JP7333979B1 - Airborne particle collection method and airborne particle continuous measurement device - Google Patents
Airborne particle collection method and airborne particle continuous measurement device Download PDFInfo
- Publication number
- JP7333979B1 JP7333979B1 JP2022113552A JP2022113552A JP7333979B1 JP 7333979 B1 JP7333979 B1 JP 7333979B1 JP 2022113552 A JP2022113552 A JP 2022113552A JP 2022113552 A JP2022113552 A JP 2022113552A JP 7333979 B1 JP7333979 B1 JP 7333979B1
- Authority
- JP
- Japan
- Prior art keywords
- suspended particles
- particles
- air
- fine
- coarse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims abstract description 213
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000005259 measurement Methods 0.000 title claims description 13
- 238000001514 detection method Methods 0.000 claims description 9
- 239000011362 coarse particle Substances 0.000 claims description 6
- 239000000443 aerosol Substances 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 abstract description 3
- 239000003570 air Substances 0.000 description 86
- 230000005250 beta ray Effects 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000000428 dust Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 101150082661 MFM1 gene Proteins 0.000 description 3
- 101100401327 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mfm2 gene Proteins 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000012080 ambient air Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 238000001028 reflection method Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
【課題】同じサンプル空気中に含まれる粒径や濃度が異なる2種類の粒子やエアロゾルを分けて必要量を捕集する方法および測定装置を提供する。【解決手段】浮遊粒子の捕集方法は、空気中の浮遊粒子を、バーチャルインパクタ1で分級して、粒径の大きい粗大浮遊粒子を含む空気と粒径の小さい微細浮遊粒子を含む空気とに分け、粗大浮遊粒子を含む空気を吸引して、粗大浮遊粒子を捕集するとともに、微細浮遊粒子を含む空気をバイパスさせながら吸引して、粗大浮遊粒子の捕集位置とは異なる位置で微細浮遊粒子を捕集する。【選択図】 図2The present invention provides a method and a measuring device for separating and collecting two types of particles or aerosols having different particle sizes and concentrations contained in the same sample air. [Solution] A method for collecting suspended particles is to classify suspended particles in the air with a virtual impactor 1 into air containing coarse suspended particles with a large particle size and air containing fine suspended particles with a small particle size. The air containing coarse suspended particles is sucked in to collect the coarse suspended particles, while the air containing fine suspended particles is sucked while being bypassed, and the fine suspended particles are collected at a position different from the position where the coarse suspended particles are collected. Collect particles. [Selection diagram] Figure 2
Description
本発明は、環境大気や屋内空気中の浮遊粒子の捕集方法および浮遊粒子の連続測定装置に関する。 TECHNICAL FIELD The present invention relates to a method for collecting suspended particles in ambient air and indoor air, and a continuous measurement apparatus for suspended particles.
環境大気中や屋内空気中に浮遊する粒子は、呼吸器に重大な危害を及ぼす恐れがあるため、環境大気の環境基準や労働衛生環境基準が、国際機関(WHO)などや各国で、それぞれ定められている。また、そのための測定法として、粒径の大きい沈降性粒子(粒径10μm以上)の粒子を除いて捕集することが推奨されている。 Particles suspended in the ambient air and indoor air can pose serious respiratory hazards. It is In addition, as a measurement method for that purpose, it is recommended to collect sedimentary particles with a large particle size (particle size of 10 μm or more) except for particles.
このことから、日本では、粒径10μmを超える粒子を10μmで100%除いて捕集したもの(10μmで100%カット)を浮遊粒子状物質(SPM)と呼んでおり、諸外国では、粒径10μm以上を10μmで50%除いたものをPM10(10μmで50%カット)と呼んでいる。 For this reason, in Japan, the particles collected by removing 100% of particles with a particle size of over 10 μm at 10 μm (100% cut at 10 μm) are called suspended particulate matter (SPM). PM 10 (50% cut at 10 μm) is obtained by removing 50% at 10 μm at 10 μm or more.
また、1980年代から米国で行われた大規模疫学調査の結果から、PM10の中でも粒径2.5μm以下(2.5μmで50%カット)の粒子が心筋梗塞などの引き金になるとの報告から、世界的にPM2.5の環境基準が定められた。日本では、これを微小粒子状物質と呼んで基準が定められている。このことから、PM10やSPMに合わせて、PM2.5の測定が求められている。 In addition, from the results of large-scale epidemiological studies conducted in the United States since the 1980s, it has been reported that particles with a particle size of 2.5 μm or less (50% cut at 2.5 μm) among PM 10 trigger myocardial infarction. , set environmental standards for PM 2.5 worldwide. In Japan, this is called microparticulate matter and standards are established. For this reason, measurement of PM 2.5 is required along with PM 10 and SPM.
一方、労働安全衛生基準でも空気中の浮遊粒子状物質に対する基準が定められている。粒径4μm以下(4μmで50%カット)の粒子は、肺胞まで達する恐れのある「吸入性粉じん」として、PM10と共に測定が求められている。 On the other hand, occupational safety and health standards also set standards for suspended particulate matter in the air. Particles with a particle size of 4 μm or less (50% cut at 4 μm) are regarded as “inhalable dust” that may reach the alveoli, and are required to be measured together with PM 10 .
また、呼吸器疾患における医学的な研究分野(例えばAerosol Science Technology and Applications, 2014.に総説が載っている)では、「吸入性粉じん」として粒径4μm以下ではなく、粒径5μm以下を「吸入性粉じん」としている。 In addition, in the medical research field of respiratory diseases (for example, a review is given in Aerosol Science Technology and Applications, 2014), "respirable dust" is defined as "inhalable dust" with a particle size of 5 μm or less, not with a particle size of 4 μm or less. It is said that it is a sexual dust.
一般に、5μm以下の粒子は、体内深くまで到達し一部が沈着するものが多く、健康影響が大きいと考えられる。中でも、粒径1μmを超え5μm未満の粒子は咽喉、気管部で吸着されることが多く、一部は肺まで到達し吸着する。一方、粒径1μm以下の粒子は、酸素や窒素ガスと似た挙動を示し、いったん肺にまで到達するが、そのほとんどが再び呼気と共に吐出される。 In general, particles of 5 μm or less reach deep into the body and are partially deposited, and are considered to have a great impact on health. Among them, particles with a particle size of more than 1 μm and less than 5 μm are often adsorbed in the throat and trachea, and some of them reach the lungs and are adsorbed. On the other hand, particles with a particle size of 1 μm or less exhibit behavior similar to that of oxygen or nitrogen gas, and once reach the lungs, but most of them are exhaled again with exhalation.
このように、空気中のエアロゾル(煙霧質)の分散相の粒子は、粒径によって体内沈着の仕方や成分は異なるため、それを分析するために、粒径1μmを超える粒子と粒径1μm以下の粒子を分けて捕集し、その重量を連続的に測定することができるサンプリング方法や装置の開発が望まれている。 In this way, the dispersed phase particles of aerosols (fumes) in the air differ in the manner and components of their deposition in the body depending on their particle size. It is desired to develop a sampling method and apparatus capable of separately collecting the particles and continuously measuring their weight.
粒子の分級には、例えば特許文献1および2のように、バーチャルインパクタを用いた技術が知られているが、粒径1μmを超える浮遊粒子は、大気中に存在する量が少なく、分析手法に応じた量を捕集するには、大量の大気をサンプリングする必要があるため、これらの技術だけでは、上記の目的を達成するには十分ではない。 Techniques using a virtual impactor are known for classifying particles, as in Patent Documents 1 and 2, for example. These techniques alone are not sufficient to achieve the above objectives, as large volumes of air must be sampled to collect commensurate amounts.
