Nothing Special   »   [go: up one dir, main page]

JP7444601B2 - Cooling system and cooling system control method - Google Patents

Cooling system and cooling system control method Download PDF

Info

Publication number
JP7444601B2
JP7444601B2 JP2019234127A JP2019234127A JP7444601B2 JP 7444601 B2 JP7444601 B2 JP 7444601B2 JP 2019234127 A JP2019234127 A JP 2019234127A JP 2019234127 A JP2019234127 A JP 2019234127A JP 7444601 B2 JP7444601 B2 JP 7444601B2
Authority
JP
Japan
Prior art keywords
refrigerant
cooling system
superconducting
condenser
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019234127A
Other languages
Japanese (ja)
Other versions
JP2021103728A (en
Inventor
直子 仲村
孝之 小暮
雅人 野口
旭 小室
紀之 上岡
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Shokan Co Ltd
Mayekawa Manufacturing Co
Original Assignee
Suzuki Shokan Co Ltd
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Shokan Co Ltd, Mayekawa Manufacturing Co filed Critical Suzuki Shokan Co Ltd
Priority to JP2019234127A priority Critical patent/JP7444601B2/en
Priority to PCT/JP2020/046251 priority patent/WO2021131783A1/en
Priority to CN202080064078.3A priority patent/CN114365238B/en
Publication of JP2021103728A publication Critical patent/JP2021103728A/en
Application granted granted Critical
Publication of JP7444601B2 publication Critical patent/JP7444601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本開示は、冷却システム及び該冷却システムの制御方法に関する。 The present disclosure relates to a cooling system and a method of controlling the cooling system.

超電導ケーブルを用いた電力ケーブルシステムは、超電導ケーブルの軸線方向に沿って液体窒素などの極低温冷媒を循環させて超電導ケーブルを冷却し、超電導状態を維持している。万一の事故時など、定格電流以上の過大な電流が電力系統に流れ、常電導状態に転移しようとした時、瞬時に電流を遮断する機能をもった限流器が必要となるが、従来、超電導ケーブルと限流器とを組み合せて使用された例はあまり見当たらない。 Power cable systems using superconducting cables cool the superconducting cables by circulating a cryogenic coolant such as liquid nitrogen along the axial direction of the superconducting cables, thereby maintaining the superconducting state. In the unlikely event of an accident, when an excessive current exceeding the rated current flows through the power system and it attempts to transition to a normal conduction state, a current limiter is required that has the function of instantly interrupting the current. , there are not many examples in which a superconducting cable and a current limiter are used in combination.

特許文献1(特に図35)には、超電導ケーブルと超電導限流器とを組み合わせ、これらをSN転移温度(臨界温度)以下の温度に保持するための冷却システムが開示されている。超電導限流器は、超電導状態が破れて常電導状態に転移した時発生する電気抵抗を利用して電流を抑制する装置である。特許文献2には、超電導限流器を構成する超電導限流素子を冷却するための専用の冷凍機を備えた例が開示されている。 Patent Document 1 (particularly FIG. 35) discloses a cooling system that combines a superconducting cable and a superconducting current limiter and maintains them at a temperature below the SN transition temperature (critical temperature). A superconducting current limiter is a device that suppresses current by utilizing the electrical resistance that occurs when a superconducting state is broken and transitions to a normal conducting state. Patent Document 2 discloses an example including a dedicated refrigerator for cooling a superconducting current limiting element that constitutes a superconducting current limiter.

国際公開第99/62127号(図35)International Publication No. 99/62127 (Figure 35) 特開2007-317884号公報JP2007-317884A

超電導ケーブルは、運転中臨界温度を超えないように臨界温度から安全幅をもたせた冷却温度に冷却されている。他方、超電導限流器を構成する超電導限流素子は、超電導ケーブルに定格電流以上の短絡電流が発生した時、超電導限流素子が即座に転移して短絡電流を抑制する必要があるために、臨界温度に近い温度に冷却されている。このように、両者は冷却温度が異なるために、通常、両者を組み合わせて使用する場合でも、夫々専用の冷凍機を設けざるを得ないと考えられている。そのため、冷却システムが複雑かつ高コストとなるおそれがある。 Superconducting cables are cooled to a cooling temperature with a safety margin from the critical temperature so as not to exceed the critical temperature during operation. On the other hand, the superconducting current limiting element that constitutes the superconducting current limiter is required to immediately transfer and suppress the short circuit current when a short circuit current exceeding the rated current occurs in the superconducting cable. It is cooled to a temperature close to the critical temperature. As described above, since the cooling temperatures of the two types are different, it is generally thought that even when the two types are used in combination, a dedicated refrigerator must be provided for each type. Therefore, the cooling system may become complicated and expensive.

本開示は、上述する問題点に鑑みてなされたもので、超電導ケーブル及び超電導限流器を組合せ使用する場合に、超電導ケーブル及び超電導限流器を夫々に適した温度で超電導状態に冷却しながら、冷却システムを低コスト化することを目的とする。 The present disclosure has been made in view of the above-mentioned problems, and when a superconducting cable and a superconducting current limiter are used in combination, the superconducting cable and the superconducting current limiter are cooled to a superconducting state at a temperature suitable for each. The purpose is to reduce the cost of cooling systems.

上記目的を達成するため、本開示に係る冷却システムは、超電導ケーブルおよび該超電導ケーブルに電気的に接続された超電導限流器の冷却システムであって、冷凍機と、前記冷凍機で冷却された第1冷媒を前記超電導ケーブルに供給して前記冷凍機に戻すための循環路と、前記循環路から分岐し前記超電導ケーブルをバイパスして前記超電導限流器を経由するように設けられた分岐路と、前記分岐路上に設けられ、前記超電導限流器で気化した第2冷媒を前記第1冷媒で冷却して凝縮させるための凝縮器と、を備える。 In order to achieve the above object, a cooling system according to the present disclosure is a cooling system for a superconducting cable and a superconducting current limiter electrically connected to the superconducting cable, and includes a refrigerator and a a circulation path for supplying a first refrigerant to the superconducting cable and returning it to the refrigerator; and a branch path branching from the circulation path, bypassing the superconducting cable, and passing through the superconducting current limiter. and a condenser provided on the branch path for cooling and condensing the second refrigerant vaporized by the superconducting current limiter with the first refrigerant.

また、本開示に係る冷却システムの制御方法は、超電導ケーブルおよび該超電導ケーブルに電気的に接続された超電導限流器の冷却システムであって、冷凍機と、前記冷凍機で冷却された第1冷媒を前記超電導ケーブルに供給して前記冷凍機に戻すための循環路と、前記循環路から分岐し前記超電導ケーブルをバイパスして前記超電導限流器を経由するように設けられた分岐路と、前記分岐路上に設けられ、前記超電導限流器で気化した第2冷媒を前記第1冷媒で冷却して凝縮させるための凝縮器と、を備え、前記凝縮器は、前記超電導限流器に含まれる超電導限流素子を冷却するための前記第2冷媒が貯留される冷媒タンクの気相部又は該気相部に連通する空間に配置され、前記凝縮器で液化された凝縮液を前記冷媒タンクの液相部に戻すための液戻し流路を備える冷却システムの制御方法であって、前記冷媒タンクの気相部又は該気相部に連通する空間の圧力値を検出する圧力検出ステップと、前記圧力値に応じて前記凝縮器に流入する前記第1冷媒の流量を制御する流量制御ステップと、を備える。 Further, a method for controlling a cooling system according to the present disclosure is a cooling system for a superconducting cable and a superconducting fault current limiter electrically connected to the superconducting cable, the cooling system including a refrigerator and a first tube cooled by the refrigerator. a circulation path for supplying refrigerant to the superconducting cable and returning it to the refrigerator; a branch path branching from the circulation path, bypassing the superconducting cable, and passing through the superconducting current limiter; a condenser provided on the branch path for cooling and condensing a second refrigerant vaporized in the superconducting current limiter with the first refrigerant, the condenser being included in the superconducting current limiter. The second refrigerant for cooling the superconducting current limiting element is stored in the gas phase part of the refrigerant tank or in a space communicating with the gas phase part, and the condensed liquid liquefied in the condenser is transferred to the refrigerant tank. A method for controlling a cooling system including a liquid return flow path for returning the liquid to a liquid phase portion of the refrigerant tank, the method comprising: detecting a pressure value of a gas phase portion of the refrigerant tank or a space communicating with the gas phase portion; and a flow rate control step of controlling the flow rate of the first refrigerant flowing into the condenser according to the pressure value.

本開示に係る冷却システムによれば、超電導ケーブル及び超電導限流器を組合せ使用する場合に、超電導限流器専用の冷凍機が不要となるため、冷却システムを簡素化かつ低コスト化できると共に、超電導ケーブル及び超電導限流器を夫々に適した温度で超電導状態に冷却することができる。また、本開示に係る冷却システムの制御方法によれば、超電導限流器の冷却温度を転移温度に近い温度に制御できるため、超電導ケーブルに定格電流以上の短絡電流が流れた時の超電導限流器の応答性を高めることができる。 According to the cooling system according to the present disclosure, when a superconducting cable and a superconducting fault limiter are used in combination, a refrigerator dedicated to the superconducting fault limiter is not required, so the cooling system can be simplified and lowered in cost. The superconducting cable and the superconducting current limiter can be cooled to a superconducting state at temperatures suitable for each. Furthermore, according to the method for controlling the cooling system according to the present disclosure, the cooling temperature of the superconducting fault current limiter can be controlled to a temperature close to the transition temperature, so that the superconducting current limiter when a short circuit current higher than the rated current flows through the superconducting cable The responsiveness of the device can be improved.

