含むCMP研磨用コロイド状シリカ分散体が記載されている。
The composition disclosed in Patent Document 1 contains water, colloidal silica, and a chelating agent, and may further contain an organic acid such as formic acid or acetic acid, or a peroxide such as hydrogen peroxide, for adjusting the pH.
Patent Document 2 discloses an abrasive such as lithium tantalate or lithium niobate that contains silica having an average particle size of 10 to 200 nm, an aliphatic polycarboxylic acid, and water.
Patent Document 3 describes a colloidal silica dispersion for CMP polishing, which contains an additive selected from the group consisting of an oxidizing agent, an acid, an amine, a chelating agent, a fluorine-containing compound, a corrosion inhibitor, a biological agent, a surfactant, and a buffering agent.

特開2003-188121JP2003-188121 特開2011-161570Patent Publication 2011-161570 特表2002-528903Special table 2002-528903

本発明はタンタル酸リチウムやニオブ酸リチウム等の高い硬度を有する酸化物系基板を高い研磨速度で研磨する研磨剤に関し、所望の機能を発揮するまでに薄化するため研磨用組成物を供給と回収の繰り返しによる循環供給方式が用いられるが、研磨用組成物が長時間の研磨においても研磨速度の低下が抑制され、長時間の研磨においても当初の研磨速度に近い研磨速度に維持できるという、研磨性能が持続された研磨用組成物と、その研磨方法を提供する。 The present invention relates to an abrasive that polishes oxide-based substrates having high hardness, such as lithium tantalate or lithium niobate, at a high polishing rate. A circulating supply system is used in which the polishing composition is repeatedly supplied and recovered to thin the substrate until it can perform the desired function. The present invention provides a polishing composition that has sustained polishing performance, in which the polishing rate is suppressed from decreasing even during long-term polishing and the polishing rate can be maintained close to the initial polishing rate even during long-term polishing, and a polishing method using the same.

本願発明は第1観点として、シリカ粒子とアミノカルボン酸構造を有するキレート剤と過酸化水素と水とを含む酸化物系基板の研磨用組成物であって、該研磨用組成物中には窒素ガス吸着法による平均一次粒子径が30~120nmのシリカ粒子を14~30質量%、アミノカルボン酸構造を有するキレート剤を8~130ミリモル/リットル、及び過酸化水素を0.5~10質量%の割合で含み、pHが4~7.5である上記研磨用組成物、
第2観点として、研磨用組成物中のシリカ粒子の動的光散乱法による平均粒子径が70~200nmである第1観点に記載の研磨用組成物、
第3観点として、アミノカルボン酸構造を有するキレート剤が、エチレンジアミン四酢酸又はその塩である第1観点又は第2観点に記載の研磨用組成物、
第4観点として、更に有機酸又はその塩を含む第1観点乃至第3観点のいずれか一つに記載の研磨用組成物、
第5観点として、有機酸が、多価カルボン酸又はリン酸構造を有する化合物である第4観点に記載の研磨用組成物、
第6観点として、多価カルボン酸が、クエン酸、シュウ酸である第5観点に記載の研磨用組成物、
第7観点として、リン酸構造を有する化合物が、リン酸、ヒドロキシエチリデンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、ホスホノブタントリカルボン酸、又はそれらの塩である第5観点に記載の研磨用組成物、
第8観点として、更に塩基として、アンモニア又はアルカリ金属水酸化物を含有する第1観点乃至第7観点のいずれか一つに記載の研磨用組成物、
第9観点として、酸化物系基板が、タンタル酸リチウム基板若しくはニオブ酸リチウム基板、又は基板の片面の一部乃至全体がタンタル酸リチウム若しくはニオブ酸リチウムと接合した複合基板である第1観点乃至第8観点のいずれか一つに記載の研磨用組成物、
第10観点として、窒素ガス吸着法による平均一次粒子径が30~120nmのシリカ粒子を有する酸性又はアルカリ性の水性シリカゾルと、キレート剤と、過酸化水素水とを同時に又は複数の段階で混合する工程を含む第1観点乃至第9観点のいずれか一つに記載の研磨用組成物の製造方法、
第11観点として、下記(A)工程、及び(B)工程;
(A)工程:窒素ガス吸着法による平均一次粒子径が30~120nmのシリカ粒子を有する酸性又はアルカリ性の水性シリカゾルと、キレート剤とを含む水性シリカ分散液を製造する工程(A)、
(B)工程:水性シリカ分散液に過酸化水素水を添加する工程(B)、を含む第10観点に記載の研磨用組成物の製造方法、
第12観点として、キレート剤の添加に併せて、アンモニウム又はアルカリ金属水酸化物からなる塩基を加える第10観点又は第11観点に記載の研磨用組成物の製造方法、
第13観点として、第1観点乃至第9観点のいずれか一つに記載の研磨用組成物で研磨する酸化物系基板の研磨方法であって、全研磨工程を8等分した第1乃至第8研磨工程のうちの第1研磨工程(最初の1/8工程)中の研磨速度に対して、第7及び第8研磨工程(最後の2/8工程)中の研磨速度が50~80%である研磨方法、
第14観点として、研磨直前に、研磨用組成物中の過酸化水素の割合が0.5~10質量%となるように過酸化水素水を添加する第13観点に記載の研磨方法、及び
第15観点として、研磨工程中に研磨用組成物中の上記過酸化水素の割合が0.5~10質量%となるように過酸化水素水を注ぎ足す第13観点に記載の研磨方法である。
A first aspect of the present invention is a polishing composition for oxide-based substrates, comprising silica particles, a chelating agent having an aminocarboxylic acid structure, hydrogen peroxide, and water, the polishing composition comprising 14 to 30 mass % of silica particles having an average primary particle size of 30 to 120 nm as measured by a nitrogen gas adsorption method, 8 to 130 mmol/L of a chelating agent having an aminocarboxylic acid structure, and 0.5 to 10 mass % of hydrogen peroxide, and having a pH of 4 to 7.5;
As a second aspect, the polishing composition according to the first aspect, wherein the average particle size of silica particles in the polishing composition is 70 to 200 nm as measured by a dynamic light scattering method.
As a third aspect, the polishing composition according to the first aspect or the second aspect, in which the chelating agent having an aminocarboxylic acid structure is ethylenediaminetetraacetic acid or a salt thereof.
As a fourth aspect, the polishing composition according to any one of the first to third aspects, further comprising an organic acid or a salt thereof;
As a fifth aspect, the polishing composition according to the fourth aspect, wherein the organic acid is a compound having a polyvalent carboxylic acid or a phosphoric acid structure.
As a sixth aspect, the polishing composition according to the fifth aspect, wherein the polyvalent carboxylic acid is citric acid or oxalic acid.
As a seventh aspect, the polishing composition according to the fifth aspect, wherein the compound having a phosphoric acid structure is phosphoric acid, hydroxyethylidenediphosphonic acid, nitrilotris(methylenephosphonic acid), phosphonobutanetricarboxylic acid, or a salt thereof;
As an eighth aspect, the polishing composition according to any one of the first to seventh aspects, further containing ammonia or an alkali metal hydroxide as a base.
As a ninth aspect, the polishing composition according to any one of the first to eighth aspects, wherein the oxide-based substrate is a lithium tantalate substrate or a lithium niobate substrate, or a composite substrate in which a part or an entirety of one side of a substrate is bonded to lithium tantalate or lithium niobate;
As a tenth aspect, a method for producing the polishing composition according to any one of the first to ninth aspects, comprising a step of mixing an acidic or alkaline aqueous silica sol having silica particles having an average primary particle diameter of 30 to 120 nm as measured by a nitrogen gas adsorption method, a chelating agent, and hydrogen peroxide solution simultaneously or in multiple stages;
As an eleventh aspect, the method includes the following steps (A) and (B):
Step (A): A step (A) of producing an aqueous silica dispersion containing an acidic or alkaline aqueous silica sol having silica particles having an average primary particle diameter of 30 to 120 nm as measured by a nitrogen gas adsorption method, and a chelating agent;
A method for producing a polishing composition according to the tenth aspect, comprising the steps of: (B) adding an aqueous hydrogen peroxide solution to an aqueous silica dispersion;
As a twelfth aspect, the method for producing a polishing composition according to the tenth or eleventh aspect, further comprising adding a base composed of ammonium or an alkali metal hydroxide together with the addition of the chelating agent;
As a thirteenth aspect, there is provided a method for polishing an oxide-based substrate by using the polishing composition according to any one of the first to ninth aspects, in which a polishing rate in a seventh and eighth polishing steps (last 2/8 steps) is 50 to 80% of a polishing rate in a first polishing step (first 1/8 step) of first to eighth polishing steps obtained by dividing a total polishing step into eight equal parts;
As a fourteenth aspect, there is provided the polishing method according to the thirteenth aspect, in which an aqueous hydrogen peroxide solution is added immediately before polishing so that the ratio of hydrogen peroxide in the polishing composition is 0.5 to 10 mass %. As a fifteenth aspect, there is provided the polishing method according to the thirteenth aspect, in which an aqueous hydrogen peroxide solution is added during the polishing step so that the ratio of the hydrogen peroxide in the polishing composition is 0.5 to 10 mass %.