同じサンプル空気中に含まれる粒子を、それぞれ別のスポットで分けて捕集しようとすると、粒径1μm以下の方が濃度が高いため、粒径1μm以下の粒子が過剰に捕集され、粒径1μmを超える粒径の浮遊粒子が分析手法に応じた量まで捕集できないという問題点がある。 If you try to collect the particles contained in the same sample air separately with different spots, the concentration of particles with a particle size of 1 μm or less is higher, so particles with a particle size of 1 μm or less are collected excessively. There is a problem that suspended particles with a particle size exceeding 1 μm cannot be collected in an amount suitable for the analysis method.
本発明の目的は、同じサンプル空気中に含まれる粒径1μmを超える粒径の粗大浮遊粒子と粒径1μm以下の微細浮遊粒子とを、それぞれ別のスポットで分けて捕集し、その分析手法に応じた量まで採取することができ、それぞれの粒子の捕集した質量を連続的に測定することができる浮遊粒子の捕集方法および浮遊粒子の連続測定装置を提供することである。 An object of the present invention is to separately collect coarse suspended particles having a particle size of more than 1 μm and fine suspended particles having a particle size of 1 μm or less contained in the same sample air in separate spots, and to analyze the same. To provide a method for collecting airborne particles and a continuous measuring device for airborne particles, capable of collecting up to an amount corresponding to , and continuously measuring the collected mass of each particle.
本発明は、空気中の浮遊粒子を、バーチャルインパクタで分級して、粒径の大きい粗大浮遊粒子を含む空気と粒径の小さい微細浮遊粒子を含む空気と分け、
粗大浮遊粒子を含む空気を吸引して、粗大浮遊粒子をフィルタに捕集するとともに、
前記バーチャルインパクタから流出する微細浮遊粒子を含む空気を、微細浮遊粒子を捕集する捕集部への流れと、微細浮遊粒子を捕集せずにバイパスさせるバイパス流と、に分配し、吸引して、粗大浮遊粒子の捕集位置とは異なる位置で微細浮遊粒子をフィルタに捕集する、ことを特徴とする浮遊粒子の捕集方法である。
The present invention classifies suspended particles in the air with a virtual impactor to separate air containing coarse suspended particles with a large particle size and air containing fine suspended particles with a small particle size,
Air containing coarse suspended particles is sucked and the coarse suspended particles are collected by a filter,
The air containing the fine suspended particles flowing out from the virtual impactor is divided into a flow to the collecting part that collects the fine suspended particles and a bypass flow that bypasses the fine suspended particles without collecting them, and sucked. A method for collecting suspended particles, characterized in that fine suspended particles are collected by a filter at a position different from the position at which coarse suspended particles are collected.
また、本発明は、浮遊粒子を含む空気を吸引して、吸引された空気中の浮遊粒子を、粒径の大きい粗大浮遊粒子を含む空気と、粒径の小さい微細浮遊粒子を含む空気とに分級するバーチャルインパクタと、
前記バーチャルインパクタに接続して設けられ、前記バーチャルインパクタから流出する微細浮遊粒子を含む空気の一部を吸引して微細浮遊粒子の捕集部への流れに分配する吸引手段と、微細浮遊粒子を含む空気の残部を吸引して微細浮遊粒子を捕集しないバイパス流として排気部にバイパスさせるバイパス手段と、
テープ状フィルタを備え、該テープ状フィルタの異なる位置を介して、前記バーチャルインパクタによって分級された、粗大浮遊粒子を含む空気と微細浮遊粒子を含む空気とを吸引して、粗大浮遊粒子と微細浮遊粒子とをテープ状フィルタの異なる位置に格別に連続的に捕集する捕集手段と、
捕集手段によってテープ状フィルタの異なる位置に捕集された浮遊粒子を、それぞれ連続して検出する検出手段と、
検出手段の出力と、吸引大気流量の積算値から空気中の粗大粒子と、空気中の微細浮遊粒子とを、演算して記録する演算記録手段とを含むことを特徴とする浮遊粒子の連続測定装置である。
Further, in the present invention, air containing suspended particles is sucked, and the suspended particles in the sucked air are divided into air containing coarse suspended particles with a large particle size and air containing fine suspended particles with a small particle size. a virtual impactor for classification;
a suction means connected to the virtual impactor for sucking a portion of the air containing the fine suspended particles flowing out from the virtual impactor and distributing the air to the fine suspended particle collecting section; bypass means for sucking the remainder of the contained air and bypassing it to the exhaust section as a bypass flow that does not collect fine suspended particles ;
A tape-shaped filter is provided, and air containing coarse suspended particles and air containing fine suspended particles classified by the virtual impactor are sucked through different positions of the tape-shaped filter to separate coarse suspended particles and fine suspended particles. a collecting means for continuously collecting the particles at different positions of the tape-like filter;
detection means for successively detecting suspended particles collected at different positions of the tape-shaped filter by the collection means;
A continuous measurement of airborne particles, characterized by comprising an output of a detection means and an arithmetic recording means for calculating and recording coarse particles in the air and fine airborne particles from the integrated value of the suction air flow rate. It is a device.
本発明によれば、空気中において、粒径および濃度が異なる2種類の浮遊粒子を、同時に吸引するだけで、必要量の異なる2種類の粒子を、異なる別の位置に捕集し、それぞれの量を効率よく測定することができる。 According to the present invention, by simultaneously sucking two types of suspended particles having different particle sizes and concentrations in the air, the two types of particles having different required amounts are collected at different positions, and the respective Quantity can be measured efficiently.
本発明によれば、2種類の浮遊粒子の大気中の粒径や濃度の差に応じて、バイパスさせる空気量を調整することで、同時に吸引するだけで、それぞれの量を効率よく測定することができるので、空気中の物質の測定方法として適応性が高いという特徴を有する。 According to the present invention, by adjusting the amount of air to be bypassed according to the difference in the particle size and concentration of two types of suspended particles in the air, each amount can be efficiently measured simply by sucking them in simultaneously. Therefore, it has the feature of being highly adaptable as a method for measuring substances in the air.
以下、図面を参照しつつ、本発明の実施形態について説明する。各図において、実質的に対応する部分には同一の符号を付しており、重複する説明は省略または簡略化する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, substantially corresponding parts are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified.
図1は、本発明の実施の一形態のバーチャルインパクタ1の構成を示す断面図であり、図2は図1のバーチャルインパクタ1を備える浮遊粒子の測定装置の構成を示す系統図である。本実施形態の浮遊粒子の捕集方法は、まず、試料空気を採取口53から取り入れ、分級器(インパクタやサイクロン)52を用いて、粒径5μm以上の粒子を取り除く。粒径5μm未満の浮遊粒子を含む試料空気をバーチャルインパクタ1で分級して、粒径1μmを超える粗大浮遊粒子(粒径1μmを超え5μm未満、Coarse Particle;以下「CP」と略記する場合がある。)を含む空気と、粒径1μm以下の微細浮遊粒子(Fine Particle;以下「FP」と略記する場合がある。)を含む空気とに分け、粗大浮遊粒子を含む空気を吸引して粗大浮遊粒子をフィルタ9に捕集するとともに、微細浮遊粒子を含む空気の大部分をバイパス手段2によりフィルタ9の同一位置に捕集せずにバイパスさせながら吸引するとともに、フィルタ9の粗大浮遊粒子の捕集位置とは異なる位置に微細浮遊粒子を捕集することを含む。 FIG. 1 is a cross-sectional view showing the configuration of a virtual impactor 1 according to an embodiment of the present invention, and FIG. 2 is a system diagram showing the configuration of an airborne particle measuring apparatus equipped with the virtual impactor 1 of FIG. In the airborne particle collection method of the present embodiment, first, sample air is taken in from a collection port 53, and particles with a particle size of 5 μm or more are removed using a classifier (impactor or cyclone) 52. FIG. The sample air containing suspended particles with a particle size of less than 5 μm is classified by the virtual impactor 1, and coarse suspended particles with a particle size exceeding 1 μm (particle size exceeding 1 μm and less than 5 μm, Coarse Particle; hereinafter sometimes abbreviated as “CP” ) and air containing fine suspended particles with a particle size of 1 μm or less (Fine Particles; hereinafter sometimes abbreviated as “FP”). Particles are collected by the filter 9, and most of the air containing fine suspended particles is sucked by bypassing the filter 9 without being collected at the same position by the bypass means 2, and coarse suspended particles are collected by the filter 9. Including collecting fine airborne particles at a location different from the collection location.