超電導ケーブル及び超電導限流器を組み合せ使用した一実施形態に係る電力ケーブルシステムを示す系統図である。FIG. 1 is a system diagram showing a power cable system according to an embodiment using a combination of a superconducting cable and a superconducting current limiter. 一実施形態に係る超電導限流器の冷却システムの断面図である。FIG. 1 is a cross-sectional view of a cooling system for a superconducting current limiter according to an embodiment. 一実施形態に係る超電導限流器の冷却システムの断面図である。FIG. 1 is a cross-sectional view of a cooling system for a superconducting current limiter according to an embodiment. 一実施形態に係る超電導限流器の冷却システムの制御方法の工程図である。FIG. 3 is a process diagram of a method for controlling a cooling system for a superconducting current limiter according to an embodiment.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, and are merely illustrative examples.
For example, expressions expressing relative or absolute positioning such as "in a certain direction,""along a certain direction,""parallel,""orthogonal,""centered,""concentric," or "coaxial" are strictly In addition to representing such an arrangement, it also represents a state in which they are relatively displaced with a tolerance or an angle or distance that allows the same function to be obtained.
For example, expressions such as "same,""equal," and "homogeneous" that indicate that things are in an equal state do not only mean that things are exactly equal, but also have tolerances or differences in the degree to which the same function can be obtained. It also represents the existing state.
For example, expressions expressing shapes such as squares and cylinders do not only refer to shapes such as squares and cylinders in a strict geometric sense, but also include uneven parts and chamfers to the extent that the same effect can be obtained. Shapes including parts, etc. shall also be expressed.
On the other hand, the expressions "comprising,""comprising,""comprising,""containing," or "having" one component are not exclusive expressions that exclude the presence of other components.

図1は、一実施形態に係る冷却システム10の系統図である。冷却システム10は、超電導ケーブル12と、超電導ケーブル12の端末14に電気的に接続された超電導限流器16とを組み合わせて用いる電力ケーブルシステムに適用されるものであり、超電導ケーブル12及び超電導限流器16を夫々の冷却温度に適した超電導状態に冷却するための冷却システムである。冷却システム10は、循環路18及び分岐路22を備え、循環路18に冷凍機20及び冷媒ポンプ26が設けられ、冷凍機20によって超電導ケーブル12の冷却温度に適した極低温に冷却された冷媒r1(第1冷媒)が、冷媒ポンプ26によって循環路18及び分岐路22を循環する。 FIG. 1 is a system diagram of a cooling system 10 according to one embodiment. The cooling system 10 is applied to a power cable system that uses a combination of a superconducting cable 12 and a superconducting current limiter 16 electrically connected to the terminal 14 of the superconducting cable 12. This is a cooling system for cooling the flow vessel 16 to a superconducting state suitable for each cooling temperature. The cooling system 10 includes a circulation path 18 and a branch path 22, and the circulation path 18 is provided with a refrigerator 20 and a refrigerant pump 26. r1 (first refrigerant) is circulated through the circulation path 18 and branch path 22 by the refrigerant pump 26.

循環路18は、端末14から超電導ケーブル12内を超電導ケーブル12の軸線方向に沿って形成された往路18(18a)と、超電導ケーブル12の他端で超電導ケーブル12から分離し、冷凍機20まで戻る復路18(18b)とを含む。冷凍機20で冷却された冷媒r1が往路18(18a)を流れ、超電導ケーブル12をSN転移温度未満の温度に冷却して超電導状態に保持する。分岐路22は、超電導ケーブル12の上流側で循環路18から分岐し、超電導限流器16を経由し、超電導ケーブル12をバイパスして冷凍機20に戻るように配置されている。 The circulation path 18 includes an outgoing path 18 (18a) formed from the terminal 14 inside the superconducting cable 12 along the axial direction of the superconducting cable 12, and a path separated from the superconducting cable 12 at the other end of the superconducting cable 12 to the refrigerator 20. and a return route 18 (18b). The refrigerant r1 cooled by the refrigerator 20 flows through the outgoing path 18 (18a), cools the superconducting cable 12 to a temperature below the SN transition temperature, and maintains the superconducting state. The branch path 22 is arranged so as to branch from the circulation path 18 on the upstream side of the superconducting cable 12, pass through the superconducting current limiter 16, bypass the superconducting cable 12, and return to the refrigerator 20.

図2及び図3は、冷却システム10において、幾つかの実施形態に係る超電導限流器16の冷却システムを示す断面図である。図2又は図3に示すように、分岐路22には、超電導限流器16の冷却システムを構成する凝縮器30(30a、30b)が設けられている。超電導限流器16の冷却に用いられる冷媒r2(第2冷媒)は、超電導限流器16を臨界温度に近い温度に冷却するため、例えば大気圧下において沸点に近い温度を有する。従って、冷媒r2は超電導限流器16の作動中一部が蒸発する。凝縮器30は、超電導限流器16で気化した冷媒r2を冷媒r1と熱交換させて冷却し再凝縮する。 2 and 3 are cross-sectional views showing a cooling system for a superconducting fault current limiter 16 according to some embodiments in the cooling system 10. As shown in FIG. 2 or 3, the branch path 22 is provided with a condenser 30 (30a, 30b) that constitutes a cooling system for the superconducting current limiter 16. The refrigerant r2 (second refrigerant) used to cool the superconducting current limiter 16 cools the superconducting current limiter 16 to a temperature close to the critical temperature, and therefore has a temperature close to the boiling point under atmospheric pressure, for example. Therefore, part of the refrigerant r2 evaporates during the operation of the superconducting current limiter 16. The condenser 30 cools and recondenses the refrigerant r2 vaporized by the superconducting current limiter 16 by exchanging heat with the refrigerant r1.

超電導限流器16は、超電導限流素子50と、超電導限流素子50を冷却するための冷媒r2が貯留された冷媒タンク52とを備えている。超電導限流素子50は、冷媒タンク52に貯留された冷媒r2に浸漬されている。超電導ケーブル12は、臨界温度を超えないように、冷媒r1によって臨界温度から安全幅をもたせた低温に保持される。一方、超電導限流器16は、超電導ケーブル12に定格電流以上の短絡電流が発生した時、即座に短絡電流を遮断するために、冷媒r2によって臨界温度に近い温度に冷却される。従って、両者の冷却温度は異なる。 The superconducting current limiter 16 includes a superconducting current limiting element 50 and a refrigerant tank 52 in which refrigerant r2 for cooling the superconducting current limiting element 50 is stored. The superconducting current limiting element 50 is immersed in the refrigerant r2 stored in the refrigerant tank 52. The superconducting cable 12 is maintained at a low temperature with a safety margin from the critical temperature by the refrigerant r1 so as not to exceed the critical temperature. On the other hand, when a short circuit current exceeding the rated current occurs in the superconducting cable 12, the superconducting fault current limiter 16 is cooled to a temperature close to the critical temperature by the refrigerant r2 in order to immediately interrupt the short circuit current. Therefore, the cooling temperatures for both are different.

上記実施形態によれば、凝縮器30において、冷媒タンク52で蒸発した冷媒r2を冷媒r1で冷却して再凝縮させ、再凝縮した冷媒r2を超電導限流器16の冷却に供するため、超電導限流器16を冷却するための専用の冷凍機を必要としない。また、冷媒r2の気相部Gは飽和状態であるので、冷媒r2の気相部Gの圧力(飽和圧力)を制御することで、一義的に冷媒r2の液相部Lの温度(飽和温度)を制御できる。冷媒r2の液相部Lの温度を制御することができるので、冷媒r2によって冷却される超電導限流素子50を臨界温度に近い温度に冷却できる。こうして、超電導ケーブル12及び超電導限流器16の冷却温度が異なるのに拘わらず、超電導限流素子50を冷却するための冷凍機は不要となり、超電導ケーブル12を冷却するための1個の冷凍機だけで、超電導ケーブル12及び超電導限流器16を夫々に適した冷却温度に冷却できる。 According to the embodiment described above, in the condenser 30, the refrigerant r2 evaporated in the refrigerant tank 52 is cooled and recondensed by the refrigerant r1, and the recondensed refrigerant r2 is used for cooling the superconducting fault current limiter 16. A dedicated refrigerator for cooling the flow vessel 16 is not required. Furthermore, since the gas phase G of the refrigerant r2 is in a saturated state, by controlling the pressure (saturation pressure) of the gas phase G of the refrigerant r2, the temperature of the liquid phase L of the refrigerant r2 (saturation temperature ) can be controlled. Since the temperature of the liquid phase portion L of the refrigerant r2 can be controlled, the superconducting current limiting element 50 cooled by the refrigerant r2 can be cooled to a temperature close to the critical temperature. In this way, even though the cooling temperatures of the superconducting cable 12 and the superconducting current limiter 16 are different, a refrigerator for cooling the superconducting current limiting element 50 is not required, and only one refrigerator is required for cooling the superconducting cable 12. Only by this, the superconducting cable 12 and the superconducting current limiter 16 can be cooled to a cooling temperature suitable for each.