タンタル酸リチウムやニオブ酸リチウム等の酸化物系材料は、弾性表面波デバイス用基板材料として有用視されている。これら酸化物系材料は精密研磨加工が必要であり、被研磨物の表面の凹凸や、化合物が原子レベルでの欠陥を生じさせることなく研磨する事が必要である。
タンタル酸リチウムやニオブ酸リチウム等の酸化物は高い硬度有するため、所望の機能を発揮するまでに薄化するため研磨用組成物を供給と回収の繰り返しによる循環供給方式が用いられるが、研磨用組成物が長時間の研磨において研磨速度の低下があり、生産性の低下が問題となっている。
Oxide materials such as lithium tantalate and lithium niobate are considered to be useful as substrate materials for surface acoustic wave devices. These oxide materials require precision polishing, and it is necessary to polish them without causing surface irregularities on the workpiece or atomic-level defects in the compounds.
Since oxides such as lithium tantalate and lithium niobate have high hardness, a circulating supply system is used in which the polishing composition is repeatedly supplied and recovered in order to thin it down until it can perform the desired function. However, when the polishing composition is used for long periods of polishing, the polishing rate decreases, posing a problem of reduced productivity.

本発明はアミノカルボン酸構造を有するキレート剤と過酸化水素の組み合わせが上記酸化物系材料の初期研磨速度の向上と、全研磨工程の中で研磨速度の低下を抑制する事が可能である事を見出した。
過酸化水素は当初の研磨用組成物中に含有させることも、研磨工程中で研磨用組成物を循環する過程で過酸化水素を過酸化水素水として所定の範囲内に注ぎ足し研磨速度を維持する事ができる。
また、本件研磨用組成物はアミノカルボン酸構造を有するキレート剤に、更に有機酸を加える事により効果の向上が期待できる。
The present invention has discovered that a combination of a chelating agent having an aminocarboxylic acid structure and hydrogen peroxide can improve the initial removal rate of the oxide-based material and suppress a decrease in the removal rate during the entire polishing process.
Hydrogen peroxide can be contained in the initial polishing composition, or hydrogen peroxide can be added as aqueous hydrogen peroxide during the polishing process to maintain the polishing rate within a specified range while circulating the polishing composition.
In addition, the polishing composition of the present invention is expected to have improved effects by further adding an organic acid to the chelating agent having an aminocarboxylic acid structure.

本発明はシリカ粒子とアミノカルボン酸構造を有するキレート剤と過酸化水素と水とを含む酸化物系基板の研磨用組成物であって、該研磨用組成物中には窒素ガス吸着法による平均一次粒子径が40~120nmのシリカ粒子を14~30質量%、アミノカルボン酸構造を有するキレート剤を8~130ミリモル/リットル、及び過酸化水素を0.5~10質量%の割合で含み、pHが4~7.5である上記研磨用組成物である。本件研磨用組成物は固形物以外の残部は水である。 The present invention is a polishing composition for oxide-based substrates that contains silica particles, a chelating agent having an aminocarboxylic acid structure, hydrogen peroxide, and water. The polishing composition contains 14 to 30 mass % silica particles having an average primary particle size of 40 to 120 nm as measured by nitrogen gas adsorption method, 8 to 130 mmol/L of a chelating agent having an aminocarboxylic acid structure, and 0.5 to 10 mass % of hydrogen peroxide, and has a pH of 4 to 7.5. The remainder of the polishing composition other than the solid matter is water.

シリカ粒子の平均一次粒子径は窒素ガス吸着法(BET法)による表面積から算出した球相当粒子径として表すことができ、30~120nm、又は40~120nm、又は40~80nmの範囲で用いる事ができる。シリカ粒子は研磨用組成物中に14~30質量%、又は15~25質量%の範囲で用いる事ができる。
また、本発明に用いるシリカ粒子は動的光散乱法により二次粒子径を測定する事ができ、その平均粒子径は70~200nmである。
The average primary particle size of the silica particles can be expressed as a sphere-equivalent particle size calculated from the surface area by the nitrogen gas adsorption method (BET method), and can be in the range of 30 to 120 nm, 40 to 120 nm, or 40 to 80 nm. The silica particles can be used in the polishing composition in the range of 14 to 30 mass %, or 15 to 25 mass %.
The secondary particle diameter of the silica particles used in the present invention can be measured by dynamic light scattering, and the average particle diameter is 70 to 200 nm.

上記シリカ粒子は水性シリカゾルをベースに研磨用組成物を作成する事が可能である。例えば、水ガラスを陽イオン交換して得られた活性珪酸を加熱下に粒子成長させて得る事ができる。これらのシリカゾルは例えば日産化学株式会社製、商品名スノーテックスを用いる事が可能である。
このシリカゾルにアルカリ成分、水溶性樹脂、及びキレート樹脂を加えて研磨用組成物を調製する事ができる。
The above silica particles can be prepared as a polishing composition based on an aqueous silica sol. For example, it can be obtained by growing particles of activated silicic acid obtained by cation exchange of water glass under heating. For example, the product name Snowtex manufactured by Nissan Chemical Industries, Ltd. can be used as the silica sol.
A polishing composition can be prepared by adding an alkali component, a water-soluble resin, and a chelate resin to this silica sol.

アルカリ成分は水酸化ナトリウム、水酸化カリウム、アンモニア、水酸化第1級アンモニウム、水酸化第2級アンモニウム、水酸化第3級アンモニウム、水酸化第4級アンモニウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、又は炭酸水素カリウムを用いる事ができる。
これらシリカゾルを含む研磨用組成物は、有機酸やアルカリ成分の添加によりpHを4~7.5、又は4~7、又は6~7に調製する事が可能である。中性領域の研磨用組成物を用いる事で被研磨面に対して高い研磨精度が得られる。
The alkaline component may be sodium hydroxide, potassium hydroxide, ammonia, primary ammonium hydroxide, secondary ammonium hydroxide, tertiary ammonium hydroxide, quaternary ammonium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, or potassium hydrogen carbonate.
The polishing composition containing these silica sols can be adjusted to a pH of 4 to 7.5, or 4 to 7, or 6 to 7, by adding an organic acid or an alkali component. By using a polishing composition in the neutral range, a high polishing accuracy can be obtained for the surface to be polished.