また、バーチャルインパクタ1のカット特性を粒径2.5μmとし、その上流の分級器52のカット特性を10μmとすれば、粗大浮遊粒子を粒径2.5μmを超え10μm未満(PM10-2.5)として、微細浮遊粒子を粒径2.5μm以下の粒子(PM2.5)として捕集することも可能である。したがって、カット特性の範囲が粒径1μmを超え10μm未満の分級器52、カット特性の範囲が粒径0.1μmを超え8μm以下のバーチャルインパクタ1を製作することで、粒子の粒径を変更して捕集することが可能である。本発明では、バーチャルインパクタ1のカット特性を基準にして、それよりも大きい粒子を粗大浮遊粒子と記載し、それよりも小さい粒子を微細浮遊粒子と記載している。 In addition, if the cutting characteristic of the virtual impactor 1 is set to 2.5 μm in particle size and the cutting characteristic of the classifier 52 upstream thereof is set to 10 μm, the coarse suspended particles have a particle size of more than 2.5 μm and less than 10 μm (PM 10-2. As 5 ), it is also possible to collect fine suspended particles as particles (PM 2.5 ) having a particle size of 2.5 μm or less. Therefore, the grain size of the particles can be changed by manufacturing the classifier 52 with a cutting property range of more than 1 μm and less than 10 μm, and the virtual impactor 1 with a cutting property range of more than 0.1 μm and less than 8 μm. It is possible to collect In the present invention, particles larger than the cutting characteristics of the virtual impactor 1 are described as coarse floating particles, and particles smaller than that are described as fine floating particles.
本発明に係る実施形態において、バーチャルインパクタ1は、ノズル部40と、集気部41と、導気部42とを含んで構成され、ノズル部40は、内径D0を有する円形の噴出口43を規定する円筒部44と、円筒部44に連なる縮管部45とを有する。導気部42は、内径D2の第1排出口46と、内径D3の第2排出口47とを有し、第2排出口47は、円筒状の直管から成る捕集部51によって規定される。 In the embodiment according to the present invention, the virtual impactor 1 includes a nozzle portion 40, an air collecting portion 41, and an air guiding portion 42. The nozzle portion 40 has a circular ejection port 43 having an inner diameter D0. It has a defined cylindrical portion 44 and a constricted tube portion 45 connected to the cylindrical portion 44 . The air guide portion 42 has a first discharge port 46 with an inner diameter D2 and a second discharge port 47 with an inner diameter D3. be.
集気部41は、円錐台状の集気管部48と、集気管部48に同軸に連なる円筒状の直管部49とを有する。集気管部48は、噴出口43と同一の軸線を成し、軸線方向に間隔Sをあけて離間して位置する内径D1の流入口50を有する。ノズル部40に供給された試料空気は、縮管部45によって流速を上昇させながら円筒部44に流入し、噴出口43から噴出された試料空気の一部は、集気部41に流入し、主流は導気部42へ流入する。導気部42へ流入した試料空気は、その一部が第2排出口47から流路L2に流入し、残部は第1排出口46から流路L3に流入する。 The air collecting portion 41 has a truncated conical air collecting pipe portion 48 and a cylindrical straight pipe portion 49 coaxially connected to the air collecting pipe portion 48 . The air collecting pipe portion 48 has an inlet 50 with an inner diameter D1 which is on the same axis as the ejection port 43 and which is spaced apart from the outlet 43 by an interval S in the axial direction. The sample air supplied to the nozzle portion 40 flows into the cylindrical portion 44 while increasing the flow velocity by the constricted tube portion 45, and part of the sample air jetted from the ejection port 43 flows into the air collecting portion 41, The main stream flows into the air guide portion 42 . Part of the sample air that has flowed into the air guide section 42 flows into the channel L2 through the second outlet 47, and the rest flows into the channel L3 through the first outlet 46. As shown in FIG.
図3は、フィルタの捕集位置を示す平面図である。バーチャルインパクタ1は、一定流量の空気を吸引し、吸引した空気中の粒子径1μmを超える粗大浮遊粒子は慣性の力によって粒子径1μm以下の微小浮遊粒子と分級され、Q0の空気に含まれるほとんどの粗大浮遊粒子が集気部41に入り、その下のフィルタ9の参照符3の位置に捕集される。一方で、微細浮遊粒子を含む空気は、流線に沿って流れ、Q0のうちQ2分の空気中の微細浮遊粒子が捕集部51に入り、その下のフィルタ9の参照符4の位置に捕集される。残りのQ3の空気中の微細浮遊粒子は、フィルタ9に捕集されることなくバイパスから排出される。Q0は、バーチャルインパクタ1内の圧力G3と圧力センサG4(大気圧を測定している)との差圧から計算された流量によって確認し、Q1およびQ2はそれぞれ流量センサMFM1、流量センサMFM2によって計測される。 FIG. 3 is a plan view showing the collection position of the filter. The virtual impactor 1 sucks air at a constant flow rate, and coarse suspended particles with a particle size of more than 1 μm in the sucked air are classified into fine suspended particles with a particle size of 1 μm or less by the force of inertia. of coarse suspended particles enter the air collecting portion 41 and are collected at the position indicated by the reference numeral 3 of the filter 9 therebelow. On the other hand, the air containing fine suspended particles flows along the streamline, and the fine suspended particles in the air for Q2 out of Q0 enter the collection unit 51 and are located at the position of reference numeral 4 of the filter 9 below. be captured. Fine airborne particles in the remaining Q3 air are discharged through the bypass without being collected by the filter 9 . Q0 is confirmed by the flow calculated from the differential pressure between the pressure G3 in the virtual impactor 1 and the pressure sensor G4 (which measures atmospheric pressure), and Q1 and Q2 are measured by the flow sensors MFM1 and MFM2, respectively. be done.
バーチャルインパクタ1の各部位の寸法および空気の流れQ0~Q3等を一例として述べると、D0=φ4mm、D1=φ5mm、D2=φ12.7mm、D3=φ12mm、S=5mm、空気の流れQ0~Q3に対応する空気の体積流量をQv0~Qv3とすると、Qv0=125L/min、Qv1=20L/min、Qv2=15L/min、Qv3=90L/min、D1/D0=1.25、S/D0=1.25、Qv1/Qv0=0.16である。 Taking the dimensions of each part of the virtual impactor 1 and the air flows Q0 to Q3 as an example, D0=φ4 mm, D1=φ5 mm, D2=φ12.7 mm, D3=φ12 mm, S=5 mm, and the air flows Q0 to Q3. When the volume flow rate of air corresponding to is Qv0 to Qv3, Qv0 = 125 L / min, Qv1 = 20 L / min, Qv2 = 15 L / min, Qv3 = 90 L / min, D1 / D0 = 1.25, S / D0 = 1.25 and Qv1/Qv0=0.16.