例えば、冷媒r1及び冷媒r2として液体窒素が用いられる。冷凍機20によって超電導ケーブル12及び凝縮器30に、例えば超電導ケーブル12の冷却温度に合わせた67Kの液体窒素が供給される。超電導限流器16が大気圧に保持される場合、冷媒r2の液相部Lは液体窒素の沸点である77K近くの温度に制御される。 For example, liquid nitrogen is used as the refrigerant r1 and the refrigerant r2. The refrigerator 20 supplies the superconducting cable 12 and the condenser 30 with liquid nitrogen at, for example, 67 K, which matches the cooling temperature of the superconducting cable 12 . When the superconducting current limiter 16 is maintained at atmospheric pressure, the liquid phase portion L of the refrigerant r2 is controlled to a temperature close to 77K, which is the boiling point of liquid nitrogen.

一実施形態では、図1に示すように、超電導限流器16は超電導ケーブル12の端末14に電気的に接続されると共に、送電設備24などの電力系統に電気的に接続される。 In one embodiment, as shown in FIG. 1, superconducting current limiter 16 is electrically connected to terminal 14 of superconducting cable 12 and electrically connected to a power system, such as power transmission facility 24.

一実施形態では、図1に示すように、循環路18に、超電導ケーブル12及び超電導限流器16を通過した後の冷媒r1を回収するためのリザーバ28が設けられる。超電導ケーブル12に定格電流以上の短絡電流が流れたとき、超電導限流器16に含まれる超電導限流素子50が転移し、電気的抵抗が生じて加熱される。超電導限流素子50の温度上昇によって生じる冷媒r2の圧力上昇に対して、凝縮器30に流入する冷媒r1の流量を増大させて、冷媒r2の温度上昇を防いでいる。この場合でも、本実施形態ではリザーバ28を備えているため、超電導ケーブル12を通過してリザーバ28に流入する冷媒r1の流量や流体圧力に影響されず、冷却負荷に必要な冷媒r1の流量を凝縮器30からリザーバ28に戻すことができる。 In one embodiment, as shown in FIG. 1, the circulation path 18 is provided with a reservoir 28 for recovering the refrigerant r1 after passing through the superconducting cable 12 and the superconducting current limiter 16. When a short circuit current equal to or higher than the rated current flows through the superconducting cable 12, the superconducting current limiting element 50 included in the superconducting current limiter 16 is transferred, generates electrical resistance, and is heated. In response to an increase in the pressure of the refrigerant r2 caused by an increase in the temperature of the superconducting current limiting element 50, the flow rate of the refrigerant r1 flowing into the condenser 30 is increased to prevent the temperature of the refrigerant r2 from increasing. Even in this case, since the reservoir 28 is provided in this embodiment, the flow rate of the refrigerant r1 necessary for the cooling load is not affected by the flow rate or fluid pressure of the refrigerant r1 that passes through the superconducting cable 12 and flows into the reservoir 28. From the condenser 30 it can be returned to the reservoir 28.

一実施形態では、リザーバ28は循環路18と分岐路22との合流点に設けられる。そして、分岐路22の冷媒r1はリザーバ28の気相部に戻される。仮に、リザーバ28の上流側で循環路18と分岐路22とが合流すると、冷媒r1の流量が多い循環路18から分岐路22に冷媒r1が逆流するおそれがある。この実施形態によれば、循環路18及び分岐路22はリザーバ28に接続され、分岐路22はリザーバ28の気相部に戻されるため、そのおそれはない。 In one embodiment, reservoir 28 is provided at the confluence of circulation path 18 and branch path 22 . Then, the refrigerant r1 in the branch path 22 is returned to the gas phase portion of the reservoir 28. If the circulation path 18 and the branch path 22 merge on the upstream side of the reservoir 28, there is a risk that the refrigerant r1 will flow back into the branch path 22 from the circulation path 18 where the flow rate of the refrigerant r1 is large. According to this embodiment, the circulation path 18 and the branch path 22 are connected to the reservoir 28, and the branch path 22 is returned to the gas phase portion of the reservoir 28, so there is no such fear.

一実施形態では、図2又は図3に示すように、凝縮器30(30a、30b)は、冷媒r2が貯留される冷媒タンク52の気相部G又は気相部Gに連通する空間Sに配置される。図2に示す実施形態では、凝縮器30(30a)は、冷媒タンク52の気相部Gに配置され、図3に示す実施形態では、凝縮器30(30b)は気相部Gに連通する空間Sに配置されている。さらに、凝縮器30で液化された冷媒r2の凝縮液を冷媒タンク52の液相部Lに戻すための液戻し流路32を備えている。 In one embodiment, as shown in FIG. 2 or 3, the condenser 30 (30a, 30b) is connected to a gas phase portion G of a refrigerant tank 52 in which refrigerant r2 is stored or a space S communicating with the gas phase portion G. Placed. In the embodiment shown in FIG. 2, the condenser 30 (30a) is arranged in the gas phase section G of the refrigerant tank 52, and in the embodiment shown in FIG. 3, the condenser 30 (30b) communicates with the gas phase section G. It is placed in space S. Further, a liquid return passage 32 is provided for returning the condensed liquid of the refrigerant r2 liquefied in the condenser 30 to the liquid phase portion L of the refrigerant tank 52.

超電導限流器16は、超電導状態から常電導状態に転移した時、速やかに超電導状態に復帰する必要があり、復帰する際には瞬間的に冷却負荷が高まる。従って、超電導限流器16を速やかに復帰させるためには、凝縮器30で気化した冷媒r2の再凝縮を効率良く行う必要がある。本実施形態によれば、凝縮器30で再凝縮した冷媒r2は液戻し流路32を通って速やかに冷媒タンク52に戻されるため、冷媒r2の再凝縮を効率的に行うことができる。 When the superconducting current limiter 16 transitions from a superconducting state to a normal conducting state, it is necessary to quickly return to the superconducting state, and when returning, the cooling load increases instantaneously. Therefore, in order to quickly restore the superconducting current limiter 16, it is necessary to efficiently recondense the refrigerant r2 vaporized in the condenser 30. According to this embodiment, the refrigerant r2 recondensed in the condenser 30 is quickly returned to the refrigerant tank 52 through the liquid return channel 32, so that the refrigerant r2 can be efficiently recondensed.

なお、図2に示す実施形態では、凝縮器30(30a)は冷媒タンク52の気相部Gに配置されているので、凝縮器30(30a)で再液化した凝縮液は重力により気相部Gから直接液相部Lの液面に落下する。従って、この実施形態では、液戻し流路32は気相部Gに形成されているとみなすことができる。凝縮器30(30a)は、気相部Gに配置されるため、ハウジングなどを必要とせず、従って、凝縮器30(30a)を簡素化かつ低コスト化できる。 In the embodiment shown in FIG. 2, the condenser 30 (30a) is arranged in the gas phase part G of the refrigerant tank 52, so the condensed liquid re-liquefied in the condenser 30 (30a) is transferred to the gas phase part by gravity. It falls directly from G to the liquid surface of liquid phase part L. Therefore, in this embodiment, the liquid return channel 32 can be considered to be formed in the gas phase section G. Since the condenser 30 (30a) is arranged in the gas phase section G, it does not require a housing or the like, and therefore the condenser 30 (30a) can be simplified and reduced in cost.

一実施形態では、図3に示すように、凝縮器30(30b)は冷媒タンク52の上方に配置されている。そして、液戻し流路32は、凝縮器30(30b)で凝縮した凝縮液を冷媒タンク52の液相部Lに滴下させるように構成される。凝縮器30(30b)で凝縮した冷媒r2の凝縮液は、液戻し流路32を介して重力で自動的に冷媒タンク52の液相部Lに滴下する。そのため、再凝縮した冷媒r2を冷媒タンク52に戻す動力が不要になる。 In one embodiment, the condenser 30 (30b) is located above the refrigerant tank 52, as shown in FIG. The liquid return channel 32 is configured to drop the condensed liquid condensed in the condenser 30 (30b) into the liquid phase portion L of the refrigerant tank 52. The condensed liquid of the refrigerant r2 condensed in the condenser 30 (30b) is automatically dripped into the liquid phase portion L of the refrigerant tank 52 by gravity via the liquid return channel 32. Therefore, no power is required to return the recondensed refrigerant r2 to the refrigerant tank 52.

