Nothing Special   »   [go: up one dir, main page]

JP7464498B2 - Photosensitive resin composition containing epoxy resin and its cured product - Google Patents

Photosensitive resin composition containing epoxy resin and its cured product Download PDF

Info

Publication number
JP7464498B2
JP7464498B2 JP2020180372A JP2020180372A JP7464498B2 JP 7464498 B2 JP7464498 B2 JP 7464498B2 JP 2020180372 A JP2020180372 A JP 2020180372A JP 2020180372 A JP2020180372 A JP 2020180372A JP 7464498 B2 JP7464498 B2 JP 7464498B2
Authority
JP
Japan
Prior art keywords
compound
photosensitive resin
epoxy
formula
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020180372A
Other languages
Japanese (ja)
Other versions
JP2022071418A (en
Inventor
大樹 加賀
貴文 水口
麻央 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2020180372A priority Critical patent/JP7464498B2/en
Priority to KR1020210135846A priority patent/KR20220056794A/en
Priority to TW110139881A priority patent/TW202227520A/en
Priority to CN202111253397.1A priority patent/CN114488689A/en
Publication of JP2022071418A publication Critical patent/JP2022071418A/en
Application granted granted Critical
Publication of JP7464498B2 publication Critical patent/JP7464498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/016Diazonium salts or compounds
    • G03F7/021Macromolecular diazonium compounds; Macromolecular additives, e.g. binders
    • G03F7/0212Macromolecular diazonium compounds; Macromolecular additives, e.g. binders characterised by the polymeric binder or the macromolecular additives other than the diazo resins or the polymeric diazonium compounds
    • G03F7/0217Polyurethanes; Epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

本発明は、エポキシ樹脂を含有する感光性樹脂組成物及びその硬化物に関する。 The present invention relates to a photosensitive resin composition containing an epoxy resin and a cured product thereof.

近年、電子情報機器の小型化に伴い、回路基板として軽い・薄い・柔軟である等の特徴から、所謂フレキシブルプリント基板の使用が増大している。フレキシブルプリント基板は文字通りにフレキシブルであるために、これに用いられる材料には、アルカリ現像による光パターニングの特性を有し、高い感度、密着性、耐傷性、高い機械的・熱的・電気的強度等の必要特性を持ちながら、フレキシブル基板に追従できる高い柔軟性と配線を保護しうる弾性率を有した強靭な皮膜の形成が要求される。 In recent years, with the miniaturization of electronic information devices, the use of so-called flexible printed circuit boards has increased due to their characteristics as light, thin, and flexible circuit boards. Since flexible printed circuit boards are literally flexible, the materials used for them are required to have the characteristics of photopatterning by alkaline development, and to form a tough coating with the necessary properties such as high sensitivity, adhesion, scratch resistance, and high mechanical, thermal, and electrical strength, while also having high flexibility to follow the flexible board and an elastic modulus that can protect the wiring.

一般的に優れた感度や硬化性、耐薬品性、耐熱性等の特性は、剛直な骨格を有する主鎖に、より多くの反応性基を導入し、高い架橋密度を付与することで達成される。通常のソルダーレジスト、ディスプレイ用のカラーレジストやハードコート等の用途においては、このような樹脂が好適に用いられてきた。しかしながら、これではフレキシブル基板に求められるような柔軟性を付与することはできない。 In general, excellent properties such as sensitivity, curability, chemical resistance, and heat resistance are achieved by introducing many reactive groups into a main chain with a rigid skeleton, thereby imparting a high crosslinking density. Such resins have been used favorably in applications such as ordinary solder resists, color resists for displays, and hard coats. However, this does not impart the flexibility required for flexible substrates.

一方、柔軟性を付与するためには、柔軟な主鎖骨格の導入もしくは反応性基を控えめに導入する、即ち、架橋密度を適度に低減することで達成されてきた。しかしながら、このような樹脂は耐熱性、弾性率が不十分であり、折り曲がったフレキシブル基板に追従した際に基板を保護できる強靭性が足りない。このように、これらの特性はそれぞれ相反するものであり、フレキシブル基板等のソルダーレジスト材料にはこれらの特性を融合する材料が求められ、従来はエポキシアクリレート系材料が主に用いられてきた。しかしながら、この材料は耐薬品性、耐熱性等の特性には優れるものの、柔軟性は不十分であった。従って、フレキシブル基板に適用できるような耐熱性、高い弾性率、柔軟性を併せ持つ強靭な皮膜を得ることは困難であり、更なる皮膜形成材料が望まれていた。 On the other hand, flexibility has been achieved by introducing a flexible main chain skeleton or introducing reactive groups sparingly, i.e., by moderately reducing the crosslink density. However, such resins have insufficient heat resistance and elastic modulus, and are not strong enough to protect the substrate when they follow a bent flexible substrate. As such, these properties are mutually exclusive, and materials that combine these properties are required for solder resist materials for flexible substrates, etc., and epoxy acrylate-based materials have been mainly used in the past. However, although this material has excellent properties such as chemical resistance and heat resistance, its flexibility is insufficient. Therefore, it is difficult to obtain a tough coating that has heat resistance, high elastic modulus, and flexibility that can be applied to flexible substrates, and further coating-forming materials are desired.

これらの問題を解決する試みとして、二官能の不飽和エポキシカルボキシレート化合物、一分子中に二個の水酸基と一個以上のカルボキシ基を併せ持つ化合物、ジイソシアネート化合物を反応させ得られる反応性ウレタン化合物が特許文献1に記載されている。この反応性ウレタン化合物は、従来のエポキシアクリレート系材料と比較すれば良好な柔軟性と耐熱性を有するが、現在求められている更に高い柔軟性を発揮させることはできない。 In an attempt to solve these problems, Patent Document 1 describes a reactive urethane compound obtained by reacting a bifunctional unsaturated epoxy carboxylate compound, a compound having two hydroxyl groups and one or more carboxyl groups in one molecule, and a diisocyanate compound. This reactive urethane compound has good flexibility and heat resistance compared to conventional epoxy acrylate-based materials, but is unable to exhibit the higher flexibility currently required.

又、柔軟性の付与を目的として特許文献2では硬化剤に1分子中に1個以上の内部エポキシド基を有するポリブタジエンを使用した組成物が提案されている。この組成物は伸度、耐熱性には優れているが弾性率が低下してしまい、十分な強靭性を得ることができない。 In addition, in order to impart flexibility, Patent Document 2 proposes a composition that uses a polybutadiene having one or more internal epoxide groups per molecule as a curing agent. This composition has excellent elongation and heat resistance, but the elastic modulus is reduced and sufficient toughness cannot be obtained.

特開平9-52925号公報Japanese Patent Application Laid-Open No. 9-52925 特開2002-293882号公報JP 2002-293882 A

本発明の課題は、活性エネルギー線に対する感光性に優れ、微細な画像を希アルカリ水溶液による現像によりパターン形成できると共に、高絶縁性で密着性、耐熱性を有しつつ、優れた柔軟性、弾性率の強靭な膜を形成できる樹脂組成物及びその硬化物を提供することにある。 The objective of the present invention is to provide a resin composition and its cured product that has excellent photosensitivity to active energy rays, can form a pattern of fine images by development with a dilute alkaline aqueous solution, and can form a tough film with high insulation, adhesion, and heat resistance, as well as excellent flexibility and elasticity.

本発明者らは、前記の課題を解決するため、感光性樹脂組成物について鋭意研究の結果、本発明を完成するに至った。
即ち、本発明は、下記(1)~(10)に関する。
(1)カルボキシ基含有感光性樹脂(A)、架橋剤(B)、光重合開始剤(C)及び硬化剤として下記一般式(1)で表されるエポキシ樹脂(D)を含有する感光性樹脂組成物。
In order to solve the above problems, the present inventors have intensively studied photosensitive resin compositions and have completed the present invention.
That is, the present invention relates to the following (1) to (10).
(1) A photosensitive resin composition comprising a carboxyl group-containing photosensitive resin (A), a crosslinking agent (B), a photopolymerization initiator (C), and an epoxy resin (D) represented by the following general formula (1) as a curing agent:

Figure 0007464498000001
(式(1)中、複数存在するArは、独立して式(X)
Figure 0007464498000001
In formula (1), each of a plurality of Ar's independently represents a group represented by formula (X)

Figure 0007464498000002
または式(Y)
Figure 0007464498000002
Or formula (Y)

Figure 0007464498000003
(式(Y)中Rは独立して、水素原子、炭素数1~2のアルキル基、アリル基またはフェニル基を表し、少なくとも1つは水素原子以外である。)
で表される結合基を示し、式(X)と式(Y)は任意に選択可能であるが、1分子中に式(X)と式(Y)を少なくとも1個含む。nは繰り返し数の平均値であり、1≦n<20である。)
Figure 0007464498000003
(In formula (Y), R independently represents a hydrogen atom, an alkyl group having 1 to 2 carbon atoms, an allyl group, or a phenyl group, and at least one R is other than a hydrogen atom.)
Formula (X) and formula (Y) can be arbitrarily selected, but at least one of formula (X) and formula (Y) is contained in one molecule. n is the average number of repetitions, and 1≦n<20.)

(2)カルボキシ基含有感光性樹脂(A)が、1分子中に2個のエポキシ基を有するエポキシ化合物(a)と1分子中にエチレン性不飽和基を有するモノカルボン酸(b)とを反応させて得られる不飽和エポキシカルボキシレート化合物(c)と、ジイソシアネート化合物(d)、1分子中に2個の水酸基を有するカルボン酸(e)及び、必要に応じて任意のポリエステルジオール化合物(f)を反応させて得られるポリウレタン化合物(A1)である上記(1)に記載の感光性樹脂組成物。 (2) The photosensitive resin composition according to (1) above, in which the carboxyl group-containing photosensitive resin (A) is an unsaturated epoxy carboxylate compound (c) obtained by reacting an epoxy compound (a) having two epoxy groups in one molecule with a monocarboxylic acid (b) having an ethylenically unsaturated group in one molecule, and a polyurethane compound (A1) obtained by reacting a diisocyanate compound (d), a carboxylic acid (e) having two hydroxyl groups in one molecule, and, if necessary, an optional polyester diol compound (f).

(3)カルボキシ基含有感光性樹脂(A)が、ポリウレタン化合物(A1)に多塩基酸無水物(g)を反応させて得られる酸変性型ポリウレタン化合物(A2)である上記(2)に記載の感光性樹脂組成物。 (3) The photosensitive resin composition according to (2) above, in which the carboxyl group-containing photosensitive resin (A) is an acid-modified polyurethane compound (A2) obtained by reacting a polyurethane compound (A1) with a polybasic acid anhydride (g).

(4)カルボキシ基含有感光性樹脂(A)が、1分子中に2個以上のエポキシ基を有するエポキシ化合物(a’)と分子中にエチレン性不飽和基を有するモノカルボン酸(b)とを反応させて得られる不飽和エポキシカルボキシレート化合物(c’)と、多塩基酸無水物(g)との反応生成物(A3)である上記(1)に記載の感光性樹脂組成物。 (4) The photosensitive resin composition according to (1) above, in which the carboxyl group-containing photosensitive resin (A) is a reaction product (A3) of an unsaturated epoxy carboxylate compound (c') obtained by reacting an epoxy compound (a') having two or more epoxy groups in one molecule with a monocarboxylic acid (b) having an ethylenically unsaturated group in the molecule, and a polybasic acid anhydride (g).

(5)両末端のArが式(Y)である上記(1)~(4)のいずれか一項に記載の感光性樹脂組成物。 (5) A photosensitive resin composition according to any one of (1) to (4) above, in which Ar at both ends is represented by formula (Y).

(6)式(1)中、Rが全てメチル基である上記(1)~(5)のいずれか一項に記載のエポキシ感光性樹脂組成物。 (6) An epoxy photosensitive resin composition according to any one of (1) to (5) above, in which all R in formula (1) are methyl groups.

(7)レジスト用材料である(1)~(6)のいずれか一項に記載の感光性樹脂組成物。 (7) A photosensitive resin composition according to any one of (1) to (6), which is a resist material.

(8)上記(1)~(7)のいずれか一項に記載の感光性樹脂組成物の硬化物。 (8) A cured product of the photosensitive resin composition described in any one of (1) to (7) above.

カルボキシ基含有感光性樹脂、架橋剤、光重合開始剤及び硬化剤を含み、硬化剤としてエポキシ樹脂が一般式(1)の構造を有する化合物を用いて得られた感光性樹脂組成物は、紫外線により露光硬化することによる塗膜の形成において、光感度に優れ、現像可能であり、得られた硬化物は、耐熱性、弾性率、柔軟性に優れている。 The photosensitive resin composition contains a carboxyl group-containing photosensitive resin, a crosslinking agent, a photopolymerization initiator, and a curing agent, and is obtained by using an epoxy resin as the curing agent, which is a compound having the structure of general formula (1). The photosensitive resin composition has excellent photosensitivity when it is cured by exposure to ultraviolet light to form a coating film, and is developable. The obtained cured product has excellent heat resistance, elasticity, and flexibility.

本発明で硬化剤として用いられるエポキシ樹脂(D)は下記一般式(1)で表されることを特徴とする。 The epoxy resin (D) used as a curing agent in the present invention is characterized by being represented by the following general formula (1).

Figure 0007464498000004
(式(1)中、複数存在するArは、独立して式(X)
Figure 0007464498000004
In formula (1), each of a plurality of Ar's independently represents a group represented by formula (X)

Figure 0007464498000005
または式(Y)
Figure 0007464498000005
Or formula (Y)

Figure 0007464498000006
(式(Y)中Rは独立して、水素原子、炭素数1~2のアルキル基、アリル基またはフェニル基を表し、少なくとも1つは水素原子以外である。)
で表される結合基を示し、式(X)と式(Y)は任意に選択可能であるが、1分子中に式(X)と式(Y)を少なくとも1個含む。nは繰り返し数の平均値であり、1≦n<20である。)
Figure 0007464498000006
(In formula (Y), R independently represents a hydrogen atom, an alkyl group having 1 to 2 carbon atoms, an allyl group, or a phenyl group, and at least one R is other than a hydrogen atom.)
Formula (X) and formula (Y) can be arbitrarily selected, but at least one of formula (X) and formula (Y) is contained in one molecule. n is the average number of repetitions, and 1≦n<20.)

本発明に用いるエポキシ樹脂(D)は前記式(1)で表され、通常は常温で固体の樹脂状である。繰り返し単位数の大きな高分子量体である方が、応力が分散しやすく、より強靭になりやすい。前記式(1)中のnの平均値はGPCのチャートの面積比によって求めることができる。nの平均値は1≦n<50が好ましく、より好ましくは1≦n<20であり、さらに好ましくは1≦n<10である。nの平均値が1より小さい場合、硬化物は脆くなりやすく、20より大きい場合樹脂がゲル化する可能性が有る。
また、軟化点は40~200℃が好ましく、より好ましくは40~180℃である。40℃以下である場合、半固形で取り扱いが難しい。200℃を超える場合、組成物を調整する際に混練が困難である等の問題が生じるおそれがある。
さらに、エポキシ当量は300~2000g/eqが好ましく、より好ましくは、300~1000g/eqである。エポキシ当量が300g/eqより小さい場合は、架橋密度が高いが故に硬化物が脆くなりやすく、2000g/eqより大きい場合は、耐熱性が発揮されないおそれがある。
The epoxy resin (D) used in the present invention is represented by the above formula (1) and is usually a solid resin at room temperature. A high molecular weight resin with a large number of repeating units is more likely to disperse stress and become stronger. The average value of n in the above formula (1) can be determined by the area ratio of a GPC chart. The average value of n is preferably 1≦n<50, more preferably 1≦n<20, and even more preferably 1≦n<10. If the average value of n is less than 1, the cured product is likely to be brittle, and if it is more than 20, the resin may gel.
The softening point is preferably 40 to 200° C., more preferably 40 to 180° C. If it is 40° C. or lower, it will be semi-solid and difficult to handle, while if it exceeds 200° C., problems such as difficulty in kneading when preparing the composition may occur.
Furthermore, the epoxy equivalent is preferably 300 to 2000 g/eq, and more preferably 300 to 1000 g/eq. If the epoxy equivalent is less than 300 g/eq, the crosslinking density is high and the cured product is likely to become brittle, and if it is more than 2000 g/eq, there is a risk that heat resistance will not be exhibited.

前記式(1)で表されるエポキシ樹脂(D)は、市販の高分子量のエポキシ樹脂を用いてもよく、また、公知の2官能エポキシ樹脂と2官能フェノール樹脂を反応させたエポキシ樹脂を用いても良い。 The epoxy resin (D) represented by the formula (1) may be a commercially available high molecular weight epoxy resin, or may be an epoxy resin obtained by reacting a known bifunctional epoxy resin with a bifunctional phenolic resin.

公知の2官能エポキシ樹脂と2官能フェノール樹脂を反応させる場合、下記式(2) When a known bifunctional epoxy resin is reacted with a bifunctional phenolic resin, the following formula (2) is obtained.

Figure 0007464498000007
(式中、Rは前述の式(1)中Rと同じ意味を表す。)
で表される2官能のフェノール化合物と、下記式(3)
Figure 0007464498000007
(In the formula, R has the same meaning as R in the above formula (1).)
and a bifunctional phenol compound represented by the following formula (3):

Figure 0007464498000008
(式中、Rは前述の式(1)中Rと同じ意味を表す。)
で表される2官能のエポキシ化合物を用いることができる。仕込み割合としては、前記式(2)で表されるフェノール化合物に対して前記式(3)で表されるエポキシ化合物を等モルより多く仕込み、触媒存在下、反応させることで得ることができる。
一般式(2)で表されるフェノール化合物の具体例としては、4,4’-ビフェノール(以下、単にビフェノールということもある。)、3,3’-ジメチルビフェノール、3,3’,5,5’-テトラメチルビフェノール3,3’-ジエチルビフェノール3,3’,5,5’-テトラエチルビフェノール、3,3’-ジフェニルビフェノール等が挙げられる。一般(3)で表されるエポキシ化合物は、一般式(2)のフェノール化合物に公知の方法でエピハロヒドリンを反応させて得られるが、これらに限定されるものではない。前記式(2)で表されるフェノール化合物および前記式(3)で表されるエポキシ化合物は単一で用いても、複数種類を併用してもよい。
Figure 0007464498000008
(In the formula, R has the same meaning as R in the above formula (1).)
The epoxy compound represented by the formula (3) can be used in an amount greater than equimolar to the phenol compound represented by the formula (2) and reacted in the presence of a catalyst.
Specific examples of the phenol compound represented by the general formula (2) include 4,4'-biphenol (hereinafter, sometimes simply referred to as biphenol), 3,3'-dimethylbiphenol, 3,3',5,5'-tetramethylbiphenol, 3,3'-diethylbiphenol, 3,3',5,5'-tetraethylbiphenol, and 3,3'-diphenylbiphenol. The epoxy compound represented by the general formula (3) can be obtained by reacting the phenol compound represented by the general formula (2) with epihalohydrin by a known method, but is not limited thereto. The phenol compound represented by the formula (2) and the epoxy compound represented by the formula (3) may be used alone or in combination of two or more kinds.

溶解性を付与する観点から、前記式(2)で表されるフェノール化合物または前記式(3)で表されるエポキシ化合物中に記載のRのうち少なくとも1つに炭素数1~2のアルキル基を含む化合物を、20モル%以上併用することが好ましく、前記式(2)で表されるフェノール化合物としてビフェノール、前記式(3)で表されるエポキシ化合物として3,3’,5,5’-テトラメチルビフェノールのエポキシ化物を組み合わせた反応物を好適に用いることができる。本反応における前記式(2)で表されるフェノール化合物の使用量は、前記式(3)で表されるエポキシ化合物のエポキシ基1モルに対して通常0.05~0.8モルであり、好ましくは0.1~0.7モルであり、特に好ましくは0.2~0.6モルである。 From the viewpoint of imparting solubility, it is preferable to use 20 mol% or more of a compound containing an alkyl group having 1 to 2 carbon atoms in at least one of the Rs described in the phenol compound represented by formula (2) or the epoxy compound represented by formula (3), and a reaction product combining biphenol as the phenol compound represented by formula (2) and an epoxidized product of 3,3',5,5'-tetramethylbiphenol as the epoxy compound represented by formula (3) can be suitably used. The amount of the phenol compound represented by formula (2) used in this reaction is usually 0.05 to 0.8 mol, preferably 0.1 to 0.7 mol, and particularly preferably 0.2 to 0.6 mol per mol of epoxy group in the epoxy compound represented by formula (3).

本反応は必要により、触媒を使用することができる。使用できる触媒としては具体的にはテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩;トリフェニルエチホスホニウムクロライド、トリフェニルホスホニウムブロマイド等の4級ホスフォニウム塩;水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属塩;2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類;2-(ジメチルアミノメチル)フェノール、トリエチレンジアミン、トリエタノールアミン、1,8-ジアザビシクロ(5,4,0)ウンデセン-7等の第3級アミン類;トリフェニルホスフィン、ジフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類;オクチル酸スズなどの金属化合物;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。これら触媒は、その触媒の種類にもよるが、一般に前記式(2)で表されるフェノール化合物と前記式(3)で表されるエポキシ化合物の総重量に対して通常10~30000ppmであり、好ましくは100~5000ppmが必要に応じて用いられる。後反応においては触媒を添加しなくても反応は進行するので、触媒は反応温度、反応溶剤量を勘案して適宜使用する。 If necessary, a catalyst can be used in this reaction. Specific examples of catalysts that can be used include quaternary ammonium salts such as tetramethylammonium chloride, tetramethylammonium bromide, and trimethylbenzylammonium chloride; quaternary phosphonium salts such as triphenylethylphosphonium chloride and triphenylphosphonium bromide; alkali metal salts such as sodium hydroxide, potassium hydroxide, potassium carbonate, and cesium carbonate; imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, and 2-ethyl-4-methylimidazole; 2-(dimethylaminomethyl)phenol, triethylamine, and the like. Examples of suitable catalysts include tertiary amines such as phenyldiamine, triethanolamine, and 1,8-diazabicyclo(5,4,0)undecene-7; organic phosphines such as triphenylphosphine, diphenylphosphine, and tributylphosphine; metal compounds such as tin octylate; tetra-substituted phosphonium tetra-substituted borates such as tetraphenylphosphonium tetraphenylborate and tetraphenylphosphonium ethyltriphenylborate; and tetraphenylboron salts such as 2-ethyl-4-methylimidazole tetraphenylborate and N-methylmorpholine tetraphenylborate. Although the amount of these catalysts varies depending on the type of catalyst, they are generally used in an amount of 10 to 30,000 ppm, preferably 100 to 5,000 ppm, based on the total weight of the phenol compound represented by formula (2) and the epoxy compound represented by formula (3), as necessary. In the post-reaction, the reaction proceeds without the addition of a catalyst, so the catalyst is used appropriately taking into account the reaction temperature and the amount of reaction solvent.

本反応において、溶剤は使用してもよい。溶剤を使用する場合は反応に影響を与えない溶剤であればいずれの溶剤でも使用でき、例えば以下に示すような溶剤を用いることができる。極性溶剤、エーテル類;ジメチルスルホキシド、N,N’-ジメチルホルムアミド、N-メチルピロリドン、テトラヒドロフラン、ジグライム、トリグライム、プロピレングリコールモノメチルエーテル等、エステル系の有機溶剤;酢酸エチル、酢酸ブチル、乳酸ブチル、γ-ブチロラクトン等、ケトン系有機溶剤;メチルイソブチルケトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等芳香族系有機溶剤;トルエン、キシレン等溶剤の使用量は前記式(2)で表されるフェノール化合物と前記式(3)で表されるエポキシ化合物の総重量に対し通常0~300重量%であり、好ましくは0~100重量%である。 In this reaction, a solvent may be used. When using a solvent, any solvent that does not affect the reaction may be used, and examples of the solvents that can be used include the following: polar solvents, ethers; ester-based organic solvents such as dimethyl sulfoxide, N,N'-dimethylformamide, N-methylpyrrolidone, tetrahydrofuran, diglyme, triglyme, and propylene glycol monomethyl ether; ketone-based organic solvents such as ethyl acetate, butyl acetate, butyl lactate, and γ-butyrolactone; aromatic organic solvents such as methyl isobutyl ketone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; toluene, xylene, etc. The amount of the solvent used is usually 0 to 300% by weight, and preferably 0 to 100% by weight, based on the total weight of the phenol compound represented by formula (2) and the epoxy compound represented by formula (3).

本反応における反応温度、反応時間は、使用する溶媒量や触媒の種類と量によるが、反応時間は通常1~200時間であり、好ましくは1~100時間である。生産性の問題からは反応時間が短いことが好ましい。また反応温度は通常0~250℃であり、好ましくは80~150℃である。 The reaction temperature and reaction time in this reaction depend on the amount of solvent and the type and amount of catalyst used, but the reaction time is usually 1 to 200 hours, preferably 1 to 100 hours. From the viewpoint of productivity, a short reaction time is preferable. The reaction temperature is usually 0 to 250°C, preferably 80 to 150°C.

反応終了後、必要に応じて水洗などにより触媒等を除去し、あるいは残したまま、更に加熱減圧下溶剤を留去することにより本発明に用いるエポキシ樹脂(D)が得られる。用途によってはそのまま溶剤の濃度を調整し、エポキシ樹脂ワニスとして用いることも可能である。 After the reaction is complete, the catalyst, etc., is removed by washing with water as necessary, or left as is, and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin (D) used in the present invention. Depending on the application, the solvent concentration can be adjusted and the product can be used as an epoxy resin varnish.

本発明におけるカルボキシ基含有感光性樹脂(A)は、例えば1分子中に2個のエポキシ基を有するエポキシ化合物(a)と1分子中にエチレン性不飽和基を有するモノカルボン酸(b)とを反応させて得られる不飽和エポキシカルボキシレート化合物(c)と、ジイソシアネート化合物(d)、1分子中に2個の水酸基を有するカルボン酸(e)及び、必要に応じて任意のポリエステルジオール化合物(f)を反応させて得られるポリウレタン化合物(A1)を使用することができる。 The carboxyl group-containing photosensitive resin (A) in the present invention can be, for example, a polyurethane compound (A1) obtained by reacting an unsaturated epoxy carboxylate compound (c) obtained by reacting an epoxy compound (a) having two epoxy groups in one molecule with a monocarboxylic acid (b) having an ethylenically unsaturated group in one molecule, a diisocyanate compound (d), a carboxylic acid (e) having two hydroxyl groups in one molecule, and, if necessary, an optional polyester diol compound (f).

即ち、本発明におけるポリウレタン樹脂(A1)は二つの反応工程をもって製造される。まず、1分子中に2個のエポキシ基を有するエポキシ化合物(a)に、1分子中にエチレン性不飽和基を有するモノカルボン酸(b)を反応させて不飽和エポキシカルボキシレート化合物(c)を得る工程である。本発明ではこの工程をカルボキシレート化工程とする。
次いで、こうして得られた不飽和エポキシカルボキシレート化合物(c)、1分子中に2個の水酸基を有するカルボン酸(e)、ジイソシアネート化合物(d)及び必要に応じて任意のポリエステルジオール化合物(f)を反応させる工程である。本発明ではこの工程をウレタン化工程とする。
That is, the polyurethane resin (A1) in the present invention is produced through two reaction steps. First, an epoxy compound (a) having two epoxy groups per molecule is reacted with a monocarboxylic acid (b) having an ethylenically unsaturated group per molecule to obtain an unsaturated epoxy carboxylate compound (c). In the present invention, this step is called a carboxylation step.
The next step is to react the thus obtained unsaturated epoxy carboxylate compound (c), a carboxylic acid having two hydroxyl groups in one molecule (e), a diisocyanate compound (d) and, if necessary, an optional polyester diol compound (f). In the present invention, this step is referred to as a urethanization step.

カルボキシレート化工程で得られる不飽和エポキシカルボキシレート化合物(c)は、1分子中に2個のエポキシ基を有するエポキシ化合物(a)のエポキシ基に由来する2個の水酸基を有するカルボキシレート化合物である。 The unsaturated epoxy carboxylate compound (c) obtained in the carboxylation step is a carboxylate compound having two hydroxyl groups derived from the epoxy group of the epoxy compound (a) having two epoxy groups in one molecule.

続くウレタン化工程では、不飽和エポキシカルボキシレート化合物(c)の2個の水酸基、1分子中に2個の水酸基を有するカルボン酸(e)、ジイソシアネート化合物(d)及び必要に応じて任意のポリエステルジオール化合物(f)を反応させポリウレタン樹脂(A1)を得る。 In the subsequent urethane-forming step, the two hydroxyl groups of the unsaturated epoxy carboxylate compound (c) are reacted with a carboxylic acid (e) having two hydroxyl groups per molecule, a diisocyanate compound (d) and, if necessary, an optional polyester diol compound (f) to obtain a polyurethane resin (A1).

先ず、カルボキシレート化工程について詳述する。
本発明におけるポリウレタン樹脂(A)の製造に使用される1分子中に2個のエポキシ基を有するエポキシ化合物(a)(以下、単に「エポキシ化合物(a)」とも表す。)としては、1分子中に2個のエポキシ基を有していれば特に限定されない。単官能エポキシ化合物ではウレタン化工程により得られるポリウレタン樹脂(A)の分子量を調整することができず、又、3官能以上のエポキシ化合物では多分岐構造となるため好適な硬化物の物性を得ることが困難である。
First, the carboxylation step will be described in detail.
The epoxy compound (a) having two epoxy groups in one molecule (hereinafter also referred to simply as "epoxy compound (a)") used in the production of the polyurethane resin (A) in the present invention is not particularly limited as long as it has two epoxy groups in one molecule. With a monofunctional epoxy compound, it is not possible to adjust the molecular weight of the polyurethane resin (A) obtained by the urethanization step, and with an epoxy compound having three or more functionalities, it is difficult to obtain suitable physical properties of the cured product due to the multi-branched structure.

該エポキシ化合物(a)としては、例えば、ビスフェノール-Aジグリシジルエーテル、ビスフェノール-Fジグリシジルエーテル、ビスフェノール-Sジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル等のビスフェノール系ジグリシジルエーテル類、ビフェノールジグリシジルエーテル、テトラメチルビフェノールグリシジルエーテル等のビフェニル系グリシジルエーテル類等の芳香族系ジグリシジルエーテル化合物;ヘキサンジオールジグリシジルエーテル等のアルキルジオールジグリシジルエーテル類、ポリエチレングリコールジグリシジルエーテル等のアルキレングリコールジグリシジルエーテル類、シクロヘキサンジオールジグリシジルエーテル、水添ビスフェノール-Aジグリシジルエーテル等のシクロアルキルジオールジグリシジルエーテル類等の飽和炭化水素系ジグリシジルエーテル化合物;3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート((株)ダイセル製セロキサイド2021)、1,2,8,9-ジエポキシリモネン((株)ダイセル製セロキサイド3000)等の所謂2官能脂環式エポキシ化合物が挙げられる。 Examples of the epoxy compound (a) include bisphenol-based diglycidyl ethers such as bisphenol-A diglycidyl ether, bisphenol-F diglycidyl ether, bisphenol-S diglycidyl ether, and bisphenol fluorene diglycidyl ether, aromatic diglycidyl ether compounds such as biphenyl-based glycidyl ethers such as biphenol diglycidyl ether and tetramethylbiphenol glycidyl ether, alkyldiol diglycidyl ethers such as hexanediol diglycidyl ether, and polyethylene glycol. Examples of such compounds include saturated hydrocarbon diglycidyl ether compounds such as alkylene glycol diglycidyl ethers such as diglycidyl ether, cycloalkyldiol diglycidyl ethers such as cyclohexanediol diglycidyl ether and hydrogenated bisphenol-A diglycidyl ether; and so-called bifunctional alicyclic epoxy compounds such as 3,4-epoxycyclohexenylmethyl-3',4'-epoxycyclohexenecarboxylate (Celloxide 2021, manufactured by Daicel Corporation) and 1,2,8,9-diepoxylimonene (Celloxide 3000, manufactured by Daicel Corporation).

これらのうち、芳香族系ジグリシジルエーテル化合物が良好な耐熱性を有しているために好適である。 Of these, aromatic diglycidyl ether compounds are preferred because they have good heat resistance.

又、該エポキシ化合物(a)としては、水酸基を持たないものが好ましい。これは、エポキシカルボキシレート化工程で得られる不飽和エポキシカルボキシレート化合物(c)が3官能以上のポリオール化合物となりポリウレタン樹脂(A1)の分子量の制御等が難しくなる。 The epoxy compound (a) is preferably one that does not have a hydroxyl group. This is because the unsaturated epoxy carboxylate compound (c) obtained in the epoxy carboxylation step becomes a polyol compound with three or more functional groups, making it difficult to control the molecular weight of the polyurethane resin (A1).

本発明におけるポリウレタン樹脂(A1)の製造に使用される1分子中にエチレン性不飽和基を有するモノカルボン酸(b)(以下、単に「化合物(b)」とも表す。)は、反応性ポリウレタン樹脂(A1)にエチレン性不飽和基を導入するとともに、エポキシ化合物(a)をイソシアネート基と反応可能なジオール化合物へ変換させる目的をもつ。該化合物(b)のエチレン性不飽和基数は1~4個が好ましい。 The monocarboxylic acid (b) having an ethylenically unsaturated group in one molecule used in the production of the polyurethane resin (A1) in the present invention (hereinafter also referred to simply as "compound (b)") has the purpose of introducing an ethylenically unsaturated group into the reactive polyurethane resin (A1) and converting the epoxy compound (a) into a diol compound capable of reacting with an isocyanate group. The number of ethylenically unsaturated groups in the compound (b) is preferably 1 to 4.

該化合物(b)としては、例えば、(メタ)アクリル酸類やクロトン酸、α-シアノ桂皮酸、桂皮酸、或いは、飽和又は不飽和二塩基酸とモノグリシジル(メタ)アクリレート誘導体類を除く不飽和基含有モノグリシジル化合物との反応物が挙げられる。
該(メタ)アクリル酸類としては、例えば、(メタ)アクリル酸、β-スチリル(メタ)アクリル酸、β-フルフリル(メタ)アクリル酸、(メタ)アクリル酸とε-カプロラクトンとの反応生成物、(メタ)アクリル酸二量体、飽和又は不飽和二塩基酸無水物と1分子中に1個の水酸基を有する(メタ)アクリレート誘導体との当モル反応物である半エステル類、飽和又は不飽和二塩基酸とモノグリシジル(メタ)アクリレート誘導体類との当モル反応物である半エステル類等が挙げられる。
Examples of the compound (b) include (meth)acrylic acids, crotonic acid, α-cyanocinnamic acid, cinnamic acid, or reaction products of saturated or unsaturated dibasic acids with unsaturated group-containing monoglycidyl compounds excluding monoglycidyl (meth)acrylate derivatives.
Examples of the (meth)acrylic acids include (meth)acrylic acid, β-styryl (meth)acrylic acid, β-furfuryl (meth)acrylic acid, a reaction product of (meth)acrylic acid and ε-caprolactone, a (meth)acrylic acid dimer, half esters which are equimolar reaction products of a saturated or unsaturated dibasic acid anhydride and a (meth)acrylate derivative having one hydroxyl group per molecule, and half esters which are equimolar reaction products of a saturated or unsaturated dibasic acid and a monoglycidyl (meth)acrylate derivative.

これらのうち、感光性樹脂組成物としたときの感度の点から(メタ)アクリル酸、(メタ)アクリル酸とε-カプロラクトンとの反応生成物又は桂皮酸が好ましい。 Among these, (meth)acrylic acid, a reaction product of (meth)acrylic acid and ε-caprolactone, or cinnamic acid is preferred in terms of sensitivity when made into a photosensitive resin composition.

又、該化合物(b)としては、化合物中に水酸基を持たないものが好ましい。 Furthermore, it is preferable that the compound (b) does not have a hydroxyl group in the compound.

カルボキシレート化工程においては、前記エポキシ化合物(a)1当量に対して化合物(b)が90~120当量%であることが好ましい。この範囲であれば比較的安定な条件での製造が可能である。これよりも化合物(b)の仕込み量が多い場合には、カルボキシ基を持つ化合物(b)が残存してしまうために好ましくない。又、少なすぎる場合には、未反応のエポキシ化合物(a)が残留してしまうため、樹脂の安定性に問題が生じる。 In the carboxylation step, it is preferable that the amount of compound (b) is 90 to 120 equivalent percent per equivalent of the epoxy compound (a). Within this range, production can be performed under relatively stable conditions. If the amount of compound (b) charged is greater than this, compound (b) having a carboxy group will remain, which is not preferable. If the amount is too small, unreacted epoxy compound (a) will remain, causing problems with the stability of the resin.

カルボキシレート化工程は無溶剤若しくは溶剤で希釈して反応させることができる。溶剤を使用する場合には、カルボキシレート化反応に対してイナートな溶剤であれば特に限定されない。又、次工程であるウレタン化工程や必要に応じて用いられる後記の酸付加工程においてイナートな溶剤を用いることが好ましい。 The carboxylation step can be carried out without a solvent or diluted with a solvent. When a solvent is used, it is not particularly limited as long as it is an inert solvent for the carboxylation reaction. It is also preferable to use an inert solvent in the subsequent urethane formation step or in the acid addition step described below, which is used as needed.

溶剤を使用する場合、その使用量としては得られる樹脂の粘度や使途により適宜調整されるべきものであるが、好ましくは固形分含有率が99~30重量%、より好ましくは99~45重量%となるように用いればよい。反応に使用する化合物が高粘度である場合は粘度が抑えられ、好適に反応が進行する。 When a solvent is used, its amount should be adjusted appropriately depending on the viscosity and use of the resulting resin, but it is preferable to use a solvent so that the solid content is 99 to 30% by weight, and more preferably 99 to 45% by weight. If the compound used in the reaction has a high viscosity, the viscosity will be suppressed and the reaction will proceed smoothly.

該溶剤としては、例えば、トルエン、キシレン、エチルベンゼン、テトラメチルベンゼン等の芳香族系炭化水素溶剤、ヘキサン、オクタン、デカン等の脂肪族系炭化水素溶剤、それらの混合物である石油エーテル、ホワイトガソリン、ソルベントナフサ等が挙げられる。又、エステル系溶剤、エーテル系溶剤、ケトン系溶剤を使用してもよい。 Examples of such solvents include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene, and tetramethylbenzene, aliphatic hydrocarbon solvents such as hexane, octane, and decane, and mixtures thereof such as petroleum ether, white gasoline, and solvent naphtha. Ester-based solvents, ether-based solvents, and ketone-based solvents may also be used.

該エステル系溶剤としては、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル等のアルキルアセテート類、γ-ブチロラクトン等の環状エステル類、エチレングリコールモノメチルエーテルモノアセテート、ジエチレングリコールモノメチルエーテルモノアセテート、ジエチレングリコールモノエチルエーテルモノアセテート、トリエチレングリコールモノエチルエーテルモノアセテート、ジエチレングリコールモノブチルエーテルモノアセテート、プロピレングリコールモノメチルエーテルモノアセテート、ブチレングリコールモノメチルエーテルモノアセテート等のモノ若しくはポリアルキレングリコールモノアルキルエーテルモノアセテート類、グルタル酸ジメチル等のグルタル酸ジアルキル、コハク酸ジメチル等のコハク酸ジアルキル、アジピン酸ジメチル等のアジピン酸ジアルキル等のポリカルボン酸ジアルキルエステル類等が挙げられる。 Examples of the ester solvent include alkyl acetates such as ethyl acetate, propyl acetate, and butyl acetate; cyclic esters such as γ-butyrolactone; mono- or polyalkylene glycol monoalkyl ether monoacetates such as ethylene glycol monomethyl ether monoacetate, diethylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, triethylene glycol monoethyl ether monoacetate, diethylene glycol monobutyl ether monoacetate, propylene glycol monomethyl ether monoacetate, and butylene glycol monomethyl ether monoacetate; dialkyl glutarates such as dimethyl glutarate; dialkyl succinates such as dimethyl succinate; and dialkyl adipates such as dimethyl adipate.

該エーテル系溶剤としては、例えば、ジエチルエーテル、エチルブチルエーテル等のアルキルエーテル類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のグリコールエーテル類、テトラヒドロフラン等の環状エーテル類等が挙げられる。 Examples of the ether solvent include alkyl ethers such as diethyl ether and ethyl butyl ether, glycol ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether and triethylene glycol diethyl ether, and cyclic ethers such as tetrahydrofuran.

該ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン、イソホロン等が挙げられる。 Examples of ketone solvents include acetone, methyl ethyl ketone, cyclohexanone, and isophorone.

このほかにも、反応にイナートであれば、後記の架橋剤(B)等を溶剤として単独又は混合して使用してもよい。この場合、硬化型組成物としてそのまま使用することもできる。 In addition, if the reaction is inert, the crosslinking agent (B) described below may be used alone or in combination as a solvent. In this case, the composition may be used as it is as a curable composition.

カルボキシレート化工程においては、反応を促進させるために触媒を使用することが好ましい。該触媒を使用する場合、その使用量は、反応物、即ち前記エポキシ化合物(a)、化合物(b)及び、溶剤を使用する場合は溶剤を加えた総量に対して0.1~10重量%程度である。その際の反応温度は60~150℃、反応時間は好ましくは5~60時間である。
該触媒としては、例えば、トリエチルアミン、ベンジルジメチルアミン、トリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムアイオダイド、トリフェニルホスフィン、トリフェニルスチビン、オクタン酸クロム、オクタン酸ジルコニウム等の一般の塩基性触媒等が挙げられる。
In the carboxylation step, it is preferable to use a catalyst to promote the reaction. When the catalyst is used, the amount of the catalyst is about 0.1 to 10% by weight based on the total amount of the reactants, i.e., the epoxy compound (a), the compound (b), and the solvent, if used. The reaction temperature is 60 to 150° C., and the reaction time is preferably 5 to 60 hours.
Examples of the catalyst include general basic catalysts such as triethylamine, benzyldimethylamine, triethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium iodide, triphenylphosphine, triphenylstibine, chromium octanoate, and zirconium octanoate.

又、熱重合禁止剤を使用してもよく、該熱重合禁止剤としては、例えば、ハイドロキノンモノメチルエーテル、2-メチルハイドロキノン、ハイドロキノン、ジフェニルピクリルヒドラジン、ジフェニルアミン、3,5-ジ-t-ブチル-4-ヒドロキシトルエン等を使用するのが好ましい。 A thermal polymerization inhibitor may also be used. Examples of the thermal polymerization inhibitor that can be used preferably include hydroquinone monomethyl ether, 2-methylhydroquinone, hydroquinone, diphenylpicrylhydrazine, diphenylamine, and 3,5-di-t-butyl-4-hydroxytoluene.

カルボキシレート化工程は、適宜サンプリングしながらサンプルの酸価が5mg・KOH/g以下、好ましくは2mg・KOH/g以下となった時点を終点とする。 The carboxylation process is terminated when the acid value of the sample, taken as appropriate, is 5 mg KOH/g or less, preferably 2 mg KOH/g or less.

次にウレタン化工程について詳述する。
本発明におけるポリウレタン樹脂(A1)の製造に使用される1分子中に2個の水酸基を有するカルボン酸(e)(以下、単に「化合物(e)」とも表す。)は、該ポリウレタン樹脂(A1)にカルボキシ基を導入し、光パターニングに必要なアルカリ水溶液可溶性とする。該化合物(e)中のカルボキシ基数としては1~4個が好ましい。
Next, the urethane-forming step will be described in detail.
The carboxylic acid (e) having two hydroxyl groups per molecule used in the production of the polyurethane resin (A1) in the present invention (hereinafter, also referred to simply as "compound (e)") introduces a carboxy group into the polyurethane resin (A1) to make it soluble in an aqueous alkaline solution required for photopatterning. The number of carboxy groups in the compound (e) is preferably 1 to 4.

該化合物(e)としては、例えば、ジメチロールプロピオン酸、ジメチロールブタン酸、ジメチロール吉草酸等が好ましく、中でも原材料の入手を考慮してジメチロールプロピオン酸、ジメチロールブタン酸が特に好ましい。 As the compound (e), for example, dimethylolpropionic acid, dimethylolbutanoic acid, dimethylolvaleric acid, etc. are preferred, and among them, dimethylolpropionic acid and dimethylolbutanoic acid are particularly preferred in consideration of the availability of raw materials.