体積流量Qv0になるように流量調整バルブPV3および流量調整バルブPV4によって調整され、体積流量Qv1になるように流量調整バルブPV1によって調整され、体積流量Qv2になるように流量調整バルブPV2で調整される。 It is adjusted by the flow rate adjusting valve PV3 and the flow rate adjusting valve PV4 so that the volumetric flow rate is Qv0, the flow rate adjusting valve PV1 is adjusted so that the volumetric flow rate is Qv1, and the volumetric flow rate is adjusted by the flow rate adjusting valve PV2 so that the volumetric flow rate is Qv2. .
導入された大気は、ノズル部40を通り、外管部(主流)と集気部41(二次流)とに配分される。本実施形態においては、主流は、外管部の排出口に接続されて設けられるバイパス手段2に導かれ、さらにバイパスされるバイパス流と微細浮遊粒子を捕集する捕集部51への流れとに分配されて、前記テープ状のフッ素系メンブランフィルタ(Membrane Filter)(以下、「フィルタ」と略記する場合がある。)9の第2の位置で微細浮遊粒子を捕集する。 The introduced air passes through the nozzle portion 40 and is distributed to the outer tube portion (main flow) and the air collecting portion 41 (secondary flow). In this embodiment, the main flow is guided to the bypass means 2 connected to the outlet of the outer tube portion, and further bypassed by the bypass flow and the flow to the collecting portion 51 for collecting the fine suspended particles. and collect fine suspended particles at a second position of the tape-shaped fluorine-based membrane filter (hereinafter sometimes abbreviated as "filter") 9 .
通常、従来のバーチャルインパクタを使った装置で、フィルタに捕集することを行わないバイパス手段2がなければ、主流が二次流に対して大きな流量となるので、そのままでも主流に含まれる微細浮遊粒子のろ過量が増えて、粗大浮遊粒子のろ過よりも多い。 Normally, in a device using a conventional virtual impactor, if there is no bypass means 2 that does not collect in the filter, the flow rate of the main flow is larger than that of the secondary flow, so even if it is as it is, the fine suspension contained in the main flow Filtration of particles is increased, more than filtration of coarse suspended particles.
そのため、粗大浮遊粒子の成分を確認するために必要な量がろ過できないうちに、微細浮遊粒子の捕集部のろ紙が目詰まりすることが生じて、同時に適量を捕集することができない。特に、大気中の濃度が低い粗大浮遊粒子を捕集するために、通常よりも大量の大気を導入する場合には、微細浮遊粒子の捕集量が過大となるという問題がある。 As a result, the filter paper in the fine suspended particle collection section becomes clogged before the amount required for checking the components of the coarse suspended particles is filtered, and an appropriate amount cannot be collected at the same time. In particular, when a larger amount of air than usual is introduced in order to collect coarse suspended particles whose concentration in the air is low, there is a problem that the amount of fine suspended particles collected becomes excessive.
本実施形態の同時捕集方法によれば、バイパス手段2によりバイパスさせるバイパス流により、微細浮遊粒子の大部分をろ過することなく、微細浮遊粒子の捕集量を、適量となるように調整することができる。 According to the simultaneous collection method of the present embodiment, most of the fine suspended particles are not filtered by the bypass flow bypassed by the bypass means 2, and the amount of fine suspended particles to be captured is adjusted to an appropriate amount. be able to.
また、本実施形態においては、バーチャルインパクタ1に導入される空気量と、前記バイパス流の量とを、それぞれの吸引ポンプP1,P2,P3と各流路に設けた流量調整バルブPV1~PV4を用いて調節することにより、さらに細かい捕集量の調整が可能である。 Further, in this embodiment, the amount of air introduced into the virtual impactor 1 and the amount of the bypass flow are controlled by the respective suction pumps P1, P2, and P3 and the flow rate control valves PV1 to PV4 provided in each flow path. It is possible to finely adjust the collection amount by adjusting using the
本実施形態において、本装置に吸引された試料空気は、バーチャルインパクタ1によって微細浮遊粒子を含む空気と、粗大浮遊粒子とを含む空気とに分級され、CPのみを含む空気は、バーチャルインパクタ1のノズル部40から集気部41(二次流)を通って、テープ状のフッ素系メンブランフィルタ9の第1の位置3で濾過され、流路L1を通って外部へ排気される。 In this embodiment, sample air sucked into the apparatus is classified by the virtual impactor 1 into air containing fine suspended particles and air containing coarse suspended particles. From the nozzle part 40, it passes through the air collecting part 41 (secondary flow), is filtered at the first position 3 of the tape-shaped fluorine-based membrane filter 9, and is exhausted to the outside through the flow path L1.
FPを含む空気は、バーチャルインパクタ1から主流として排出されて導気部42に導かれ、吸引ポンプP3による流路L3を介した吸引および吸引ポンプP2による流路L2を介した吸引により、フィルタ9に捕集されずにバイパスされるバイパス流と微細浮遊粒子をフィルタ9に捕集する捕集部51への流れに分配される。 The air containing FP is discharged as the main stream from the virtual impactor 1 and guided to the air guide section 42, and is sucked through the flow path L3 by the suction pump P3 and through the flow path L2 by the suction pump P2 to filter 9. The fine suspended particles are divided into a bypass flow that is bypassed without being collected by the filter 9 and a flow to the collection unit 51 that collects the fine suspended particles in the filter 9 .
バイパス手段2は、バーチャルインパクタ1の外管部の排出口に接続されて、前記バイパスされる空気を吸引ポンプP3により吸引するもので、その形状は、円筒形のものが挙げられ、一端は前記のとおり、バーチャルインパクタ1の外管部の排出口に接続され、他端は流路L3を介して、吸引ポンプP3に通じている。 The bypass means 2 is connected to the outlet of the outer tube of the virtual impactor 1 and sucks the bypassed air by means of a suction pump P3. , the other end is connected to the suction pump P3 via the flow path L3.
このとき、バイパス流と捕集部51への流れとは、吸引ポンプP2と吸引ポンプP3との吸引量を調整することにより、FP捕集量が所望の値となるようにバランスさせることが重要である。すなわち、大気中のFP量が非常に多いときには、吸引ポンプP2よりも吸引ポンプP3の吸引量が多くなるように調整することによって、バイパスされるFPを含む空気量が増加して、捕集部51への流れが減り、捕集されるFP量を少なくすることができる。 At this time, it is important to balance the bypass flow and the flow to the collection unit 51 so that the FP collection amount becomes a desired value by adjusting the suction amounts of the suction pumps P2 and P3. is. That is, when the amount of FP in the atmosphere is very large, adjusting the suction amount of the suction pump P3 to be larger than that of the suction pump P2 increases the amount of bypassed air containing the FP, thereby The flow to 51 is reduced and the amount of FP collected can be reduced.
微細浮遊粒子を捕集する捕集部51への流れは、吸引ポンプP1に吸引されて、テープ状のフッ素系メンブランフィルタ9の第2の位置4によって濾過され、流路L2を通って外部へ排気される。 The flow to the collection unit 51 for collecting fine suspended particles is sucked by the suction pump P1, filtered by the second position 4 of the tape-shaped fluorine-based membrane filter 9, and passed through the flow path L2 to the outside. exhausted.
バイパス流は、吸引ポンプP3により吸引されて、バイパス手段2および流路L3を通って外部に排気される。 The bypass flow is sucked by the suction pump P3 and exhausted to the outside through the bypass means 2 and the flow path L3.