本発明に用いられるアミノカルボン酸構造を有するキレート剤は、アミノ基とカルボキシル基を分子内に有する化合物であり、このアミノカルボン酸部位を分子内に複数個有する構造を取り得る。アミノカルボン酸構造はイミノ二酢酸構造が挙げられる。例えばイミノ二酢酸構造を複数個有するエチレンジアミン四酢酸及びその塩を例示する事ができる。エチレンジアミン四酢酸は溶解性を向上させるためナトリウム塩、カリウム塩等のアルカリ金属塩や、アンモニウム塩、アミン塩として用いる事ができる。これらのアミノカルボ
ン酸構造を有するキレート剤は、研磨用組成物中に8~130ミリモル/リットル、又は10~80ミリモル/リットル、又は10~40ミリモル/リットルの範囲で用いる事ができる。
The chelating agent having an amino carboxylic acid structure used in the present invention is a compound having an amino group and a carboxyl group in the molecule, and may have a structure having a plurality of amino carboxylic acid moieties in the molecule. The amino carboxylic acid structure may be an iminodiacetic acid structure. For example, ethylenediaminetetraacetic acid and its salts having a plurality of iminodiacetic acid structures may be exemplified. Ethylenediaminetetraacetic acid may be used as an alkali metal salt such as a sodium salt or a potassium salt, an ammonium salt, or an amine salt in order to improve solubility. These chelating agents having an amino carboxylic acid structure may be used in the polishing composition in a range of 8 to 130 mmol/L, 10 to 80 mmol/L, or 10 to 40 mmol/L.

本発明ではアミノカルボン酸構造を有するキレート剤と、更に有機酸を含む事ができる。
有機酸は多価カルボン酸又はリン酸構造を有する化合物が挙げられる。
これらの多価カルボン酸又はリン酸構造を有する化合物は、アミノカルボン酸構造を有するキレート剤と同様に、キレート剤の機能を有している。
In the present invention, the chelating agent having an aminocarboxylic acid structure may further contain an organic acid.
The organic acid may be a compound having a polycarboxylic acid or phosphoric acid structure.
These compounds having a polyvalent carboxylic acid or phosphoric acid structure have the same function as a chelating agent as a chelating agent having an aminocarboxylic acid structure.

多価カルボン酸又はリン酸構造を有する化合物は研磨用組成物中で、8~130ミリモル/リットル、又は10~80ミリモル/リットル、又は10~40ミリモル/リットルの範囲で用いる事ができる。
多価カルボン酸は2価以上の飽和脂肪族カルボン酸が好ましく、2~4価のカルボン酸が好ましく用いることができる。これらカルボン酸は官能基としてカルボキシル基以外にヒドロキシル基を有していてもよい。
ジカルボン酸は例えばシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸等が挙げられる。
また、ヒドロキシカルボン酸として例えば乳酸、リンゴ酸、クエン酸が挙げられる。
これらの多価カルボン酸はナトリウム塩やカリウム塩等のアルカリ金属塩、アンモニウム塩、アミン塩として用いる事ができる。
The compound having a polyvalent carboxylic acid or phosphoric acid structure can be used in the polishing composition in an amount within the range of 8 to 130 mmol/L, or 10 to 80 mmol/L, or 10 to 40 mmol/L.
The polyvalent carboxylic acid is preferably a saturated aliphatic carboxylic acid having two or more valences, and more preferably a di- to tetra-valent carboxylic acid. These carboxylic acids may have a hydroxyl group as a functional group in addition to a carboxyl group.
Examples of dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, and maleic acid.
Examples of hydroxycarboxylic acids include lactic acid, malic acid, and citric acid.
These polycarboxylic acids can be used in the form of alkali metal salts such as sodium salts and potassium salts, ammonium salts, or amine salts.

リン酸構造を有する化合物は、リン酸基を分子内に1個以上有する化合物が好ましく、2~4個のリン酸基を有する化合物が挙げられる。またこれらのリン酸基を有する化合物はヒドロキシル基を有していてもよい。
上記リン酸構造を有する化合物は例えばリン酸、ヒドロキシエチリデンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、ホスホノブタントリカルボン酸等が挙げられる。これらのリン酸化合物はリン酸塩として用いる事もできる。リン酸塩としては、ナトリウム塩、カリウム塩等の水溶性リン酸塩が好ましい。
上記キレート剤は、キレスト株式会社から入手する事ができる。
The compound having a phosphate structure is preferably a compound having one or more phosphate groups in the molecule, such as a compound having 2 to 4 phosphate groups. These compounds having a phosphate group may also have a hydroxyl group.
Examples of the compound having the phosphoric acid structure include phosphoric acid, hydroxyethylidene diphosphonic acid, nitrilotris(methylene phosphonic acid), phosphonobutane tricarboxylic acid, etc. These phosphoric acid compounds can also be used as phosphates. As the phosphates, water-soluble phosphates such as sodium salts and potassium salts are preferred.
The above chelating agent is available from Chelesto Co., Ltd.

本発明ではpHが4~7.5、又は4~7の範囲に調整する事ができる。pH調整は、塩基としてアンモニア、アルカリ金属水酸化物を添加する事ができる。アルカリ金属水酸化物は水酸化ナトリウム、水酸化カリウム等を用いる事ができる。
上述のキレート剤や、有機酸は塩にすることにより溶解性が向上するため、中和及びpH調整のために上述の塩基を添加する事でキレート塩や有機酸塩とする事ができる。
In the present invention, the pH can be adjusted to a range of 4 to 7.5, or 4 to 7. The pH can be adjusted by adding ammonia or an alkali metal hydroxide as a base. The alkali metal hydroxide that can be used includes sodium hydroxide, potassium hydroxide, etc.
The solubility of the above-mentioned chelating agents and organic acids is improved by converting them into salts, so that the above-mentioned bases can be added for neutralization and pH adjustment to convert them into chelate salts or organic acid salts.

本発明に用いる過酸化水素は研磨用組成物中で0.5~10質量%の範囲で用いる事ができる。過酸化水素をこの範囲に調整する事で高い研磨速度が得られる。
過酸化水素は濃度35質量%以下、又は30質量%以下、又は28質量%以下の濃度の過酸化水素水を添加することによって研磨用組成物を調整する事ができる。
過酸化水素はあらかじめ研磨用組成物に添加して研磨用組成物を調整する事も可能であるが、研磨直前に研磨用組成物に添加して調整する事もできる。研磨用組成物が供給と回収の繰り返しによる循環供給方式による研磨を行う場合に、回収した研磨用組成物中の過酸化水素の濃度を所定の濃度範囲内で上昇させることによって研磨速度を維持又は向上させる事ができる。
The hydrogen peroxide used in the present invention can be used in the polishing composition in the range of 0.5 to 10% by mass. By adjusting the hydrogen peroxide content within this range, a high removal rate can be obtained.
The polishing composition can be prepared by adding hydrogen peroxide in an amount of 35 mass % or less, 30 mass % or less, or 28 mass % or less.
Hydrogen peroxide can be added to the polishing composition in advance to prepare the polishing composition, or can be added to the polishing composition just before polishing to prepare it. When polishing is performed by a circulating supply method in which the polishing composition is repeatedly supplied and recovered, the polishing rate can be maintained or improved by increasing the concentration of hydrogen peroxide in the recovered polishing composition within a predetermined concentration range.

研磨用組成物の製造方法は、窒素ガス吸着法による平均一次粒子径が30~120nmの上記シリカ粒子を有する酸性又はアルカリ性の水性シリカゾルにキレート剤と、過酸化水素水とを同時に混合する工程による製造方法がある。
また、複数の段階(工程)で混合する場合は、(A)工程及び(B)工程とする製造方法がある。ここで、(A)工程は窒素ガス吸着法による平均一次粒子径が30~120nmのシリカ粒子を有する酸性又はアルカリ性の水性シリカゾルにキレート剤を添加し水性シリカ分散液を製造する工程であり、(B)工程は水性シリカ分散液に過酸化水素水を添加する工程による研磨用組成物の製造方法である。
さらに、上記キレート剤の添加に併せて、アンモニウム又はアルカリ金属水酸化物からなる塩基を加える研磨用組成物の製造方法もある。
A method for producing the polishing composition includes a process of simultaneously mixing a chelating agent and aqueous hydrogen peroxide with an acidic or alkaline aqueous silica sol containing the above-mentioned silica particles having an average primary particle diameter of 30 to 120 nm as measured by a nitrogen gas adsorption method.
In addition, when mixing is performed in a plurality of stages (steps), there is a production method including steps (A) and (B), in which step (A) is a step of producing an aqueous silica dispersion by adding a chelating agent to an acidic or alkaline aqueous silica sol having silica particles with an average primary particle size of 30 to 120 nm as measured by a nitrogen gas adsorption method, and step (B) is a production method of a polishing composition by adding a hydrogen peroxide solution to the aqueous silica dispersion.
Furthermore, there is also a method for producing a polishing composition in which a base made of ammonium or alkali metal hydroxide is added in addition to the chelating agent.