一実施形態では、図3に示すように、凝縮器30(30b)は、冷媒タンク52の上方に設けられたハウジング34を備えている。そして、液戻し流路32として、ハウジング34の内部と冷媒タンク52の内部とを連通させる連通管35を備え、連通管35の下端部35aは冷媒タンク52の天井面54よりも下方へ突出するように構成されている。凝縮器30(30b)で再凝縮した冷媒r2は連通管35を伝って下端部35aまで落下するため、再凝縮した冷媒r2は、気相部Gに触れることなく液相部Lの液面近傍まで移動する。これによって、落下途中での再蒸発を抑制できる。連通管35の下端部35aが冷媒タンク52の天井面54よりも下方へ突出するように構成されていないとき、凝縮液が落下途中で再気化するおそれがある。 In one embodiment, as shown in FIG. 3, the condenser 30 (30b) includes a housing 34 provided above the refrigerant tank 52. A communication pipe 35 is provided as the liquid return flow path 32 to communicate the inside of the housing 34 and the inside of the refrigerant tank 52, and a lower end 35a of the communication pipe 35 protrudes below the ceiling surface 54 of the refrigerant tank 52. It is configured as follows. The recondensed refrigerant r2 in the condenser 30 (30b) passes through the communication pipe 35 and falls to the lower end 35a, so the recondensed refrigerant r2 does not touch the gas phase G but near the liquid level of the liquid phase L. Move up to. This makes it possible to suppress re-evaporation during falling. When the lower end 35a of the communication pipe 35 is not configured to protrude below the ceiling surface 54 of the refrigerant tank 52, there is a risk that the condensed liquid will re-vaporize while falling.

図3に示す凝縮器30(30b)は、連通管35を介して冷媒タンク52の上面より上方に配置されているが、別な実施形態では、ハウジング34を冷媒タンク52の上面に接して載置するように配置してもよい。 The condenser 30 (30b) shown in FIG. 3 is disposed above the top surface of the refrigerant tank 52 via the communication pipe 35, but in another embodiment, the housing 34 is placed in contact with the top surface of the refrigerant tank 52. You may arrange it so that it is placed.

一実施形態では、図2及び図3に示すように、凝縮器30(30a、30b)は、冷媒r1と冷媒r2とを熱交換する熱交換器36を備え、さらに、熱交換器36に供給される冷媒r1の流量を制御する流量調整弁38を備えている。この実施形態では、流量調整弁38の開度を制御することで、熱交換器36に供給される冷媒r1の流量を制御できるため、冷媒r1と熱交換される冷媒r2の凝縮量を制御できる。冷媒タンク52は密閉構造を有する容器であり、冷媒タンク52の内部は飽和状態になっている。従って、冷媒r2の再凝縮量を制御することで、冷媒タンク52の飽和圧力を制御できる。該飽和圧力を制御することで該飽和圧力から一義的に対応する飽和温度を制御できる。これによって、冷媒r2を超電導限流素子50の冷却に適した温度に制御できる。 In one embodiment, as shown in FIGS. 2 and 3, the condenser 30 (30a, 30b) includes a heat exchanger 36 that exchanges heat between the refrigerant r1 and the refrigerant r2, and further supplies the refrigerant r1 and r2 to the heat exchanger 36. The refrigerant r1 is provided with a flow rate adjustment valve 38 that controls the flow rate of the refrigerant r1. In this embodiment, by controlling the opening degree of the flow rate adjustment valve 38, the flow rate of the refrigerant r1 supplied to the heat exchanger 36 can be controlled, so the amount of condensation of the refrigerant r2 that exchanges heat with the refrigerant r1 can be controlled. . The refrigerant tank 52 is a container having a closed structure, and the inside of the refrigerant tank 52 is in a saturated state. Therefore, the saturation pressure of the refrigerant tank 52 can be controlled by controlling the amount of recondensation of the refrigerant r2. By controlling the saturation pressure, the saturation temperature that uniquely corresponds to the saturation pressure can be controlled. Thereby, the temperature of the refrigerant r2 can be controlled to a temperature suitable for cooling the superconducting current limiting element 50.

図2及び図3に示す実施形態では、熱交換器36は、冷媒タンク52の気相部G又は連通空間Sに設けられた熱交換管で構成されている。該熱交換管の内部を冷媒r1が流れ、該熱交換管の外側は冷媒r2の気相部が形成され、冷媒r1と冷媒r2とは該熱交換管を介して間接熱交換される。そのため、気相部G又は連通空間Sは密閉空間を形成でき、飽和状態を保ことができる。 In the embodiment shown in FIGS. 2 and 3, the heat exchanger 36 is constituted by a heat exchange tube provided in the gas phase portion G or the communication space S of the refrigerant tank 52. The refrigerant r1 flows inside the heat exchange tube, a gas phase portion of the refrigerant r2 is formed outside the heat exchange tube, and the refrigerant r1 and the refrigerant r2 indirectly exchange heat through the heat exchange tube. Therefore, the gas phase portion G or the communication space S can form a closed space and can maintain a saturated state.

図2又は図3に示す実施形態では、流量調整弁38は凝縮器30の上流側の分岐路22に設けられているが、代わりに、凝縮器30の下流側の分岐路22に設けるようにしてもよい。
また、一実施形態では、図1~図3に示すように、循環路18及び分岐路22を構成する配管は、外側から熱が侵入しないように、断熱層44で被覆されている。また、冷媒タンク52の内部に貯留した液相部Lの液面は液面計56によって検出できる。これによって、液相部Lの冷媒液量の把握が可能になる。
In the embodiment shown in FIG. 2 or 3, the flow regulating valve 38 is provided in the branch 22 upstream of the condenser 30, but it may instead be provided in the branch 22 downstream of the condenser 30. It's okay.
Further, in one embodiment, as shown in FIGS. 1 to 3, the pipes forming the circulation path 18 and the branch path 22 are covered with a heat insulating layer 44 to prevent heat from entering from the outside. Further, the liquid level of the liquid phase portion L stored inside the refrigerant tank 52 can be detected by a liquid level gauge 56. This makes it possible to grasp the amount of refrigerant in the liquid phase portion L.

一実施形態では、図2又は図3に示すように、冷媒タンク52の気相部G又は凝縮器30(30b)の連通空間Sの圧力を検出するための圧力センサ40が設けられている。圧力センサ40の検出値は制御部42に送られ、制御部42は、圧力センサ40の検出値に基づいて流量調整弁38の開度を制御する。圧力センサ40の検出値に基づいて流量調整弁38の開度を制御することで、冷媒タンク52の気相部Gの圧力を所望の圧力に制御できる。これによって、冷媒r2を超電導限流素子50の冷却に適した温度に精度良く制御できる。 In one embodiment, as shown in FIG. 2 or 3, a pressure sensor 40 is provided to detect the pressure in the gas phase portion G of the refrigerant tank 52 or the communication space S of the condenser 30 (30b). The detected value of the pressure sensor 40 is sent to the control section 42, and the control section 42 controls the opening degree of the flow rate adjustment valve 38 based on the detected value of the pressure sensor 40. By controlling the opening degree of the flow rate regulating valve 38 based on the detected value of the pressure sensor 40, the pressure in the gas phase portion G of the refrigerant tank 52 can be controlled to a desired pressure. Thereby, the temperature of the refrigerant r2 can be accurately controlled to a temperature suitable for cooling the superconducting current limiting element 50.

一実施形態では、制御部42は、冷媒r2による超電導限流素子50の冷却温度を転移温度に近い設定範囲内温度に制御するように構成される。これによって、超電導ケーブル12に定格電流以上の短絡電流が流れた時の超電導限流器16の応答性を高めることができる。 In one embodiment, the control unit 42 is configured to control the cooling temperature of the superconducting current limiting element 50 by the refrigerant r2 to a temperature within a set range close to the transition temperature. Thereby, the responsiveness of the superconducting fault current limiter 16 when a short circuit current equal to or higher than the rated current flows through the superconducting cable 12 can be improved.

一実施形態に係る冷却システム10の制御方法は、図4に示すように、まず、冷媒タンク52の気相部G又は連通空間Sの圧力値を検出する(圧力検出ステップS10)。次に、検出した圧力値に応じて凝縮器30に流入する冷媒r1の流量を制御する(流量制御ステップS12)。冷媒タンク52の気相部G又は連通空間Sを目標圧力とすることができるので、冷媒タンク52の液相部Lによって超電導限流素子50の冷却温度を転移温度に近い温度に制御できる。これによって、超電導ケーブル12に定格電流以上の短絡電流が流れた時の超電導限流器16の応答性を高めることができる。 As shown in FIG. 4, the method for controlling the cooling system 10 according to one embodiment first detects the pressure value of the gas phase portion G or communication space S of the refrigerant tank 52 (pressure detection step S10). Next, the flow rate of the refrigerant r1 flowing into the condenser 30 is controlled according to the detected pressure value (flow rate control step S12). Since the gas phase portion G or communication space S of the refrigerant tank 52 can be set to the target pressure, the cooling temperature of the superconducting current limiting element 50 can be controlled to a temperature close to the transition temperature by the liquid phase portion L of the refrigerant tank 52. Thereby, the responsiveness of the superconducting fault current limiter 16 when a short circuit current equal to or higher than the rated current flows through the superconducting cable 12 can be improved.

冷媒タンク52の内部は冷媒r2が飽和状態に維持されている。一実施形態では、流量制御ステップS12において、冷媒タンク52内の冷媒r2が飽和状態下で冷却目標温度Tgに一義的に対応する目標圧力Pgとなるように、凝縮器30に流入する冷媒r1の流量を制御する。制御パラメータとして制御しやすい冷媒タンク52内の冷媒r2の圧力を対象とし、冷媒r2の圧力が目標圧力Pgとなるように、凝縮器30に流入する冷媒r1の流量を制御するので、目標圧力Pgに一義的に対応する冷媒r2の冷却目標温度Tgに精度良く制御できる。 The inside of the refrigerant tank 52 is maintained in a saturated state with the refrigerant r2. In one embodiment, in the flow rate control step S12, the refrigerant r1 flowing into the condenser 30 is adjusted such that the refrigerant r2 in the refrigerant tank 52 has a target pressure Pg that uniquely corresponds to the cooling target temperature Tg under a saturated state. Control the flow rate. The target pressure is the pressure of the refrigerant r2 in the refrigerant tank 52, which is easy to control as a control parameter, and the flow rate of the refrigerant r1 flowing into the condenser 30 is controlled so that the pressure of the refrigerant r2 becomes the target pressure Pg. It is possible to precisely control the cooling target temperature Tg of the refrigerant r2 that uniquely corresponds to the temperature Tg of the refrigerant r2.