本装置では、空気の流れQ1について、吸引ポンプP1の吸引量を流量センサMFM1を用いて測定し、流路L1に設けた流量調整バルブPV1、圧力センサG1を用いて、流路L1を通過する空気の量を調整することによって、フィルタ9の第1の位置3に捕集するCPの量を、所望の単位時間あたりの所望の捕集量とすることができる。 In this device, for the air flow Q1, the suction amount of the suction pump P1 is measured using the flow sensor MFM1, and the air flows through the flow channel L1 using the flow control valve PV1 and the pressure sensor G1 provided in the flow channel L1. By adjusting the amount of air, the amount of CP collected at the first position 3 of the filter 9 can be the desired amount collected per unit of time desired.
同時に、空気の流れQ2について、吸引ポンプP2の吸引量を流量センサMFM2を用いて測定し、流路L2に設けた流量調整バルブPV2、圧力センサG2を用いて、流路L2を通過する空気の量を調整することによって、フィルタ9の第2の位置4に捕集するFPの量を、所望の単位時間あたりの所望の捕集量とすることができる。さらに、空気の流れQ0については、圧力センサG3および圧力センサG4を用いて差圧を算出し、バーチャルインパクタ1の特性からQ0を求め、Q3(Q3=Q0-Q1-Q2)を計算する。Q3は吸引ポンプP3の吸引量を流路L3に設けた流量調整バルブPV3,PV4を用いて流路L3を通過するバイパス流の流量の調整を行う。 At the same time, for the air flow Q2, the suction amount of the suction pump P2 is measured using the flow sensor MFM2, and the flow control valve PV2 provided in the flow path L2 and the pressure sensor G2 are used to measure the amount of air passing through the flow path L2. By adjusting the amount, the amount of FP collected at the second position 4 of the filter 9 can be the desired amount collected per desired unit of time. Further, for the air flow Q0, the differential pressure is calculated using pressure sensors G3 and G4, Q0 is obtained from the characteristics of the virtual impactor 1, and Q3 (Q3=Q0-Q1-Q2) is calculated. Q3 adjusts the flow rate of the bypass flow passing through the flow path L3 using the flow rate adjustment valves PV3 and PV4 provided in the flow path L3 to adjust the suction amount of the suction pump P3.
たとえば、試料空気Q0の流量を毎分125L(リットル)でバーチャルインパクタ1に導入する場合を例とすると、バーチャルインパクタ1からCPを含む二次流の空気Q1が毎分20Lであり、バーチャルインパクタ1からのFPを含む主流のうち、バイパス流Q3が毎分90L、FPを捕集する捕集部51への流れQ2が毎分15Lとなる。 For example, if the sample air Q0 is introduced into the virtual impactor 1 at a flow rate of 125 L (liters) per minute, the secondary flow of air Q1 containing CP from the virtual impactor 1 is 20 L per minute, and the virtual impactor 1 Of the main stream containing the FP from the inlet, the bypass flow Q3 is 90 L/min, and the flow Q2 to the collecting section 51 for collecting the FP is 15 L/min.
連続してフィルタ9の第1および第2の位置3,4に空気を透過させていると、第1および第2の位置3,4上に捕集された浮遊粒子の量が次第に増え、粒子でフィルタ9が詰って吸引できなくなるので、一定時間毎、あるいはFP、CPの捕集量がある一定量を超えたときにテープ送り機構7によってフィルタ9が一定の長さCだけ矢符8方向に送られ、次の捕集が開始される。 As air is continuously passed through the first and second positions 3, 4 of the filter 9, the amount of airborne particles collected on the first and second positions 3, 4 gradually increases and the particles Since the filter 9 is clogged and suction is not possible, the tape feeding mechanism 7 moves the filter 9 by a certain length C in the direction of the arrow 8 at regular intervals or when the amount of FP and CP collected exceeds a certain amount. to start the next collection.
フィルタ9は、テープ状であり供給ロール6に巻かれた状態で供給され、図示しない複数のガイドローラによって、第1の位置3および第2の位置4に供給され、図示しない複数のガイドローラおよび上下2個のローラから成るテープ送り機構7を経て、巻取ローラ5に巻取られる。テープ送り機構7は、一定時間が経過あるいはFP、CPの捕集量がある一定量を超えたときに、フィルタ9を一定の長さCだけ矢符8方向に送る。これによって、フィルタ9の位置3’が新しい位置3に、位置4’が新しい位置4に移動する。 The filter 9 is tape-shaped and is supplied in a state wound around a supply roll 6, is supplied to the first position 3 and the second position 4 by a plurality of guide rollers (not shown), and is supplied to a plurality of guide rollers (not shown) and The tape is taken up by a take-up roller 5 via a tape feeding mechanism 7 consisting of two upper and lower rollers. The tape feeding mechanism 7 feeds the filter 9 by a fixed length C in the direction of the arrow 8 when a fixed time has passed or when the collected amount of FP and CP exceeds a certain fixed amount. This moves the position 3' of the filter 9 to the new position 3 and the position 4' to the new position 4.
かくして、フィルタ9の第1および第2の位置3,4に捕集されたCPおよびFPは、公知の測定手段、たとえば、β線吸収方式や光反射方式、と組み合わせることにより、その量を測定することができる。 Thus, CP and FP collected at the first and second positions 3 and 4 of the filter 9 can be measured by combining known measuring means such as the β-ray absorption method and the light reflection method. can do.
捕集されたCPおよびFPを、β線吸収方式や光反射方式を組み合わせて測定する場合の例を説明する。 An example of measuring the collected CP and FP by combining the β-ray absorption method and the light reflection method will be described.
フィルタ9の第1の位置3および第2の位置4には、第1β線源10および第2β線源11からβ線が照射され、透過したβ線量が連続的にそれぞれ第1β線検出器12、第2β線検出器13で検出される。検出結果は、第1プリアンプ21および第2プリアンプ22を通して演算処理部(Central Processing Unit;CPU)28に入力される。 The first position 3 and the second position 4 of the filter 9 are irradiated with β-rays from a first β-ray source 10 and a second β-ray source 11, and the amount of transmitted β-rays is continuously detected by a first β-ray detector 12, respectively. , are detected by the second β-ray detector 13 . The detection result is input to a central processing unit (CPU) 28 through the first preamplifier 21 and the second preamplifier 22 .
またフィルタ9の第1の位置3には、光源24から光ファイバ25を介して一定強さの白色光が照射され、その反射光が光ファイバ26を介して光検出器23に導かれ、この光検出器23によって1分毎に連続的に検出され、検出結果が第3プリアンプ27を介して演算処理部28に入力される。 The first position 3 of the filter 9 is irradiated with white light of constant intensity from a light source 24 via an optical fiber 25, and the reflected light is guided to a photodetector 23 via an optical fiber 26. It is continuously detected by the photodetector 23 every minute, and the detection result is input to the arithmetic processing section 28 via the third preamplifier 27 .
連続してフィルタ9の第1および第2の位置3,4に空気を透過させていると、第1の位置3および第2の位置4上に捕集された浮遊粒子の量が次第に増え、第1の位置3および第2の位置4が詰まって吸引力が低下するので、一定時間毎、たとえば1時間毎に、テープ送り機構7によってフィルタ9が一定の長さCだけ矢符8方向に送られ、次の測定が開始される。 As air is continuously passed through the first and second positions 3, 4 of the filter 9, the amount of airborne particles collected on the first position 3 and the second position 4 gradually increases, Since the first position 3 and the second position 4 are clogged and the suction force is reduced, the tape feeding mechanism 7 moves the filter 9 in the direction of the arrow 8 by a predetermined length C at regular intervals, for example, every hour. is sent and the next measurement is started.