本発明では酸化物系基板が少なくとも片方の面にタンタル酸リチウム、又はニオブ酸リチウムを含む。即ち、酸化物系基板が、タンタル酸リチウム基板若しくはニオブ酸リチウム基板、又は基板の片面の一部乃至全体がタンタル酸リチウム若しくはニオブ酸リチウムと接合した複合基板である。
タンタル酸リチウム、又はニオブ酸リチウムの単独基板であっても、基板の片面の全面、又は一部にタンタル酸リチウム、又はニオブ酸リチウムが接合された基板であっても良い。
タンタル酸リチウム若しくはニオブ酸リチウムと接合する基板としては、シリコン、サファイア、ガラス、石英、水晶、セラミックス等が挙げられる。
また本発明のタンタル酸リチウム、又はニオブ酸リチウムは単結晶であることが好ましく、金属タンタル、又は金属ニオブを実質的に含まないことが好ましい。
本発明の研磨用組成物は全研磨工程に渡って高い研磨速度を維持する事ができる。全研磨工程を8/8とした場合に、研磨装置にセットした研磨用組成物の最初の1/8工程中の研磨速度に対して、最後の2/8工程中の研磨速度が50~80%、又は50~70%、又は50~60%である。
In the present invention, the oxide-based substrate contains lithium tantalate or lithium niobate on at least one surface, i.e., the oxide-based substrate is a lithium tantalate substrate or a lithium niobate substrate, or a composite substrate in which a part or the whole of one surface of the substrate is bonded to lithium tantalate or lithium niobate.
The substrate may be made of lithium tantalate or lithium niobate alone, or may have lithium tantalate or lithium niobate bonded to the entire surface or part of one side of the substrate.
Examples of the substrate to be bonded to the lithium tantalate or lithium niobate include silicon, sapphire, glass, quartz, crystal, and ceramics.
The lithium tantalate or lithium niobate of the present invention is preferably a single crystal, and preferably does not substantially contain metallic tantalum or metallic niobium.
The polishing composition of the present invention can maintain a high polishing rate throughout the entire polishing process. When the entire polishing process is 8/8, the polishing rate during the last 2/8 steps is 50 to 80%, 50 to 70%, or 50 to 60% of the polishing rate during the first 1/8 steps of the polishing composition set in the polishing device.

このように長時間に及ぶ研磨工程において、研磨用組成物を入れ替えずに全研磨工程を高い研磨速度を維持した状態で研磨が可能であるために、硬度の高い基板に対しても効率よく研磨を行う事ができる。また、過酸化水素は分解しやすい成分であるため、所望の濃度を維持するために、研磨工程中で過酸化水素水の添加により過酸化水素を注ぎ足す事ができる。
本発明では過酸化水素を含有する事でキレート剤の含有量を比較的低濃度としても、高い研磨速度が得られる。従って、キレート剤に由来する電解質濃度も低くなり研磨用組成物中のシリカ粒子のゲル化を低減する事ができる。本発明の研磨用組成物は導電率として20000μS/cm以下、又は15000μS/cm以下、又は10000μS/cm以下、又は8000μS/cm以下であり、例えば3000~20000μS/cm、又は3000~15000μS/cm、又は3000~10000μS/cm、又は3000~8000μS/cmに設定する事ができる。
In such a long-term polishing process, the polishing can be performed at a high polishing rate throughout the entire polishing process without replacing the polishing composition, so that even substrates with high hardness can be polished efficiently. In addition, since hydrogen peroxide is a component that easily decomposes, hydrogen peroxide can be added during the polishing process to maintain the desired concentration.
In the present invention, by containing hydrogen peroxide, a high polishing rate can be obtained even if the content of the chelating agent is relatively low. Therefore, the electrolyte concentration derived from the chelating agent is also low, and gelation of silica particles in the polishing composition can be reduced. The polishing composition of the present invention has a conductivity of 20,000 μS/cm or less, or 15,000 μS/cm or less, or 10,000 μS/cm or less, or 8,000 μS/cm or less, and can be set to, for example, 3,000 to 20,000 μS/cm, or 3,000 to 15,000 μS/cm, or 3,000 to 10,000 μS/cm, or 3,000 to 8,000 μS/cm.

・pH:pHメーター(東亞ディーケーケー(株)製)によって測定した。
・窒素吸着法(BET法)による平均一次粒子径:水性シリカゾルを300℃で乾燥して得られたシリカ固形物を粉砕後、さらに乾燥して得られたシリカ粉末について、比表面積値測定装置Monosorb(カンタクローム・インスツルメンツ社製)を用いて得られた比表面積の値を基に算出した。
・動的光散乱法による平均粒子径(DLS平均粒子径):動的光散乱法粒子径測定装置ゼータサイザー ナノ(スペクトリス(株)マルバーン事業部製)によって測定した。測定する水性シリカゾルは、同装置で散乱強度が300~400kcpsとなる濃度まで、塩化ナトリウム水溶液(濃度0.15質量%)で予め希釈した。
pH: Measured using a pH meter (manufactured by DKK-Toa Corporation).
Average primary particle size by nitrogen adsorption method (BET method): The aqueous silica sol was dried at 300° C. to obtain a silica solid, which was then pulverized and further dried to obtain a silica powder. The average primary particle size was calculated based on the specific surface area measured using a specific surface area measurement device, Monosorb (manufactured by Quantachrome Instruments).
Average particle size measured by dynamic light scattering (DLS average particle size): Measured using a dynamic light scattering particle size measuring device Zetasizer Nano (manufactured by the Malvern Division of Spectris Co., Ltd.). The aqueous silica sol to be measured was diluted in advance with an aqueous sodium chloride solution (concentration 0.15% by mass) to a concentration at which the scattering intensity measured by the device was 300 to 400 kcps.

(シリカ粒子とキレート剤とを含む組成物の調製)
(実施例1)
窒素吸着法から求められる平均一次粒子径60nmで動的光散乱法から求められる平均二次粒子径98nmのコロイダルシリカ(シリカゾルに基づくシリカ粒子、日産化学(株)製)10質量%と、キレート剤としてエチレンジアミン四酢酸(キレスト(株)製)11ミリモル/リットル、クエン酸(関東化学(株)製)12ミリモル/リットルを添加し、残部は水と、組成物がpH6.5となる量の塩基性化合物であるアンモニアからなる、シリカ粒子とキレート剤とを含む研磨用組成物を製造した。上記研磨用組成物に、研磨促進剤として濃度30質量%の過酸化水素水を添加量が研磨用組成物中に1.8質量%となるように加え、実施例1の研磨用組成物を作製した。また同様に下表の通りに各研磨用組成物を製造した。
(Preparation of a composition containing silica particles and a chelating agent)
Example 1
A polishing composition containing silica particles and a chelating agent was prepared by adding 10% by mass of colloidal silica (silica particles based on silica sol, manufactured by Nissan Chemical Industries, Ltd.) having an average primary particle diameter of 60 nm as determined by nitrogen adsorption method and an average secondary particle diameter of 98 nm as determined by dynamic light scattering method, 11 mmol/L of ethylenediaminetetraacetic acid (manufactured by Chelest Co., Ltd.) and 12 mmol/L of citric acid (manufactured by Kanto Chemical Industries, Ltd.) as chelating agents, and the remainder being water and ammonia, a basic compound, in an amount that makes the composition pH 6.5. A 30% by mass concentration of hydrogen peroxide water was added to the above polishing composition as a polishing accelerator so that the amount of the added hydrogen peroxide water was 1.8% by mass in the polishing composition, thereby preparing the polishing composition of Example 1. Similarly, each polishing composition was prepared as shown in the table below.

表中、エチレンジアミン四酢酸はEDTA、アンモニアはNH、水酸化ナトリウムはNaOHで示す。BETとはBET法による平均一次粒子径(nm)の値を示し、DLSとは動的光散乱法による平均粒子径(nm)を示す。mモル/Lは、ミリモル/リットルを示す。下記表中ではそれぞれの添加量は本件研磨用組成物の配合割合を示す。
〔表1〕
表1-1
――――――――――――――――――――――――――――――――――――――――研磨用組成物 (コロイダルシリカ) ( キレート剤1 ) ( キレート剤2 )
BET DLS 含有量 種類 含有量 有機酸 含有量
質量% mモル/L mモル/L実施例1 60 98 18 EDTA 11 クエン酸 12
実施例2 60 98 18 EDTA 11 クエン酸 12
実施例3 60 98 18 EDTA 11 クエン酸 12
実施例4 60 98 18 EDTA 11 クエン酸 12
実施例5 60 98 17 EDTA 11 クエン酸 12
実施例6 60 98 18 EDTA 11 クエン酸 12
実施例7 60 98 18 EDTA 11 クエン酸 12
実施例8 60 98 18 EDTA 11 ―― ――
実施例9 60 98 18 EDTA 23 ―― ――
実施例10 60 98 18 EDTA 46 ―― ――
実施例11 60 98 18 EDTA 77 ―― ――
実施例12 60 98 18 EDTA 115 ―― ――
実施例13 60 98 27 EDTA 12 クエン酸 13
実施例14 44 77 18 EDTA 11 クエン酸 12
実施例15 79 134 18 EDTA 11 クエン酸 12
実施例16 110 190 18 EDTA 11 クエン酸 12
実施例17 60 98 18 EDTA 11 クエン酸 12
実施例18 60 98 18 EDTA 11 クエン酸 12
実施例19 60 98 18 EDTA 11 クエン酸 12
実施例20 60 98 20 EDTA 11 ―― ――
実施例21 60 98 20 EDTA 11 シュウ酸 39
――――――――――――――――――――――――――――――――――――――――上記表中、(――)は含有しない事を示す。
In the table, ethylenediaminetetraacetic acid is represented by EDTA, ammonia by NH3 , and sodium hydroxide by NaOH. BET indicates the average primary particle size (nm) by the BET method, and DLS indicates the average particle size (nm) by the dynamic light scattering method. mmol/L indicates millimoles/liter. In the table below, the amount of each additive indicates the blending ratio of the polishing composition of the present invention.
[Table 1]
Table 1-1
------------------------------------------------------------------Polishing composition (Colloidal silica) (Chelating agent 1) (Chelating agent 2)
BET DLS Content Type Content Organic Acid Content
Mass % mmol/L mmol/L Example 1 60 98 18 EDTA 11 Citric acid 12
Example 2 60 98 18 EDTA 11 Citric acid 12
Example 3 60 98 18 EDTA 11 Citric acid 12
Example 4 60 98 18 EDTA 11 Citric acid 12
Example 5 60 98 17 EDTA 11 Citric acid 12
Example 6 60 98 18 EDTA 11 Citric acid 12
Example 7 60 98 18 EDTA 11 Citric acid 12
Example 8 60 98 18 EDTA 11 -- --
Example 9 60 98 18 EDTA 23 -- --
Example 10 60 98 18 EDTA 46 -- --
Example 11 60 98 18 EDTA 77 -- --
Example 12 60 98 18 EDTA 115 -- --
Example 13 60 98 27 EDTA 12 Citric acid 13
Example 14 44 77 18 EDTA 11 Citric acid 12
Example 15 79 134 18 EDTA 11 Citric acid 12
Example 16 110 190 18 EDTA 11 Citric acid 12
Example 17 60 98 18 EDTA 11 Citric acid 12
Example 18 60 98 18 EDTA 11 Citric acid 12
Example 19 60 98 18 EDTA 11 Citric acid 12
Example 20 60 98 20 EDTA 11 -- --
Example 21 60 98 20 EDTA 11 Oxalic acid 39
------------------------------------------------------------------In the table above, (--) indicates that the material is not contained.

〔表2〕
表1-2
――――――――――――――――――――――――――――――――――――――――研磨用組成物 (コロイダルシリカ) ( キレート剤1 ) ( キレート剤2 )
BET DLS 含有量 種類 含有量 有機酸 含有量
質量% mモル/L mモル/L
比較例1 60 98 19 EDTA 11 クエン酸 12
比較例2 60 98 10 EDTA 11 クエン酸 12
比較例3 60 98 19 EDTA 11 クエン酸 12
比較例4 60 98 19 EDTA 2.7 ―― ――
比較例5 60 98 18 EDTA 5.4 ―― ――
比較例6 60 98 18 EDTA 153 ―― ――
比較例7 60 98 10 EDTA 11 クエン酸 11
比較例8 22 34 18 EDTA 11 クエン酸 12
比較例9 60 98 18 EDTA 11 クエン酸 12
比較例10 60 98 18 EDTA 11 クエン酸 12
比較例11 60 98 18 EDTA 11 クエン酸 12
比較例12 60 98 18 ―― ―― クエン酸 12
比較例13 60 98 20 EDTA 11 ―― ――
比較例14 60 98 20 EDTA 11 シュウ酸 39
――――――――――――――――――――――――――――――――――――――――上記表中、(――)は含有しない事を示す。
[Table 2]
Table 1-2
------------------------------------------------------------------Polishing composition (Colloidal silica) (Chelating agent 1) (Chelating agent 2)
BET DLS Content Type Content Organic Acid Content
Mass % mmol/L mmol/L
Comparative Example 1 60 98 19 EDTA 11 Citric acid 12
Comparative Example 2 60 98 10 EDTA 11 Citric acid 12
Comparative Example 3 60 98 19 EDTA 11 Citric acid 12
Comparative Example 4 60 98 19 EDTA 2.7 -- --
Comparative Example 5 60 98 18 EDTA 5.4 -- --
Comparative Example 6 60 98 18 EDTA 153 -- --
Comparative Example 7 60 98 10 EDTA 11 Citric acid 11
Comparative Example 8 22 34 18 EDTA 11 Citric acid 12
Comparative Example 9 60 98 18 EDTA 11 Citric acid 12
Comparative Example 10 60 98 18 EDTA 11 Citric acid 12
Comparative Example 11 60 98 18 EDTA 11 Citric acid 12
Comparative Example 12 60 98 18 -- -- Citric acid 12
Comparative Example 13 60 98 20 EDTA 11 -- --
Comparative Example 14 60 98 20 EDTA 11 Oxalic acid 39
------------------------------------------------------------------In the table above, (--) indicates that the material is not contained.

〔表3〕
表1-3
――――――――――――――――――――――――――――――――――――――――研磨用組成物 塩基性化合物 pH 過酸化水素 導電率
濃度(%) (μS/cm)
実施例1 アンモニア 6.4 1.8 5820
実施例2 アンモニア 6.5 0.5 6090
実施例3 アンモニア 6.4 1.8 5830
実施例4 アンモニア 6.4 3.0 5670
実施例5 アンモニア 6.2 4.0 5360
実施例6 アンモニア 6.1 10.0 5540
実施例7 NaOH 6.4 1.8 4680
実施例8 アンモニア 6.4 1.8 3390
実施例9 アンモニア 6.4 1.8 5650
実施例10 アンモニア 6.6 1.8 9920
実施例11 アンモニア 6.3 1.8 14740
実施例12 アンモニア 6.5 1.8 20200
実施例13 アンモニア 6.4 1.8 6370
実施例14 アンモニア 6.8 1.8 6220
実施例15 アンモニア 6.5 1.8 5600
実施例16 アンモニア 6.4 1.8 5540
実施例17 アンモニア 4.0 1.8 3610
実施例18 アンモニア 5.0 1.8 4350
実施例19 アンモニア 7.0 1.8 6020
実施例20 アンモニア 6.2 1.8 3610
実施例21 アンモニア 6.5 1.8 8260
――――――――――――――――――――――――――――――――――――――――
[Table 3]
Table 1-3
------------------------------------------------------------------Polishing composition Basic compound pH Hydrogen peroxide Electrical conductivity
Concentration (%) (μS/cm)
Example 1 Ammonia 6.4 1.8 5820
Example 2 Ammonia 6.5 0.5 6090
Example 3 Ammonia 6.4 1.8 5830
Example 4 Ammonia 6.4 3.0 5670
Example 5 Ammonia 6.2 4.0 5360
Example 6 Ammonia 6.1 10.0 5540
Example 7 NaOH 6.4 1.8 4680
Example 8 Ammonia 6.4 1.8 3390
Example 9 Ammonia 6.4 1.8 5650
Example 10 Ammonia 6.6 1.8 9920
Example 11 Ammonia 6.3 1.8 14740
Example 12 Ammonia 6.5 1.8 20200
Example 13 Ammonia 6.4 1.8 6370
Example 14 Ammonia 6.8 1.8 6220
Example 15 Ammonia 6.5 1.8 5600
Example 16 Ammonia 6.4 1.8 5540
Example 17 Ammonia 4.0 1.8 3610
Example 18 Ammonia 5.0 1.8 4350
Example 19 Ammonia 7.0 1.8 6020
Example 20 Ammonia 6.2 1.8 3610
Example 21 Ammonia 6.5 1.8 8260
――――――――――――――――――――――――――――――――――――

〔表4〕
表1-4
――――――――――――――――――――――――――――――――――――――――研磨用組成物 塩基性化合物 pH 過酸化水素 導電率
濃度(%) (μS/cm)
比較例1 アンモニア 6.5 ―― 6170
比較例2 アンモニア 6.5 ―― 5600
比較例3 アンモニア 6.5 ―― 6180
比較例4 アンモニア 6.5 1.8 1523
比較例5 アンモニア 6.4 1.8 2220
比較例6 アンモニア 6.4 1.8 24600
比較例7 アンモニア 6.4 1.8 5460
比較例8 アンモニア 6.9 1.8 5170
比較例9 アンモニア 8.0 1.8 6340
比較例10 アンモニア 8.9 1.8 6870
比較例11 アンモニア 6.1 15.0 5440
比較例12 アンモニア 6.4 1.8 3720
比較例13 アンモニア 6.6 ―― 2970
比較例14 アンモニア 6.5 ―― 8480
――――――――――――――――――――――――――――――――――――――――上記表中、(――)は含有しない事を示す。
[Table 4]
Table 1-4
------------------------------------------------------------------Polishing composition Basic compound pH Hydrogen peroxide Electrical conductivity
Concentration (%) (μS/cm)
Comparative Example 1 Ammonia 6.5 -- 6170
Comparative Example 2 Ammonia 6.5 -- 5600
Comparative Example 3 Ammonia 6.5 -- 6180
Comparative Example 4 Ammonia 6.5 1.8 1523
Comparative Example 5 Ammonia 6.4 1.8 2220
Comparative Example 6 Ammonia 6.4 1.8 24600
Comparative Example 7 Ammonia 6.4 1.8 5460
Comparative Example 8 Ammonia 6.9 1.8 5170
Comparative Example 9 Ammonia 8.0 1.8 6340
Comparative Example 10 Ammonia 8.9 1.8 6870
Comparative Example 11 Ammonia 6.1 15.0 5440
Comparative Example 12 Ammonia 6.4 1.8 3720
Comparative Example 13 Ammonia 6.6 -- 2970
Comparative Example 14 Ammonia 6.5 -- 8480
------------------------------------------------------------------In the table above, (--) indicates that the material is not contained.

市販のタンタル酸リチウムウェハーを以下の方法で研磨した。
研磨条件(1)
研磨機:浜井産業社製両面研磨機6BN
圧力:100g/cm
上定盤回転数:0rpm
下定盤回転数:40rpm
研磨パッド:ニッタ・ハース社製SUBA600
研磨用組成物の使用量:2.5L
研磨用組成物の供給速度:1.0L/min
研磨時間:8時間
ウェハー:42°Y-Cutタンタル酸リチウム、直径100mm
ウェハー枚数:3枚
研磨条件(2)
研磨機:浜井産業社製両面研磨機6BN
圧力:100g/cm
上定盤回転数:0rpm
下定盤回転数:40rpm
研磨パッド:ニッタ・ハース社製SUBA600
研磨用組成物の使用量:4.0L
研磨用組成物の供給速度:1.0L/min
研磨時間:1時間
ウェハー:42°Y-Cutタンタル酸リチウム、直径100mm
ウェハー枚数:3枚
Commercially available lithium tantalate wafers were polished in the following manner.
Polishing Conditions (1)
Polishing machine: Hamai Sangyo double-sided polishing machine 6BN
Pressure: 100g/ cm2
Upper platen rotation speed: 0 rpm
Lower platen rotation speed: 40 rpm
Polishing pad: Nitta Haas SUBA600
Amount of polishing composition used: 2.5L
Supply rate of polishing composition: 1.0 L/min
Polishing time: 8 hours Wafer: 42° Y-Cut lithium tantalate, diameter 100 mm
Number of wafers: 3 Polishing conditions (2)
Polishing machine: Hamai Sangyo double-sided polishing machine 6BN
Pressure: 100g/ cm2
Upper platen rotation speed: 0 rpm
Lower platen rotation speed: 40 rpm
Polishing pad: Nitta Haas SUBA600
Amount of polishing composition used: 4.0 L
Supply rate of polishing composition: 1.0 L/min
Polishing time: 1 hour Wafer: 42° Y-Cut lithium tantalate, diameter 100 mm
Number of wafers: 3

(研磨速度の測定方法)
研磨速度は3枚のウェハーの研磨前後での重量減少量の平均値から、ウェハーの密度を7.4g/cmとして算出した。上記研磨条件(1)においては、研磨前後に加え研磨時間1時間時点及び6時間時点でのウェハーの重量も測定し、研磨前から研磨時間1時間にかけてのウェハーの重量減少量から初期研磨速度(全研磨時間の最初の1/8工程中の研磨速度)を、研磨時間6時間から研磨後にかけてのウェハーの重量減少量から終盤研磨速度(全研磨時間の最後の2/8工程中の研磨速度)を、それぞれ算出した。
〔表5〕
表2-1
――――――――――――――――――――――――――――――――――――――――研磨用組成物 研磨条件 初期研磨速度 終盤研磨速度 (終盤研磨速度/
(μm/時間) (μm/時間) 初期研磨速度)の割合
(%)
実施例1 1 2.616 1.350 51.6
実施例2 2 2.626 ―― ――
実施例3 2 2.769 ―― ――
実施例4 2 2.489 ―― ――
実施例5 2 2.383 ―― ――
実施例6 2 2.299 ―― ――
実施例7 2 2.793 ―― ――
実施例8 2 2.870 ―― ――
実施例9 2 2.672 ―― ――
実施例10 2 2.533 ―― ――
実施例11 2 2.558 ―― ――
実施例12 2 2.455 ―― ――
実施例13 2 2.257 ―― ――
実施例14 2 2.300 ―― ――
実施例15 2 2.473 ―― ――
実施例16 2 2.307 ―― ――
実施例17 2 2.532 ―― ――
実施例18 2 2.691 ―― ――
実施例19 2 2.727 ―― ――
実施例20 1 2.922 1.660 56.8
実施例21 1 2.601 1.513 58.2
――――――――――――――――――――――――――――――――――――――――上記表中、(――)は未測定を示す。
(Method of Measuring Polishing Rate)
The polishing rate was calculated from the average weight loss of three wafers before and after polishing, assuming a wafer density of 7.4 g/ cm2 . Under the above polishing condition (1), the weight of the wafer was measured before and after polishing as well as at 1 hour and 6 hours after polishing, and the initial polishing rate (polishing rate during the first 1/8 steps of the total polishing time) was calculated from the weight loss of the wafer from before polishing to 1 hour of polishing, and the final polishing rate (polishing rate during the last 2/8 steps of the total polishing time) was calculated from the weight loss of the wafer from 6 hours of polishing to after polishing.
Table 5
Table 2-1
------------------------------------------------------------------Polishing composition Polishing conditions Initial polishing rate Final polishing rate (Final polishing rate/
(μm/hour) (μm/hour) Initial polishing rate)
(%)
Example 1 1 2.616 1.350 51.6
Example 2 2 2.626 -- --
Example 3 2 2.769 -- --
Example 4 2 2.489 -- --
Example 5 2 2.383 -- --
Example 6 2 2.299 -- --
Example 7 2 2.793 -- --
Example 8 2 2.870 -- --
Example 9 2 2.672 -- --
Example 10 2 2.533 -- --
Example 11 2 2.558 -- --
Example 12 2 2.455 -- --
Example 13 2 2.257 -- --
Example 14 2 2.300 -- --
Example 15 2 2.473 -- --
Example 16 2 2.307 -- --
Example 17 2 2.532 -- --
Example 18 2 2.691 -- --
Example 19 2 2.727 -- --
Example 20 1 2.922 1.660 56.8
Example 21 1 2.601 1.513 58.2
-----------------------------------------------------------------In the table above, (--) indicates not measured.

〔表6〕
表2-2
――――――――――――――――――――――――――――――――――――――――研磨用組成物 研磨条件 初期研磨速度 終盤研磨速度 (終盤研磨速度/
(μm/時間) (μm/時間) 初期研磨速度)の割合
(%)
比較例1 1 2.087 0.956 45.8
比較例2 1 2.077 0.816 39.3
比較例3 2 2.081 ―― ――
比較例4 2 1.887 ―― ――
比較例5 2 2.065 ―― ――
比較例6 2 2.027 ―― ――
比較例7 2 2.041 ―― ――
比較例8 2 0.261 ―― ――
比較例9 2 1.512 ―― ――
比較例10 2 0.951 ―― ――
比較例11 2 2.048 ―― ――
比較例12 2 2.051 ―― ――
比較例13 1 2.334 1.073 46.0
比較例14 1 2.102 0.891 42.4
――――――――――――――――――――――――――――――――――――――――上記表中、(――)は未測定を示す。
Table 6
Table 2-2
------------------------------------------------------------------Polishing composition Polishing conditions Initial polishing rate Final polishing rate (Final polishing rate/
(μm/hour) (μm/hour) Initial polishing rate)
(%)
Comparative Example 1 1 2.087 0.956 45.8
Comparative Example 2 1 2.077 0.816 39.3
Comparative Example 3 2 2.081 -- --
Comparative Example 4 2 1.887 -- --
Comparative Example 5 2 2.065 -- --
Comparative Example 6 2 2.027 -- --
Comparative Example 7 2 2.041 -- --
Comparative Example 8 2 0.261 -- --
Comparative Example 9 2 1.512 -- --
Comparative Example 10 2 0.951 -- --
Comparative Example 11 2 2.048 -- --
Comparative Example 12 2 2.051 -- --
Comparative Example 13 1 2.334 1.073 46.0
Comparative Example 14 1 2.102 0.891 42.4
-----------------------------------------------------------------In the table above, (--) indicates not measured.

本発明の研磨用組成物は高い研磨速度を示すと共に、全研磨工程中で(初期研磨速度)/(終盤研磨速度)の割合が示す通り、当初の研磨速度が研磨工程中で持続させる事が出来るので、硬度の高い基板、例えば酸化物系基板を研磨する時に研磨用組成物を入れ替える必要がなく、効率よく研磨を行う事ができる。また、研磨用組成物に過酸化水素水を添加する事で研磨用組成物を再生する事も可能である。 The polishing composition of the present invention exhibits a high polishing rate, and as shown by the ratio of (initial polishing rate)/(final polishing rate) during the entire polishing process, the initial polishing rate can be maintained throughout the polishing process. Therefore, when polishing a substrate with high hardness, such as an oxide-based substrate, there is no need to replace the polishing composition, and polishing can be performed efficiently. In addition, the polishing composition can be regenerated by adding hydrogen peroxide water to the polishing composition.

本発明はタンタル酸リチウムやニオブ酸リチウム等の高い硬度を有する酸化物系基板を高い研磨速度で研磨可能な研磨用組成物であって、長時間の研磨においても当初の研磨速度に近い研磨速度を維持できる研磨用組成物と、その研磨方法に適用できる。
The present invention is a polishing composition capable of polishing oxide-based substrates having high hardness, such as lithium tantalate or lithium niobate, at a high polishing rate, and is capable of maintaining a polishing rate close to the initial polishing rate even during long-term polishing. The present invention can be applied to a polishing composition and a polishing method using the same.

Claims (14)

シリカ粒子とアミノカルボン酸構造を有するキレート剤と過酸化水素と水とを含む酸化物系基板の研磨用組成物であって、該研磨用組成物中には窒素ガス吸着法による平均一次粒子径が30~120nmのシリカ粒子を14~30質量%、アミノカルボン酸構造を有するキレート剤を8~130ミリモル/リットル、及び過酸化水素を0.5~10質量%の割合で含み、pHが4~7.5であり、
上記酸化物系基板が、タンタル酸リチウム基板若しくはニオブ酸リチウム基板、又は基板の片面の一部乃至全体がタンタル酸リチウム若しくはニオブ酸リチウムと接合した複合基板である、上記研磨用組成物。
A polishing composition for oxide-based substrates, comprising silica particles, a chelating agent having an aminocarboxylic acid structure, hydrogen peroxide, and water, the polishing composition comprising 14 to 30 mass% of silica particles having an average primary particle size of 30 to 120 nm as measured by a nitrogen gas adsorption method, 8 to 130 mmol/L of a chelating agent having an aminocarboxylic acid structure, and 0.5 to 10 mass% of hydrogen peroxide, and having a pH of 4 to 7.5;
The above polishing composition , wherein the oxide-based substrate is a lithium tantalate substrate or a lithium niobate substrate, or a composite substrate in which a part or the whole of one side of a substrate is bonded to lithium tantalate or lithium niobate.
上記研磨用組成物中のシリカ粒子の動的光散乱法による平均粒子径が70~200nmである請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the average particle size of the silica particles in the polishing composition is 70 to 200 nm as measured by dynamic light scattering. 上記アミノカルボン酸構造を有するキレート剤が、エチレンジアミン四酢酸又はその塩である請求項1又は請求項2に記載の研磨用組成物。 The polishing composition according to claim 1 or 2, wherein the chelating agent having an aminocarboxylic acid structure is ethylenediaminetetraacetic acid or a salt thereof. 更に有機酸又はその塩を含む請求項1乃至請求項3のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 3, further comprising an organic acid or a salt thereof. 上記有機酸が、多価カルボン酸又はリン酸構造を有する化合物である請求項4に記載の研磨用組成物。 The polishing composition according to claim 4, wherein the organic acid is a compound having a polycarboxylic acid or phosphoric acid structure. 上記多価カルボン酸が、クエン酸、シュウ酸である請求項5に記載の研磨用組成物。 The polishing composition according to claim 5, wherein the polycarboxylic acid is citric acid or oxalic acid. 上記リン酸構造を有する化合物が、リン酸、ヒドロキシエチリデンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、ホスホノブタントリカルボン酸、又はそれらの塩である請求項5に記載の研磨用組成物。 The polishing composition according to claim 5, wherein the compound having a phosphoric acid structure is phosphoric acid, hydroxyethylidene diphosphonic acid, nitrilotris(methylene phosphonic acid), phosphonobutane tricarboxylic acid, or a salt thereof. 更に塩基として、アンモニア又はアルカリ金属水酸化物を含有する請求項1乃至請求項7
のいずれか1項に記載の研磨用組成物。
8. The method according to claim 1, further comprising the step of:
2. The polishing composition according to claim 1 .
窒素ガス吸着法による平均一次粒子径が30~120nmのシリカ粒子を有する酸性又はアルカリ性の水性シリカゾルと、キレート剤と、過酸化水素水とを同時に又は複数の段階で混合する工程を含む請求項1乃至請求項のいずれか1項に記載の研磨用組成物の製造方法。 9. A method for producing a polishing composition according to any one of claims 1 to 8, comprising a step of mixing an acidic or alkaline aqueous silica sol having silica particles having an average primary particle diameter of 30 to 120 nm as measured by a nitrogen gas adsorption method, a chelating agent, and hydrogen peroxide solution simultaneously or in multiple stages. 下記(A)工程、及び(B)工程;
(A)工程:窒素ガス吸着法による平均一次粒子径が30~120nmのシリカ粒子を有する酸性又はアルカリ性の水性シリカゾルと、キレート剤とを含む水性シリカ分散液を製造する工程(A)、
(B)工程:水性シリカ分散液に過酸化水素水を添加する工程(B)、を含む請求項に記載の研磨用組成物の製造方法。
The following steps (A) and (B):
Step (A): A step (A) of producing an aqueous silica dispersion containing an acidic or alkaline aqueous silica sol having silica particles having an average primary particle diameter of 30 to 120 nm as measured by a nitrogen gas adsorption method, and a chelating agent;
The method for producing the polishing composition according to claim 9 , further comprising: step (B): adding an aqueous hydrogen peroxide solution to the aqueous silica dispersion.
上記キレート剤の添加に併せて、アンモニウム又はアルカリ金属水酸化物からなる塩基を加える請求項又は請求項10に記載の研磨用組成物の製造方法。 11. The method for producing a polishing composition according to claim 9 or 10 , wherein a base made of ammonium or alkali metal hydroxide is added together with the addition of the chelating agent. 請求項1乃至請求項のいずれか1項に記載の研磨用組成物で研磨する酸化物系基板の研磨方法であって、研磨用組成物を入れ替えずに研磨したとき、全研磨工程を8等分した第1乃至第8研磨工程のうちの第1研磨工程(最初の1/8工程)中の研磨速度に対して、第7及び第8研磨工程(最後の2/8工程)中の研磨速度が50~80%である研磨方法。 A method for polishing an oxide-based substrate by using the polishing composition according to any one of claims 1 to 8 , wherein when polishing is performed without replacing the polishing composition, the polishing rate during the seventh and eighth polishing steps (the last 2/8 steps) is 50 to 80% of the polishing rate during the first polishing step (the first 1/8 step) of the first to eighth polishing steps obtained by dividing the entire polishing step into eight equal parts. 研磨直前に、研磨用組成物中の過酸化水素の割合が0.5~10質量%となるように過酸化水素水を添加する請求項12に記載の研磨方法。 13. The polishing method according to claim 12 , wherein immediately before polishing, aqueous hydrogen peroxide is added to the polishing composition so that the ratio of hydrogen peroxide in the polishing composition is 0.5 to 10 mass %. 研磨工程中に研磨用組成物中の上記過酸化水素の割合が0.5~10質量%となるように過酸化水素水を注ぎ足す請求項12に記載の研磨方法。 13. The polishing method according to claim 12 , wherein hydrogen peroxide solution is added during the polishing step so that the ratio of the hydrogen peroxide in the polishing composition is 0.5 to 10 mass %.
JP2020143754A 2019-08-29 2020-08-27 Polishing composition for oxide-based substrates containing hydrogen peroxide Active JP7545106B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019157069 2019-08-29
JP2019157069 2019-08-29

Publications (2)

Publication Number Publication Date
JP2021038389A JP2021038389A (en) 2021-03-11
JP7545106B2 true JP7545106B2 (en) 2024-09-04

Family

ID=74848333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020143754A Active JP7545106B2 (en) 2019-08-29 2020-08-27 Polishing composition for oxide-based substrates containing hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP7545106B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7379789B2 (en) * 2020-03-02 2023-11-15 株式会社タイテム Colloidal silica slurry

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188121A (en) 2001-12-18 2003-07-04 Kao Corp Polishing liquid composition for oxide single-crystal substrate and polishing method using the same
JP2008074990A (en) 2006-09-22 2008-04-03 Nihon Micro Coating Co Ltd Polishing slurry and method
JP2011161570A (en) 2010-02-10 2011-08-25 Asahi Glass Co Ltd Abrasive and polishing method
JP2012235110A (en) 2011-04-28 2012-11-29 Rohm & Haas Electronic Materials Cmp Holdings Inc Chemical mechanical polishing composition and polishing method of germanium-antimony-tellurium alloy
JP2015093932A (en) 2013-11-12 2015-05-18 花王株式会社 Polishing liquid composition for hard and brittle material
WO2017051770A1 (en) 2015-09-25 2017-03-30 山口精研工業株式会社 Abrasive material composition and method for polishing magnetic disk substrate
JP2018032784A (en) 2016-08-25 2018-03-01 山口精研工業株式会社 Polishing composition for silicon carbide substrate
JP2018154789A (en) 2017-03-21 2018-10-04 株式会社フジミインコーポレーテッド Composition for polishing and polishing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188121A (en) 2001-12-18 2003-07-04 Kao Corp Polishing liquid composition for oxide single-crystal substrate and polishing method using the same
JP2008074990A (en) 2006-09-22 2008-04-03 Nihon Micro Coating Co Ltd Polishing slurry and method
JP2011161570A (en) 2010-02-10 2011-08-25 Asahi Glass Co Ltd Abrasive and polishing method
JP2012235110A (en) 2011-04-28 2012-11-29 Rohm & Haas Electronic Materials Cmp Holdings Inc Chemical mechanical polishing composition and polishing method of germanium-antimony-tellurium alloy
JP2015093932A (en) 2013-11-12 2015-05-18 花王株式会社 Polishing liquid composition for hard and brittle material
WO2017051770A1 (en) 2015-09-25 2017-03-30 山口精研工業株式会社 Abrasive material composition and method for polishing magnetic disk substrate
JP2018032784A (en) 2016-08-25 2018-03-01 山口精研工業株式会社 Polishing composition for silicon carbide substrate
JP2018154789A (en) 2017-03-21 2018-10-04 株式会社フジミインコーポレーテッド Composition for polishing and polishing method

Also Published As

Publication number Publication date
JP2021038389A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
CN104979184B (en) Monocrystalline silicon carbide substrate and lapping liquid
JP5385141B2 (en) Method for polishing silicon carbide using soluble oxidizer in water
EP2665792B1 (en) Silicon polishing compositions with improved psd performance
CN103503118B (en) Abrasive and Ginding process
JP5155185B2 (en) Method for producing colloidal silica
JP5564461B2 (en) Polishing composition
US9157011B2 (en) Polishing composition
KR101141178B1 (en) Polishing composition and polishing method
JP2009149493A (en) Nonspherical silica sol, method for producing the same and polishing composition
CN103782370A (en) Polishing agent and polishing method
KR20140109392A (en) Additive for polishing agent, and polishing method
JP4827805B2 (en) Precision polishing composition for hard and brittle materials
JP2001342455A (en) Precision polishing composition for hard brittle material
EP3540761A1 (en) Polishing composition and silicon wafer polishing method
JP7545106B2 (en) Polishing composition for oxide-based substrates containing hydrogen peroxide
WO2012036087A1 (en) Polishing agent and polishing method
JP2017117917A (en) Polishing composition and silicon substrate polishing method
CN107001914A (en) Composition for polishing and the manufacture method using its substrate
TW201321491A (en) Composition for polishing compound semiconductor
JP2011161570A (en) Abrasive and polishing method
JP5464834B2 (en) Polishing silica sol, polishing composition, and method for producing polishing silica sol
JP5940754B1 (en) Polishing liquid composition for sapphire plate
TW201920587A (en) Polishing composition
JP2023156721A (en) Polishing composition of oxide-based substrate containing chelate agent
CN104745094A (en) Chemically mechanical polishing liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240806

R150 Certificate of patent or registration of utility model

Ref document number: 7545106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150