図4は、図2又は図3に示す実施形態において、流量調整弁38の開度制御によって気相部G又は連通空間Sの圧力を制御する方法の一例を説明する。なお、図4において、符号Vは流量調整弁38の開度(%)を示す。この制御例では、気相部G又は連通空間Sの目標圧力Pgを圧力幅P1~P2の範囲内としている。
ここで圧力制御の目的は、超電導限流器16に含まれる超電導限流素子50を冷却するために貯留される冷媒r2の液温を、冷却目標温度Tgに冷却することにある。冷媒r2の冷却目標温度TgをT1≦冷却目標温度Tg≦T2の範囲内とすると、飽和圧力に相当する圧力値の目標圧力PgはP1≦目標圧力Pg≦P2の範囲内とすることができる。温度T1は冷却目標温度Tgの下限値であり、圧力P1は飽和状態下で温度T1に一義的に対応する圧力である。また、温度T2は冷却目標温度Tgの上限値であり、圧力P2は飽和状態下で温度T2に一義的に対応する圧力である。
FIG. 4 explains an example of a method of controlling the pressure in the gas phase portion G or the communication space S by controlling the opening degree of the flow rate regulating valve 38 in the embodiment shown in FIG. 2 or 3. In addition, in FIG. 4, the symbol V indicates the opening degree (%) of the flow rate adjustment valve 38. In this control example, the target pressure Pg of the gas phase portion G or the communication space S is set within the pressure range P1 to P2.
The purpose of the pressure control here is to cool the liquid temperature of the refrigerant r2 stored for cooling the superconducting current limiting element 50 included in the superconducting current limiter 16 to the cooling target temperature Tg. If the cooling target temperature Tg of the refrigerant r2 is within the range of T1≦cooling target temperature Tg≦T2, the target pressure Pg of the pressure value corresponding to the saturation pressure can be within the range of P1≦target pressure Pg≦P2. The temperature T1 is the lower limit of the cooling target temperature Tg, and the pressure P1 is a pressure that uniquely corresponds to the temperature T1 under a saturated state. Further, the temperature T2 is the upper limit value of the cooling target temperature Tg, and the pressure P2 is a pressure that uniquely corresponds to the temperature T2 under a saturated state.

なお、図4において、圧力センサ40の検出値P、目標圧力Pg(圧力幅P1~P2)及び制御時の圧力値P1、P2の関係、及び流量調整弁38の開度V(%)の範囲は、次のとおりである。
目標圧力:P1≦Pg≦P2
目標圧力を下回る条件:P<P1
目標圧力を上回る条件:P2<P
0≦V≦100
In addition, in FIG. 4, the relationship between the detected value P of the pressure sensor 40, the target pressure Pg (pressure width P1 to P2), the pressure values P1 and P2 during control, and the range of the opening degree V (%) of the flow rate regulating valve 38 are shown. is as follows.
Target pressure: P1≦Pg≦P2
Conditions below target pressure: P<P1
Condition exceeding target pressure: P2<P
0≦V≦100

まず、圧力センサ40により気相部G又は連通空間Sの圧力値Pを検出する(ステップS10)。次に、圧力値Pが目標圧力Pg(圧力幅P1~P2)を下回って減少したとき(P<P1)(ステップ12a)、冷媒r2の圧力が降下して冷媒r2の液温が低いので、流量調整弁38の開度Vを減少させ、凝縮器30に流入する冷媒r1の流量を低減させる(ステップS14a)。圧力値Pが目標圧力Pgの範囲(P1≦Pg≦P2)内で安定しているとき(ステップS12b)、流量調整弁38の開度Vは一定のまま変化させない(ステップS14b)。圧力値Pが増加したとき(P2<P)(ステップS12c)、冷媒r2の圧力上昇で冷媒r2の液温が高くなるので、流量調整弁38の開度Vを増加させ、凝縮器30に流入する冷媒r1の流量を増加させる(ステップS14c)。このような操作を行うことで、気相部G又は連通空間Sの圧力を目標圧力Pgに保持できる。また、目標圧力Pgを大気圧付近に設定することができる。 First, the pressure value P of the gas phase portion G or the communication space S is detected by the pressure sensor 40 (step S10). Next, when the pressure value P decreases below the target pressure Pg (pressure range P1 to P2) (P<P1) (step 12a), the pressure of the refrigerant r2 decreases and the liquid temperature of the refrigerant r2 is low. The opening degree V of the flow rate adjustment valve 38 is decreased to reduce the flow rate of the refrigerant r1 flowing into the condenser 30 (step S14a). When the pressure value P is stable within the target pressure Pg range (P1≦Pg≦P2) (step S12b), the opening degree V of the flow rate regulating valve 38 remains constant and is not changed (step S14b). When the pressure value P increases (P2<P) (step S12c), the liquid temperature of the refrigerant r2 increases due to the increase in the pressure of the refrigerant r2, so the opening degree V of the flow rate regulating valve 38 is increased and the flow into the condenser 30 is increased. The flow rate of the refrigerant r1 is increased (step S14c). By performing such an operation, the pressure in the gas phase portion G or the communication space S can be maintained at the target pressure Pg. Further, the target pressure Pg can be set near atmospheric pressure.

上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments can be understood as follows, for example.

(1)一つの態様に係る冷却システム(10)は、超電導ケーブル(12)及び該超電導ケーブルに電気的に接続された超電導限流器(16)の冷却システムであって、冷凍機(20)と、前記冷凍機で冷却された第1冷媒(r1)を前記超電導ケーブル(12)に供給して前記冷凍機(20)に戻すための循環路(18)と、前記循環路(18)から分岐し前記超電導ケーブル(12)をバイパスして前記超電導限流器(16)を経由するように設けられた分岐路(22)と、前記分岐路(22)上に設けられ、前記超電導限流器(16)で気化した第2冷媒(r2)を前記第1冷媒(r1)で冷却して凝縮させるための凝縮器(30)と、を備える。 (1) A cooling system (10) according to one embodiment is a cooling system for a superconducting cable (12) and a superconducting fault current limiter (16) electrically connected to the superconducting cable, and includes a refrigerator (20) and a circulation path (18) for supplying the first refrigerant (r1) cooled by the refrigerator to the superconducting cable (12) and returning it to the refrigerator (20) , and from the circulation path ( 18). a branch path (22) provided to branch and bypass the superconducting cable (12) and pass through the superconducting current limiter (16) ; and a branch path (22) provided on the branch path (22) to bypass the superconducting current limiter (16); and a condenser (30) for cooling and condensing the second refrigerant (r2) vaporized in the container (16) with the first refrigerant (r1) .

このような構成によれば、上記凝縮器で蒸発した第2冷媒を第1冷媒で冷却して再凝縮するため、第2冷媒を冷却するための冷凍機を必要としない。また、第2冷媒の気相部は飽和状態であるので、第2冷媒の気相部の飽和圧力を制御することで、第2冷媒の温度(飽和温度)を制御できる。従って、凝縮器に供給する第1冷媒の流量制御と、第2冷媒の気相部の圧力制御とによって、第2冷媒の液相部を所望の温度に調整できる。これによって、第2冷媒によって冷却される超電導限流素子を臨界温度に近い温度に冷却できる。こうして、超電導ケーブルと超電導限流器とを組合せて使用する場合に、超電導ケーブルを冷却するための1個の冷凍機だけで、超電導ケーブル及び超電導限流器を夫々に適した冷却温度に冷却できる。 According to such a configuration, since the second refrigerant evaporated in the condenser is cooled and recondensed by the first refrigerant, a refrigerator for cooling the second refrigerant is not required. Further, since the gas phase portion of the second refrigerant is in a saturated state, the temperature (saturation temperature) of the second refrigerant can be controlled by controlling the saturation pressure of the gas phase portion of the second refrigerant. Therefore, the liquid phase portion of the second refrigerant can be adjusted to a desired temperature by controlling the flow rate of the first refrigerant supplied to the condenser and controlling the pressure of the gas phase portion of the second refrigerant. Thereby, the superconducting current limiting element cooled by the second coolant can be cooled to a temperature close to the critical temperature. In this way, when a superconducting cable and a superconducting fault limiter are used in combination, only one refrigerator for cooling the superconducting cable can cool the superconducting cable and the superconducting fault limiter to the appropriate cooling temperature for each. .

(2)別な態様に係る冷却システム(10)は、(1)に記載の冷却システムであって、前記循環路(18)に設けられ、前記超電導ケーブル(12)及び前記超電導限流器(16)を通過した後の前記第1冷媒(r1)を回収するためのリザーバ(28)を備える。 (2) The cooling system (10) according to another aspect is the cooling system according to (1), which is provided in the circulation path (18) , and includes the superconducting cable (12) and the superconducting current limiter ( 16) for collecting the first refrigerant (r1) after passing through the refrigerant.