フィルタ9の浮遊粒子を捕集する第1の位置3および第2の位置4の領域は、たとえば直径11mmの円形である。 The areas of the first position 3 and the second position 4 for collecting airborne particles of the filter 9 are, for example, circular with a diameter of 11 mm.
フィルタ9は、テープ状であり供給ロール6に巻かれた状態から巻き出され、図示しない複数のガイドローラによって、第1の位置3および第2の位置4に供給され、図示しない複数のガイドローラおよび上下2個のローラから成るテープ送り機構7を経て、巻取ローラ5に巻取られる。テープ送り機構7は、一定時間経過したとき、あるいはFP,CPの捕集量がある一定量を超えたとき、フィルタ9を一定の長さCだけ矢符8方向に送りだすように構成される。これによって、新しいフィルタ9の位置3が新たな位置3’に、位置4が新たな位置4’に移動する。 The filter 9 is tape-shaped and is unwound from a supply roll 6, and supplied to a first position 3 and a second position 4 by a plurality of guide rollers (not shown). Then, the tape is taken up by a take-up roller 5 via a tape feeding mechanism 7 consisting of two upper and lower rollers. The tape feeding mechanism 7 is configured to feed the filter 9 by a fixed length C in the arrow 8 direction when a fixed time has passed or when the collected amount of FP and CP exceeds a certain fixed amount. This moves the position 3 of the new filter 9 to a new position 3' and the position 4 to a new position 4'.
第1および第2β線検出器ならびに光検出器の検出結果と、フィルタ9上の浮遊粒子の量との関係は、式(1)で計算される。 The relationship between the detection results of the first and second β-ray detectors and the photodetector and the amount of suspended particles on the filter 9 is calculated by Equation (1).
Ij=Ij-1exp(-μmχm) …(1) I j =I j-1 exp(−μ m χ m ) (1)
ここにIjは、ある瞬間に浮遊粒子を捕集したフィルタを透過したβ線量またはフィルタ9で反射された光量であり、Ij-1はその1分前の同じ量である。またI0は、浮遊粒子を捕集する前の新しいフィルタを透過したβ線量または同フィルタで反射された光量であり、μmは比例定数であり、χmはフィルタ9の単位面積当たりの捕集浮遊粒子の質量(μg/cm2)である。μmはβ線源10,11および光源に固有の値であり、標準物質によって予めcm2/μgの単位で求められる。式(1)を変形して、式(2)を得る。 Here, I j is the amount of β-rays transmitted through the filter that collected the suspended particles or the amount of light reflected by the filter 9 at a given moment, and I j-1 is the same amount one minute before. Also, I0 is the amount of β-rays transmitted through the new filter before collecting suspended particles or the amount of light reflected by the new filter, μm is the proportionality constant, and χm is the amount of light captured per unit area of the filter 9. Mass of suspended particles (μg/cm 2 ). μm is a value specific to the β-ray sources 10, 11 and the light source, and is determined in advance in units of cm 2 /μg by standard materials. By transforming equation (1), equation (2) is obtained.
χm=-1/μmln(Ij/Ij-1) …(2) χ m =−1/μ m ln(I j /I j−1 ) (2)
式(2)からIjとIj-1との比を求めることによって、たとえば1分間に捕集されたフィルタ9の単位面積当たりの浮遊粒子の量が計算でき、これに第1の位置3の面積(これは第2の位置4の面積に等しく、直径が11mmの場合、約0.95cm2となる)を掛ければ、1分前に捕集された浮遊粒子の質量(μg/min)が計算できる。 By finding the ratio of I j and I j−1 from equation (2), the amount of airborne particles collected per unit area of filter 9 in one minute, for example, can be calculated, which is given by the first position 3 (which is equal to the area of the second location 4, which for a diameter of 11 mm gives approximately 0.95 cm 2 ), the mass of airborne particles collected one minute ago (μg/min) can be calculated.
Q1よりフィルタ3に捕集された粒子の質量:M(Q1)μg、
Q2よりフィルタ4に捕集された粒子の質量:M(Q2)μgとする。
ここで、試料空気の質量濃度を、
CPの質量濃度:[CP]μg/m3、
FPの質量濃度:[FP]μg/m3、
また、一定時間、捕集した時の、Q0~Q3に対応した積算流量を、Qt0~Qt3(m3)として記載する。
Mass of particles collected by filter 3 from Q1: M (Q1) μg,
Mass of particles collected by filter 4 from Q2: M(Q2) μg.
Here, the mass concentration of sample air is
Mass concentration of CP: [CP] μg/m 3 ,
Mass concentration of FP: [FP] μg/m 3 ,
Also, the integrated flow rate corresponding to Q0 to Q3 when collecting for a certain period of time is described as Q t0 to Q t3 (m 3 ).
ここで、バーチャルインパクタ1の特性として、
1.CPは全てバーチャルインパクタ1のQ1(粗大粒子側)だけを通過し、フィルタ9に捕集される。
2.FPはバーチャルインパクタ1のQ2(微細粒子側)とともにQ1(粗大粒子側)にも通過し、フィルタ9に捕集される粒子質量(個数)は流量の分流比に応じたものとなる。
Here, as a characteristic of the virtual impactor 1,
1. All CPs pass through only Q1 (coarse particle side) of the virtual impactor 1 and are collected by the filter 9 .
2. The FP passes through both Q2 (fine particle side) and Q1 (coarse particle side) of the virtual impactor 1, and the mass (number) of particles collected by the filter 9 corresponds to the split flow ratio of the flow rate.
M(Q2)=[FP]×Qt2 …(3)
M(Q1)=[CP]×Qt0+[FP]×Qt1 …(4)
M(Q2)=[FP]× Qt2 (3)
M(Q1)=[CP]* Qt0 +[FP]* Qt1 (4)
式(3)及び式(4)より、質量濃度は、 From equations (3) and (4), the mass concentration is
[FP]=M(Q2)/(Qt2) …(5)
[CP]={M(Q1)-M(Q2)×(Qt1/Qt2)}/Qt0 …(6)
であらわされる。
[FP]=M(Q2)/( Qt2 ) (5)
[CP]={M(Q1)−M(Q2)×(Q t1 /Q t2 )}/Q t0 (6)
is represented by
図4は、図2に示す本実施形態の浮遊粒子の測定装置に、5μmで分級する分級器52と1μmで分級するバーチャルインパクタ1を用い、β線吸収方式により屋内空気中の浮遊粒子の濃度を7日間連続測定した結果の一例を示すグラフであり、図5は、図2に示す本実施形態の浮遊粒子の測定装置に、5μmで分級する分級器52と1μmで分級するバーチャルインパクタ1を用い、β線吸収方式により屋内空気中の浮遊粒子の捕集量を7日間連続測定した結果の一例を示すグラフである。図4において、縦軸は浮遊粒子濃度(μg/m3)を示し、横軸は時間(日)を示す。また図5において、縦軸は1時間あたりの浮遊粒子捕集量(μg)を示し、横軸は時刻(日)を示す。図4より、屋内空気中では粗大浮遊粒子(粒径1μmを超え5μm未満)の濃度は1~3μg/m3程度であり、低いことが分かる。一方、図5で示されるように、粗大浮遊粒子(粒径1μmを超え5μm未満)の1時間あたりの捕集量は10~20μgとより多く捕集できていることが分かる。 FIG. 4 shows the concentration of suspended particles in indoor air by the β-ray absorption method using the classifier 52 that classifies at 5 μm and the virtual impactor 1 that classifies at 1 μm in the airborne particle measurement apparatus of the present embodiment shown in FIG. 5 is a graph showing an example of the results of continuous measurement for 7 days, and FIG. 5 shows a classifier 52 that classifies at 5 μm and a virtual impactor 1 that classifies at 1 μm in the airborne particle measuring device of the present embodiment shown in FIG. It is a graph showing an example of the results of continuous measurement of the amount of suspended particles trapped in indoor air for seven days using the β-ray absorption method. In FIG. 4, the vertical axis indicates airborne particle concentration (μg/m 3 ) and the horizontal axis indicates time (days). In FIG. 5, the vertical axis indicates the trapped airborne particle amount (μg) per hour, and the horizontal axis indicates the time (day). From FIG. 4, it can be seen that the concentration of coarse suspended particles (with a particle size of more than 1 μm and less than 5 μm) in indoor air is about 1 to 3 μg/m 3 , which is low. On the other hand, as shown in FIG. 5, it can be seen that the amount of large suspended particles (particle size exceeding 1 μm and less than 5 μm) collected per hour was as large as 10 to 20 μg.