本発明におけるポリウレタン樹脂(A1)の製造に必要に応じて使用される任意のポリエステルジオール化合物(f)を用いることで、感度、耐熱性、耐薬品性等と柔軟性のバランスの優れたポリウレタン樹脂(A1)を得ることができる。ポリエステルジオール化合物(f)は、1分子中に2個の水酸基を有し、更に主骨格中にエステル結合を有することを特徴とする。 By using any polyester diol compound (f) used as necessary in the production of the polyurethane resin (A1) of the present invention, it is possible to obtain a polyurethane resin (A1) that has an excellent balance between sensitivity, heat resistance, chemical resistance, etc., and flexibility. The polyester diol compound (f) is characterized by having two hydroxyl groups in one molecule and further having an ester bond in the main skeleton.

該ポリエステルポリエステルジオール化合物(f)としては、例えば、ジオール化合物とジカルボン酸類をエステル結合でつないだジオールジカルボン酸エステルジオール類、環状エステル類をジオール化合物で開環重合して得られるポリラクトンジオール類、アルキルカーボネートとジオール化合物との反応等により得られるカーボネート結合を有するポリカーボネートジオール類、更にこれらを複合的に組み合わせたポリエステルジオール類等が挙げられる。これらのポリエステルジオール化合物は前記の不飽和エポキシカルボキシレート化合物(c)や化合物(e)以外の水酸基二個を有する化合物であれば特に限定されない。 Examples of the polyester polyester diol compound (f) include diol dicarboxylic acid ester diols in which a diol compound and a dicarboxylic acid are linked by an ester bond, polylactone diols obtained by ring-opening polymerization of cyclic esters with a diol compound, polycarbonate diols having a carbonate bond obtained by reaction of an alkyl carbonate with a diol compound, and polyester diols which are a composite combination of these. These polyester diol compounds are not particularly limited as long as they are compounds having two hydroxyl groups other than the unsaturated epoxy carboxylate compound (c) and compound (e).

ジオール化合物とジカルボン酸化合物をエステル結合でつないだジオールジカルボン酸エステルジオール類としては、例えば、エチレングリコールアジピン酸エステルジオール、プロピレングリコールアジピン酸エステルジオール、ブチレングリコールアジピン酸エステルジオール、ネオペンチルグリコールアジピン酸エステルジオール、メチルぺンタンジオールアジピン酸エステルジオール、ヘキサンジオールアジピン酸エステルジオール、エチレングリコールセバシン酸エステルジオール、ヘキサンジオールドデカン二酸エステルジオール、エチレングリコールフタル酸エステルジオール、エチレングリコールアゼライン酸エステルジオール、エチレングリコールセバシン酸ポリエステルジオール、プロピレングリコールセバシン酸ポリエステルジオール、ブチレングリコールセバシン酸ポリエステルジオール、ネオペンチルグリコールセバシン酸ポリエステルジオール、メチルぺンタンジオールセバシン酸ポリエステルジオール、ヘキサンジオールセバシン酸ポリエステルジオール、エチレングリコールセバシン酸ポリエステルジオール、エチレングリコールダイマー酸ポリエステルジオール、プロピレングリコールダイマー酸ポリエステルジオール、ヘキサンジオールドデカン二酸エステルジオール、エチレングリコールドデカン二酸エステルジオール、エチレングリコールアドデカン二酸エステルジオール等が挙げられる。 Examples of diol dicarboxylate diols in which a diol compound and a dicarboxylic acid compound are linked by an ester bond include ethylene glycol adipate diol, propylene glycol adipate diol, butylene glycol adipate diol, neopentyl glycol adipate diol, methylpentanediol adipate diol, hexanediol adipate diol, ethylene glycol sebacic acid ester diol, hexanediol decanedioic acid ester diol, ethylene glycol phthalic acid ester diol, ethylene glycol azelaic acid ester diol, and ethylene glycol Examples of the polyester diol include sebacic acid polyester diol, propylene glycol sebacic acid polyester diol, butylene glycol sebacic acid polyester diol, neopentyl glycol sebacic acid polyester diol, methylpentanediol sebacic acid polyester diol, hexanediol sebacic acid polyester diol, ethylene glycol sebacic acid polyester diol, ethylene glycol dimer acid polyester diol, propylene glycol dimer acid polyester diol, hexanediol decanedioic acid ester diol, ethylene glycol dodecanedioic acid ester diol, and ethylene glycol adodecanedioic acid ester diol.

環状エステル類を開環重合して得られるポリラクトンジオール化合物としては、例えば、ポリブチロラクトンジオール、ポリバレロラクトンジオール、ポリカプロラクトンジオール等が挙げられる。 Examples of polylactone diol compounds obtained by ring-opening polymerization of cyclic esters include polybutyrolactone diol, polyvalerolactone diol, and polycaprolactone diol.

ポリカーボネートジオール化合物としては、例えば、ポリプロピレンカーボネートジオール、ポリブチレンカーボネートジオール、ポリヘキサメチレンカーボネートジオール、ポリオクタメチレンカーボネートジオール、ポリノナンジオールカーボネートジオール、ポリシクロヘキサンカーボネートジオール、ポリシクロヘキサンジメタノールカーボネートジオール等が挙げられる。 Examples of polycarbonate diol compounds include polypropylene carbonate diol, polybutylene carbonate diol, polyhexamethylene carbonate diol, polyoctamethylene carbonate diol, polynonanediol carbonate diol, polycyclohexane carbonate diol, polycyclohexanedimethanol carbonate diol, etc.

これらの内、ポリエステルジオール化合物(f)としては、特にポリカプロラクトンジオール類、ポリカーボネートジオール類が好適な硬化物性を示すことから好ましい。特に、ポリカーボネートジオール類は強靭な硬化膜を与えるポリウレタン樹脂(A1)を誘導できるので更に好ましい。 Among these, as the polyester diol compound (f), polycaprolactone diols and polycarbonate diols are particularly preferred because they exhibit favorable cured physical properties. In particular, polycarbonate diols are even more preferred because they can derive polyurethane resin (A1) that gives a tough cured film.

ポリエステルジオール化合物(f)の好適な分子量としては250~5000の範囲が好ましく、更に好ましくは650~3000である。この範囲よりも分子量が小さい場合、柔軟性の付与効果が低く、この範囲よりも大きい場合、耐熱性の低下が大きくなる。 The preferred molecular weight of polyester diol compound (f) is in the range of 250 to 5000, and more preferably 650 to 3000. If the molecular weight is smaller than this range, the effect of imparting flexibility is low, and if it is larger than this range, the heat resistance is significantly reduced.

本発明におけるポリウレタン樹脂(A1)の製造に使用されるジイソシアネート化合物(d)(以下、単に「イソシアネート化合物(d)」とも表す。)は、不飽和エポキシカルボキシレート化合物(c)化合物(e)、及び必要に応じて使用される任意のポリエステルジオール化合物(f)とのウレタン化工程に使用され、該ポリウレタン樹脂(A1)に好適な柔軟性を与える。 The diisocyanate compound (d) (hereinafter also referred to simply as "isocyanate compound (d)") used in the production of the polyurethane resin (A1) in the present invention is used in the urethane-forming process with the unsaturated epoxy carboxylate compound (c), compound (e), and optional polyester diol compound (f) used as needed, and provides suitable flexibility to the polyurethane resin (A1).

該イソシアネート化合物(d)としては、例えば、脂肪族直鎖状ジイソシアネート類、脂環式ジイソシアネート類、芳香族系イソシアネート類等が挙げられる。 Examples of the isocyanate compound (d) include aliphatic linear diisocyanates, alicyclic diisocyanates, and aromatic isocyanates.

脂肪族直鎖状ジイソシアネート類としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等が挙げられる。 Examples of aliphatic linear diisocyanates include hexamethylene diisocyanate and trimethylhexamethylene diisocyanate.

脂環式ジイソシアネート類としては、例えば、イソホロンジイソシアネート、ノルボルネンジイソシアネート、水添キシリレンジイソシアネート、水添メチレンビスフェニレンジイソシアネート等が挙げられる。 Examples of alicyclic diisocyanates include isophorone diisocyanate, norbornene diisocyanate, hydrogenated xylylene diisocyanate, and hydrogenated methylene bisphenylene diisocyanate.

芳香族系ジイソシアネート類としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンビスフェニレンジイソシアネート等が挙げられる。 Examples of aromatic diisocyanates include tolylene diisocyanate, xylylene diisocyanate, and methylene bisphenylene diisocyanate.

これらの内、柔軟性を高める場合には脂肪族あるいは脂環式ジイソシアネートが好ましく、脂肪族直鎖状ジイソシアネート類が特に好ましい。 Of these, aliphatic or alicyclic diisocyanates are preferred when increasing flexibility, and linear aliphatic diisocyanates are particularly preferred.

ウレタン化工程は、不飽和エポキシカルボキシレート化合物(c)、1分子中に2個の水酸基を有するカルボン酸(e)、及び必要に応じて使用される任意のポリエステルジオール化合物(f)の混合物と、イソシアネート基を有する化合物(d)とを混合して行う。 The urethanization process is carried out by mixing a mixture of an unsaturated epoxy carboxylate compound (c), a carboxylic acid having two hydroxyl groups per molecule (e), and an optional polyester diol compound (f) used as needed, with a compound having an isocyanate group (d).

ポリウレタン樹脂(A1)の製造では、(不飽和エポキシカルボキシレート化合物(c)のモル数+化合物(e)のモル数+ポリエステルジオール化合物(f)のモル数)÷(イソシアネート化合物(d)のモル数)で示される値、即ち、反応系中の水酸基とイソシアネート基の比が1.05~2の範囲が好ましく、1.15~1.6の範囲が特に好ましい。即ち、ポリウレタン樹脂(A1)の保存安定性の点から、ウレタン化工程では少なくともイソシアネート基よりも水酸基が多くなるように仕込み、イソシアネート基が最終的に残留しないようにする。
更に、この範囲よりも大きい場合、得られるポリウレタン樹脂(A1)の分子量が小さくなりすぎ強靭な硬化物を得ることが難しくなりやすく、小さすぎる場合、得られるポリウレタン樹脂(A1)の分子量が大きくなりすぎて現像性等に悪影響が出る場合がある。
In the production of polyurethane resin (A1), the value represented by (molar number of unsaturated epoxy carboxylate compound (c)+molar number of compound (e)+molar number of polyester diol compound (f))÷(molar number of isocyanate compound (d)), i.e., the ratio of hydroxyl groups to isocyanate groups in the reaction system, is preferably in the range of 1.05 to 2, particularly preferably in the range of 1.15 to 1.6. That is, from the viewpoint of the storage stability of polyurethane resin (A1), the urethanization step is carried out so that at least the number of hydroxyl groups is greater than the number of isocyanate groups, so that no isocyanate groups remain in the final product.
Furthermore, if it is larger than this range, the molecular weight of the resulting polyurethane resin (A1) will be too small, making it difficult to obtain a tough cured product. If it is too small, the molecular weight of the resulting polyurethane resin (A1) will be too large, which may have an adverse effect on developability, etc.

本発明におけるポリウレタン樹脂(A1)の製造において、不飽和エポキシカルボキシレート化合物(c)の重量、化合物(e)の重量、必要に応じて使用されるポリエステルジオール化合物(f)の重量、イソシアネート化合物(d)の重量の好ましい重量比は、樹脂組成物総重量を100部とした場合、不飽和エキシカルボキシレート化合物(c)は5~65重量部、化合物(e)は5~25重量部、ポリエステルジオール化合物(f)は0~60重量部、イソシアネート化合物(d)は20~40重量部である。この範囲において、光パターニング、アルカリ水溶液による現像性を有しており、レジスト材料として好適な特性を有するポリウレタン樹脂(A1)が得られ、高い耐熱性、耐薬品性、卓越した柔軟性を特に高い次元でバランスよく有する硬化物を得ることができる。 In the production of the polyurethane resin (A1) of the present invention, the preferred weight ratios of the weight of the unsaturated epoxy carboxylate compound (c), the weight of the compound (e), the weight of the polyester diol compound (f) used as needed, and the weight of the isocyanate compound (d) are 5 to 65 parts by weight of the unsaturated epoxy carboxylate compound (c), 5 to 25 parts by weight of the compound (e), 0 to 60 parts by weight of the polyester diol compound (f), and 20 to 40 parts by weight of the isocyanate compound (d), assuming the total weight of the resin composition to be 100 parts. Within these ranges, a polyurethane resin (A1) having photopatterning and developability with an alkaline aqueous solution and suitable properties as a resist material can be obtained, and a cured product having a particularly high level of well-balanced properties of high heat resistance, chemical resistance, and excellent flexibility can be obtained.

ウレタン化工程は無溶剤若しくは溶剤で希釈して反応させることができる。溶剤を使用する場合には、ウレタン化反応に対してイナートな溶剤であれば特に限定されない。 The urethane-forming process can be carried out without a solvent or diluted with a solvent. If a solvent is used, there are no particular limitations as long as it is an inert solvent for the urethane-forming reaction.

溶剤を使用する場合、その使用量は得られる樹脂の粘度や使途により適宜調整されるべきものであるが、好ましくは固形分含有率が99~30重量%、より好ましくは90~45重量%となるように用いればよい。双方の工程でイナートであることを条件に、前記カルボキシレート化工程で使用した溶剤をそのまま用いることも可能である。 When a solvent is used, its amount should be adjusted appropriately depending on the viscosity and use of the resulting resin, but it is preferable to use it so that the solid content is 99 to 30% by weight, more preferably 90 to 45% by weight. It is also possible to use the solvent used in the carboxylation process as is, provided that it is an inert in both processes.

該溶剤としては、例えば、前記カルボキシレート化工程に例示した溶剤と同様のものが挙げられる。又、反応にイナートであれば、後記の反応性化合物(B)等を溶剤として単独又は混合して使用してもよい。この場合、硬化型組成物としてそのまま使用することもできる。 The solvent may be, for example, the same as the solvent exemplified in the carboxylation step. If the solvent is inert in the reaction, the reactive compound (B) described below may be used alone or in combination as a solvent. In this case, the composition may be used as it is as a curable composition.

ウレタン化工程は熱重合禁止剤等を使用してもよく、前記カルボキシレート化工程において例示した化合物と同様の化合物を使用することができる。 In the urethane-forming process, a thermal polymerization inhibitor or the like may be used, and the same compounds as those exemplified in the carboxylate-forming process can be used.

ウレタン化工程は実質的に無触媒で反応させることもできるが、反応を促進させるために触媒を使用することもできる。触媒を使用する場合、その使用量は反応物の総量に対して0.01~1重量%程度である。該触媒としては一般の塩基性触媒、例えば、エチルヘキサン酸スズ等のルイス塩基触媒が挙げられる。 The urethane-forming process can be carried out substantially without a catalyst, but a catalyst can also be used to accelerate the reaction. When a catalyst is used, the amount used is about 0.01 to 1% by weight based on the total amount of reactants. Examples of such catalysts include general basic catalysts, such as Lewis base catalysts such as tin ethylhexanoate.

ウレタン化工程の反応温度は40~150℃が好ましく、反応時間は好ましくは5~60時間である。 The reaction temperature for the urethane formation process is preferably 40 to 150°C, and the reaction time is preferably 5 to 60 hours.

ウレタン化工程の反応はイソシアネート基がほぼ残留していないことをもって反応終点とする。反応の終点決定は、赤外吸収スペクトル測定法によりイソシアネート基由来の2250cm-1近辺のピークの観測若しくはJIS K1556:1968等に示される滴定法により行う。 The end point of the urethanization reaction is determined when almost no isocyanate groups remain. The end point of the reaction is determined by observing a peak at about 2250 cm −1 due to isocyanate groups by infrared absorption spectroscopy or by a titration method as specified in JIS K1556:1968 or the like.

こうして得られた本発明におけるポリウレタン樹脂(A1)の好ましい分子量範囲は、GPCにおけるポリスチレン換算重量平均分子量が1000~30000の範囲、より好ましくは3000~25000の範囲である。この分子量よりも小さい場合には硬化物の強靭性が充分に発揮されない、又、これよりも大きすぎる場合には粘度が高くなり塗工等が困難となるばかりではなく現像性も低下しやすい。 The preferred molecular weight range of the polyurethane resin (A1) of the present invention thus obtained is a weight average molecular weight in terms of polystyrene measured by GPC of 1,000 to 30,000, more preferably 3,000 to 25,000. If the molecular weight is smaller than this range, the toughness of the cured product will not be fully exhibited, and if it is too large, the viscosity will increase, making coating and other processes difficult and also reducing developability.

又、本発明におけるカルボキシ基含有感光性樹脂(A)には、必要に応じて反応性ポリウレタン樹脂(A1)に多塩基酸無水物(g)を反応させて得られる酸変性型ポリウレタン樹脂(A2)も含まれる。これにより、アルカリ現像に必要な酸価を、1分子中に2個の水酸基を有するカルボン酸(e)だけではなく、求められる樹脂の特性に応じて適宜付加することが可能となる。本発明ではこの反応工程を酸付加工程とする。 The carboxyl group-containing photosensitive resin (A) in the present invention also includes an acid-modified polyurethane resin (A2) obtained by reacting a polybasic acid anhydride (g) with a reactive polyurethane resin (A1) as necessary. This makes it possible to appropriately add the acid value required for alkaline development according to the desired properties of the resin, rather than just adding a carboxylic acid (e) having two hydroxyl groups in one molecule. In the present invention, this reaction process is referred to as the acid addition process.

次に、酸付加工程について詳細に説明する。酸付加工程は、前記ウレタン化反応後に残存した水酸基に多塩基酸無水物(g)を反応させ、エステル結合を介してカルボキシ基を導入する工程である。従って、ウレタン化工程終了後に残存した水酸基の当量以上に酸付加させることはできない。 Next, the acid addition step will be described in detail. The acid addition step is a step in which a polybasic acid anhydride (g) is reacted with the hydroxyl groups remaining after the urethanization reaction to introduce a carboxyl group via an ester bond. Therefore, it is not possible to add acid in an amount greater than the equivalent of the hydroxyl groups remaining after the urethanization step is completed.

該多塩基酸無水物(g)としては、例えば、1分子中に環状酸無水物構造を有する化合物が挙げられ、アルカリ水溶液現像性、耐熱性、加水分解耐性等から無水コハク酸(SA)、無水フタル酸(PAH)、テトラヒドロ無水フタル酸(THPA)、ヘキサヒドロ無水フタル酸(HHPA)、無水イタコン酸、3-メチル-テトラヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、無水トリメリット酸又は無水マレイン酸等が好ましい。 Examples of the polybasic acid anhydride (g) include compounds having a cyclic acid anhydride structure in one molecule, and from the viewpoints of alkaline aqueous solution developability, heat resistance, hydrolysis resistance, etc., preferred are succinic anhydride (SA), phthalic anhydride (PAH), tetrahydrophthalic anhydride (THPA), hexahydrophthalic anhydride (HHPA), itaconic anhydride, 3-methyl-tetrahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, trimellitic anhydride, maleic anhydride, etc.

酸付加工程は、前記ポリウレタン樹脂(A1)に多塩基酸無水物(g)を加えることにより行う。 The acid addition step is carried out by adding a polybasic acid anhydride (g) to the polyurethane resin (A1).

本発明のポリウレタン樹脂(A1)及び/又は酸変性型ポリウレタン樹脂(A2)をアルカリ現像型のレジストとして用いる場合、最終的に得られるポリウレタン樹脂の固形分酸価(JIS K5601-2-1:1999に準拠)を30~120mg・KOH/g、より好ましくは40~105mg・KOH/gとするのが好ましい。固形分酸価がこの範囲である場合、本発明の活性エネルギー線硬化型樹脂組成物はアルカリ水溶液による良好な現像性を示す。即ち、活性エネルギー線非照射部の良好な溶解性と活性エネルギー線照射部の不溶解性のバランスを発揮させることができる。 When the polyurethane resin (A1) and/or acid-modified polyurethane resin (A2) of the present invention is used as an alkali development type resist, the solid content acid value (based on JIS K5601-2-1:1999) of the finally obtained polyurethane resin is preferably 30 to 120 mg KOH/g, more preferably 40 to 105 mg KOH/g. When the solid content acid value is within this range, the active energy ray curable resin composition of the present invention exhibits good developability with an alkaline aqueous solution. In other words, it is possible to achieve a good balance between the solubility of the non-active energy ray irradiated area and the insolubility of the active energy ray irradiated area.

酸付加工程は反応を促進させるために触媒を使用することが好ましく、その使用量は反応物の総量に対して0.1~10重量%程度である。その際の反応温度は60~150℃、反応時間は好ましくは5~60時間である。
該触媒としては、例えば、トリエチルアミン、ベンジルジメチルアミン、トリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムアイオダイド、トリフェニルホスフィン、トリフェニルスチビン、オクタン酸クロム、オクタン酸ジルコニウム等が挙げられる。
In the acid addition step, it is preferable to use a catalyst to promote the reaction, and the amount of the catalyst used is about 0.1 to 10% by weight based on the total amount of the reactants. The reaction temperature is 60 to 150° C., and the reaction time is preferably 5 to 60 hours.
Examples of the catalyst include triethylamine, benzyldimethylamine, triethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium iodide, triphenylphosphine, triphenylstibine, chromium octanoate, and zirconium octanoate.

酸付加工程は無溶剤若しくは溶剤で希釈して反応させることができる。溶剤を使用する場合、該溶剤としては酸付加反応においてイナートな溶剤であれば特に限定はない。又、前工程であるウレタン化工程で溶剤を用いて製造した場合には、両反応にイナートであれば溶剤を除くことなく酸付加反応を行えばよい。 The acid addition step can be carried out without a solvent or diluted with a solvent. If a solvent is used, there are no particular limitations on the solvent as long as it is an inert solvent in the acid addition reaction. Also, if a solvent was used in the preceding urethane formation step, the acid addition reaction can be carried out without removing the solvent if it is an inert solvent in both reactions.

該溶剤の使用量は、得られる樹脂の粘度や使途により適宜調整されるべきものであるが、好ましくは固形分含有率が90~30重量%、より好ましくは80~50重量%になるように用いればよい。
該溶剤としては、前記カルボキシレート化反応やウレタン化工程において例示した溶剤と同様のものを使用すればよい。
The amount of the solvent used should be adjusted appropriately depending on the viscosity and use of the resulting resin, but it is preferable to use the solvent in such an amount that the solid content becomes 90 to 30% by weight, more preferably 80 to 50% by weight.
As the solvent, the same solvents as those exemplified in the carboxylation reaction and urethanization step may be used.

又、反応にイナートであれば、後記の架橋剤(B)等を溶剤として単独又は混合して使用してもよい。この場合、硬化型組成物としてそのまま使用することもできる。 If the reaction is inert, the crosslinking agent (B) described below may be used alone or in combination as a solvent. In this case, the composition may be used as it is as a curable composition.

酸付加工程は熱重合禁止剤等を使用してもよく、前記カルボキシレート化工程及び前記ウレタン化工程において例示した化合物と同様の化合物を使用することができる。 In the acid addition step, a thermal polymerization inhibitor or the like may be used, and the same compounds as those exemplified in the carboxylation step and the urethanization step can be used.

酸付加工程の反応は適宜サンプリングしながら、反応物の酸価が設定した酸価のプラスマイナス10%の範囲になった点をもって終点とする。 The reaction in the acid addition process is sampled as appropriate, and the end point is reached when the acid value of the reactant falls within the range of plus or minus 10% of the set acid value.

又、本発明におけるカルボキシ基含有感光性樹脂(A)には、1分子中に2個以上のエポキシ基を有するエポキシ化合物(a’)と分子中にエチレン性不飽和基を有するモノカルボン酸(b)とを反応させて得られる不飽和エポキシカルボキシレート化合物(c’)と、多塩基酸無水物(g)との反応生成物(A3)も含まれる。 The carboxyl group-containing photosensitive resin (A) in the present invention also includes a reaction product (A3) of an unsaturated epoxy carboxylate compound (c') obtained by reacting an epoxy compound (a') having two or more epoxy groups in one molecule with a monocarboxylic acid (b) having an ethylenically unsaturated group in the molecule, and a polybasic acid anhydride (g).

本発明において反応生成物(A3)を製造するために用いる1分子中に2個以上のエポキシ基を有するエポキシ化合物(a’)はとしては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、ビスフェノール-A型エポキシ樹脂、ビスフェノール-F型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビスフェノール-Aノボラック型エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、グリオキサール型エポキシ樹脂、複素環式エポキシ樹脂等が挙げられる。 Examples of the epoxy compound (a') having two or more epoxy groups in one molecule used to produce the reaction product (A3) in the present invention include phenol novolac type epoxy resins, cresol novolac type epoxy resins, trishydroxyphenylmethane type epoxy resins, dicyclopentadiene phenol type epoxy resins, bisphenol-A type epoxy resins, bisphenol-F type epoxy resins, biphenol type epoxy resins, bisphenol-A novolac type epoxy resins, naphthalene skeleton-containing epoxy resins, glyoxal type epoxy resins, heterocyclic epoxy resins, etc.

該フェノールノボラック型エポキシ樹脂としては、例えば、エピクロンN-770(DIC(株)製)、D.E.N438(ダウ・ケミカル社製)、jER154(ジャパンエポキシレジン(株)製)、EPPN-201、RE-306(いずれも日本化薬(株)製)等が挙げられる。
該クレゾールノボラック型エポキシ樹脂としては、例えば、エピクロンN-695(DIC(株)製)、EOCN-102S、EOCN-103S、EOCN-104S(いずれも日本化薬(株)製)、UVR-6650(ユニオンカーバイド社製)、ESCN-195(住友化学工業(株)製)等が挙げられる。
Examples of the phenol novolac type epoxy resin include Epiclon N-770 (manufactured by DIC Corporation), D.E.N438 (manufactured by The Dow Chemical Company), jER154 (manufactured by Japan Epoxy Resins Co., Ltd.), EPPN-201, and RE-306 (all manufactured by Nippon Kayaku Co., Ltd.).
Examples of the cresol novolac type epoxy resin include Epicron N-695 (manufactured by DIC Corporation), EOCN-102S, EOCN-103S, EOCN-104S (all manufactured by Nippon Kayaku Co., Ltd.), UVR-6650 (manufactured by Union Carbide Corporation), and ESCN-195 (manufactured by Sumitomo Chemical Co., Ltd.).

該トリスヒドロキシフェニルメタン型エポキシ樹脂としては、例えば、EPPN-503、EPPN-502H、EPPN-501H(いずれも日本化薬(株)製)、TACTIX-742(ダウ・ケミカル社製)、jER E1032H60(ジャパンエポキシレジン(株)製)等が挙げられる。
該ジシクロペンタジエンフェノール型エポキシ樹脂としては、例えば、エピクロンEXA-7200(DIC(株)製)、TACTIX-556(ダウ・ケミカル社製)等が挙げられる。
Examples of the trishydroxyphenylmethane type epoxy resin include EPPN-503, EPPN-502H, EPPN-501H (all manufactured by Nippon Kayaku Co., Ltd.), TACTIX-742 (manufactured by The Dow Chemical Company), jER E1032H60 (manufactured by Japan Epoxy Resins Co., Ltd.), and the like.
Examples of the dicyclopentadiene phenol type epoxy resin include Epicron EXA-7200 (manufactured by DIC Corporation) and TACTIX-556 (manufactured by The Dow Chemical Company).

該ビスフェノール型エポキシ樹脂としては、例えば、jER828、jER1001(いずれもジャパンエポキシレジン(株)製)、UVR-6410(ユニオンカーバイド社製)、D.E.R-331(ダウ・ケミカル社製)、YD-8125(東都化成(株)製)、NER-1202、NER-1302(いずれも日本化薬(株)製)等のビスフェノール-A型エポキシ樹脂、UVR-6490(ユニオンカーバイド社製)、YDF-8170(東都化成(株)製)、NER-7403、NER-7604(いずれも日本化薬(株)製)等のビスフェノール-F型エポキシ樹脂等が挙げられる。 Examples of the bisphenol type epoxy resin include bisphenol-A type epoxy resins such as jER828, jER1001 (both manufactured by Japan Epoxy Resins Co., Ltd.), UVR-6410 (manufactured by Union Carbide Corporation), D.E.R-331 (manufactured by Dow Chemical Co., Ltd.), YD-8125 (manufactured by Tohto Kasei Co., Ltd.), NER-1202, NER-1302 (both manufactured by Nippon Kayaku Co., Ltd.), and bisphenol-F type epoxy resins such as UVR-6490 (manufactured by Union Carbide Corporation), YDF-8170 (manufactured by Tohto Kasei Co., Ltd.), NER-7403, NER-7604 (both manufactured by Nippon Kayaku Co., Ltd.).

該ビフェノール型エポキシ樹脂としては、例えば、NC-3000、NC-3000-H、NC-3000-L(いずれも日本化薬(株)製)等のビフェノール型エポキシ樹脂、YX-4000(ジャパンエポキシレジン(株)製)のビキシレノール型エポキシ樹脂、YL-6121(ジャパンエポキシレジン(株)製)等が挙げられる。
該ビスフェノールAノボラック型エポキシ樹脂としては、例えば、エピクロンN-880(DIC(株)製)、jER E157S75(ジャパンエポキシレジン(株)製)等が挙げられる。
Examples of the biphenol type epoxy resin include biphenol type epoxy resins such as NC-3000, NC-3000-H, and NC-3000-L (all manufactured by Nippon Kayaku Co., Ltd.), bixylenol type epoxy resins such as YX-4000 (manufactured by Japan Epoxy Resins Co., Ltd.), and YL-6121 (manufactured by Japan Epoxy Resins Co., Ltd.).
Examples of the bisphenol A novolac type epoxy resin include Epicron N-880 (manufactured by DIC Corporation) and jER E157S75 (manufactured by Japan Epoxy Resins Co., Ltd.).

該ナフタレン骨格含有エポキシ樹脂としては、例えば、NC-7000(日本化薬(株)製)、EXA-4750(DIC(株)製)等が挙げられる。
該グリオキサール型エポキシ樹脂としては、例えば、GTR-1800(日本化薬(株)製)等が挙げられる。
該脂環式エポキシ樹脂としては、例えば、EHPE-3150(ダイセル(株)製)等が挙げられる。
該複素環式エポキシ樹脂としては、例えば、TEPIC(日産化学(株)製)等が挙げられる。
Examples of the naphthalene skeleton-containing epoxy resin include NC-7000 (manufactured by Nippon Kayaku Co., Ltd.) and EXA-4750 (manufactured by DIC Corporation).
An example of the glyoxal type epoxy resin is GTR-1800 (manufactured by Nippon Kayaku Co., Ltd.).
An example of the alicyclic epoxy resin is EHPE-3150 (manufactured by Daicel Corporation).
An example of the heterocyclic epoxy resin is TEPIC (manufactured by Nissan Chemical Industries, Ltd.).

中でも、フレキシブル性の点において、ビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂が特に有効で、例えば、NER-1202、NER-1302、NER-7403、NER-7604、NC-3000、NC-3000-H、NC-3000-L等がもっとも好ましい。 Among these, bisphenol type epoxy resins and biphenol type epoxy resins are particularly effective in terms of flexibility, and for example, NER-1202, NER-1302, NER-7403, NER-7604, NC-3000, NC-3000-H, NC-3000-L, etc. are most preferred.

本発明の感光性樹脂組成物に用いられる架橋剤(B)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、1,4-ブタンジオールモノ(メタ)アクリレート、カルビトール(メタ)アクリレート、アクリロイルモルホリン、水酸基を有する(メタ)アクリレート(例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、1,4-ブタンジオールモノ(メタ)アクリレート等)と多カルボン酸の酸無水物(例えば、無水コハク酸、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等)の反応物であるハーフエステル,ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、グリセリンポリプロポキシトリ(メタ)アクリレート、ヒドロキシビバリン酸ネオペングリコールのε-カプロラクトン付加物のジ(メタ)アクリレート(例えば、日本化薬(株)製、KAYARAD HX-220、HX-620等)、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールとε-カプロラクトンの反応物のポリ(メタ)アクリレート(例えば後記実施例に記載のDPCA)、ジペンタエリスリトールポリ(メタ)アクリレート、モノ又はポリグリシジル化合物(例えば、ブチルグリシジルエーテル、フェニルグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、グリセリンポリグリシジルエーテル、グリセリンポリエトキシグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、トリメチロールプロパンポリエトキシポリグリシジルエーテル等と(メタ)アクリル酸の反応物であるエポキシ(メタ)アクリレート等を挙げることができる。架橋剤(B)は、単独で用いることもでき、また、2種以上を混合して用いても良い。これらの感光性樹脂組成物における含有割合としては、感光性樹脂組成物の固形分を100質量%としたとき、通常2~40質量%、好ましくは、3~30質量%である。 Examples of the crosslinking agent (B) used in the photosensitive resin composition of the present invention include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 1,4-butanediol mono(meth)acrylate, carbitol (meth)acrylate, acryloylmorpholine, (meth)acrylates having a hydroxyl group (e.g., 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 1,4-butanediol mono(meth)acrylate, etc.) and acid anhydrides of polycarboxylic acids (e.g., succinic anhydride, anhydrous succinic acid, etc.). maleic acid, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc.), half esters as reaction products of such acids, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane polyethoxy tri(meth)acrylate, glycerin polypropoxy tri(meth)acrylate, di(meth)acrylate of ε-caprolactone adduct of hydroxypivalic acid neopen glycol (e.g., KAYARAD, manufactured by Nippon Kayaku Co., Ltd.), HX-220, HX-620, etc.), pentaerythritol tetra(meth)acrylate, poly(meth)acrylates which are reaction products of dipentaerythritol and ε-caprolactone (for example, DPCA described in the Examples below), dipentaerythritol poly(meth)acrylate, mono- or polyglycidyl compounds (for example, butyl glycidyl ether, phenyl glycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, hexahydrophthalic acid diglycidyl ether, Examples of the crosslinking agent (B) include epoxy (meth)acrylate, which is a reaction product of glycerin polyglycidyl ether, glycerin polyethoxyglycidyl ether, trimethylolpropane polyglycidyl ether, trimethylolpropane polyethoxypolyglycidyl ether, etc. with (meth)acrylic acid. The crosslinking agent (B) may be used alone or in combination of two or more. The content of these in the photosensitive resin composition is usually 2 to 40% by mass, preferably 3 to 30% by mass, when the solid content of the photosensitive resin composition is taken as 100% by mass.

本発明の感光性樹脂組成物に用いられる光重合開始剤(C)は、特に制限なく用いることができるが、具体的には、例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシクロヘキシルフェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン(例えば後記実施例に記載のOmnirad-907)などのアセトフェノン類;2-エチルアントラキノン、2-ターシャリーブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノンなどのアントラキノン類;2,4-ジエチルチオキサントン(例えば後記実施例に記載のDETX-S)、2-イソプロピルチオキサントン、2-クロロチオキサントンなどのチオキサントン類;アセトフエノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノンなどのベンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のホスフィンオキサイド類等が挙げられる。光重合開始剤(C)は、単独で用いることもでき、また、2種以上を混合して用いても良い。これらの感光性樹脂組成物における含有割合としては、感光性樹脂組成物の固形分を100質量%としたとき、通常1~30質量%、好ましくは、2~25質量%である。 The photopolymerization initiator (C) used in the photosensitive resin composition of the present invention can be used without any particular limitation, and specific examples thereof include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenones such as acetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, and 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one (for example, Omnirad-907 described in the Examples below); and 2-ethylanthraquinone. , anthraquinones such as 2-tertiary butyl anthraquinone, 2-chloro anthraquinone, 2-amyl anthraquinone, etc.; thioxanthones such as 2,4-diethyl thioxanthone (for example, DETX-S described in the examples below), 2-isopropyl thioxanthone, 2-chloro thioxanthone, etc.; ketals such as acetophenone dimethyl ketal, benzyl dimethyl ketal, etc.; benzophenones such as benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 4,4'-bismethylaminobenzophenone, etc.; phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, etc. The photopolymerization initiator (C) can be used alone or in a mixture of two or more kinds. The content ratio of these in the photosensitive resin composition is usually 1 to 30% by mass, preferably 2 to 25% by mass, when the solid content of the photosensitive resin composition is 100% by mass.

これら光重合開始剤(C)は、単独または2種以上の混合物として使用でき、さらにはトリエタノールアミン、メチルジエタノールアミンなどの第3級アミン、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル等の安息香酸誘導体等の促進剤などと組み合わせて使用することができる。これらの促進剤の添加量としては、光重合開始剤(C)に対して、100質量%以下の添加量が好ましい。 These photopolymerization initiators (C) can be used alone or as a mixture of two or more kinds, and can be used in combination with accelerators such as tertiary amines such as triethanolamine and methyldiethanolamine, and benzoic acid derivatives such as N,N-dimethylaminobenzoic acid ethyl ester and N,N-dimethylaminobenzoic acid isoamyl ester. The amount of these accelerators added is preferably 100% by mass or less relative to the photopolymerization initiator (C).

一般式(1)で表されるエポキシ樹脂(D)の含有割合としては、カルボキシ基含有感光性樹脂(A)の固形分酸価と使用量から計算された当量の200%以下の量が好ましい。より好ましい範囲としては、80%~200%であり、さらに好ましくは80~140%である。エポキシ樹脂(D)の含有割合が200%を超えると本発明の感光性樹脂組成物の現像性が著しく低下するおそれがあり好ましくない。エポキシ樹脂(D)の含有割合が80%より小さい場合は本発明の硬化物中にカルボキシ基が残存してしまい、絶縁信頼性が低下するおそれがある。 The content of the epoxy resin (D) represented by the general formula (1) is preferably 200% or less of the equivalent amount calculated from the solid acid value of the carboxyl group-containing photosensitive resin (A) and the amount used. A more preferred range is 80% to 200%, and even more preferably 80 to 140%. If the content of the epoxy resin (D) exceeds 200%, the developability of the photosensitive resin composition of the present invention may be significantly reduced, which is not preferable. If the content of the epoxy resin (D) is less than 80%, carboxyl groups may remain in the cured product of the present invention, which may reduce the insulation reliability.

一般式(1)で表されるエポキシ樹脂(D)は、予め前記、樹脂組成物に混合してもよいが、プリント基板への塗布前に混合することが好ましい。すなわち、前記、(A)成分を主体とし、これにエポキシ硬化促進剤等を配合した主剤溶液と、一般式(1)で表されるエポキシ樹脂(D)を主体としたエポキシ樹脂溶液の二液型に配合し、使用に際してこれらを混合して用いることが好ましい。 The epoxy resin (D) represented by the general formula (1) may be mixed in advance with the resin composition, but it is preferable to mix it before applying it to the printed circuit board. In other words, it is preferable to mix a base solution mainly made of the component (A) and containing an epoxy curing accelerator, etc., and an epoxy resin solution mainly made of the epoxy resin (D) represented by the general formula (1) into a two-liquid type, and mix these when using.

本発明の感光性樹脂組成物を得るにあたり、必要に応じて各種の添加剤、例えば、タルク、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、チタン酸バリウム、水酸化アルミニウム、酸化アルミニウム、シリカ、クレーなどの充填剤、アエロジルなどのチキソトロピー付与剤;フタロシアニンブルー、フタロシアニングリーン、酸化チタンなどの着色剤、シリコーン系のレベリング剤(例えば、KS-66)、フッ素系のレベリング剤や消泡剤(例えば、BYK-354);ハイドロキノン、ハイドロキノンモノメチルエーテルなどの重合禁止剤、熱硬化触媒(例えば後記実施例に記載のトリフェニルホスフィン)などを組成物の諸性能を高める目的で添加することができる。 When preparing the photosensitive resin composition of the present invention, various additives can be added as necessary to enhance the performance of the composition, such as fillers such as talc, barium sulfate, calcium carbonate, magnesium carbonate, barium titanate, aluminum hydroxide, aluminum oxide, silica, and clay, thixotropy-imparting agents such as Aerosil, colorants such as phthalocyanine blue, phthalocyanine green, and titanium oxide, silicone-based leveling agents (e.g., KS-66), fluorine-based leveling agents and defoamers (e.g., BYK-354), polymerization inhibitors such as hydroquinone and hydroquinone monomethyl ether, and heat curing catalysts (e.g., triphenylphosphine, described in the Examples below).

本発明の感光性樹脂組成物は、例えば前記のカルボキシ基含有感光性樹脂(A)に、架橋剤(B)、光重合開始剤(C)、硬化剤としてエポキシ樹脂(D)を混合することにより得ることができる。 The photosensitive resin composition of the present invention can be obtained, for example, by mixing the carboxyl group-containing photosensitive resin (A) with a crosslinking agent (B), a photopolymerization initiator (C), and an epoxy resin (D) as a curing agent.

本発明の感光性樹脂組成物は、樹脂組成物が支持フィルムと保護フィルムでサンドイッチされた構造からなるドライフィルムレジストとしても用いることもできる。本発明の感光性樹脂組成物は、液状又はフィルム状に加工されたものが好ましい。 The photosensitive resin composition of the present invention can also be used as a dry film resist having a structure in which the resin composition is sandwiched between a support film and a protective film. The photosensitive resin composition of the present invention is preferably processed into a liquid or film form.

本発明の感光性樹脂組成物は、例えばプリント基板用のソルダーレジスト、カバーレイ等のレジスト材料、電子部品の層間の絶縁材、光部品間を接続する光導波路として有用である他、カラーフィルター、印刷インキ、封止剤、塗料、コーティング剤、接着剤等としても使用できる。 The photosensitive resin composition of the present invention is useful, for example, as a solder resist for printed circuit boards, a resist material such as a coverlay, an insulating material between layers of electronic components, and an optical waveguide for connecting optical components. It can also be used as a color filter, a printing ink, a sealant, a paint, a coating agent, an adhesive, etc.

本発明の硬化物は、紫外線等のエネルギー線照射により上記の本発明の感光性樹脂組成物を硬化させたものである。紫外線等のエネルギー線照射により硬化は常法により行うことができる。例えば紫外線を照射する場合、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、紫外線発光レーザー(エキシマーレーザー等)等の紫外線発生装置を用いればよい。 The cured product of the present invention is obtained by curing the above-mentioned photosensitive resin composition of the present invention by irradiation with energy rays such as ultraviolet rays. Curing by irradiation with energy rays such as ultraviolet rays can be carried out by a conventional method. For example, when irradiating with ultraviolet rays, an ultraviolet generating device such as a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, or an ultraviolet emitting laser (excimer laser, etc.) may be used.

上記のプリント基板は、例えば次のようにして得ることができる。即ち、液状の樹脂組成物を使用する場合、プリント配線用基板に、スクリーン印刷法、スプレー法、ロールコート法、静電塗装法、カーテンコート法等の方法により5~160μmの膜厚で本発明の感光性樹脂組成物を塗布し、塗膜を通常50~110℃、好ましくは60~100℃で乾燥させることにより、塗膜が形成できる。その後、ネガフィルム等の露光パターンを形成したフォトマスクを通して塗膜に直接または間接に紫外線等の高エネルギー線を通常10~2000mJ/cm程度の強さで照射し、未露光部分を後述する現像液を用いて、例えばスプレー、揺動浸漬、ブラッシング、スクラッビング等により現像する。その後、必要に応じてさらに紫外線を照射し、次いで通常100~200℃、好ましくは140~180℃の温度で加熱処理をすることにより、金メッキ性に優れ、耐熱性、耐溶剤性、耐酸性、密着性、屈曲性等の諸特性を満足する永久保護膜を有するプリント基板が得られる。 The above printed circuit board can be obtained, for example, as follows. That is, when a liquid resin composition is used, the photosensitive resin composition of the present invention is applied to a printed wiring board in a film thickness of 5 to 160 μm by a method such as screen printing, spraying, roll coating, electrostatic painting, or curtain coating, and the coating film is dried at a temperature of usually 50 to 110 ° C., preferably 60 to 100 ° C., to form a coating film. Thereafter, the coating film is directly or indirectly irradiated with high-energy rays such as ultraviolet rays at an intensity of usually about 10 to 2000 mJ/cm 2 through a photomask having an exposure pattern such as a negative film, and the unexposed parts are developed using a developer described later, for example, by spraying, rocking immersion, brushing, scrubbing, or the like. Thereafter, if necessary, ultraviolet rays are further irradiated, and then heat treatment is performed at a temperature of usually 100 to 200 ° C., preferably 140 to 180 ° C., to obtain a printed circuit board having a permanent protective film that is excellent in gold plating and satisfies various properties such as heat resistance, solvent resistance, acid resistance, adhesion, and flexibility.

現像に使用される、アルカリ水溶液としては水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム等の無機アルカリ水溶液やテトラメチルアンモニウムハイドロオキサイド、テトラエチルアンモニウムハイドロオキサイド、テトラブチルアンモニウムハイドロオキサイド、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の有機アルカリ水溶液が使用できる。 The alkaline aqueous solution used for development can be an inorganic alkaline aqueous solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium phosphate, or potassium phosphate, or an organic alkaline aqueous solution such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, monoethanolamine, diethanolamine, or triethanolamine.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。又、実施例中、特に断りがない限り部は重量部を示す。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. In the examples, parts are by weight unless otherwise specified.

エポキシ当量、酸価、GPCの測定は以下の条件で測定した。
1)エポキシ当量(WPE):JIS K 7236:2001に準じた方法で測定した。
2)酸価:JIS K 0070:1992に準じた方法で測定した。
3)GPCの測定条件は以下の通りである。
機種:TOSOH HLC-8220GPC
カラム:TSKGEL Super HZM-N
溶離液:THF(テトラヒドロフラン);0.35ml/分、温度40℃
検出器:示差屈折計
分子量標準:ポリスチレン
The epoxy equivalent, acid value and GPC were measured under the following conditions.
1) Epoxy equivalent (WPE): Measured according to a method in accordance with JIS K 7236:2001.
2) Acid value: Measured according to a method in accordance with JIS K 0070:1992.
3) The measurement conditions for GPC are as follows:
Model: TOSOH HLC-8220GPC
Column: TSKGEL Super HZM-N
Eluent: THF (tetrahydrofuran); 0.35 ml/min, temperature 40° C.
Detector: Differential refractometer Molecular weight standard: Polystyrene

合成例1:酸変性型ポリウレタン樹脂溶液(A-1)の合成
攪拌装置、還流管をつけた300mLフラスコ中に、1分子中に2個以上のエポキシ基を有するエポキシ化合物(a)として、ビスフェノールA型のエポキシ樹脂(商品名RE-310S、WPE=184g/eq、日本化薬(株)製)を342.38g、1分子中にエチレン性不飽和基を有するモノカルボン酸(b)としてメタアクリル酸を155.38g、触媒としてとしてトリフェニルホスフィン0.75gを加え、120℃の温度で反応液の酸価が、3mg・KOH/g以下になるまで反応させ、不飽和エポキシカルボキシレート化合物を得た。又、エポキシ価を測定したところ13kg/eqであり、充分にエポキシ基が反応していることも併せて確認した。このときの反応時間は24時間であった。
Synthesis Example 1: Synthesis of Acid-Modified Polyurethane Resin Solution (A-1) In a 300 mL flask equipped with a stirrer and a reflux condenser, 342.38 g of bisphenol A type epoxy resin (trade name RE-310S, WPE = 184 g / eq, manufactured by Nippon Kayaku Co., Ltd.) as an epoxy compound (a) having two or more epoxy groups in one molecule, 155.38 g of methacrylic acid as a monocarboxylic acid (b) having an ethylenically unsaturated group in one molecule, and 0.75 g of triphenylphosphine as a catalyst were added, and reacted at a temperature of 120 ° C. until the acid value of the reaction solution became 3 mg KOH / g or less, to obtain an unsaturated epoxy carboxylate compound. In addition, the epoxy value was measured to be 13 kg / eq, and it was also confirmed that the epoxy group had reacted sufficiently. The reaction time at this time was 24 hours.

次いで、攪拌装置、還流管をつけた300mLフラスコ中に、先ほど得られた不飽和エポキシカルボキシレート化合物を475.06g、1分子中に2個の水酸基を有するカルボン酸(d)として、ジメチロールプロピオン酸を116.55、任意のジオール化合物(e)として、ダイマー酸ポリエステルポリオール(商品名PRIPLAST XL 101、CRODA(株)製)を234.53g、溶剤としてジエチレングリコールモノエチルエーテルアセテート(略称CA)をポリウレタン化合物(A)として固形分含有率が63%になるように表1中記載量加えて80℃で撹拌溶解した。その後にジイソシアネート化合物(c)としてヘキサメチレンジイソシアネートを233.77g、滴下漏斗を用いて加え反応させた。滴下終了後、80℃の温度で10時間反応を継続して、赤外線吸収スペクトルにてイソシアネート基に由来する吸収ピークがないことを確認しポリウレタン化合物を得た。このとき、GPCを用いて測定したポリスチレン換算重量平均分子量は17,000であった。 Next, in a 300 mL flask equipped with a stirrer and reflux condenser, 475.06 g of the unsaturated epoxy carboxylate compound obtained earlier, 116.55 g of dimethylolpropionic acid as a carboxylic acid having two hydroxyl groups in one molecule (d), 234.53 g of dimer acid polyester polyol (trade name PRIPLAST XL 101, manufactured by CRODA Co., Ltd.) as an arbitrary diol compound (e), and diethylene glycol monoethyl ether acetate (abbreviated CA) as a solvent were added in the amounts shown in Table 1 so that the solid content of polyurethane compound (A) was 63%, and the mixture was stirred and dissolved at 80 ° C. Then, 233.77 g of hexamethylene diisocyanate was added as diisocyanate compound (c) using a dropping funnel and reacted. After the dropwise addition, the reaction was continued at a temperature of 80 ° C. for 10 hours, and it was confirmed that there was no absorption peak derived from the isocyanate group in the infrared absorption spectrum, and a polyurethane compound was obtained. At this time, the weight average molecular weight measured using GPC in terms of polystyrene was 17,000.

その後、攪拌装置、還流管をつけた300mLフラスコ中に、先ほど得られたポリウレタン化合物のCA溶液を7.42g、更に、多塩基酸無水物(f)として無水コハク酸(新日本理化(株)製)を4.94加えた。更に溶剤としてCAを最終的な固形分含有率が63%になるように加えて撹拌溶解し100℃の温度で5時間反応を継続して、酸変性型ポリウレタン化合物を含む樹脂溶液(A-1)を得た。この酸変性型ポリウレタン化合物の酸価は75.1mg・KOH/gであった。このとき、GPCを用いて測定したポリスチレン換算重量平均分子量は18,000であった。 After that, 7.42 g of the CA solution of the polyurethane compound obtained earlier was added to a 300 mL flask equipped with a stirrer and reflux condenser, and further 4.94 g of succinic anhydride (manufactured by New Japan Chemical Co., Ltd.) as polybasic acid anhydride (f) was added. CA was further added as a solvent so that the final solid content was 63%, and the mixture was stirred and dissolved, and the reaction was continued at a temperature of 100°C for 5 hours to obtain a resin solution (A-1) containing an acid-modified polyurethane compound. The acid value of this acid-modified polyurethane compound was 75.1 mg KOH/g. At this time, the weight average molecular weight in terms of polystyrene measured using GPC was 18,000.

合成例2:エポキシ樹脂(D-1)の合成
温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、テトラメチルビフェノール型エポキシ樹脂(商品名YX-4000H、三菱ケミカル(株)製)380g、4、4’-ビフェノール98g、メチルイソブチルケトン100gを仕込み、撹拌下で100℃まで昇温した後、トリフェニルホスフィン0.38gを添加し、100℃で3時間、120℃で10時間反応させた後、メチルイソブチルケトンを留去することで、樹脂状固体としてエポキシ樹脂(D-1)(式(1)で表され、GPCの面積比より算出したnは平均で約2.1)を得た。得られた樹脂の軟化点は84℃であり、エポキシ当量は501g/eq.であった。
Synthesis Example 2: Synthesis of Epoxy Resin (D-1) While purging with nitrogen into a flask equipped with a thermometer, a cooling tube, a fractionating tube, and a stirrer, 380 g of tetramethylbiphenol type epoxy resin (trade name YX-4000H, manufactured by Mitsubishi Chemical Corporation), 98 g of 4,4'-biphenol, and 100 g of methyl isobutyl ketone were charged, and the temperature was raised to 100°C under stirring, after which 0.38 g of triphenylphosphine was added, and the reaction was carried out at 100°C for 3 hours and at 120°C for 10 hours, and then methyl isobutyl ketone was distilled off to obtain epoxy resin (D-1) (represented by formula (1), n calculated from the area ratio of GPC was about 2.1 on average) as a resinous solid. The softening point of the obtained resin was 84°C, and the epoxy equivalent was 501 g/eq.

前記合成例1で得られた酸変性型ポリウレタン化合物を含む樹脂溶液(A-1)、及び、前記合成例2で得られたエポキシ樹脂(D-1)を用い、表1に示す配合割合とした後攪拌装置にて均一に分散させ、感光性樹脂組成物を得た。 The resin solution (A-1) containing the acid-modified polyurethane compound obtained in Synthesis Example 1 and the epoxy resin (D-1) obtained in Synthesis Example 2 were mixed in the proportions shown in Table 1, and then uniformly dispersed in a stirrer to obtain a photosensitive resin composition.

[表1]

Figure 0007464498000009

*1 日本化薬(株)製:ε-カプロラクトン変性ジペンタエリスリトールヘキサアクリレート
*2 IGM Resins B.V. 製:2-メチル-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1-オン
*3 日本化薬(株)製:2,4-ジエチルチオキサントン
*4 日鉄ケミカル&マテリアル(株)製:ビスフェノール-A型エポキシ樹脂
*5 三菱ケミカル(株)製:テトラメチルビフェノール型エポキシ樹脂
*6 日本化薬(株)製:特殊多官能型エポキシ樹脂
*7 日本化薬(株)製:ビスフェノール-A型エポキシ樹脂
*8 日本化薬(株)製:ジシクロペンタジエンフェノール型エポキシ樹脂
*9 北興化学工業(株)製:トリフェニルホスフィン
*10 神港有機化学工業(株)製:ジエチレングリコールモノエチルエーテルアセテート [Table 1]
Figure 0007464498000009
Notes *1 Nippon Kayaku Co., Ltd.: ε-caprolactone modified dipentaerythritol hexaacrylate *2 IGM Resins B.V.: 2-methyl-(4-(methylthio)phenyl)-2-morpholinopropan-1-one *3 Nippon Kayaku Co., Ltd.: 2,4-diethylthioxanthone *4 Nippon Steel Chemical & Material Co., Ltd.: Bisphenol-A type epoxy resin *5 Mitsubishi Chemical Co., Ltd.: Tetramethylbiphenol type epoxy resin *6 Nippon Kayaku Co., Ltd.: Special multifunctional epoxy resin *7 Nippon Kayaku Co., Ltd.: Bisphenol-A type epoxy resin *8 Nippon Kayaku Co., Ltd.: Dicyclopentadiene phenol type epoxy resin *9 Hokko Chemical Industry Co., Ltd.: Triphenylphosphine *10 Shinko Organic Chemical Industry Co., Ltd.: Diethylene glycol monoethyl ether acetate

評価項目のそれぞれの項目について詳述する。 Each evaluation item is explained in detail below.

現像性評価(表中略称:現像性)
レジスト樹脂組成物をアプリケーターにて20μmの厚さになるように銅張積層板 ELC-4762(住友ベークライト(株)製)に塗布し、塗膜を80℃の熱風乾燥機で30分乾燥させた後、ビア(直径500μm)のマスクを被せ、紫外線照射器(USHIO製(超高圧水銀灯))を用いて、500mJ/cmのエネルギーで紫外線を照射した。その後現像液として1%炭酸ナトリウム水溶液を用いてスプレー現像を行った。塗膜が完全に溶解し、ビアが開いたかどうかで現像性を評価した。
〇‥残渣なし ×‥残渣あり
Developability evaluation (abbreviation in table: developability)
The resist resin composition was applied to a copper-clad laminate ELC-4762 (manufactured by Sumitomo Bakelite Co., Ltd.) with an applicator to a thickness of 20 μm, and the coating film was dried for 30 minutes in a hot air dryer at 80° C., after which it was covered with a mask of vias (diameter 500 μm) and irradiated with ultraviolet light at an energy of 500 mJ/cm 2 using an ultraviolet irradiator (USHIO (ultra-high pressure mercury lamp)). Thereafter, spray development was carried out using a 1% aqueous sodium carbonate solution as a developer. The developability was evaluated based on whether the coating film was completely dissolved and the vias were opened.
〇 No residue × Residue present

耐熱分解性評価(表中略称:耐熱分解性)
レジスト樹脂組成物をアプリケーターにて20μmの厚さになるように圧延銅箔 BHY-82F-HA-V2(JX金属(株)製)に塗布し、塗膜を80℃の熱風乾燥機で30分乾燥させた後、紫外線照射器(GS YUASA製:CS 30L-1)を用いて、500mJ/cmのエネルギーで紫外線を照射した。次にオーブン内で150℃で30分硬化させ、硬化物を得た。銅箔を塩化鉄(III)45°ボーメ(純正化学(株)製)で除去した。作製した硬化物を作成したサンプル3mgを、毎分100mlの空気流中でMETTLER製TGA/DSC1を用いて重量が5%減少する温度を測定した。
Thermal decomposition resistance evaluation (abbreviation in table: thermal decomposition resistance)
The resist resin composition was applied to rolled copper foil BHY-82F-HA-V2 (manufactured by JX Metals Co., Ltd.) with an applicator to a thickness of 20 μm, and the coating was dried in a hot air dryer at 80 ° C for 30 minutes, and then irradiated with ultraviolet light at an energy of 500 mJ / cm 2 using an ultraviolet irradiator (GS YUASA: CS 30L-1). Next, the cured product was obtained by curing in an oven at 150 ° C for 30 minutes. The copper foil was removed with iron (III) chloride 45 ° Baume (manufactured by Junsei Chemical Co., Ltd.). The temperature at which the weight of the sample produced by 3 mg of the cured product was reduced by 5% was measured using a METTLER TGA / DSC1 in an air flow of 100 ml per minute.

ガラス転移温度測定(表中略称Tg)
レジスト樹脂組成物をアプリケーターにて20μmの厚さになるように圧延銅箔 BHY-82F-HA-V2(JX金属(株)製)に塗布し、塗膜を80℃の熱風乾燥機で30分乾燥させた後、紫外線照射器(GS YUASA製:CS 30L-1)を用いて、500mJ/cmのエネルギーで紫外線を照射した。次にオーブン内で150℃で30分硬化させ、硬化物を得た。銅箔を塩化鉄(III)45°ボーメ(純正化学(株)製)で除去した。作製した硬化物を作成したサンプルのDMA測定(TA Instruments製:RSA-G2)を行い、tangentδが最大になる温度を求めた。
Glass transition temperature measurement (abbreviated as Tg in the table)
The resist resin composition was applied to rolled copper foil BHY-82F-HA-V2 (manufactured by JX Metals Co., Ltd.) with an applicator to a thickness of 20 μm, and the coating was dried in a hot air dryer at 80 ° C. for 30 minutes, and then irradiated with ultraviolet light at an energy of 500 mJ / cm 2 using an ultraviolet irradiator (GS YUASA: CS 30L-1). Next, the product was cured in an oven at 150 ° C. for 30 minutes to obtain a cured product. The copper foil was removed with iron (III) chloride 45 ° Baume (manufactured by Junsei Chemical Co., Ltd.). The sample from which the cured product was produced was subjected to DMA measurement (TA Instruments: RSA-G2) to determine the temperature at which tangent δ was maximized.

引張弾性率・破断点伸度測定
レジスト樹脂組成物をアプリケーターにて20μmの厚さになるように圧延銅箔 BHY-82F-HA-V2(JX金属(株)製)に塗布し、塗膜を80℃の熱風乾燥機で30分乾燥させた後、紫外線照射器(GS YUASA製:CS 30L-1)を用いて、500mJ/cmのエネルギーで紫外線を照射した。次にオーブン内で150℃で30分硬化させ、硬化物を得て、銅箔を塩化鉄(III)45°ボーメ(純正化学(株)製)で除去した。得られた硬化膜を長さ50mm、幅5mmに切断し、チャック間距離を4cm、温度23℃において、テンシロン(A&D(株)製:RTG-1210)を用い、引張速度5mm/minの条件で引張弾性率(MPa)及び破断点伸度(%)を測定して求めた。
Measurement of tensile modulus and elongation at break The resist resin composition was applied to rolled copper foil BHY-82F-HA-V2 (manufactured by JX Metals Co., Ltd.) with an applicator to a thickness of 20 μm, and the coating film was dried in a hot air dryer at 80 ° C. for 30 minutes, and then irradiated with ultraviolet light at an energy of 500 mJ / cm 2 using an ultraviolet irradiator (GS YUASA: CS 30L-1). Next, the film was cured in an oven at 150 ° C. for 30 minutes to obtain a cured product, and the copper foil was removed with iron (III) chloride 45 ° Baume (manufactured by Junsei Chemical Co., Ltd.). The obtained cured film was cut into a length of 50 mm and a width of 5 mm, and the tensile modulus (MPa) and elongation at break (%) were measured using Tensilon (A & D Co., Ltd.: RTG-1210) at a chuck distance of 4 cm and a temperature of 23 ° C. at a pulling speed of 5 mm / min.

マイグレーション評価
各組成物を、L/S=100μm/100μmのくし型パターンが形成されたエスパネックスMシリーズ(新日鐵化学製:ベースイミド厚25μm Cu厚18μm)上に25μmの厚さになるように塗布し、塗膜をオーブンで80℃で30分乾燥させた。次いで、紫外線露光装置(GS YUASA製:CS 30L-1)を用いて500mJ/cmで露光して硬化させたのち、オーブンで150℃で1時間乾燥させることによって、評価用の試験基板を得た。得られた基板の電極部分をはんだによる配線接続を行い、130℃/85%RHの環境下に置き、100Vの電圧をかけてマイグレーション評価をした。
〇‥100時間以上 △‥50時間以上100時間未満 ×‥50時間未満
Migration evaluation Each composition was applied to a thickness of 25 μm on ESPANEX M series (manufactured by Nippon Steel Chemical: base imide thickness 25 μm, Cu thickness 18 μm) on which a comb-shaped pattern of L/S=100 μm/100 μm was formed, and the coating film was dried in an oven at 80 ° C. for 30 minutes. Next, the coating was cured by exposure to 500 mJ/cm 2 using an ultraviolet exposure device (manufactured by GS YUASA: CS 30L-1), and then dried in an oven at 150 ° C. for 1 hour to obtain a test substrate for evaluation. The electrode portion of the obtained substrate was wired and connected by solder, placed in an environment of 130 ° C./85% RH, and migration evaluation was performed by applying a voltage of 100 V.
○ 100 hours or more △ 50 hours or more but less than 100 hours × Less than 50 hours

[表2]

Figure 0007464498000010
[Table 2]
Figure 0007464498000010

上記の結果から明らかなように、本発明の感光性樹脂組成物は優れた現像性であり、現像後の剥がれもなく、十分な密着性を有している。また、その硬化膜も耐熱性、弾性率、柔軟性に優れているので、特にプリント基板用感光性樹脂組成物に適している。 As is clear from the above results, the photosensitive resin composition of the present invention has excellent developability, does not peel off after development, and has sufficient adhesion. In addition, the cured film also has excellent heat resistance, elasticity, and flexibility, making it particularly suitable as a photosensitive resin composition for printed circuit boards.

本発明の感光性樹脂組成物は、紫外線により露光硬化することによる塗膜の形成において、現像性に優れ、得られた硬化物は、硬化膜も耐熱性、弾性率、柔軟性、無電解金メッキ耐性も十分に満足するものであり、光硬化型塗料、光硬化型接着剤等に好適に使用でき、特にプリント基板用感光性樹脂組成物及び光導波路形成用感光性樹脂組成物に適している。に適している。
好適には、例えば特に高い信頼性を求められるフレキシブルプリント配線板用ソルダーレジスト、プリント配線板用ソルダーレジスト、多層プリント配線板用層間絶縁材料、メッキレジスト、感光性光導波路等の用途に用いることができる。

The photosensitive resin composition of the present invention has excellent developability when it is exposed to ultraviolet light and cured to form a coating film, and the obtained cured product has sufficient heat resistance, elastic modulus, flexibility, and resistance to electroless gold plating, and can be suitably used for photocurable coating materials, photocurable adhesives, etc., and is particularly suitable for use as a photosensitive resin composition for printed circuit boards and a photosensitive resin composition for forming optical waveguides.
The composition can be suitably used in applications requiring particularly high reliability, such as solder resists for flexible printed wiring boards, solder resists for printed wiring boards, interlayer insulating materials for multilayer printed wiring boards, plating resists, and photosensitive optical waveguides.

Claims (8)

カルボキシ基含有感光性樹脂(A)、架橋剤(B)、光重合開始剤(C)及び硬化剤として下記一般式(1)で表されるエポキシ樹脂(D)を含有する感光性樹脂組成物。
Figure 0007464498000011
(式(1)中、複数存在するArは、独立して式(X)
Figure 0007464498000012
または式(Y)
Figure 0007464498000013
(式(Y)中Rは独立して、水素原子、炭素数1~2のアルキル基、アリル基またはフェニル基を表し、少なくとも1つは水素原子以外である。)
で表される結合基を示し、式(X)と式(Y)は任意に選択可能であるが、1分子中に式(X)と式(Y)を少なくとも1個含む。nは繰り返し数の平均値であり、1≦n<20である。)
A photosensitive resin composition comprising a carboxyl group-containing photosensitive resin (A), a crosslinking agent (B), a photopolymerization initiator (C), and an epoxy resin (D) represented by the following general formula (1) as a curing agent:
Figure 0007464498000011
In formula (1), each of a plurality of Ar's independently represents a group represented by formula (X)
Figure 0007464498000012
Or formula (Y)
Figure 0007464498000013
(In formula (Y), R independently represents a hydrogen atom, an alkyl group having 1 to 2 carbon atoms, an allyl group, or a phenyl group, and at least one R is other than a hydrogen atom.)
Formula (X) and formula (Y) can be arbitrarily selected, but at least one of formula (X) and formula (Y) is contained in one molecule. n is the average number of repetitions, and 1≦n<20.)
カルボキシ基含有感光性樹脂(A)が、1分子中に2個のエポキシ基を有するエポキシ化合物(a)と1分子中にエチレン性不飽和基を有するモノカルボン酸(b)とを反応させて得られる不飽和エポキシカルボキシレート化合物(c)と、ジイソシアネート化合物(d)、1分子中に2個の水酸基を有するカルボン酸(e)及び、必要に応じて任意のポリエステルジオール化合物(f)を反応させて得られるポリウレタン化合物(A1)である請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the carboxyl group-containing photosensitive resin (A) is a polyurethane compound (A1) obtained by reacting an unsaturated epoxy carboxylate compound (c) obtained by reacting an epoxy compound (a) having two epoxy groups in one molecule with a monocarboxylic acid (b) having an ethylenically unsaturated group in one molecule, a diisocyanate compound (d), a carboxylic acid (e) having two hydroxyl groups in one molecule, and, if necessary, an optional polyester diol compound (f). カルボキシ基含有感光性樹脂(A)が、ポリウレタン化合物(A1)に多塩基酸無水物(g)を反応させて得られる酸変性型ポリウレタン化合物(A2)である請求項2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 2, wherein the carboxyl group-containing photosensitive resin (A) is an acid-modified polyurethane compound (A2) obtained by reacting a polyurethane compound (A1) with a polybasic acid anhydride (g). カルボキシ基含有感光性樹脂(A)が、1分子中に2個以上のエポキシ基を有するエポキシ化合物(a’)と1分子中にエチレン性不飽和基を有するモノカルボン酸(b)とを反応させて得られる不飽和エポキシカルボキシレート化合物(c’)と、多塩基酸無水物(g)との反応生成物(A3)である請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the carboxyl group-containing photosensitive resin (A) is a reaction product (A3) of an unsaturated epoxy carboxylate compound (c') obtained by reacting an epoxy compound (a') having two or more epoxy groups in one molecule with a monocarboxylic acid (b) having an ethylenically unsaturated group in one molecule, and a polybasic acid anhydride (g). 両末端のArが式(Y)である請求項1~4のいずれか一項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 4, wherein Ar at both ends is represented by formula (Y). 式(1)中、Rが全てメチル基である請求項1~5のいずれか一項に記載のエポキシ感光性樹脂組成物。 The epoxy photosensitive resin composition according to any one of claims 1 to 5, wherein all R in formula (1) are methyl groups. レジスト用材料である請求項1~6のいずれか一項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 6, which is a resist material. 請求項1~7のいずれか一項に記載の感光性樹脂組成物の硬化物。















A cured product of the photosensitive resin composition according to any one of claims 1 to 7.















JP2020180372A 2020-10-28 2020-10-28 Photosensitive resin composition containing epoxy resin and its cured product Active JP7464498B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020180372A JP7464498B2 (en) 2020-10-28 2020-10-28 Photosensitive resin composition containing epoxy resin and its cured product
KR1020210135846A KR20220056794A (en) 2020-10-28 2021-10-13 Photosensitive resin composition containing epoxy resin, and cured product of same
TW110139881A TW202227520A (en) 2020-10-28 2021-10-27 Photosensitive resin composition containing epoxy resin and cured product thereof
CN202111253397.1A CN114488689A (en) 2020-10-28 2021-10-27 Photosensitive resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020180372A JP7464498B2 (en) 2020-10-28 2020-10-28 Photosensitive resin composition containing epoxy resin and its cured product

Publications (2)

Publication Number Publication Date
JP2022071418A JP2022071418A (en) 2022-05-16
JP7464498B2 true JP7464498B2 (en) 2024-04-09

Family

ID=81492749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020180372A Active JP7464498B2 (en) 2020-10-28 2020-10-28 Photosensitive resin composition containing epoxy resin and its cured product

Country Status (4)

Country Link
JP (1) JP7464498B2 (en)
KR (1) KR20220056794A (en)
CN (1) CN114488689A (en)
TW (1) TW202227520A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008250307A (en) 2007-03-05 2008-10-16 Nippon Shokubai Co Ltd Photosensitive resin composition for image formation
JP2010280812A (en) 2009-06-04 2010-12-16 Nippon Kayaku Co Ltd Reactive urethane compound, active energy ray-curable resin composition comprising the same and application of the same
WO2012176694A1 (en) 2011-06-24 2012-12-27 東京応化工業株式会社 Negative-type photosensitive resin composition, pattern forming method, cured film, insulating film, color filter, and display device
JP2017036379A (en) 2015-08-07 2017-02-16 日本化薬株式会社 Novel reactive carboxylate compound, curable resin composition prepared therewith, and use therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952925A (en) 1995-08-11 1997-02-25 Takeda Chem Ind Ltd Photopolymerizable resin composition and cured material
JP5027357B2 (en) 2001-03-30 2012-09-19 太陽ホールディングス株式会社 Photo-curable thermosetting resin composition and printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008250307A (en) 2007-03-05 2008-10-16 Nippon Shokubai Co Ltd Photosensitive resin composition for image formation
JP2010280812A (en) 2009-06-04 2010-12-16 Nippon Kayaku Co Ltd Reactive urethane compound, active energy ray-curable resin composition comprising the same and application of the same
WO2012176694A1 (en) 2011-06-24 2012-12-27 東京応化工業株式会社 Negative-type photosensitive resin composition, pattern forming method, cured film, insulating film, color filter, and display device
US20140231729A1 (en) 2011-06-24 2014-08-21 Tokyo Ohka Kogyo Co., Ltd. Negative-type photosensitive resin composition, pattern forming method, cured film, insulating film, color filter, and display device
JP2017036379A (en) 2015-08-07 2017-02-16 日本化薬株式会社 Novel reactive carboxylate compound, curable resin composition prepared therewith, and use therefor

Also Published As

Publication number Publication date
CN114488689A (en) 2022-05-13
TW202227520A (en) 2022-07-16
KR20220056794A (en) 2022-05-06
JP2022071418A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
JP5843372B2 (en) Polyurethane compound, active energy ray-curable resin composition containing the same, and use thereof
CN105527793B (en) Photosensitive resin composition and cured product thereof
JPWO2007032326A1 (en) Photosensitive resin composition and cured product thereof
JP4686364B2 (en) Unsaturated group-containing polyamic acid resin, photosensitive resin composition using the same, and cured product thereof
US20070161100A1 (en) Photosensitive resin composition and cured product thereof
JP2981218B1 (en) Solder photoresist ink composition
JP2008063572A (en) Photosensitive resin and active energy ray-curing type resin composition containing the same
JP3523857B2 (en) Photosensitive resin and photosensitive resist ink composition
KR102424000B1 (en) Polyurethane compound and active energy ray curable resin composition containing same, and use thereof
JPWO2007043425A1 (en) Imidourethane resin, photosensitive resin composition containing the same, and cured product thereof
JP5177503B2 (en) Photosensitive resin composition and novel acid group-containing vinyl ester resin
WO2001053375A1 (en) Polynuclear epoxy compound, resin obtained therefrom curable with actinic energy ray, and photocurable/thermosetting resin composition containing the same
JP2004155916A (en) Photosensitive resin composition and its cured product
JP4400926B2 (en) Photosensitive resin composition and cured product thereof
JP7464498B2 (en) Photosensitive resin composition containing epoxy resin and its cured product
JP4471149B2 (en) Photosensitive resin composition and method for producing cured product thereof
JP4655928B2 (en) Photosensitive resin composition
JP4714135B2 (en) Unsaturated group-containing hyperbranched compound, curable composition containing the same, and cured product thereof
JP2007161878A (en) Polycarboxylic acid resin, photosensitive resin composition and its cured product
KR20180103720A (en) Photosensitive resin compound, cured product thereof, and article
JP2007177180A (en) Epoxy resin varnish, photosensitive resin composition and its cured product
JP4793815B2 (en) Photosensitive resin composition and cured product thereof
JP7177748B2 (en) Polyurethane resin, active energy ray-curable resin composition containing same, and use thereof
CN111690121B (en) Unsaturated group-containing polycarboxylic acid resin, photosensitive resin composition, cured product, substrate, and article
JP2011001509A (en) Epoxy (meth)acrylate resin, curable resin composition, and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240328

R150 Certificate of patent or registration of utility model

Ref document number: 7464498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150