Nothing Special   »   [go: up one dir, main page]

JP7428465B2 - Red phosphor and light emitting device - Google Patents

Red phosphor and light emitting device Download PDF

Info

Publication number
JP7428465B2
JP7428465B2 JP2017140944A JP2017140944A JP7428465B2 JP 7428465 B2 JP7428465 B2 JP 7428465B2 JP 2017140944 A JP2017140944 A JP 2017140944A JP 2017140944 A JP2017140944 A JP 2017140944A JP 7428465 B2 JP7428465 B2 JP 7428465B2
Authority
JP
Japan
Prior art keywords
phosphor
light
wavelength
absorption rate
red phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017140944A
Other languages
Japanese (ja)
Other versions
JP2019019271A (en
Inventor
麻里奈 ▲高▼村
智宏 野見山
雄介 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2017140944A priority Critical patent/JP7428465B2/en
Publication of JP2019019271A publication Critical patent/JP2019019271A/en
Application granted granted Critical
Publication of JP7428465B2 publication Critical patent/JP7428465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、LED(Light Emitting Diode)又はLD(Laser Diode)用の赤色蛍光体、及びこの赤色蛍光体を用いた発光装置に関する。より詳しくは、輝度の高い赤色蛍光体、並びに、当該赤色蛍光体を用いることによる輝度に優れた発光装置に関する。 The present invention relates to a red phosphor for an LED (Light Emitting Diode) or an LD (Laser Diode), and a light emitting device using this red phosphor. More specifically, the present invention relates to a red phosphor with high brightness and a light emitting device with excellent brightness using the red phosphor.

白色LEDは、半導体発光素子と蛍光体との組み合わせにより疑似白色光を発光するデバイスであり、その代表的な例として、青色LEDとYAG黄色蛍光体の組み合わせが知られている。しかし、この方式の白色LEDは、その色度座標値としては白色領域に入るものの、赤色発光成分が不足しているために、照明用途では演色性が低く、液晶バックライトのような画像表示装置では色再現性が悪いという問題がある。そこで、不足している赤色発光成分を補うために、YAG蛍光体とともに、赤色を発光する窒化物又は酸窒化物蛍光体を併用することが提案されている(特許文献1)。 A white LED is a device that emits pseudo white light by combining a semiconductor light emitting element and a phosphor, and a typical example thereof is a combination of a blue LED and a YAG yellow phosphor. However, although this type of white LED falls within the white range in terms of its chromaticity coordinate values, it lacks a red light emitting component, so it has a low color rendering property for lighting applications, and is used in image display devices such as liquid crystal backlights. However, there is a problem with poor color reproducibility. Therefore, in order to compensate for the insufficient red light emitting component, it has been proposed to use a nitride or oxynitride phosphor that emits red light together with the YAG phosphor (Patent Document 1).

赤色を発光する窒化物蛍光体としては、CaAlSiN3結晶相と同一の結晶構造を有する無機化合物を母体結晶として光学活性な元素を付活したものが知られ、なかでもEu2+で付活したCaAlSiN3蛍光体は特に高輝度で発光するとされている(特許文献2)。また、当該文献には、Caの一部をSrで置換することにより、発光ピーク波長が短波長側にシフトした蛍光体が得られることが記載されている。このEu2+付活した(Sr,Ca)AlSiN3蛍光体は、CaAlSiN3窒化物蛍光体よりも発光波長が短く、視感度が高い領域のスペクトル成分が増えることから、高輝度白色LED用の赤色蛍光体として有効である。 Nitride phosphors that emit red light are known to have an inorganic compound having the same crystal structure as the CaAlSiN 3 crystal phase as a host crystal activated with optically active elements . CaAlSiN 3 phosphor is said to emit light with particularly high brightness (Patent Document 2). Further, this document describes that by substituting a part of Ca with Sr, a phosphor whose emission peak wavelength is shifted to the shorter wavelength side can be obtained. This Eu 2+ -activated (Sr,Ca)AlSiN 3 phosphor has a shorter emission wavelength than the CaAlSiN 3 nitride phosphor and increases the spectral components in the region with high visibility, so it is suitable for use in high-brightness white LEDs. Effective as a red phosphor.

近年は照明装置やバックライト装置の更なる高輝度化のため、蛍光体の高輝度化の検討も多くなされている。例えば2価のユーロピウム付活酸窒化物緑色系発光蛍光体であるβ型サイアロン蛍光体では、波長600nmで励起した場合の吸収率を制御することによって、優れた蛍光特性を発現できるといった知見がある(特許文献3)。 In recent years, in order to further increase the brightness of lighting devices and backlight devices, many studies have been made to increase the brightness of phosphors. For example, there is knowledge that β-type Sialon phosphor, which is a divalent europium-activated oxynitride green-emitting phosphor, can exhibit excellent fluorescence characteristics by controlling the absorption rate when excited at a wavelength of 600 nm. (Patent Document 3).

一方、これらの蛍光体を用いて作製された発光素子パッケージにおいても光の吸収の制御に関して検討されており、赤色蛍光体の青色励起光以外の光の吸収を最小化することでパッケージの特性を向上させられることが知られており、この際、青色励起光以外の光の波長の選び方として、パッケージ作製の際に組み合わせる赤色蛍光体以外の蛍光体の蛍光スペクトルに着目する検討がなされている(特許文献4、5、6)。すなわち、特許文献6の図2に示されるような黄色蛍光体の蛍光特性に依存して、その図3(b)に示されるような赤色蛍光体の吸収率を定めることが従来検討されてきた。 On the other hand, control of light absorption in light emitting device packages fabricated using these phosphors is also being studied, and the characteristics of the package can be improved by minimizing the absorption of light other than the blue excitation light of the red phosphor. In this case, as a way to select wavelengths of light other than blue excitation light, consideration is being given to focusing on the fluorescence spectrum of phosphors other than the red phosphor used in package production ( Patent Documents 4, 5, 6). That is, it has been conventionally considered to determine the absorption rate of a red phosphor as shown in FIG. 3(b) depending on the fluorescence characteristics of a yellow phosphor as shown in FIG. 2 of Patent Document 6. .

特開2004-71726号公報JP2004-71726A 国際公開第2005/052087号International Publication No. 2005/052087 国際公開第2011/083671号International Publication No. 2011/083671 特開2016-20486号公報JP2016-20486A 特開2012-109592号公報Japanese Patent Application Publication No. 2012-109592 特開2012-246462号公報Japanese Patent Application Publication No. 2012-246462

しかし上述した従来技術においては、赤色蛍光体を付活するユーロピウムの量を多くして輝度を高めようとしても、蛍光特性を維持できない問題があった。すなわち、従来技術では蛍光特性の担保と高い輝度との両立が難しいという問題を解決できていなかった。このため、従来技術に係る赤色蛍光体を使って白色LEDなどの発光装置を作成しようとすると、組み合わせる他の蛍光体の特性と赤色蛍光体の特性の相性を厳密に調整しないと充分な白色光が得られず、発光装置の製造上の課題となっていた。 However, in the above-mentioned conventional technology, even if an attempt was made to increase the brightness by increasing the amount of europium that activates the red phosphor, there was a problem in that the fluorescent properties could not be maintained. That is, the conventional technology has not been able to solve the problem that it is difficult to maintain both fluorescence characteristics and high brightness. For this reason, when attempting to create a light emitting device such as a white LED using a red phosphor according to the prior art, it is necessary to strictly adjust the compatibility between the characteristics of the other phosphors to be combined and the characteristics of the red phosphor to produce sufficient white light. cannot be obtained, which has been a problem in manufacturing light-emitting devices.

このため当該技術分野では、安定して高い輝度が得られるような赤色蛍光体が、高輝度の発光装置を製造する上で希求されてきている。 Therefore, in this technical field, a red phosphor that can stably provide high luminance is desired for manufacturing high-luminance light emitting devices.

本発明者らは、上記課題を解決すべく鋭意検討した結果、二種類の特定波長で励起したときの吸収率の差の値を制御すると、輝度に優れた赤色蛍光体となることを見出し、本発明をなすに至った。 As a result of intensive studies to solve the above problems, the present inventors discovered that by controlling the value of the difference in absorption rate when excited with two specific wavelengths, a red phosphor with excellent brightness can be obtained. The present invention has been accomplished.

すなわち本発明は、以下を提供できる。 That is, the present invention can provide the following.

(1)一般式:MAlSiN3(MはCa、Srから選ばれる1種以上の元素)で示され、M元素の一部がEu元素で置換されており、主結晶相がCaAlSiN3結晶相と同一の構造を有する蛍光体であって、波長455nmの励起光に対する吸収率をa%、波長700nmの励起光に対する吸収率をb%としたとき、a-b≧85.0%である蛍光体。 (1) General formula: MAlSiN 3 (M is one or more elements selected from Ca and Sr), a part of the M element is replaced with the Eu element, and the main crystal phase is the CaAlSiN 3 crystal phase. Phosphors having the same structure, where the absorption rate for excitation light with a wavelength of 455 nm is a% and the absorption rate for excitation light with a wavelength of 700 nm is b%, a−b≧85.0%. .

(2)Eu含有率が0.40~4.00wt%である上記(1)に記載の蛍光体。 (2) The phosphor according to (1) above, having an Eu content of 0.40 to 4.00 wt%.

(3)M元素が少なくともSrを含有する上記(1)又は(2)に記載の蛍光体。 (3) The phosphor according to (1) or (2) above, wherein the M element contains at least Sr.

(4)85.0%≦a-b≦99.0%である上記(1)乃至(3)に記載の蛍光体。 (4) The phosphor according to any one of (1) to (3) above, wherein 85.0%≦a−b≦99.0%.

(5)上記(1)乃至(4)に記載の蛍光体と、発光素子を有する発光装置。 (5) A light-emitting device comprising the phosphor described in (1) to (4) above and a light-emitting element.

本発明の実施形態によれば、赤色蛍光体としての蛍光特性を保ちつつ、輝度の高いCaAlSiN3系窒化物赤色蛍光体を提供することができ、LED等の発光素子と組み合わせることで高輝度な発光装置を提供することができる。発光装置としては、例えば照明装置、バックライト装置、画像表示装置及び信号装置が挙げられる。また本実施形態に係る赤色蛍光体を使うと、特に白色LED装置を作成する上で、組み合わせる他の蛍光体の特性との相性問題が発生しにくいという効果も奏する。 According to the embodiments of the present invention, it is possible to provide a CaAlSiN 3 -based nitride red phosphor with high brightness while maintaining the fluorescent properties as a red phosphor, and when combined with a light emitting element such as an LED, it is possible to provide a CaAlSiN 3 -based nitride red phosphor with high brightness. A light emitting device can be provided. Examples of the light emitting device include a lighting device, a backlight device, an image display device, and a signal device. Further, when the red phosphor according to the present embodiment is used, especially when producing a white LED device, there is also an effect that problems in compatibility with the characteristics of other phosphors to be combined are less likely to occur.

以下、本発明を実施するための形態について、詳細に説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated in detail.

本明細書においては、別段の断わりが無いかぎりは、数値範囲はその下限値と上限値を含む範囲である。 In this specification, unless otherwise specified, a numerical range is a range that includes its lower limit and upper limit.

本発明の実施形態で提供されるのは、一般式:MAlSiN3(M=Ca、Srから選ばれる1種以上の元素)で示され、M元素の一部がEu元素で置換されており、主結晶相がCaAlSiN3結晶相と同一の構造を有する赤色蛍光体である。本明細書においては、「蛍光体」という文言は、製造者により製造される蛍光体の製品を含む概念である。本明細書において蛍光体の「製品」とは、流通の対象となる品物のことを指し、一般に蛍光体粒子を主とする粒子の集合体であり、光学特性に影響を与えない程度の異相や製造工程上で混入不可避の不純物を含んでいることがある。 The embodiment of the present invention provides a general formula: MAlSiN 3 (M=one or more elements selected from Ca and Sr), in which a part of the M element is replaced with an Eu element, It is a red phosphor whose main crystal phase has the same structure as the CaAlSiN 3 crystal phase. As used herein, the term "phosphor" is a concept that includes phosphor products produced by manufacturers. In this specification, the term "product" of phosphor refers to an item to be distributed, and is generally an aggregate of particles mainly composed of phosphor particles, with different phases or particles that do not affect the optical properties. It may contain impurities that are unavoidable during the manufacturing process.

一般にCaAlSiN3結晶の骨格構造は、(Si,Al)-N4正四面体が結合することにより構成され、その間隙にCa原子が位置したものである。Ca2+のサイトは2価の陽イオンでも置換可能であり、例えばSr2+でも置換可能である。このCa2+で代表される2価の陽イオンが占めるサイトの一部が発光中心として作用するEu2+で置換されると、赤色蛍光体として機能することになる。 In general, the skeletal structure of CaAlSiN 3 crystal is composed of bonded (Si, Al)-N 4 regular tetrahedra, with Ca atoms located in the gaps between them. The Ca 2+ site can also be replaced with a divalent cation, for example, with Sr 2+ . When some of the sites occupied by divalent cations represented by Ca 2+ are replaced with Eu 2+ , which acts as a luminescent center, it functions as a red phosphor.

主結晶相がCaAlSiN3結晶相と同一の結晶構造を有する無機化合物とは、粉末X線回折パターンが、CaAlSiN3結晶と同一の回折パターンが認められるものであり、CaサイトへのSrまたはEuの置換に伴い、ピークシフトするものを含む。また必ずしも単相である必要はなく、発光を阻害しない範囲で異相を含んでいても構わないが、異相の量は後述するように少ない方が好ましい。 An inorganic compound whose main crystal phase has the same crystal structure as the CaAlSiN 3 crystal phase is one in which the powder X-ray diffraction pattern is the same as that of the CaAlSiN 3 crystal, and the inorganic compound has a powder X-ray diffraction pattern that is the same as that of the CaAlSiN 3 crystal. Includes peak shifts due to substitution. Further, it does not necessarily have to be a single phase, and may contain a different phase as long as it does not inhibit light emission, but the amount of the different phase is preferably small, as will be described later.

本発明の実施形態に係る蛍光体は、波長455nmで励起した場合の吸収率(以下、「455nm吸収率」と略記する)をa%、波長700nmで励起した場合の吸収率(以下、「700nm吸収率」と略記する)をb%としたとき、a-b≧85.0%である必要がある。好ましい実施形態においては、85.0%≦a-b≦99.0%であってよく、より好ましくは87.0%≦a-b≦99.0%、さらに好ましくは90.0%≦a-b≦99.0%とすることができる。またある実施形態においては、a-bの値が87.0%≦a-b≦94.0%、または90.0%≦a-b≦94.0%の範囲であってもよい。a-bが85.0%未満であるということは、aの値が小さいもしくはbの値が大きいということであるが、aの値が小さいと発光中心として作用するEuの455nmの波長の吸収率が低く、またbの値が大きいと非発光吸収による発光の阻害が大きいため、いずれにしても十分な輝度が得られない。本発明者は、a-bの値が85.0%以上であるか否かが、MAlSiN3構造を有するEu2+付活蛍光体において輝度性能を左右することを見出し、本発明を完成させたものである。すなわち、a-bの値が85.0%以上であれば、優れた蛍光特性を呈する結晶構造を有する蛍光体が得られる。一方、a-bの値が85.0%未満の場合、結晶構造に歪みが生じて透明性が悪化する、もしくは発光を阻害するような異相の量が無視できないほど多くなる、といった問題が発生する。 The phosphor according to the embodiment of the present invention has an absorption rate of a% when excited at a wavelength of 455 nm (hereinafter abbreviated as "455 nm absorption rate") and an absorption rate of a% when excited at a wavelength of 700 nm (hereinafter referred to as "700 nm absorption rate"). When b% is the absorption rate (abbreviated as “absorption rate”), it is necessary that a−b≧85.0%. In a preferred embodiment, 85.0%≦a-b≦99.0%, more preferably 87.0%≦a-b≦99.0%, even more preferably 90.0%≦a -b≦99.0%. In some embodiments, the value of a-b may be in the range of 87.0%≦a-b≦94.0%, or 90.0%≦a-b≦94.0%. If a-b is less than 85.0%, it means that the value of a is small or the value of b is large. However, if the value of a is small, the absorption of the wavelength of 455 nm by Eu, which acts as a luminescence center. When the ratio is low and the value of b is large, the inhibition of light emission due to non-emission absorption is large, so that sufficient brightness cannot be obtained in any case. The present inventor discovered that whether or not the value of a-b is 85.0% or more affects the brightness performance of the Eu 2+ activated phosphor having the MAlSiN 3 structure, and completed the present invention. It is something that That is, if the value of ab is 85.0% or more, a phosphor having a crystal structure exhibiting excellent fluorescent properties can be obtained. On the other hand, when the value of a-b is less than 85.0%, problems occur such as distortion of the crystal structure and deterioration of transparency, or a non-negligible amount of foreign phases that inhibit light emission. do.

またa-bの値を大きくするためにはaの値を大きくしていく必要があるが、aの値を大きくするためには単純にEu量を増やしていけば良いというわけではない。Euの量が過剰となると濃度消光として知られる損失現象が起こり逆に輝度が低下するからである。すなわち、蛍光体原料に含めるEuの仕込量を増やしていっても、輝度がそれに比例して高まるとは限らない。また蛍光体の用途にも依るが、a-bの値を過度に高くすることは、製造方法を徒に複雑にしてしまうことがある。そのため、より好ましい実施形態においては、濃度消光を起こさず、かつ非発光吸収を抑え、かつ製造方法を簡略化する観点から、赤色蛍光体を発光装置用途に適用させる上でa-bの最大値を99.0%としてもよい。 Furthermore, in order to increase the value of a−b, it is necessary to increase the value of a, but in order to increase the value of a, it is not enough to simply increase the amount of Eu. This is because if the amount of Eu is excessive, a loss phenomenon known as concentration quenching occurs, and the brightness conversely decreases. That is, even if the amount of Eu contained in the phosphor raw material is increased, the brightness does not necessarily increase in proportion to the amount. Also, depending on the use of the phosphor, increasing the value of ab excessively may unnecessarily complicate the manufacturing method. Therefore, in a more preferred embodiment, from the viewpoint of not causing concentration quenching, suppressing non-luminous absorption, and simplifying the manufacturing method, the maximum value of a-b is set when applying the red phosphor to a light-emitting device. may be set to 99.0%.

なお、bを700nm吸収率として定めるのは、以下の理由による。発光装置に使用可能なCaAlSiN3系窒化物蛍光体中に存在するEu2+が赤色光に変換できる波長の光は400nm~700nmであるため、これよりも長波長域に存在する吸収はEu2+の発光に関与しない吸収、つまり母体材料の発光を伴わない吸収となる。ここでCaAlSiN3系窒化物蛍光体において、700nm近傍にて、外部量子効率は低い一方で内部量子効率が高くなりやすいことに本発明者は着目した。波長700nmにおいて母体材料の発光を伴わない吸収が大きいと、内部量子効率が高いので発光にはつながらない光子の生成が増大し、かつエネルギーの浪費が激しくなって、蛍光体としての性能に悪影響を及ぼす。したがって、非発光吸収となる最短波長である700nmにおける吸収を小さくすることにより、赤色蛍光体自体の蛍光特性を保ちつつ輝度を高められる効果を奏することを本発明者は見出した。すなわち、組み合わせる他の蛍光体の特性に依存することなく、赤色蛍光体自体の特性であるaの値およびbの値に基づいて、蛍光特性の担保と高輝度の両立ができるような赤色蛍光体の構造を定めることができる。 The reason why b is defined as the 700 nm absorption rate is as follows. Since the wavelength of light that can be converted into red light by Eu 2+ present in CaAlSiN 3 -based nitride phosphors that can be used in light-emitting devices is 400 nm to 700 nm, absorption in longer wavelength ranges is due to Eu 2 This is absorption that does not involve emission of + , that is, absorption that does not involve emission of the host material. Here, the present inventors have focused on the fact that in the CaAlSiN 3 -based nitride phosphor, the external quantum efficiency is low while the internal quantum efficiency tends to be high near 700 nm. If the host material has large absorption without light emission at a wavelength of 700 nm, the internal quantum efficiency is high, so the generation of photons that do not lead to light emission will increase, and energy will be wasted, which will have a negative impact on the performance as a phosphor. . Therefore, the inventors have found that by reducing the absorption at 700 nm, which is the shortest wavelength at which non-emission absorption occurs, it is possible to increase the brightness while maintaining the fluorescence characteristics of the red phosphor itself. In other words, a red phosphor that can maintain both fluorescence characteristics and high brightness based on the values of a and b, which are the characteristics of the red phosphor itself, without depending on the characteristics of other phosphors to be combined. The structure of can be determined.

700nmよりも長波長側での非発光吸収の割合を制御するには、CaAlSiN3系窒化物蛍光体の結晶性を高めたり、可視光を吸収する不純物や異相を低減したりすればよい。より具体的には、製造時の原料の仕込み比率や、焼成温度、焼成時間(保持時間)、および焼成雰囲気圧力などの焼成条件の設定、ひいては蛍光体の平均粒径などの各種パラメータの組み合わせによって、蛍光体の結晶性を高めかつ不純物や異相を低減することで、a-bの値を適切に調整可能である。 In order to control the proportion of non-radiative absorption at wavelengths longer than 700 nm, it is sufficient to increase the crystallinity of the CaAlSiN 3 -based nitride phosphor or reduce impurities and foreign phases that absorb visible light. More specifically, depending on the combination of various parameters such as the charging ratio of raw materials during manufacturing, firing conditions such as firing temperature, firing time (holding time), and firing atmosphere pressure, and the average particle size of the phosphor. By increasing the crystallinity of the phosphor and reducing impurities and foreign phases, the value of ab can be adjusted appropriately.

またaを455nm吸収率として定めるのは、455nmはCaAlSiN3系窒化物蛍光体における典型的な励起波長であり、その吸収率が蛍光体の輝度を評価する上で適切なパラメータとなるためである。 In addition, a is determined as the 455 nm absorption rate because 455 nm is a typical excitation wavelength for CaAlSiN 3 -based nitride phosphors, and the absorption rate is an appropriate parameter for evaluating the brightness of the phosphor. .

455nm吸収率(a%)は、455nmで励起した場合における450~465nmの波長範囲のスペクトルから励起光フォトン数(Qex)と励起反射光フォトン数(Qref)を算出し、a(%)=((Qex-Qref)/Qex)×100の式より求めたものである。同様に波長700nm(b%)は、700nmで励起した場合における695~710nmの波長範囲のスペクトルから励起光フォトン数(Q´ex)と励起反射光フォトン数(Q´ref)を算出し、b(%)=((Q´ex-Q´ref)/Q´ex)×100の式より求めたものである。 The 455 nm absorption rate (a%) is calculated by calculating the number of excitation light photons (Qex) and the number of excitation reflected light photons (Qref) from the spectrum in the wavelength range of 450 to 465 nm when excited at 455 nm, and a (%) = ( It is obtained from the formula (Qex-Qref)/Qex)×100. Similarly, the wavelength of 700 nm (b%) is determined by calculating the number of excitation light photons ( Q'ex ) and the number of excitation reflected light photons ( Q'ref ) from the spectrum in the wavelength range of 695 to 710nm when excited at 700nm, and b (%)=(( Q'ex - Q'ref )/ Q'ex )×100.

本発明の蛍光体のEu含有率は、0.40~4.00wt%であるのが好ましく、より好ましくは1.00~4.00wt%、さらに好ましくは1.60~3.00wt%とすることができる。Euは蛍光体の発光を担う原子、すなわち発光中心であるから、その含有率が極端に少ない(例えば0.40wt%未満である)と蛍光体としての機能を発揮できないおそれがある。しかしながらEuの含有率が高くなりすぎる(例えば4.00wt%超である)と、Eu原子間のエネルギー伝達による、蛍光体の濃度消光として知られる損失現象が起こるため、逆に蛍光体の輝度が低下する傾向が見られることがある。 The Eu content of the phosphor of the present invention is preferably 0.40 to 4.00 wt%, more preferably 1.00 to 4.00 wt%, even more preferably 1.60 to 3.00 wt%. be able to. Since Eu is an atom responsible for the luminescence of the phosphor, that is, the luminescence center, if its content is extremely low (for example, less than 0.40 wt%), there is a risk that the phosphor will not be able to perform its function. However, if the Eu content becomes too high (for example, over 4.00 wt%), a loss phenomenon known as concentration quenching of the phosphor occurs due to energy transfer between Eu atoms, and the brightness of the phosphor decreases. There may be a tendency for it to decrease.

本発明の蛍光体は、少なくともSrを含むことが好ましい。Srを含有すると、含有しないものに比べ、発光波長が短くなるため、視感度が高い領域のスペクトル成分が増えることから、高輝度白色LED用の赤色蛍光体として有効である。好ましい実施形態においては、蛍光体がCaとSrの両方を含むことができ、M元素中のSrの割合は特に規定されないが、35~45wt%であるのが好ましい。 The phosphor of the present invention preferably contains at least Sr. If Sr is contained, the emission wavelength will be shorter than that without Sr, and the spectral components in the region with high visibility will increase, so it is effective as a red phosphor for high-intensity white LEDs. In a preferred embodiment, the phosphor can contain both Ca and Sr, and the proportion of Sr in the M element is not particularly limited, but is preferably 35 to 45 wt%.

本発明の赤色蛍光体の製造方法は、a-bの値を適切に得られる限りにおいて特に限定はなく、従来のCaAlSiN3系の蛍光体と同様の製造方法を用いつつ、a-bが適切に得られるように製造条件を調整して行うことができる。 The method for producing the red phosphor of the present invention is not particularly limited as long as the value of a - b can be appropriately obtained. This can be done by adjusting the manufacturing conditions so that it can be obtained.

各々の製造方法で製造されるサンプルの状態は、原料配合や焼成条件によって、粉体状、塊状、焼結体と様々であり、解砕、粉砕及び/又は分級操作を組み合わせて焼成物を用途に合わせたサイズの粉末にすることができる。例えばLED用蛍光体として好適に使用する場合には、蛍光体の平均粒径が5~35μmとなる様に調整するのが好ましい。平均粒径が大きすぎる(例えば35μm超である)と、白色LEDとして製造する際の封止樹脂への分散性が悪くなってしまい、輝度が低下し、また製造安定性も低くなる問題がありうる。また平均粒径が小さすぎる(例えば5μm未満である)と、外部量子効率が低下してしまう場合がある。なお本明細書において平均粒径とは、質量メジアン径(D50)のことを指す。質量メジアン径は例えば、JIS R1622:1995およびR1629:1997に準じて、レーザー回折散乱法で測定した累積分布曲線から得られる体積メジアン径から換算・算出することができる。 The state of the samples produced by each manufacturing method varies depending on the raw material composition and firing conditions, such as powder, lumps, and sintered bodies. It can be made into a powder of any size. For example, when it is suitably used as a phosphor for LED, it is preferable to adjust the average particle size of the phosphor to 5 to 35 μm. If the average particle size is too large (for example, more than 35 μm), there is a problem that the dispersibility in the sealing resin becomes poor when manufacturing a white LED, resulting in lower brightness and lower manufacturing stability. sell. Furthermore, if the average particle size is too small (for example, less than 5 μm), the external quantum efficiency may decrease. Note that in this specification, the average particle size refers to the mass median diameter (D 50 ). The mass median diameter can be converted and calculated from the volume median diameter obtained from a cumulative distribution curve measured by a laser diffraction scattering method, for example, according to JIS R1622:1995 and R1629:1997.

本発明の実施形態に係る蛍光体を製造するにあたっての焼成工程での焼成温度は、a-bの適切な値を得られるものであれば特には限定されないが、例えば1500℃以上2000℃以下、より好ましくは1700℃以上2000℃以下、さらに好ましくは1700℃以上1950℃以下の範囲とすることができる。焼成温度が低すぎる(例えば1500℃未満である)場合、原料の未反応残存量が多くなる問題が発生する場合がある。また焼成温度が高すぎる(例えば2000℃超である)場合には、主結晶構造(主相)が分解するおそれがある。 The firing temperature in the firing step in manufacturing the phosphor according to the embodiment of the present invention is not particularly limited as long as it can obtain an appropriate value of a-b, but for example, 1500°C or more and 2000°C or less, More preferably, the temperature range is 1700°C or more and 2000°C or less, and even more preferably 1700°C or more and 1950°C or less. If the firing temperature is too low (for example, less than 1500° C.), a problem may arise in which the amount of unreacted raw materials increases. Furthermore, if the firing temperature is too high (for example, over 2000°C), there is a risk that the main crystal structure (main phase) will decompose.

また当該焼成工程での焼成時間も、a-bの適切な値を得られるものであれば特には限定されないが、例えば1時間以上24時間以下の範囲、好ましくは4時間以上24時間以下の範囲とすることで、原料の未反応残存量を減らし、粒成長不足を少なくすることが可能である。 Further, the firing time in the firing step is not particularly limited as long as it can obtain an appropriate value of a-b, but for example, it is in the range of 1 hour to 24 hours, preferably in the range of 4 hours to 24 hours. By doing so, it is possible to reduce the amount of unreacted raw material remaining and to reduce insufficient grain growth.

また当該焼成工程での焼成雰囲気の圧力も、a-bの適切な値を得られるものであれば特には限定されない。一般に雰囲気圧力が高いほど蛍光体の分解温度は高くなるが、工業的生産性を考慮すると1MPa未満であることが好ましい。 Further, the pressure of the firing atmosphere in the firing step is not particularly limited as long as it can obtain an appropriate value of a−b. Generally, the higher the atmospheric pressure, the higher the decomposition temperature of the phosphor, but in consideration of industrial productivity, it is preferably less than 1 MPa.

蛍光体の製造に当たっては、不純物を除去する目的で酸処理工程、結晶性を向上する目的でアニール処理工程などの後処理工程を更に行っても良い。 In manufacturing the phosphor, post-treatment steps such as an acid treatment step for the purpose of removing impurities and an annealing treatment step for the purpose of improving crystallinity may be further performed.

本発明の蛍光体は、蛍光体と発光素子を有する発光装置に使用することができる。特に350nm以上500nm以下の波長を含有する紫外光や可視光を励起源として照射することにより、波長605nm以上650nm以下にピークを有する発光をするため、紫外LED又は青色LEDといった発光光源と組み合わせることにより、あるいはさらに緑~黄色蛍光体及び/又は青色蛍光体と組み合わせることにより、容易に白色光など目的の発光色が得られる。 The phosphor of the present invention can be used in a light-emitting device having a phosphor and a light-emitting element. In particular, by irradiating ultraviolet light or visible light containing a wavelength of 350 nm or more and 500 nm or less as an excitation source, light emission having a peak at a wavelength of 605 nm or more and 650 nm or less is produced. Alternatively, by further combining with a green to yellow phosphor and/or a blue phosphor, a desired luminescent color such as white light can be easily obtained.

本発明をさらに実施例を示し、詳細に説明する。但し、本発明は実施例に示した内容のみに限定されるものではない。 The present invention will be further explained in detail by showing examples. However, the present invention is not limited to only the contents shown in the examples.

(製造方法)
実施例1の蛍光体の原料として、α型窒化ケイ素粉末(Si34、SN-E10グレード、宇部興産社製)65.6g、窒化アルミニウム粉末(AlN、Eグレード、トクヤマ社製)57.6g、酸化ユーロピウム粉末(Eu23、RUグレード、信越化学工業社製)4.9gを予め予備混合し、次いで水分が1質量ppm以下、酸素分が1質量ppm以下である窒素雰囲気に保持したグローブボックス中で予備混合した混合物に窒化カルシウム粉末(Ca32、Materion社製)9.0g、窒化ストロンチウム粉末(Sr32、純度2N、高純度化学研究所社製)112.9gをさらに加えて乾式混合し、原料混合粉末を得た。この原料混合粉末250.0gを、タンタル製の蓋付き容器に充填した。
(Production method)
As raw materials for the phosphor of Example 1, 65.6 g of α-type silicon nitride powder (Si 3 N 4 , SN-E10 grade, manufactured by Ube Industries, Ltd.) and 57.6 g of aluminum nitride powder (AlN, E grade, manufactured by Tokuyama Corporation) were used. 6g of europium oxide powder (Eu 2 O 3 , RU grade, manufactured by Shin-Etsu Chemical Co., Ltd.) 4.9g were premixed in advance, and then kept in a nitrogen atmosphere with a moisture content of 1 mass ppm or less and an oxygen content of 1 mass ppm or less. 9.0 g of calcium nitride powder (Ca 3 N 2 , manufactured by Materion Co., Ltd.) and 112.9 g of strontium nitride powder (Sr 3 N 2 , purity 2N, manufactured by Kojundo Kagaku Kenkyusho Co., Ltd.) were added to the premixed mixture in a glove box. was further added and dry mixed to obtain a raw material mixed powder. 250.0 g of this raw material mixed powder was filled into a lidded container made of tantalum.

原料混合粉体を充填した容器をグローブボックスから取出し、カーボンヒーターの電気炉に速やかにセットし、炉内を0.1Pa以下まで十分に真空排気した。真空排気したまま、加熱を開始し、600℃で窒素ガスを導入し、炉内雰囲気圧力を0.9MPaとした。ガス導入後1950℃まで昇温し、保持温度を1950℃とし8時間の焼成を行った。 The container filled with the raw material mixed powder was taken out from the glove box and immediately set in an electric furnace with a carbon heater, and the inside of the furnace was sufficiently evacuated to 0.1 Pa or less. Heating was started while the furnace was being evacuated, nitrogen gas was introduced at 600° C., and the atmospheric pressure in the furnace was set to 0.9 MPa. After introducing the gas, the temperature was raised to 1950°C, and the holding temperature was 1950°C, and firing was performed for 8 hours.

冷却後、炉から回収した試料は赤色の塊状物であり、この塊状物を乳鉢で解砕し、目開き75μmの篩を全通させた。 After cooling, the sample recovered from the furnace was a red lump, which was crushed in a mortar and passed through a sieve with an opening of 75 μm.

前記篩を通過した粉末を塩酸と水で洗浄し、乾燥させて実施例1の蛍光体を得た。 The powder that passed through the sieve was washed with hydrochloric acid and water and dried to obtain the phosphor of Example 1.

(結晶構造の確認)
得られた実施例1の蛍光体は、X線回折装置(株式会社リガク製、UltimaIV)を用い、CuKα線を用いた粉末X線回折パターンによりその結晶構造を確認した。この結果、得られた実施例1の蛍光体の粉末X線回折パターンには、CaAlSiN3結晶と同一の回折パターンが認められ、CaAlSiN3結晶相と同一の結晶構造を有する化合物のみが得られていることが分かった。
(Confirmation of crystal structure)
The crystal structure of the obtained phosphor of Example 1 was confirmed by a powder X-ray diffraction pattern using CuKα rays using an X-ray diffraction device (Rigaku Co., Ltd., Ultima IV). As a result, in the powder X-ray diffraction pattern of the obtained phosphor of Example 1, a diffraction pattern identical to that of CaAlSiN 3 crystal was observed, indicating that only a compound having the same crystal structure as the CaAlSiN 3 crystal phase was obtained. I found out that there is.

(Euの定量分析)
得られた実施例1の蛍光体中のEu含有率は、加圧酸分解法により前記蛍光体を溶解させた後、ICP発光分光分析装置(株式会社リガク製、CIROS-120)を用いて定量分析して求めた。その結果、実施例1の蛍光体中のEu含有率は1.61wt%であった。
(Quantitative analysis of Eu)
The Eu content in the obtained phosphor of Example 1 was determined using an ICP emission spectrometer (manufactured by Rigaku Co., Ltd., CIROS-120) after dissolving the phosphor using a pressure acid decomposition method. I analyzed it and found it. As a result, the Eu content in the phosphor of Example 1 was 1.61 wt%.

(吸収率の評価)
蛍光体の吸収率は次の様に測定を行った。まず、反射率が99%の標準反射板(Labsphere社製、CSRT-99-020、スペクトラロン)を積分球に取り付け、この積分球に、発光光源(Xeランプ)から455nmの波長に分光した単色光を光ファイバーを用いて導入した。この単色光を励起源とした励起スペクトルを分光光度計(大塚電子社製、MCPD-7000)を用いて測定した。その際、450~465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。次いで、標準反射板の代わりに凹部のセルに表面が平滑になる様に充填した蛍光体をセットし、蛍光体の蛍光スペクトルを測定、得られたスペクトルデータから励起反射光フォトン数(Qref)を算出した。得られた二種類のフォトン数から、455nm吸収率 a(=((Qex-Qref)/Qex)×100)を求めた。さらに、同様な方法で波長700nmの励起光での励起スペクトル、蛍光スペクトルを測定し、励起光フォトン数(Q´ex)と励起反射光フォトン数(Q´ref)を算出した。この際、励起光フォトン数(Q´ex)は695~710nmの波長範囲のスペクトルから算出した。得られた二種類のフォトン数から、700nm吸収率 b(=((Q´ex-Q´ref)/Q´ex)×100)を求めた。実施例1の蛍光体の波長455nm吸収率aは、96.4%、波長700nm吸収率bは、4.6%であった。
(Evaluation of absorption rate)
The absorption rate of the phosphor was measured as follows. First, a standard reflector (manufactured by Labsphere, CSRT-99-020, Spectralon) with a reflectance of 99% is attached to an integrating sphere, and a monochromatic light beam with a wavelength of 455 nm from an emitting light source (Xe lamp) is attached to the integrating sphere. Light was introduced using optical fibers. The excitation spectrum using this monochromatic light as an excitation source was measured using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., MCPD-7000). At that time, the number of excitation light photons (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm. Next, instead of the standard reflector, a phosphor filled with a smooth surface is set in the recessed cell, the fluorescence spectrum of the phosphor is measured, and the number of excitation reflected light photons (Qref) is calculated from the obtained spectral data. Calculated. From the two types of photon numbers obtained, 455 nm absorption rate a (=((Qex−Qref)/Qex)×100) was determined. Furthermore, the excitation spectrum and fluorescence spectrum using excitation light with a wavelength of 700 nm were measured in the same manner, and the number of excitation light photons (Q'ex) and the number of excitation reflected light photons (Q'ref) were calculated. At this time, the number of excitation light photons (Q'ex) was calculated from the spectrum in the wavelength range of 695 to 710 nm. From the two types of photon numbers obtained, the 700 nm absorption rate b (=((Q'ex-Q'ref)/Q'ex)×100) was determined. The phosphor of Example 1 had an absorption rate a of 96.4% at a wavelength of 455 nm and an absorption rate b of 4.6% at a wavelength of 700 nm.

(蛍光強度の評価)
蛍光強度は、ローダミンBと副標準光源により校正した分光蛍光光度計(日立ハイテクノロジーズ社製、F-7000)を用いて評価した。光度計に付属の固体試料ホルダーを使用し、励起波長455nmでの蛍光スペクトルを求めた。この結果、実施例1の蛍光体が発した蛍光スペクトルのピーク波長は630nmであった。なお蛍光体の輝度は、測定装置や条件によって変化するため、実施例1の蛍光強度の値を100%として、他の実施例、比較例の評価基準とした。本発明では、蛍光強度の値が90%以上であれば、本発明の目的である輝度を満たすと判定した。
(Evaluation of fluorescence intensity)
Fluorescence intensity was evaluated using a spectrofluorometer (manufactured by Hitachi High-Technologies, F-7000) calibrated with Rhodamine B and a secondary standard light source. Using the solid sample holder attached to the photometer, a fluorescence spectrum was determined at an excitation wavelength of 455 nm. As a result, the peak wavelength of the fluorescence spectrum emitted by the phosphor of Example 1 was 630 nm. Note that since the brightness of the phosphor varies depending on the measuring device and conditions, the value of the fluorescence intensity of Example 1 was set as 100% and was used as the evaluation standard for other Examples and Comparative Examples. In the present invention, if the fluorescence intensity value is 90% or more, it is determined that the brightness, which is the objective of the present invention, is satisfied.

実施例1の蛍光体の焼成温度、Eu含有率、蛍光ピーク波長、455nm吸収率a、700nm吸収率b、その差分a-bの値、蛍光スペクトルの発光強度を以下に示す表1にまとめた。 The firing temperature, Eu content, fluorescence peak wavelength, 455 nm absorption rate a, 700 nm absorption rate b, the value of the difference a-b, and the emission intensity of the fluorescence spectrum of the phosphor of Example 1 are summarized in Table 1 shown below. .

Figure 0007428465000001
Figure 0007428465000001

(実施例5)
実施例5は、実施例1と同じ原料粉末を使用し、Si34を62.1g、Ca32を2.8g、Sr32を120.0g、AlNを54.7g、Eu23を10.3gの比率で配合したこと以外は実施例1と同じ条件で作製した。
(Example 5)
In Example 5, the same raw material powder as in Example 1 was used, and 62.1 g of Si 3 N 4 , 2.8 g of Ca 3 N 2 , 120.0 g of Sr 3 N 2 , 54.7 g of AlN, and Eu It was produced under the same conditions as Example 1 except that 2 O 3 was blended at a ratio of 10.3 g.

(比較例1)
比較例1は、実施例1と同じ原料粉末を使用し、Si34を64.7g、Ca32を3.2g、Sr32を124.4g、AlNを56.7g、Eu23を1.0gの比率で配合した。さらに焼成工程でガス導入後1850℃まで昇温し、保持温度を1850℃とし8時間の焼成を行ったこと以外は実施例1と同じ条件で作製した。
(Comparative example 1)
Comparative Example 1 used the same raw material powder as Example 1, including 64.7 g of Si 3 N 4 , 3.2 g of Ca 3 N 2 , 124.4 g of Sr 3 N 2 , 56.7 g of AlN, and Eu 2 O 3 was blended at a ratio of 1.0 g. Further, in the firing process, the temperature was raised to 1850°C after gas introduction, and the holding temperature was 1850°C, and firing was performed for 8 hours.

(比較例2)
比較例2は、実施例1と同じ原料粉末を使用し、Si34を63.1g、Ca32を8.7g、Sr32を108.6g、AlNを55.3g、Eu23を14.3gの比率で配合したこと以外は実施例1と同じ条件で作製した。
(Comparative example 2)
Comparative Example 2 used the same raw material powder as in Example 1, including 63.1 g of Si 3 N 4 , 8.7 g of Ca 3 N 2 , 108.6 g of Sr 3 N 2 , 55.3 g of AlN, and Eu. It was produced under the same conditions as Example 1 except that 2 O 3 was blended at a ratio of 14.3 g.

(実施例2~4、比較例3)
実施例2~4は、焼成工程でガス導入後、それぞれ1900℃、1850℃、1750℃まで昇温し、保持温度をそれぞれ1900℃、1850℃、1750℃とし8時間の焼成を行ったこと、比較例3では、焼成工程でガス導入後1650℃まで昇温し、保持温度を1650℃とし8時間の焼成を行ったこと以外は実施例1と同じ条件で作製した。
(Examples 2 to 4, Comparative Example 3)
In Examples 2 to 4, after the gas was introduced in the firing process, the temperature was raised to 1900 °C, 1850 °C, and 1750 °C, respectively, and the holding temperature was set to 1900 °C, 1850 °C, and 1750 °C, respectively, and firing was performed for 8 hours. Comparative Example 3 was produced under the same conditions as Example 1, except that the temperature was raised to 1650°C after gas introduction in the firing process, and the holding temperature was 1650°C and firing was performed for 8 hours.

実施例2~4、比較例1~3で得られた蛍光体をX線回折装置にて結晶構造を確認したところ、いずれもCaAlSiN3結晶相と同一の結晶構造を有する化合物が得られていることが分かった。また実施例2~4、及び比較例1~3で得られた蛍光体のEu含有率、蛍光ピーク波長、455nm吸収率a、700nm吸収率b、その差分a-b、発光強度を、実施例1と同様に測定し、その結果を表1に示した。なお、同じ配合比でEu源を加えた実施例1~4で、焼成温度が高くなるにつれてEu含有率が小さくなっていたことについては、焼成時にEu23等として揮発した量が増加し、その結果得られた蛍光体中のEu含有率が低下したためと考えられる。この結果からは、a-bの制御がEu量の多寡のみで決まるわけではないことが裏づけられる。すなわち本明細書に言うa-bの値は、結晶構造の歪みの程度や異相の量、異相との混合状態、不純物の多寡といった要素を含む、赤色蛍光体の製品としての構成を反映する指標であると言うこともできる。すなわち本発明の実施形態に係る赤色蛍光体は、そのa-bの値から、従来技術に係る赤色蛍光体とは製品としての構成が異なるものであると考えることができる。 When the crystal structures of the phosphors obtained in Examples 2 to 4 and Comparative Examples 1 to 3 were confirmed using an X-ray diffraction device, compounds having the same crystal structure as the CaAlSiN 3 crystal phase were obtained in each case. That's what I found out. In addition, the Eu content, fluorescence peak wavelength, 455 nm absorption rate a, 700 nm absorption rate b, difference a-b, and emission intensity of the phosphors obtained in Examples 2 to 4 and Comparative Examples 1 to 3 were Measurements were made in the same manner as in 1, and the results are shown in Table 1. In addition, in Examples 1 to 4 in which the Eu source was added at the same blending ratio, the Eu content decreased as the firing temperature increased, because the amount volatilized as Eu 2 O 3 etc. during firing increased. This is thought to be due to a decrease in the Eu content in the resulting phosphor. This result confirms that the control of a-b is not determined only by the amount of Eu. In other words, the value of a-b referred to in this specification is an index that reflects the composition of the red phosphor as a product, including factors such as the degree of distortion of the crystal structure, the amount of foreign phases, the state of mixing with foreign phases, and the amount of impurities. It can also be said that That is, the red phosphor according to the embodiment of the present invention can be considered to have a different structure as a product from the red phosphor according to the prior art based on the value of ab.

表1に示される実施例、比較例の結果から、a-bを特定の範囲に規定した本発明の赤色蛍光体は、蛍光強度が相対的に高いことが判る。 From the results of Examples and Comparative Examples shown in Table 1, it can be seen that the red phosphor of the present invention in which a-b is defined within a specific range has relatively high fluorescence intensity.

本発明のCaAlSiN3系の蛍光体は、青色光により励起され、高輝度の赤色発光を示すことから、青色光を光源とする白色LED用蛍光体として好適に使用できるものであり、照明器具、画像表示装置などの発光装置に好適に使用できる。 The CaAlSiN 3 -based phosphor of the present invention is excited by blue light and emits high-intensity red light, so it can be suitably used as a phosphor for white LEDs that use blue light as a light source, and can be used in lighting equipment, It can be suitably used for light emitting devices such as image display devices.

Claims (3)

一般式:MAlSiN3(MはCa、Srから選ばれる1種以上の元素)で示され、M元素の一部がEu元素で置換されており、主結晶相がCaAlSiN3結晶相と同一の構造を有する蛍光体であって、波長455nmの励起光に対する吸収率をa%、波長700nmの励起光に対する吸収率をb%としたとき、91.8%≦a-b≦93.8%であり、
Eu含有率が1.61~2.81wt%である蛍光体。
General formula: MAlSiN 3 (M is one or more elements selected from Ca and Sr), part of the M element is replaced with Eu element, and the main crystal phase has the same structure as the CaAlSiN 3 crystal phase. 91.8 %≦a−b≦93.8%, where the absorption rate for excitation light with a wavelength of 455 nm is a% and the absorption rate for excitation light with a wavelength of 700 nm is b%. ,
A phosphor having an Eu content of 1.61 to 2.81 wt%.
M元素が少なくともSrを含有する請求項1に記載の蛍光体。 The phosphor according to claim 1, wherein the M element contains at least Sr. 請求項1又は2に記載の蛍光体と、発光素子を有する発光装置。 A light-emitting device comprising the phosphor according to claim 1 or 2 and a light-emitting element.
JP2017140944A 2017-07-20 2017-07-20 Red phosphor and light emitting device Active JP7428465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140944A JP7428465B2 (en) 2017-07-20 2017-07-20 Red phosphor and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140944A JP7428465B2 (en) 2017-07-20 2017-07-20 Red phosphor and light emitting device

Publications (2)

Publication Number Publication Date
JP2019019271A JP2019019271A (en) 2019-02-07
JP7428465B2 true JP7428465B2 (en) 2024-02-06

Family

ID=65355216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140944A Active JP7428465B2 (en) 2017-07-20 2017-07-20 Red phosphor and light emitting device

Country Status (1)

Country Link
JP (1) JP7428465B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430183B2 (en) 2019-06-28 2024-02-09 デンカ株式会社 Phosphor plate and light emitting device using it
JP7541233B2 (en) 2020-08-31 2024-08-28 日亜化学工業株式会社 Nitride phosphor and light emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262574A (en) 2006-02-28 2007-10-11 Mitsubishi Chemicals Corp Phosphor raw material and method for producing alloy for phosphor raw material
JP2008285662A (en) 2007-04-18 2008-11-27 Mitsubishi Chemicals Corp Method for producing inorganic substance, phosphor, phosphor-including composition, emission device, illumination device, and image display device
JP2014077027A (en) 2012-10-09 2014-05-01 Denki Kagaku Kogyo Kk Method for producing fluorescent substance
WO2015002139A1 (en) 2013-07-03 2015-01-08 電気化学工業株式会社 Phosphor and light emitting device
JP2015142056A (en) 2014-01-29 2015-08-03 日亜化学工業株式会社 semiconductor light-emitting device
JP2015163689A (en) 2014-01-29 2015-09-10 日亜化学工業株式会社 Fluophor and light emitting device using the same
JP2015189789A (en) 2014-03-27 2015-11-02 三菱化学株式会社 Phosphor, phosphor-containing composition, light emitting device, image display device and illumination device
JP2017043761A (en) 2015-08-28 2017-03-02 日亜化学工業株式会社 Nitride phosphor, method for producing the same, and light-emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367218B2 (en) * 2006-11-24 2013-12-11 シャープ株式会社 Method for manufacturing phosphor and method for manufacturing light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262574A (en) 2006-02-28 2007-10-11 Mitsubishi Chemicals Corp Phosphor raw material and method for producing alloy for phosphor raw material
JP2008285662A (en) 2007-04-18 2008-11-27 Mitsubishi Chemicals Corp Method for producing inorganic substance, phosphor, phosphor-including composition, emission device, illumination device, and image display device
JP2014077027A (en) 2012-10-09 2014-05-01 Denki Kagaku Kogyo Kk Method for producing fluorescent substance
WO2015002139A1 (en) 2013-07-03 2015-01-08 電気化学工業株式会社 Phosphor and light emitting device
JP2015142056A (en) 2014-01-29 2015-08-03 日亜化学工業株式会社 semiconductor light-emitting device
JP2015163689A (en) 2014-01-29 2015-09-10 日亜化学工業株式会社 Fluophor and light emitting device using the same
JP2015189789A (en) 2014-03-27 2015-11-02 三菱化学株式会社 Phosphor, phosphor-containing composition, light emitting device, image display device and illumination device
JP2017043761A (en) 2015-08-28 2017-03-02 日亜化学工業株式会社 Nitride phosphor, method for producing the same, and light-emitting device

Also Published As

Publication number Publication date
JP2019019271A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP5150631B2 (en) Nitridosilicate species phosphor and light source having the phosphor
US20110279017A1 (en) Oxycarbonitride Phosphors and Light Emitting Devices Using the Same
JPWO2020054351A1 (en) Fluorescent material and light emitting device
KR20080081058A (en) Yellow light-emitting phosphor and white light-emitting device using same
WO2015002139A1 (en) Phosphor and light emitting device
JP2011174015A (en) beta-TYPE SIALON PHOSPHOR, APPLICATION THEREOF, AND METHOD FOR PRODUCING beta-TYPE SIALON PHOSPHOR
JP2010241995A (en) beta-TYPE SIALON PHOSPHOR, METHOD FOR PRODUCING THE SAME AND APPLICATION OF THE SAME
WO2020261691A1 (en) Fluorescent body, method for manufacturing same, and light-emitting device using same
JP6997611B2 (en) Method for producing β-type sialon phosphor
US20160223147A1 (en) Light emitting device
WO2016063965A1 (en) Phosphor, light-emitting device, lighting device, and image display device
TWI822425B (en) Phosphors, light-emitting devices, lighting devices, image display devices and vehicle display lamps
JP7428465B2 (en) Red phosphor and light emitting device
WO2017155111A1 (en) Phosphor, light-emitting element, and light-emitting device
JP5402008B2 (en) Phosphor production method, phosphor, and light emitting device using the same
TWI796370B (en) Red Phosphor and Light-Emitting Device
JP2010196049A (en) Phosphor and method for producing the same, phosphor-containing composition, and light-emitting device, image display device and lighting device using the phosphor
JP5874198B2 (en) Phosphor, method for producing phosphor, and light emitting device using the phosphor
JP2013249466A (en) Oxynitride-based phosphor and light-emitting device using the same
JP2018150433A (en) Orange phosphor and light-emitting device
TWI855949B (en) Fluorescent body, light-emitting device, lighting device, image display device, and vehicle display lamp
JP2020517766A (en) Phosphor with narrow green emission
JP5697387B2 (en) Method for producing β-sialon
WO2024166578A1 (en) Phosphor, light-emitting device, lighting device, image display device, and vehicle indicator lamp
WO2024142450A1 (en) Light-emitting device, lighting device, image display device, and indicator lamp for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220307

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220308

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220513

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240125

R150 Certificate of patent or registration of utility model

Ref document number: 7428465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150