さらに、2022年4月20日AM1:00~AM11:00の10時間について注目すると、この期間の粗大浮遊粒子の平均濃度が2.1μg/m3であったのに対して、微細浮遊粒子18.0μg/m3であった。また、1時間に1回、フィルタとしてのテープ移動を行っており、この間の平均捕集量は、粗大浮遊粒子16.0μg、微細浮遊粒子16.1μgであった。もし仮に、この期間同じ空気を、本発明を使わずに、従来法のバーチャルインパクタを使った装置で1時間に一回のテープ移動で、1時間に約1m3の採取量で採取すれば、粗大浮遊粒子の平均捕集量は2.1μgにしかならない。従来法で、例えば10時間に1回のテープ移動を行い、採取時間を長くして粗大浮遊粒子を捕集しようとすれば、時間分解能が悪くなるだけでなく、積算捕集量が粗大浮遊粒子21μg、微細浮遊粒子180μgとなり、粗大浮遊粒子は十分な捕集量になるけれども、微細浮遊粒子の捕集量が過大となり、フィルタが粒子で目詰まりを起こしてしまい捕集できなくなってしまうことが予想される。従来法では通常、80~100μgの浮遊粒子をフィルタに捕集すると目詰まりを起こして、捕集できなくなってしまう。また、β線吸収方式の検出限界をフィルタ捕集量として表現すると例えば1~2μgであり、粗大浮遊粒子の平均濃度が2.1μg/m3なので、前記従来法のように1時間に一回のテープ移動ならば平均捕集量が2.1μgとなり、この期間は検出限界付近で誤差の大きい測定になってしまう。これに対して、本発明での平均フィルタ捕集量は16.0μgなので、精度の良い測定が可能であった。 Furthermore, looking at the 10 hours from 1:00 AM to 11:00 AM on April 20, 2022, the average concentration of coarse suspended particles during this period was 2.1 μg / m 3 , while fine suspended particles 18 0 μg/m 3 . In addition, the tape was moved as a filter once an hour, and the average collection amount during this period was 16.0 μg of coarse suspended particles and 16.1 μg of fine suspended particles. If the same air during this period is sampled at a volume of approximately 1 m 3 per hour by moving the tape once an hour with an apparatus using a conventional virtual impactor without using the present invention, The average collection amount of coarse suspended particles is only 2.1 μg. In the conventional method, if the tape is moved once every 10 hours, for example, and the collection time is lengthened to collect coarse suspended particles, not only does the time resolution deteriorate, but the accumulated amount of collected coarse suspended particles increases. 21 μg and 180 μg of fine suspended particles, which is a sufficient amount of coarse suspended particles to be collected, but the amount of fine suspended particles collected becomes excessive, and the filter may clog with particles and become unable to be collected. is expected. In the conventional method, when 80 to 100 μg of airborne particles are collected in the filter, clogging occurs and collection becomes impossible. In addition, if the detection limit of the β-ray absorption method is expressed as a filter collection amount, for example, it is 1 to 2 μg, and the average concentration of coarse suspended particles is 2.1 μg / m 3 , so once an hour as in the conventional method If the tape movement is 2.1 μg, the average collected amount will be 2.1 μg, and the measurement will have a large error in the vicinity of the detection limit during this period. On the other hand, in the present invention, since the average filter collection amount was 16.0 μg, accurate measurement was possible.
このように、本発明の効果により、試料空気の粗大浮遊粒子が低濃度であっても、効率的に濃縮することができ、フィルタへの捕集量を多くすることができるとともに、高感度に測定できたことが分る。 Thus, the effect of the present invention is that even if the concentration of coarse particles in the sample air is low, it can be efficiently concentrated, the amount of particles trapped in the filter can be increased, and high sensitivity can be achieved. I know I can measure it.
1 バーチャルインパクタ
2 バイパス手段
3 浮遊粒子を捕集する第1の位置
4 浮遊粒子を捕集する第2の位置
5 テープ巻取ローラ
6 テープ供給ロール
7 テープ送り機構
8 矢符
9 テープ状メンブランフィルタ
10 第1β線源
11 第2β線源
12 第1β線検出器
13 第2β線検出器
14 β線の流れ
21 第1プリアンプ
22 第2プリアンプ
23 光検出器
24 光源
26 光ファイバ
27 第3プリアンプ
28 演算処理部
40 ノズル部
41 集気部
42 導気部
43 噴出口
44 円筒部
45 縮管部
46 第1排出口
47 第2排出口
48 集気管部
49 直管部
50 流入孔
51 捕集部
52 分級器
53 採取口
G1 圧力センサ
G2 圧力センサ
G3 圧力センサ
G4 圧力センサ
L1 流路
L2 流路
L3 流路
P1 吸引ポンプ
P2 吸引ポンプ
P3 吸引ポンプ
MFM1 流量センサ
MFM2 流量センサ
PV1 流量調整バルブ
PV2 流量調整バルブ
PV3 流量調整バルブ
PV4 流量調整バルブ
1 Virtual Impactor 2 Bypass Means 3 First Position for Collecting Floating Particles 4 Second Position for Collecting Floating Particles 5 Tape Take-up Roller 6 Tape Supply Roll 7 Tape Feeding Mechanism 8 Arrow 9 Tape Membrane Filter 10 First β-ray source 11 Second β-ray source 12 First β-ray detector 13 Second β-ray detector 14 Flow of β-rays 21 First preamplifier 22 Second preamplifier 23 Photodetector 24 Light source 26 Optical fiber 27 Third preamplifier 28 Arithmetic processing Part 40 Nozzle Part 41 Air Collecting Part 42 Air Guide Part 43 Jet Port 44 Cylindrical Part 45 Constricted Pipe Part 46 First Discharge Port 47 Second Discharge Port 48 Air Collecting Pipe Portion 49 Straight Pipe Portion 50 Inflow Hole 51 Collecting Portion 52 Classifier 53 sampling port G1 pressure sensor G2 pressure sensor G3 pressure sensor G4 pressure sensor L1 channel L2 channel L3 channel P1 suction pump P2 suction pump P3 suction pump MFM1 flow sensor MFM2 flow sensor PV1 flow control valve PV2 flow control valve PV3 flow control Valve PV4 flow control valve
Claims (2)
粗大浮遊粒子を含む空気を吸引して、粗大浮遊粒子をフィルタに捕集するとともに、
前記バーチャルインパクタから流出する微細浮遊粒子を含む空気を、微細浮遊粒子を捕集する捕集部への流れと、微細浮遊粒子を捕集せずにバイパスさせるバイパス流と、に分配し、吸引して、粗大浮遊粒子の捕集位置とは異なる位置で微細浮遊粒子をフィルタに捕集する、ことを特徴とする浮遊粒子の捕集方法。 Classifying suspended particles in the air with a virtual impactor to separate the air containing coarse suspended particles with a large particle size from the air containing fine suspended particles with a small particle size,
Air containing coarse suspended particles is sucked and the coarse suspended particles are collected by a filter,
The air containing the fine suspended particles flowing out from the virtual impactor is divided into a flow to the collecting part that collects the fine suspended particles and a bypass flow that bypasses the fine suspended particles without collecting them, and sucked. A method for collecting suspended particles, characterized in that fine suspended particles are collected by a filter at a position different from a position where coarse suspended particles are collected.