超電導ケーブルに定格電流以上の短絡電流が流れたとき、超電導限流器に含まれる超電導限流素子が転移し、電気的抵抗が生じて加熱される。これによって、第2冷媒の圧力が上昇するが、この場合、凝縮器に流入する第1冷媒の流量を増大させて、第2冷媒の温度上昇を防いでいる。この場合でも、上記構成によれば、超電導ケーブルを通過してリザーバに流入する第1冷媒の流量や流体圧力に影響されず、超電導ケーブルの冷却負荷に必要な第1冷媒量を凝縮器からリザーバに戻すことができる。 When a short circuit current greater than the rated current flows through the superconducting cable, the superconducting current limiting element included in the superconducting current limiter is transferred, generating electrical resistance and heating. This increases the pressure of the second refrigerant, but in this case, the flow rate of the first refrigerant flowing into the condenser is increased to prevent the temperature of the second refrigerant from rising. Even in this case, according to the above configuration, the amount of the first refrigerant required for the cooling load of the superconducting cable is transferred from the condenser to the reservoir without being affected by the flow rate or fluid pressure of the first refrigerant that passes through the superconducting cable and flows into the reservoir. can be returned to.

(3)さらに別な態様に係る冷却システム(10)は、(1)又は(2)に記載の冷却システムであって、前記凝縮器(30)は、前記超電導限流器(16)に含まれる超電導限流素子(50)を冷却するための前記第2冷媒(r2)が貯留される冷媒タンク(52)の気相部(G)又は該気相部(G)に連通する空間(S)に配置され、前記凝縮器(30)で液化された凝縮液を前記冷媒タンク(52)の液相部(L)に戻すための液戻し流路(32)と、を備える。 (3) A cooling system (10) according to yet another aspect is the cooling system according to (1) or (2), in which the condenser (30) is included in the superconducting current limiter (16). the gas phase part (G) of the refrigerant tank (52) in which the second refrigerant (r2 ) for cooling the superconducting current limiting element (50) is stored, or the space ( S ) communicating with the gas phase part (G); ) for returning the condensed liquid liquefied in the condenser (30) to the liquid phase portion (L) of the refrigerant tank (52) .

このような構成によれば、超電導限流器の作動中、超電導限流素子からの受熱で一部が蒸発し、凝縮器で再凝縮した第2冷媒は上記液戻し流路を通って速やかに冷媒タンクに戻されるため、第2冷媒の再凝縮を効率的に行うことができる。 According to such a configuration, during the operation of the superconducting current limiter, a portion of the second refrigerant evaporates due to heat received from the superconducting current limiting element, and the second refrigerant that is recondensed in the condenser quickly passes through the liquid return channel. Since the second refrigerant is returned to the refrigerant tank, the second refrigerant can be efficiently recondensed.

(4)さらに別な態様に係る冷却システム(10)は、(3)に記載の冷却システムであって、前記凝縮器(30)は前記冷媒タンク(52)の上方に配置され、前記液戻し流路(32)は、前記凝縮液を前記冷媒タンク(52)の前記液相部(L)に滴下させるように構成される。 (4) A cooling system (10) according to still another aspect is the cooling system according to (3), in which the condenser (30) is disposed above the refrigerant tank (52) , and the liquid return The flow path (32) is configured to drop the condensed liquid into the liquid phase portion (L) of the refrigerant tank (52) .

このような構成によれば、凝縮器が冷媒タンクの上方に配置されるため、再凝縮した第2冷媒は重力で冷媒タンクの液相部に自動的に戻る。そのため、再凝縮した第2冷媒を冷媒タンクに戻すための動力が不要になる。 According to such a configuration, since the condenser is disposed above the refrigerant tank, the recondensed second refrigerant automatically returns to the liquid phase portion of the refrigerant tank by gravity. Therefore, no power is required to return the recondensed second refrigerant to the refrigerant tank.

(5)さらに別な態様に係る冷却システム(10)は、(4)に記載の冷却システムであって、前記凝縮器(30(30b))は、前記冷媒タンク(52)の上方に設けられたハウジング(34)と、前記ハウジングと前記冷媒タンク(52)との間を連通させる連通管(35)と、を備え、前記連通管(35)の下端(35a)が前記冷媒タンク(52)の天井面(54)よりも下方へ突出するように構成される。 (5) A cooling system (10) according to yet another aspect is the cooling system according to (4), in which the condenser (30 (30b)) is provided above the refrigerant tank (52). a housing (34) , and a communication pipe (35) that communicates between the housing and the refrigerant tank (52) , the lower end (35a ) of the communication pipe (35) is connected to the refrigerant tank (52). is configured to protrude downward from the ceiling surface (54) of.

このような構成によれば、凝縮器で再凝縮した第2冷媒は、上記連通管を伝って冷媒タンクに貯留された第2冷媒の液相部の液面近傍で落下することができる。このように、上記連通管を伝うことで、第2冷媒の気相部との接触を極力避けることができ、落下途中での再蒸発を抑制できる。 According to such a configuration, the second refrigerant recondensed in the condenser can travel through the communication pipe and fall near the liquid level of the liquid phase portion of the second refrigerant stored in the refrigerant tank. In this manner, by passing through the communication pipe, contact with the gas phase portion of the second refrigerant can be avoided as much as possible, and re-evaporation during falling can be suppressed.

(6)さらに別な態様に係る冷却システム(10)は、(3)乃至(5)の何れかに記載の冷却システムであって、前記凝縮器(30)は、前記第1冷媒(r1)と前記第2冷媒(r2)とを熱交換する熱交換器(36)を含み、前記熱交換器(36)に供給される前記第1冷媒(r1)の流量を制御する流量調整弁(38)を備える。 (6) A cooling system (10) according to yet another aspect is the cooling system according to any one of (3) to (5), wherein the condenser (30) is configured to use the first refrigerant (r1). and the second refrigerant (r2) , the flow rate adjustment valve ( 38) controlling the flow rate of the first refrigerant (r1) supplied to the heat exchanger (36). ) .

このような構成によれば、上記熱交換器に供給される第1冷媒の流量を上記流量調整弁で制御することで、凝縮器における第2冷媒の再凝縮量を制御できる。第2冷媒の再凝縮量を制御することで、飽和状態にある冷媒タンク内の圧力を制御でき、これによって、第2冷媒の飽和温度を制御できるため、第2冷媒を超電導限流素子の冷却に適した温度に精度良く制御できる。 According to such a configuration, by controlling the flow rate of the first refrigerant supplied to the heat exchanger with the flow rate adjustment valve, the amount of recondensation of the second refrigerant in the condenser can be controlled. By controlling the amount of recondensation of the second refrigerant, it is possible to control the pressure in the saturated refrigerant tank, and thereby the saturation temperature of the second refrigerant can be controlled, so the second refrigerant is used to cool the superconducting current limiting element. The temperature can be precisely controlled to the appropriate temperature.

(7)さらに別な態様に係る冷却システム(10)は、(6)に記載の冷却システムであって、前記冷媒タンク(52)の前記気相部(G)又は前記気相部(G)に連通する前記空間(S)の圧力を検出するための圧力センサ(40)と、前記圧力センサ(40)の検出値に基づいて前記流量調整弁(38)の開度を制御する制御部(42)と、を備える。 (7) A cooling system (10) according to yet another aspect is the cooling system according to (6), in which the gas phase part (G) or the gas phase part (G ) of the refrigerant tank (52 ) a pressure sensor ( 40 ) for detecting the pressure in the space (S) communicating with the space ( S ), and a control unit ( 42) .

このような構成によれば、上記圧力センサで冷媒タンクの気相部の飽和圧力を検出し、この検出値に基づいて流量調整弁の開度を制御することで、第2冷媒を超電導限流素子の冷却に適した温度に精度良く制御できる。 According to such a configuration, the pressure sensor detects the saturation pressure of the gas phase portion of the refrigerant tank, and the opening degree of the flow rate adjustment valve is controlled based on this detected value, thereby controlling the second refrigerant to the superconducting current limit. The temperature can be precisely controlled to the appropriate temperature for cooling the element.

(8)さらに別な態様に係る冷却システム(10)は、(7)に記載の冷却システムであって、前記制御部(42)は、前記第2冷媒(r2)による前記超電導限流器(16)の冷却温度を転移温度に近い設定範囲内温度に制御するように構成される。 (8) A cooling system (10) according to yet another aspect is the cooling system according to (7), in which the control unit ( 42) controls the superconducting fault current limiter ( 16) is configured to control the cooling temperature within a set range close to the transition temperature .

このような構成によれば、前記超電導限流器の冷却温度を設定範囲内温度に制御することで、超電導ケーブルに定格電流以上の短絡電流が流れた時の超電導限流器の応答性を高めることができる。 According to such a configuration, by controlling the cooling temperature of the superconducting current limiter to a temperature within a set range, the responsiveness of the superconducting fault current limiter is improved when a short circuit current exceeding the rated current flows through the superconducting cable. be able to.

(9)本開示に係る冷却システムの制御方法は、超電導ケーブル(12)および該超電導ケーブル(12)に電気的に接続された超電導限流器(16)の冷却システムであって、冷凍機(20)と、前記冷凍機(20)で冷却された第1冷媒(r1)を前記超電導ケーブル(12)に供給して前記冷凍機(20)に戻すための循環路(18)と、前記循環路(18)から分岐し前記超電導ケーブル(12)をバイパスして前記超電導限流器(16)を経由するように設けられた分岐路(22)と、前記分岐路(22)上に設けられ、前記超電導限流器(16)で気化した第2冷媒(r2)を前記第1冷媒(r1)で冷却して凝縮させるための凝縮器(30)と、を備え、前記凝縮器(30)は、前記超電導限流器(16)に含まれる超電導限流素子(50)を冷却するための前記第2冷媒(r2)が貯留される冷媒タンク(52)の気相部(G)又は該気相部(G)に連通する空間(S)に配置され、前記凝縮器(30)で液化された凝縮液を前記冷媒タンク(52)の液相部(L)に戻すための液戻し流路(32)を備える冷却システムの制御方法であって、前記冷媒タンク(52)の気相部(G)又は該気相部(G)に連通する空間(S)の圧力値を検出する圧力検出ステップ(S10)と、前記圧力値に応じて前記凝縮器に流入する前記第1冷媒の流量を制御する流量制御ステップ(S12)と、を備える。 (9) A method for controlling a cooling system according to the present disclosure is a cooling system for a superconducting cable (12) and a superconducting fault current limiter ( 16) electrically connected to the superconducting cable (12) , 20) , a circulation path (18) for supplying the first refrigerant ( r1) cooled by the refrigerator (20) to the superconducting cable (12) and returning it to the refrigerator (20 ); a branch path (22) that branches from the path (18) and is provided so as to bypass the superconducting cable (12) and pass through the superconducting current limiter (16) ; and a branch path ( 22) that is provided on the branch path (22). , a condenser (30 ) for cooling and condensing the second refrigerant (r2) vaporized in the superconducting current limiter (16) with the first refrigerant (r1 ), the condenser (30) is the gas phase portion (G) of the refrigerant tank (52) in which the second refrigerant (r2) for cooling the superconducting current limiting element (50) included in the superconducting current limiter (16) is stored; A liquid return flow that is arranged in a space (S) communicating with the gas phase part (G) and returns the condensed liquid liquefied in the condenser (30) to the liquid phase part (L) of the refrigerant tank (52). A method for controlling a cooling system comprising a passage (32) , the pressure detecting a pressure value of a gas phase portion (G) of the refrigerant tank (52) or a space (S) communicating with the gas phase portion (G). The method includes a detection step (S10) , and a flow rate control step (S12) for controlling the flow rate of the first refrigerant flowing into the condenser according to the pressure value.

このような構成によれば、冷媒タンクの気相部又は該気相部に連通する空間を目標圧力とすることができるので、冷媒タンクの液相部によって超電導限流素子の冷却温度を転移温度に近い温度に制御できる。これによって、超電導ケーブルに定格電流以上の短絡電流が流れた時の超電導限流器の応答性を高めることができる。 According to such a configuration, the gas phase portion of the refrigerant tank or the space communicating with the gas phase portion can be set as the target pressure, so that the cooling temperature of the superconducting current limiting element can be adjusted to the transition temperature by the liquid phase portion of the refrigerant tank. The temperature can be controlled close to . This makes it possible to improve the responsiveness of the superconducting current limiter when a short-circuit current higher than the rated current flows through the superconducting cable.

(10)一態様に係る冷却システムの制御方法は、(9)に記載の冷却システムの制御方法であって、前記冷媒タンク(52)の内部は前記第2冷媒(r2)が飽和状態に維持され、前記流量制御ステップ(S12)において、前記冷媒タンク(52)内の前記第2冷媒(r2)が冷却目標温度Tgに一義的に対応する目標圧力Pgとなるように、前記凝縮器(30)に流入する前記第1冷媒(r1)の流量を制御する。

(10) A method for controlling a cooling system according to one aspect is the method for controlling a cooling system according to (9), wherein the second refrigerant (r2 ) maintains the inside of the refrigerant tank (52 ) in a saturated state. In the flow rate control step (S12) , the condenser (30 ) the flow rate of the first refrigerant (r1) flowing into the refrigerant (r1) is controlled.

このような構成によれば、制御パラメータとして制御しやすい冷媒タンク内の第2冷媒の圧力を対象とし、該圧力が目標圧力Pgとなるように、凝縮器に流入する第1冷媒の流量を制御するので、目標圧力Pgに一義的に対応する第2冷媒の冷却目標温度Tgに精度良く制御できる。 According to such a configuration, the pressure of the second refrigerant in the refrigerant tank, which is easy to control as a control parameter, is targeted, and the flow rate of the first refrigerant flowing into the condenser is controlled so that the pressure becomes the target pressure Pg. Therefore, it is possible to accurately control the cooling target temperature Tg of the second refrigerant that uniquely corresponds to the target pressure Pg.

10 冷却システム
12 超電導ケーブル
14 端末
16 超電導限流器
18 循環路
20 冷凍機
22 分岐路
24 送電設備
26 冷媒ポンプ
28 リザーバ
30(30a、30b) 凝縮器
32 液戻し流路
34 ハウジング
35 連通管
35a 下端部
36 熱交換器
38 流量調整弁
40 圧力センサ
42 制御部
44 断熱層
50 超電導限流素子
52 冷媒タンク
54 天井面
56 液面計
r1 冷媒(第1冷媒)
r2 冷媒(第2冷媒)
G 気相部
L 液相部
S 連通空間
10 Cooling system 12 Superconducting cable 14 Terminal 16 Superconducting current limiter 18 Circulation path 20 Refrigerator 22 Branch path 24 Power transmission equipment 26 Refrigerant pump 28 Reservoir 30 (30a, 30b) Condenser 32 Liquid return channel 34 Housing 35 Communication pipe 35a Lower end Part 36 Heat exchanger 38 Flow rate adjustment valve 40 Pressure sensor 42 Control part 44 Heat insulating layer 50 Superconducting current limiting element 52 Refrigerant tank 54 Ceiling surface 56 Level gauge r1 Refrigerant (first refrigerant)
r2 refrigerant (second refrigerant)
G Gas phase part L Liquid phase part S Communication space

Claims (10)

超電導ケーブルおよび該超電導ケーブルに電気的に接続された超電導限流器の冷却システムであって、
冷凍機と、
前記冷凍機で冷却された第1冷媒を前記超電導ケーブルに供給して前記冷凍機に戻すための循環路と、
前記循環路から分岐し前記超電導ケーブルをバイパスして前記超電導限流器を経由するように設けられた分岐路と、
前記分岐路上に設けられ、前記超電導限流器で気化した第2冷媒を前記第1冷媒で冷却して凝縮させるための凝縮器と、
を備える冷却システム。
A cooling system for a superconducting cable and a superconducting current limiter electrically connected to the superconducting cable, the cooling system comprising:
A refrigerator and
a circulation path for supplying a first refrigerant cooled by the refrigerator to the superconducting cable and returning it to the refrigerator;
a branch path branching from the circulation path, bypassing the superconducting cable and passing through the superconducting current limiter;
a condenser provided on the branch path for cooling and condensing the second refrigerant vaporized by the superconducting current limiter with the first refrigerant;
Cooling system with.
前記循環路に設けられ、前記超電導ケーブル及び前記超電導限流器を通過した後の前記第1冷媒を回収するためのリザーバを備える請求項1に記載の冷却システム。 The cooling system according to claim 1, further comprising a reservoir provided in the circulation path and for recovering the first refrigerant after passing through the superconducting cable and the superconducting current limiter. 前記凝縮器は、前記超電導限流器に含まれる超電導限流素子を冷却するための前記第2冷媒が貯留される冷媒タンクの気相部又は該気相部に連通する空間に配置され、
前記凝縮器で液化された凝縮液を前記冷媒タンクの液相部に戻すための液戻し流路と、
を備える請求項1又は2に記載の冷却システム。
The condenser is disposed in a gas phase part of a refrigerant tank in which the second refrigerant for cooling a superconducting current limiting element included in the superconducting current limiter is stored or in a space communicating with the gas phase part,
a liquid return channel for returning the condensed liquid liquefied in the condenser to the liquid phase part of the refrigerant tank;
The cooling system according to claim 1 or 2, comprising:
前記凝縮器は前記冷媒タンクの上方に配置され、
前記液戻し流路は、前記凝縮液を前記冷媒タンクの前記液相部に滴下させるように構成される請求項3に記載の冷却システム。
the condenser is located above the refrigerant tank;
4. The cooling system according to claim 3, wherein the liquid return channel is configured to drip the condensed liquid into the liquid phase portion of the refrigerant tank.
前記凝縮器は、
前記冷媒タンクの上方に設けられたハウジングと、
前記ハウジングと前記冷媒タンクとの間を連通させる連通管と、
を備え、
前記連通管の下端が前記冷媒タンクの天井面よりも下方へ突出するように構成された請求項4に記載の冷却システム。
The condenser is
a housing provided above the refrigerant tank;
a communication pipe that communicates between the housing and the refrigerant tank;
Equipped with
5. The cooling system according to claim 4, wherein a lower end of the communication pipe is configured to protrude below a ceiling surface of the refrigerant tank.
前記凝縮器は、前記第1冷媒と前記第2冷媒とを熱交換する熱交換器を含み、
前記熱交換器に供給される前記第1冷媒の流量を制御する流量調整弁を備える請求項3乃至5の何れか一項に記載の冷却システム。
The condenser includes a heat exchanger that exchanges heat between the first refrigerant and the second refrigerant,
The cooling system according to any one of claims 3 to 5, further comprising a flow rate adjustment valve that controls the flow rate of the first refrigerant supplied to the heat exchanger.
前記冷媒タンクの前記気相部又は前記気相部に連通する前記空間の圧力を検出するための圧力センサと、
前記圧力センサの検出値に基づいて前記流量調整弁の開度を制御する制御部と、
を備える請求項6に記載の冷却システム。
a pressure sensor for detecting the pressure of the gas phase portion of the refrigerant tank or the space communicating with the gas phase portion;
a control unit that controls the opening degree of the flow rate adjustment valve based on the detected value of the pressure sensor;
The cooling system according to claim 6, comprising:
前記制御部は、前記第1冷媒による前記第2冷媒の冷却温度を転移温度に近い設定範囲内温度に制御するように構成された請求項7に記載の冷却システム。 The cooling system according to claim 7, wherein the control unit is configured to control the cooling temperature of the second refrigerant by the first refrigerant to a temperature within a set range close to a transition temperature . 超電導ケーブルおよび該超電導ケーブルに電気的に接続された超電導限流器の冷却システムであって、
冷凍機と、
前記冷凍機で冷却された第1冷媒を前記超電導ケーブルに供給して前記冷凍機に戻すための循環路と、
前記循環路から分岐し前記超電導ケーブルをバイパスして前記超電導限流器を経由するように設けられた分岐路と、
前記分岐路上に設けられ、前記超電導限流器で気化した第2冷媒を前記第1冷媒で冷却して凝縮させるための凝縮器と、
を備え、
前記凝縮器は、前記超電導限流器に含まれる超電導限流素子を冷却するための前記第2冷媒が貯留される冷媒タンクの気相部又は該気相部に連通する空間に配置され、前記凝縮器で液化された凝縮液を前記冷媒タンクの液相部に戻すための液戻し流路を備える冷却システムの制御方法であって、
前記冷媒タンクの気相部又は該気相部に連通する空間の圧力値を検出する圧力検出ステップと、
前記圧力値に応じて前記凝縮器に流入する前記第1冷媒の流量を制御する流量制御ステップと、
を備える冷却システムの制御方法。
A cooling system for a superconducting cable and a superconducting current limiter electrically connected to the superconducting cable, the cooling system comprising:
A refrigerator and
a circulation path for supplying a first refrigerant cooled by the refrigerator to the superconducting cable and returning it to the refrigerator;
a branch path branching from the circulation path, bypassing the superconducting cable and passing through the superconducting current limiter;
a condenser provided on the branch path for cooling and condensing the second refrigerant vaporized by the superconducting current limiter with the first refrigerant;
Equipped with
The condenser is disposed in a gas phase portion of a refrigerant tank in which the second refrigerant for cooling a superconducting current limiting element included in the superconducting current limiter is stored or in a space communicating with the gas phase portion, and A method for controlling a cooling system comprising a liquid return passage for returning condensed liquid liquefied in a condenser to a liquid phase part of the refrigerant tank, the method comprising:
a pressure detection step of detecting a pressure value in a gas phase portion of the refrigerant tank or a space communicating with the gas phase portion;
a flow rate control step of controlling the flow rate of the first refrigerant flowing into the condenser according to the pressure value;
A method for controlling a cooling system comprising:
前記冷媒タンクの内部は前記第2冷媒が飽和状態に維持され、
前記流量制御ステップにおいて、前記冷媒タンク内の前記第2冷媒が冷却目標温度Tgに一義的に対応する目標圧力Pgとなるように、前記凝縮器に流入する前記第1冷媒の流量を制御する請求項9に記載の冷却システムの制御方法。
The second refrigerant is maintained in a saturated state inside the refrigerant tank,
In the flow rate control step, the flow rate of the first refrigerant flowing into the condenser is controlled so that the second refrigerant in the refrigerant tank has a target pressure Pg that uniquely corresponds to the cooling target temperature Tg. 10. The method for controlling a cooling system according to item 9.
JP2019234127A 2019-12-25 2019-12-25 Cooling system and cooling system control method Active JP7444601B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019234127A JP7444601B2 (en) 2019-12-25 2019-12-25 Cooling system and cooling system control method
PCT/JP2020/046251 WO2021131783A1 (en) 2019-12-25 2020-12-11 Cooling system, and method for controlling cooling system
CN202080064078.3A CN114365238B (en) 2019-12-25 2020-12-11 Cooling system and control method for cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019234127A JP7444601B2 (en) 2019-12-25 2019-12-25 Cooling system and cooling system control method

Publications (2)

Publication Number Publication Date
JP2021103728A JP2021103728A (en) 2021-07-15
JP7444601B2 true JP7444601B2 (en) 2024-03-06

Family

ID=76575244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019234127A Active JP7444601B2 (en) 2019-12-25 2019-12-25 Cooling system and cooling system control method

Country Status (3)

Country Link
JP (1) JP7444601B2 (en)
CN (1) CN114365238B (en)
WO (1) WO2021131783A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450266A (en) 1991-03-04 1995-09-12 The Boc Group Plc Superconducting fault current limiter
JP2007273740A (en) 2006-03-31 2007-10-18 Toshiba Corp Superconducting apparatus
JP2007317884A (en) 2006-05-25 2007-12-06 Toshiba Corp Superconductive current limiter
JP2009027843A (en) 2007-07-19 2009-02-05 Sumitomo Electric Ind Ltd Terminal structure for superconductive cable
JP2009283679A (en) 2008-05-22 2009-12-03 Toshiba Corp Cooling container and superconducting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102282A (en) * 1972-04-11 1973-12-22
CA2295565A1 (en) * 1998-05-22 1999-12-02 Sumitomo Electric Industries, Ltd. Method and device for cooling superconductor
GB2467595B (en) * 2009-02-09 2011-08-24 Tesla Engineering Ltd Cooling systems and methods
JP6527353B2 (en) * 2015-03-12 2019-06-05 株式会社前川製作所 Superconductor cooling system
JP6650733B2 (en) * 2015-11-06 2020-02-19 株式会社前川製作所 Superconducting cable cooling system
US10415856B2 (en) * 2017-04-05 2019-09-17 Lennox Industries Inc. Method and apparatus for part-load optimized refrigeration system with integrated intertwined row split condenser coil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450266A (en) 1991-03-04 1995-09-12 The Boc Group Plc Superconducting fault current limiter
JP2007273740A (en) 2006-03-31 2007-10-18 Toshiba Corp Superconducting apparatus
JP2007317884A (en) 2006-05-25 2007-12-06 Toshiba Corp Superconductive current limiter
JP2009027843A (en) 2007-07-19 2009-02-05 Sumitomo Electric Ind Ltd Terminal structure for superconductive cable
JP2009283679A (en) 2008-05-22 2009-12-03 Toshiba Corp Cooling container and superconducting device

Also Published As

Publication number Publication date
CN114365238B (en) 2024-07-02
JP2021103728A (en) 2021-07-15
CN114365238A (en) 2022-04-15
WO2021131783A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
CA2917035C (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
EP3564128B1 (en) Super-cooled heat exchanger of an air cycle machine
US6578367B1 (en) Liquid nitrogen cooling system
JP6429084B2 (en) Temperature control device, temperature control method and prober for wafer mounting table
EP3443263B1 (en) Device for generating fog and operating method of such device
JP7444601B2 (en) Cooling system and cooling system control method
WO2011017385A1 (en) Pumped liquid multiphase cooling system
KR102519352B1 (en) Superconductive cable system using multiple pressure regulating apparatus
WO2006087794A1 (en) Circulation cooling system for cryogenic cable
JP7579633B2 (en) Cooling system for superconducting current limiter, superconducting current limiter, and method for controlling the cooling system for superconducting current limiter
KR101558839B1 (en) System amd method for superconducting fault current limiter recovery
KR101558840B1 (en) Pressurizing system for cryogenic pressure vessel
Xi et al. Study on the operation safety of HTS current leads in EAST device
US10544995B2 (en) Capillary pump assisted heat pipe
KR101004892B1 (en) Cryogenic system and control method thereof
KR102565929B1 (en) cooling unit
JP4046060B2 (en) Cryogenic cooling system for cryogenic cables
US11212948B1 (en) Thermal management system for tightly controlling temperature of a thermal load
CN214249761U (en) Waste heat recycling system
CN213810807U (en) Low-quality waste heat recycling system
CN114251705A (en) Low-quality waste heat recycling system and control method thereof
Buyanov How the material of a resistive part of a high-temperature superconductor current lead influences cryocoolant heat load
JP2002022327A (en) Brine feeder
CN108916159A (en) A method of heating hydraulic oil liquid is provided for hydraulic element test
JP2013064574A (en) Absorption type refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240222

R150 Certificate of patent or registration of utility model

Ref document number: 7444601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150