前記バーチャルインパクタに接続して設けられ、前記バーチャルインパクタから流出する微細浮遊粒子を含む空気の一部を吸引して微細浮遊粒子の捕集部への流れに分配する吸引手段と、微細浮遊粒子を含む空気の残部を吸引して微細浮遊粒子を捕集しないバイパス流として排気部にバイパスさせるバイパス手段と、
テープ状フィルタを備え、該テープ状フィルタの異なる位置を介して、前記バーチャルインパクタによって分級された、粗大浮遊粒子を含む空気と微細浮遊粒子を含む空気とを吸引して、粗大浮遊粒子と微細浮遊粒子とをテープ状フィルタの異なる位置に格別に連続的に捕集する捕集手段と、
捕集手段によってテープ状フィルタの異なる位置に捕集された浮遊粒子を、それぞれ連続して検出する検出手段と、
検出手段の出力と、吸引大気流量の積算値から空気中の粗大粒子と、空気中の微細浮遊粒子とを、演算して記録する演算記録手段とを含むことを特徴とする浮遊粒子の連続測定装置。 a virtual impactor that sucks air containing suspended particles and classifies the sucked suspended particles into air containing coarse suspended particles with a large particle size and air containing fine suspended particles with a small particle size;
a suction means connected to the virtual impactor for sucking a portion of the air containing the fine suspended particles flowing out from the virtual impactor and distributing the air to the fine suspended particle collecting section; bypass means for sucking the remainder of the contained air and bypassing it to the exhaust section as a bypass flow that does not collect fine suspended particles ;
A tape-shaped filter is provided, and air containing coarse suspended particles and air containing fine suspended particles classified by the virtual impactor are sucked through different positions of the tape-shaped filter to separate coarse suspended particles and fine suspended particles. a collecting means for continuously collecting the particles at different positions of the tape-like filter;
detection means for successively detecting suspended particles collected at different positions of the tape-shaped filter by the collection means;
A continuous measurement of airborne particles, characterized by comprising an output of a detection means and an arithmetic recording means for calculating and recording coarse particles in the air and fine airborne particles from the integrated value of the suction air flow rate. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022113552A JP7333979B1 (en) | 2022-07-14 | 2022-07-14 | Airborne particle collection method and airborne particle continuous measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022113552A JP7333979B1 (en) | 2022-07-14 | 2022-07-14 | Airborne particle collection method and airborne particle continuous measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7333979B1 true JP7333979B1 (en) | 2023-08-28 |
JP2024011517A JP2024011517A (en) | 2024-01-25 |
Family
ID=87764046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022113552A Active JP7333979B1 (en) | 2022-07-14 | 2022-07-14 | Airborne particle collection method and airborne particle continuous measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7333979B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001343319A (en) | 2000-05-31 | 2001-12-14 | Kimoto Denshi Kogyo Kk | Continuous measuring device for suspended particulate matter |
JP2008261712A (en) | 2007-04-11 | 2008-10-30 | Kimoto Denshi Kogyo Kk | System for measuring suspended particular substance |
JP2009031227A (en) | 2007-07-30 | 2009-02-12 | Kimoto Denshi Kogyo Kk | Device for measuring suspended particular substances |
JP2009180609A (en) | 2008-01-30 | 2009-08-13 | Nippon Steel Corp | Continuous collection apparatus for atmospheric fallout |
JP2013061254A (en) | 2011-09-13 | 2013-04-04 | Kimoto Denshi Kogyo Kk | Radioactive suspended particulate matter measuring instrument and radioactive suspended particulate matter measuring method |
-
2022
- 2022-07-14 JP JP2022113552A patent/JP7333979B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001343319A (en) | 2000-05-31 | 2001-12-14 | Kimoto Denshi Kogyo Kk | Continuous measuring device for suspended particulate matter |
JP2008261712A (en) | 2007-04-11 | 2008-10-30 | Kimoto Denshi Kogyo Kk | System for measuring suspended particular substance |
JP2009031227A (en) | 2007-07-30 | 2009-02-12 | Kimoto Denshi Kogyo Kk | Device for measuring suspended particular substances |
JP2009180609A (en) | 2008-01-30 | 2009-08-13 | Nippon Steel Corp | Continuous collection apparatus for atmospheric fallout |
JP2013061254A (en) | 2011-09-13 | 2013-04-04 | Kimoto Denshi Kogyo Kk | Radioactive suspended particulate matter measuring instrument and radioactive suspended particulate matter measuring method |
Also Published As
Publication number | Publication date |
---|---|
JP2024011517A (en) | 2024-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3574045B2 (en) | Continuous measurement system for suspended particulate matter | |
US9506843B2 (en) | Personal nanoparticle respiratory depositions sampler and methods of using the same | |
JP6475882B2 (en) | Filter bypass | |
US9718017B2 (en) | Multi-filter chemical speciation sampler and virtual impaction particle separation inlet therefore | |
JP5203225B2 (en) | Inline smoke attenuator | |
US8689648B1 (en) | Compact aerosol sampler | |
JP2008261712A (en) | System for measuring suspended particular substance | |
KR102002967B1 (en) | An exhaust gas continuous isokinetic sampling apparatus with a sectional area adjustment device attached to the suction nozzle | |
US7325465B2 (en) | Particle matter sampling method and sampler with a virtual impactor particle concentrator | |
US6010554A (en) | Micro-machined virtual impactor and method of operation | |
CA2256743C (en) | Methods and apparatus for continuous ambient particulate mass monitoring | |
CN101765452A (en) | The apparatus and method that are used for smoke detection | |
CA2998988C (en) | Apparatus and method for determination of the fine particle dose of a powder inhalation formulation | |
WO2009021123A1 (en) | A size segregated aerosol mass concentration measurement device | |
SE541748C2 (en) | System for collecting exhaled particles | |
KR102564702B1 (en) | Fine dust sensor and its method | |
KR102332142B1 (en) | Beta-ray type chimney fine dust measuring device with diffusion pipe | |
CN108318394A (en) | A kind of micro-fluidic sorting measures the method and device of pellet | |
JP7333979B1 (en) | Airborne particle collection method and airborne particle continuous measurement device | |
JP2009031227A (en) | Device for measuring suspended particular substances | |
CN208125571U (en) | A kind of device of micro-fluidic sorting measurement pellet | |
JP2013061254A (en) | Radioactive suspended particulate matter measuring instrument and radioactive suspended particulate matter measuring method | |
CN105890926A (en) | Device and method for sorting and gathering of airborne suspended particulates by means of sonodynamic | |
Hata et al. | Development of a high-volume air sampler for nanoparticles | |
JP2012127773A (en) | Particulate number measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230808 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7333979 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |