JP7396331B2 - Improvement structure of existing quay wall and construction method of the improvement structure - Google Patents
Improvement structure of existing quay wall and construction method of the improvement structure Download PDFInfo
- Publication number
- JP7396331B2 JP7396331B2 JP2021104555A JP2021104555A JP7396331B2 JP 7396331 B2 JP7396331 B2 JP 7396331B2 JP 2021104555 A JP2021104555 A JP 2021104555A JP 2021104555 A JP2021104555 A JP 2021104555A JP 7396331 B2 JP7396331 B2 JP 7396331B2
- Authority
- JP
- Japan
- Prior art keywords
- existing
- pile
- quay
- wall
- box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 title description 33
- 230000006872 improvement Effects 0.000 title description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 84
- 229910000831 Steel Inorganic materials 0.000 claims description 42
- 239000010959 steel Substances 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 41
- 238000003780 insertion Methods 0.000 claims description 35
- 230000037431 insertion Effects 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 23
- 230000005540 biological transmission Effects 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000000945 filler Substances 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 230000035515 penetration Effects 0.000 claims description 6
- 238000009434 installation Methods 0.000 claims description 5
- 230000005571 horizontal transmission Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 18
- 238000013461 design Methods 0.000 description 14
- 230000003014 reinforcing effect Effects 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 238000005452 bending Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 230000002787 reinforcement Effects 0.000 description 10
- 238000003466 welding Methods 0.000 description 9
- 239000004567 concrete Substances 0.000 description 8
- 238000004088 simulation Methods 0.000 description 8
- 239000002689 soil Substances 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 238000009933 burial Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004575 stone Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000009418 renovation Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/11—Hard structures, e.g. dams, dykes or breakwaters
Landscapes
- Revetment (AREA)
Description
本発明は、既存岸壁における既存壁体の水域側に設けられて既存岸壁を改良する既存岸壁の改良構造及びその施工方法に関する。
なお、本明細書における岸壁には、直立壁を有する矢板式岸壁、重力式岸壁、セル式岸壁等の船舶の接岸機能を有するものの他、同様の直立壁を有して船舶の接岸機能を有していない護岸や、同様の直立壁を有した防波堤も含む。
The present invention relates to an improved structure for an existing quay that is installed on the water side of an existing wall to improve the existing quay, and a method for constructing the same.
Note that in this specification, quays include those that have a berthing function for ships, such as sheet pile type berths, gravity type berths, and cell type berths that have upright walls, as well as those that have similar upright walls and have a berthing function for ships. It also includes breakwaters with unconstructed seawalls and similar upright walls.
既存岸壁として矢板式岸壁を例に挙げて以下説明する。
既存の矢板式岸壁41としては、図22に示すように、複数の矢板を水底地盤43に打設して形成した既存壁体45の上端の上部工47を陸上部48に設け、この上部工47と控え工49をタイ材51で連結して支持するようにしたものがある。
An explanation will be given below using a sheet pile type quay as an example of an existing quay.
As shown in FIG. 22, the existing sheet
このような矢板式岸壁41においては、例えば、改訂された港湾基準への対応、耐震性向上、エプロン上の上載荷重の増加、船舶の大型化に伴う岸壁水深の増深、既存構造の劣化対応、供用期間の延長等の要因により補強等の改良が必要となる場合がある。この場合、港湾計画への影響を最小限とするため、岸壁法線の水域側への前出しは、なるべく小さく(できれば無し)することが望ましい。 For such a sheet pile type quay 41, for example, it is necessary to comply with revised port standards, improve seismic resistance, increase the overload on the apron, increase the depth of the quay due to the increase in the size of ships, and cope with deterioration of the existing structure. Improvements such as reinforcement may be required due to factors such as extension of service life. In this case, in order to minimize the impact on port planning, it is desirable to minimize (preferably eliminate) the extension of the normal line of the quay toward the water area.
既存の矢板式岸壁の改良構造の例としては、例えば特許文献1に開示された、「既設岸壁の改修補強構造」がある。
同文献に開示の「既設岸壁の改修補強構造」は、「矢板壁をタイ材を介して控え工で支持してなる既設岸壁の改修補強構造であって、既設控え工の反岸壁側に、該既設控え工から離間されて独立して設けられ、下端部が所定深度まで立て込まれた新設控え工と、該新設控え工の頭部から既設矢板壁の所定位置に向けて斜め下方に延設されて、両端が該新設控え工と既設矢板壁とに止着された新設のタイ材と、を有し、
前記新設控え工は、鋼管内にコンクリートを充填されて形成される鋼管杭であるとともに、前記既設控え工に沿って適宜間隔を空けて複数配設され、前記新設タイ材は、前記鋼管杭から放射状に複数設けられている、ことを特徴とする」(請求項4参照)ものである。
An example of an improved structure for an existing sheet pile type quay is the "Renovation and Reinforcement Structure for an Existing Quay" disclosed in
The ``renovation and reinforcement structure for an existing quay'' disclosed in the same document is a ``renovation and reinforcement structure for an existing quay in which a sheet pile wall is supported by a support work through tie materials, and on the side opposite to the quay wall of the existing support work, A new buttress is installed separately and separated from the existing support, and its lower end is built up to a predetermined depth, and the new support works extends diagonally downward from the head of the new support to a predetermined position on the existing sheet pile wall. and a newly installed tie material having both ends fixed to the newly installed buttress and the existing sheet pile wall,
The new construction tie material is a steel pipe pile formed by filling a steel pipe with concrete, and a plurality of the new construction tie materials are arranged at appropriate intervals along the existing construction construction, and the new tie material is separated from the steel pipe pile. (see claim 4).
この方法によると、既設の矢板壁との係止位置を任意に設置可能であり、かつ矢板壁に発生する曲げモーメントを低減できるため、改良方法として有効な方法である。 According to this method, the locking position with the existing sheet pile wall can be set arbitrarily, and the bending moment generated in the sheet pile wall can be reduced, so it is an effective method as an improvement method.
また、特許文献2に開示された「既設矢板岸壁の補強構造」では、既設矢板壁の水域側に頭部にL形構造物を有する杭式構造物を設置し、L形構造物と既存矢板壁と一体化することで補強する構造が提案されている。この方法によると、既存矢板壁の水域側のみを改良する補強構造なので、陸上部での施工が制限される場合でも適用ができる。
In addition, in the "reinforcement structure for existing sheet pile quay wall" disclosed in
特許文献1に開示の構造は、工事における岸壁占有期間の短縮化を図ることを目的の一つとしており、それ故に陸側に新設の控え工を設置することが必須となっている。
しかしながら、既存の矢板式岸壁の改良工事においては、陸域側での施工が制限される場合もあり、このような場合には適用できないという問題がある。
また、新設タイ材が、鋼管杭から放射状に複数設けられていることから、タイ材の張力管理が難しいという問題もある。
One of the purposes of the structure disclosed in
However, in the improvement work of an existing sheet pile type quay, there are cases where construction on the land side is restricted, and there is a problem that it cannot be applied in such cases.
Furthermore, since a plurality of new ties are installed radially from the steel pipe pile, there is also the problem that it is difficult to manage the tension of the ties.
上記の説明は既存岸壁が矢板式岸壁を例に挙げたが、既存岸壁にはケーソンを用いた重力式岸壁やセル式岸壁等の直立壁を有するものがあり、この場合においても、陸上部での施工が制限される場合があり、同様の問題がある。 The above explanation uses an example where the existing quay is a sheet pile type quay, but there are also existing quays that have upright walls such as gravity type quays using caissons and cell type quays, and even in this case, it is possible to There are similar problems in that construction may be restricted.
特許文献2に開示の構造は、陸域側の施工は必要ないが、補強効果を発揮するためには既存矢板壁とL形構造物とを一体化させる必要がある。これは、水底地盤近くの浅い地盤内では、地震時に土が杭の間をすり抜けて流動するため、L形構造物と既存矢板壁を一体化しなければ既存矢板壁の変形を抑えることができないためである。一体化のためには、既存矢板壁に水中スタッド溶接を多量に行う必要があり、施工コストが高額になるとともに、溶接による矢板壁の脆化が懸念されるという問題がある。
また、既存壁体への溶接が必要という点から、ケーソンを用いた重力式岸壁等のコンクリートによる直立壁には適用できない。
The structure disclosed in
Furthermore, since it requires welding to the existing wall, it cannot be applied to vertical concrete walls such as gravity type quays using caissons.
本発明はかかる課題を解決するためになされたものであり、陸上部での施工が制限される場合にも適用可能な既存岸壁の改良構造及び該改良構造の施工方法を提供することを目的としている。 The present invention has been made to solve such problems, and aims to provide an improved structure for existing quay walls and a construction method for the improved structure, which can be applied even when construction on land is restricted. There is.
(1)本発明に係る既存岸壁の改良構造は、周壁面部と通水口が設けられた天面部と複数の杭挿通孔とを有し、既存岸壁における既存壁体の水域側の水底地盤に配設された箱状構造体と、
該箱状構造体の前記杭挿通孔に挿通されて、前記水底地盤に打設された複数の杭と、
前記杭挿通孔と前記杭との隙間に配設された間詰材と、
前記既存壁体と前記箱状構造体との間に配設されて前記既存壁体からの水平力を前記箱状構造体に伝達する水平力伝達部材と、を備えたことを特徴とするものである。
(1) The improved structure of an existing quay wall according to the present invention has a peripheral wall surface portion, a top surface portion provided with a water inlet, and a plurality of pile insertion holes, and is attached to the water bottom ground on the water body side of the existing wall body of the existing quay wall. A box-like structure arranged,
a plurality of piles inserted into the pile insertion holes of the box-like structure and driven into the underwater ground;
a filler material disposed in a gap between the pile insertion hole and the pile;
A horizontal force transmitting member disposed between the existing wall and the box-like structure to transmit horizontal force from the existing wall to the box-like structure. It is.
(2)また、上記(1)に記載のものにおいて、前記杭は、前記杭挿通孔の下端から鋼管直径3倍以上の長さの範囲において、降伏強度400N/mm2以上及び/又は鋼管杭の外径R(mm)と鋼管杭の肉厚t(mm)との比R/tがR/t≦80であることを特徴とするものである。 (2) In addition, in the item described in (1) above, the pile has a yield strength of 400 N/mm 2 or more and/or a steel pipe pile in a length range of 3 times or more the steel pipe diameter from the lower end of the pile insertion hole. The ratio R/t of the outer diameter R (mm) of the steel pipe pile to the wall thickness t (mm) of the steel pipe pile is R/t≦80.
(3)また、上記(1)又は(2)に記載のものにおいて、前記既存岸壁が、下端側を地盤に根入れすると共に上端側をタイ材によって控え工で支持する矢板式岸壁の場合において、前記水平力伝達部材が(1)式を満たす位置に配置されていることを特徴とするものである。
D:既存岸壁の矢板の根入長(m)
HT:既存岸壁の水底地盤からタイ材取り付け位置までの高さ(m)
E:既存岸壁の矢板のヤング率(kN/m2)
I:既存岸壁の単位幅あたりの矢板の断面2次モーメント(m4/m)
lh:既存岸壁の矢板が根入れされている地盤の地盤反力係数(kN/m3)
H:水底地盤から水平力伝達部材上端までの高さ(m) (3) Furthermore, in the case described in (1) or (2) above, if the existing quay is a sheet pile type quay whose lower end is rooted in the ground and whose upper end is supported by tie materials with a buttress; , the horizontal force transmitting member is arranged at a position that satisfies equation (1).
D: Penetration length of existing quay sheet pile (m)
H T : Height (m) from the underwater ground of the existing quay to the tie material installation position
E: Young's modulus of existing quay sheet pile (kN/m 2 )
I: Second moment of inertia of sheet pile per unit width of existing quay (m 4 /m)
l h : Ground reaction force coefficient of the ground into which the existing quay sheet pile is embedded (kN/m 3 )
H: Height from the bottom of the water to the top of the horizontal force transmission member (m)
(4)また、上記(1)乃至(3)のいずれかに記載の既存岸壁の改良構造の施工方法であって、
前記既存壁体の水域側に、該既存壁体と所定の隙間を設けて前記箱状構造体を水底地盤に埋設する工程と、
前記箱状構造体の杭挿通孔を通して前記杭を打設する工程と、
前記杭挿通孔と前記杭との隙間に間詰材を配設する工程と、
前記既存壁体と前記箱状構造体との間に水平伝達部材を配設する工程と、を備えたことを特徴とするものである。
(4) Also, the method for constructing an improved structure for an existing quay according to any one of (1) to (3) above,
burying the box-shaped structure in underwater ground with a predetermined gap between the existing wall and the existing wall on the water body side;
Driving the pile through the pile insertion hole of the box-like structure;
arranging a filler material in the gap between the pile insertion hole and the pile;
The present invention is characterized by comprising a step of arranging a horizontal transmission member between the existing wall and the box-like structure.
(5)また、上記(4)に記載のものにおいて、前記箱状構造体を埋設する工程は、前記箱状構造体を水底地盤面に載置した後に、前記箱状構造体の通水口から内部の水を強制的に排水し、前記箱状構造体を水底地盤内に沈設させることを特徴とするものである。 (5) Further, in the item described in (4) above, the step of burying the box-like structure includes placing the box-like structure on the underwater ground surface and then opening the water inlet of the box-like structure. It is characterized in that the water inside is forcibly drained and the box-shaped structure is sunk into the underwater ground.
本発明に係る既存岸壁の改良構造は、陸上部での施工が制限される場合にも適用可能であり、施工性に優れている。
また、高コストな地盤改良をせずとも、岸壁天端の水平変形量を抑えることが可能となる。
更に、水平力伝達部材は、既存壁体からの水平力を箱状構造体に伝達できればよく、それ故に水平力伝達部材は既存壁体と箱状構造体と一体化される必要がないため、水中におけるスタッド溶接等を不要とすることができる。
箱状構造体は工場で事前製作することが可能なことから、現地での施工期間を短縮することができる。
The improved structure of an existing quay wall according to the present invention can be applied even when construction on land is restricted, and has excellent workability.
Furthermore, it is possible to suppress the amount of horizontal deformation at the top of the quay without the need for expensive ground improvement.
Furthermore, the horizontal force transmission member only needs to be able to transmit the horizontal force from the existing wall to the box-like structure, and therefore the horizontal force transmission member does not need to be integrated with the existing wall and the box-like structure. Underwater stud welding etc. can be made unnecessary.
Since the box-like structure can be prefabricated at a factory, the construction period on site can be shortened.
実施の形態を説明する前に本発明に至った経緯を説明する。
<本発明に至った経緯>
耐震強化岸壁に指定されている既存岸壁41の改良設計においては、レベル2地震動(発生する可能性がある最大級の地震動)の発生後の、岸壁の使用性(緊急物資輸送等のために直ちに船舶を停泊できるか)が重要となる。このような使用性確保の観点から、地震時の岸壁天端の水域側への水平変形量を抑えることが要求される。
Before explaining the embodiments, the circumstances leading to the present invention will be explained.
<How the present invention was achieved>
In the improvement design of the existing
陸上部48での施工が制限される場合には、地震時に既存壁体45に作用する土圧を抑えることが難しいため、既存壁体45の水域側地盤の変形量が小さくなるように補強することで、岸壁天端の水平変形量を抑える方法が有効となる。
If construction on the
図23は図22に示した既存岸壁41の水域側に自立式矢板53を打設して補強した構造の、地震時の変形を模擬的に示したものである。
上述したように、既存岸壁41の地震時水平変形量を抑制するためには、岸壁の水域側地盤の変形量を抑える必要がある。しかし、水域側地盤の浅層領域は上載圧が小さく水平抵抗力も小さいため、地震時土圧が作用すると自立式矢板53が既存岸壁41の変形を抑えられずに撓んでしまう。結果として、既存岸壁41の水域側に矢板を打設しても、補強効果は小さい。
FIG. 23 schematically shows the deformation of the existing
As described above, in order to suppress the amount of horizontal deformation of the existing
図24は既存岸壁41の水域側に補強杭55を打設して補強した構造の、地震時の変形を模擬的に示したものである。杭は自立式矢板53よりも水平抵抗力が大きいが、矢板と異なり岸壁法線方向(図24の紙面直交方向)に離散的に配置されるため、地震時に杭の間を土がすり抜ける。そのため、地震時土圧が作用すると補強杭55は既存岸壁41の変形を抑えられないため、既存岸壁41の水域側に補強杭55を打設しても、矢板と同様に補強効果は小さい。
一方、水域側地盤の深層領域は上載圧が大きいため、地震時の地盤変形量は比較的小さい。そのため、離散的に杭を配置してもすり抜ける土の移動量が小さく、逆に杭に対する地盤の水平抵抗力は大きい。
FIG. 24 schematically shows the deformation of a structure reinforced by driving reinforcing
On the other hand, the amount of ground deformation during an earthquake is relatively small because the overburden pressure is large in the deep area of the ground on the water side. Therefore, even if the piles are arranged discretely, the amount of soil movement that passes through them is small, and conversely, the horizontal resistance force of the ground against the piles is large.
以上のように、既存壁体45の水域側地盤の変形量が小さくなるように補強するには、浅層領域は離散的に配置される杭では十分でなく矢板のように面での補強が必要であるが、深層領域は杭での補強でも有効である。
本発明はかかる知見に基づくものであり、その具体例を以下の実施の形態で詳細に説明する。
As mentioned above, in order to reinforce the existing
The present invention is based on this knowledge, and specific examples thereof will be explained in detail in the following embodiments.
[実施の形態1]
本実施の形態の既存岸壁の改良構造1(以下、単に「改良構造1」という場合あり)は、図1、図2に示すように、周壁面部3と通水口5が設けられた天面部7と複数の杭挿通孔9とを有し、既存岸壁41における既存壁体45の水域側の水底地盤43に配設された箱状構造体11と、箱状構造体11の杭挿通孔9に挿通されて、水底地盤43に打設された複数の杭13と、杭挿通孔9と杭13との隙間に配設された間詰材(図示なし)と、既存壁体45と箱状構造体11との間に配設されて既存壁体45からの水平力を箱状構造体11に伝達する水平力伝達部材12と、を備えたものである。
以下、各構成を詳細に説明する。なお、図1、2において既存岸壁41を示した図22と同一部分には同一の符号を付して説明を省略する。
[Embodiment 1]
As shown in FIGS. 1 and 2, an
Each configuration will be explained in detail below. In addition, in FIGS. 1 and 2, the same parts as those in FIG. 22 showing the existing
<箱状構造体>
箱状構造体11は、図1に示すように、既存岸壁41における既存壁体45の水域側の水底地盤43に配設されている。すなわち、天面部7の位置が水底地盤43とほぼ同一位置となり、周壁面部3が水底地盤43に打設された状態になっている。
また、図2に示すように、4面の周壁面部3と天面部7を有する矩形状の箱形状であり、天面部7に通水口5が設けられている。もっとも、箱状構造体11の形状は矩形状に限定されるものではない。
<Box-shaped structure>
As shown in FIG. 1, the box-
Further, as shown in FIG. 2, it has a rectangular box shape having four peripheral
また、箱状構造体11は、四隅及び長辺の中間部に杭挿通孔9が設けられている。さらに、天面部7における杭挿通孔9を連結するように長辺及び短辺に沿って補強材としてH形鋼15が設けられて剛性が高められている。また、斜めにもH形鋼15が設けられている。短辺に沿ったH形鋼15は水平力を軸方向で受けてこれに抵抗する側であるため設けることが好ましいが、長辺に沿ったH形鋼15はなくてもよい。
Moreover, the box-
本実施の形態の箱状構造体11は、長辺側を既存壁体45に対向させて配置されるが、図2(b)に示すように、短辺側の壁体は2枚の鋼板17にリブ材19を入れた構造であり、長辺側の壁体よりも剛性が高められている。これは、既存壁体45から水平力伝達部材12を介して伝達される水平力を受けたときに局部座屈することなく抵抗できるようにするためである。この抵抗力を大きくするため、図2(b)に示すように、長辺の中間部には短辺側の壁体と平行な仕切り壁体21が設けられている。
The box-
箱状構造体11の高さは、既存岸壁41の水域側地盤の軟弱な深さ領域を拘束する深さまで埋設できることが好ましく、具体的には3m以上が望ましい。これより高さが低いと埋設深さが浅くなり、前述した水平抵抗が発揮されない可能性がある。もっとも、埋設深さが深すぎると、施工手間が大きくなって不経済となるため、高さの上限は10mくらいが好ましい。
The height of the box-
杭挿通孔9は、岸壁法線直角方向(既存岸壁41の変形する方向)に2列設けられているが、3列以上でもよい。
杭挿通孔9に杭13が挿通されて既存壁体45からの水平力に抵抗することになるが、箱状構造体11の水平抵抗を確保するため、杭挿通孔9の間隔は5m以上が望ましい。
また、杭挿通孔9の配置は、図2に示すように、格子状に配置されていてもよいし、あるいは千鳥状に配置されていてもよく、配置は特に限定されない。
The
The
Moreover, the arrangement of the
天面部7に設けた通水口5は、例えば蓋部材(図示なし)等によって開閉可能になっており、箱状構造体11を水上移送する際には閉じた状態にする。また、箱状構造体11を沈設する際には開放して排気口及び排水口として使用する。排水口として使用する際には排水ポンプと接続することから、直径100mm程度の円形形状が望ましい。
なお、箱状構造体11の材質は特に限定されず、鋼製、コンクリート製のいずれでもよい。
The
The material of the box-
<杭>
杭13は箱状構造体11の杭挿通孔9に挿通されて、海底地盤に打設されている。杭13は例えば鋼管杭が好ましいが、これに限定されるものではない。
打設された杭13は複数本であり、これらの配置は、箱状構造体11の杭挿通孔9に合わせて、格子状に配置されてもよいし、千鳥状に配置されてもよく、配置は特に限定されない。また、図1に示す例では、直杭としているが、複数の杭13の全部又は一部を斜杭としてもよい。
<Pile>
The
A plurality of
本発明では、箱状構造体11から杭13に荷重が伝達することで、杭13における杭挿通孔9の下端付近に大きな変形が生じる。そのため、杭挿通孔9の下端から鋼管杭の直径の3倍以上の長さ範囲は、杭13の変形性能を高くすることで合理的な設計が可能となる。具体的には、一般的に使用される降伏強度235N/mm2級や315N/mm2級の鋼管杭よりも降伏強度400N/mm2以上の鋼管杭を使用することが望ましい。
In the present invention, when the load is transmitted from the box-
また、鋼管杭の径厚比がR/t=100程度になると、局部座屈が発生する可能性が高くなり、許容できる変形量が小さくなるため、R/t≦80とすることが望ましい。ここで、R:鋼管杭の外径(mm)、t:鋼管杭の肉厚(mm)である。なお、これらの条件は、杭挿通孔9の下端付近のみでなく、全ての部位について満たされていても問題ない。
In addition, when the diameter-thickness ratio of the steel pipe pile is around R/t=100, there is a high possibility that local buckling will occur and the allowable amount of deformation becomes small, so it is desirable that R/t≦80. Here, R: outer diameter of the steel pipe pile (mm), t: wall thickness of the steel pipe pile (mm). Note that there is no problem even if these conditions are satisfied not only near the lower end of the
<間詰材>
間詰材は、杭13が挿通された杭挿通孔9と杭13との隙間に配設されて箱状構造体11と杭13とを一体化するためのもので、水中コンクリート又は水中モルタルが望ましい。この一体化の手法は従来のジャケット式岸壁、ストラット式岸壁で用いられる手法、具体的にはグラウト材の注入によればよい。
<Filling material>
The filling material is disposed in the gap between the
<水平力伝達部材>
水平力伝達部材12は、既存壁体45と箱状構造体11との隙間に配設されて既存壁体45が水域側に変形しようとする水平力を箱状構造体11に伝達するものである。地震の揺れにより、既存壁体45は一時的には陸域側に変形するが、徐々に水域側への変形が大きくなる。すなわち、水平力伝達部材12は既存壁体45の陸域側への変形を抑える必要がないため、引張力を伝達する必要はなく、圧縮力の伝達機能のみあればよい。水平力伝達部材12はかかる機能を発揮できれば、その材料等は限定されず、例えば石材、水中コンクリート、水中モルタルなど、箱状構造体11と既存壁体45の水平方向の圧縮力の伝達が可能なものであればよい。
<Horizontal force transmission member>
The horizontal
もっとも、水平力伝達部材12の上部は確実に水平力を伝達できるように、水中コンクリートまたは水中モルタルで構成するのが望ましい。
既存壁体45に作用する荷重(例えば地震時荷重やエプロン上に物を置いたときの荷重、増深によって生じた土圧増分等)は、水平力伝達部材12とその下方の地盤を介して箱状構造体11に伝達されるため、箱状構造体11には水平力のみが伝達される構造である。このため、既存壁体45と箱状構造体11とを一体化する必要がなく、水中におけるスタッド溶接等を不要とすることができる。
However, it is desirable that the upper part of the horizontal
Loads that act on the existing wall 45 (for example, earthquake loads, loads when objects are placed on the apron, increased earth pressure due to deepening, etc.) are transmitted through the horizontal
上記のように構成された本実施の形態に係る改良構造1の作用を図3に基づいて説明する。図3は本実施の形態の改良構造1における地震時の変形を模擬的に示したものである。
本実施の形態では、既存岸壁41の水域側地盤の浅層領域は箱状構造体11内に拘束されることで一体となって変形する。箱状構造体11は、間詰材を通して鋼管杭と一体化されているため、鋼管杭の水平抵抗によって変形量を小さくすることができる。
The operation of the
In this embodiment, the shallow region of the ground on the water side of the existing
箱状構造体11より深部の地盤は上載圧が大きいので、前述のように、離散的に配置された鋼管杭でも大きな水平抵抗を期待できる。これらのことから、本実施の形態の改良構造1では、水平力伝達部材12を通して箱状構造体11の水平抵抗を既存壁体45に伝えることで、岸壁天端の水平変形量を抑えることが可能となる。
Since the ground deeper than the box-
[実施の形態2]
本実施の形態は、水平力伝達部材12の位置の最適化を図ったものである。すなわち、本実施の形態に係る既存岸壁41の改良構造1は、既存岸壁41が、下端側を地盤に根入れすると共に上端側をタイ材51によって控え工49で支持する矢板式岸壁の場合において、水平力伝達部材が(1)式を満たす位置に配置されていることを特徴とするものである。
[Embodiment 2]
This embodiment aims at optimizing the position of the horizontal
D:既存岸壁の矢板の根入長(m)
HT:既存岸壁の水底地盤からタイ材取り付け位置までの高さ(m)
E:既存岸壁の矢板のヤング率(kN/m2)
I:既存岸壁の単位幅あたりの矢板の断面2次モーメント(m4/m)
lh:既存岸壁の矢板が根入れされている地盤の地盤反力係数(kN/m3)
H:水底地盤から水平力伝達部材上端までの高さ(m)
D: Penetration length of existing quay sheet pile (m)
H T : Height (m) from the underwater ground of the existing quay to the tie material installation position
E: Young's modulus of existing quay sheet pile (kN/m 2 )
I: Second moment of inertia of sheet pile per unit width of existing quay (m 4 /m)
l h : Ground reaction force coefficient of the ground into which the existing quay sheet pile is embedded (kN/m 3 )
H: Height from the bottom of the water to the top of the horizontal force transmission member (m)
以下、(1)式の導出した過程を説明する。
水平力伝達部材12を通じて、既存壁体45にかかる荷重が箱状構造体11に伝達するとき、既存壁体45に作用するせん断力も箱状構造体11に伝達する。箱状構造体11に伝達するせん断力が大きいと、箱状構造体11の水域側への変形量が増大するため、既設壁体の水域側への変形量や作用する曲げモーメントも増大する。そのため、既存壁体45に作用するせん断力が小さい位置に、水平力伝達部材12が存在することが望ましい。
The process of deriving equation (1) will be described below.
When the load applied to the existing
既存岸壁41が、下端側を地盤に根入れすると共に上端側をタイ材51によって控え工49で支持する矢板式岸壁の場合における、既存壁体45に作用する荷重を図4に示す。図4(a)は既存壁体45に作用する土圧分布を模式的に示したものであり、上部の支点はタイ材51取付点を、下部の支点は水底地盤43を表している。このとき、図4(b)に示すようなせん断力と、図4(c)に示すような曲げモーメントが発生する。ここで、水域に凸となる場合を正の曲げモーメントとする(+Mと表記)。
既設壁体に作用するせん断力が0になる位置は、作用する曲げモーメントの変曲点(増加から減少に変わる位置)と等しくなる。これは水底地盤43より上の範囲において、既存壁体45に作用する最大曲げモーメントの発生位置とも一致する。
FIG. 4 shows the load acting on the existing
The position where the shear force acting on the existing wall becomes zero is equal to the inflection point (the position where the bending moment changes from increasing to decreasing). This also coincides with the position where the maximum bending moment acting on the existing
矢板式岸壁における矢板への最大曲げモーメントの発生位置は、既存壁体45の壁高さ、タイ材51の取り付け位置、鋼材の降伏強度、矢板の形状、地盤条件、設計震度等により変化する。そこで、さまざまな条件における矢板式岸壁の試設計を実施し、最大曲げモーメントの発生位置を調べた。
The position at which the maximum bending moment is applied to the sheet pile in a sheet pile type quay varies depending on the wall height of the existing
試設計の概要を図5に示す。なお、図5において図1と同一部分及び対応する部分には同一の符号を付してある。
矢板式岸壁は、図5に示すように、矢板の下端側を水底地盤43に根入れすると共に、上端側をタイ材51によって控え工49で支持してなるものを対象としている。
試計算の条件は次に示すとおりである。
水深は-4.5m、-7.5m、-10.5m、-14m、-17m、-20mの6種類で岸壁天端は+3m、タイ材51取り付け点は+2mで固定した。また、残留水位は+1mで固定とした。
水底地盤43は、緩い、中位、堅い、の3種類とした。せん断抵抗角と地盤反力係数lhは、「緩い」では、30°と24MN/m3、「中位」では、35°と38MN/m3、「堅い」では40°と58MN/m3とした。
矢板式岸壁の背後には裏込石を配置することにし、せん断抵抗角は40°とした。地盤の単位体積重量は、水底地盤43、裏込石とも共通で水中単位体積重量は10kN/m3、気中では18kN/m3とした。
設計震度は、レベル1地震を対象として、地域ごとの設計地震動を用いて検討地点の地盤の1次元地震応答解析結果から設計震度を求めることになっているが、本検討では0.05、0.15、0.25を対象とした。
矢板は鋼製とし、鋼材の降伏強度の特性値は、SKY400として235N/mm2、SKY490として315N/mm2の他に、最大600N/mm2までを想定した。
国内外のさまざまな形状の矢板を対象に試設計を行い、矢板に発生する最大応力が、235~600N/mm2の間に収まる形状を対象に、最大曲げモーメントの発生位置を調べた。
Figure 5 shows an overview of the trial design. In FIG. 5, the same parts and corresponding parts as in FIG. 1 are given the same reference numerals.
As shown in FIG. 5, the sheet pile type quay is intended for one in which the lower end side of the sheet pile is rooted in the
The conditions for the trial calculation are as follows.
There are six types of water depth: -4.5m, -7.5m, -10.5m, -14m, -17m, and -20m.The top of the quay was fixed at +3m, and the
Three types of
Backfill stones were placed behind the sheet pile type quay, and the shear resistance angle was set at 40°. The unit volume weight of the ground was the same for both the
The design seismic intensity is aimed at
The sheet piles are made of steel, and the characteristic value of the yield strength of the steel material is assumed to be 235N/mm 2 for SKY400, 315N/mm 2 for SKY490, and a maximum of 600N/mm 2 .
We conducted trial designs for sheet piles of various shapes from Japan and overseas, and investigated the location where the maximum bending moment occurs for shapes where the maximum stress generated in the sheet piles falls between 235 and 600 N/mm 2 .
試設計の実施数は1000以上あるため、結果の一部を表1に示す。設計条件として「水深」、「水底地盤からタイ材取り付け位置までの高さHT」、「水底地盤条件」、「設計震度」を、設計に用いた矢板条件として「ヤング率E」、「断面二次モーメントI」、「断面係数」を、試設計の結果として「矢板に発生する応力」、「矢板の根入長D」、「最大曲げモーメントの発生位置H」を、結果の考察として「(HT)4/(EI)×lh」、「H/D」を示している。 Since more than 1000 trial designs were conducted, some of the results are shown in Table 1. The design conditions are ``water depth'', ``height H T from the water bottom ground to the tie installation position'', ``water bottom ground conditions'', and ``design seismic intensity'', and the sheet pile conditions used in the design are ``Young's modulus E'' and ``cross section. ``secondary moment I'' and ``section modulus'', ``stress generated in the sheet pile'', ``sheet pile penetration length D'', and ``maximum bending moment occurrence position H'' as a result of the trial design; (H T ) 4 /(EI)×l h ", "H/D" is shown.
表1に示されたものの中から考察すると、ばらつきはあるが「(HT)4/(EI)×lh」が大きくなるほど「H/D」の値が大きくなる傾向にある。すべての試設計の結果について、横軸に「(HT)4/(EI)×lh」を、縦軸に「H/D」をとった散布図を図6に示す。両者には相関があり、「H/D」は下式で示す範囲に分布していることが分かる。 Considering the results shown in Table 1, although there are variations, there is a tendency for the value of "H/D" to increase as "(H T ) 4 /(EI)×l h " increases. Figure 6 shows a scatter diagram with "(H T ) 4 /(EI)×l h " plotted on the horizontal axis and "H/D" plotted on the vertical axis for the results of all trial designs. It can be seen that there is a correlation between the two, and that "H/D" is distributed within the range shown by the formula below.
岸壁改良の設計をする場合、既存壁体45の「水底地盤からタイ材取り付け位置までの高さHT」、「ヤング率E」、「断面二次モーメントI」、「地盤反力係数lh」、「矢板の根入長D」は既知であることが多いので、下記に示す式(1)に従って水平力伝達部材12の位置を決めることで、効果的に既存壁体45を改良することができる。
なお、岸壁改良に伴って、水域側の水底地盤の掘削による増深が行われる場合、D、HT、Hは増深後の値を使用するものとする。
When designing quay wall improvement, the existing
In addition, if the depth is increased by excavating the water bottom ground on the water area side due to quay wall improvement, the values after deepening shall be used for D, H T , and H.
D:既存岸壁の矢板の根入長(m)
HT:既存岸壁の水底地盤からタイ材取り付け位置までの高さ(m)
E:既存岸壁の矢板のヤング率(kN/m2)
I:既存岸壁の単位幅あたりの矢板の断面2次モーメント(m4/m)
lh:既存岸壁の矢板が根入れされている地盤の地盤反力係数(kN/m3)
H:水底地盤から水平力伝達部材上端までの高さ(m)
D: Penetration length of existing quay sheet pile (m)
H T : Height (m) from the underwater ground of the existing quay to the tie material installation position
E: Young's modulus of existing quay sheet pile (kN/m 2 )
I: Second moment of inertia of sheet pile per unit width of existing quay (m 4 /m)
l h : Ground reaction force coefficient of the ground into which the existing quay sheet pile is embedded (kN/m 3 )
H: Height from the bottom of the water to the top of the horizontal force transmission member (m)
水平力伝達部材12が式(1)の位置にある場合の、岸壁改良構造の一例を図7に示す。箱状構造体11の既存壁体45側の杭挿通孔9の上端が、水平力伝達部材12の位置と同じ高さに位置しており、水平力伝達部材12より下部の箱状構造体11と既存壁体45との隙間は、砂や固化処理土などで中詰めされる。
FIG. 7 shows an example of the quay wall improvement structure when the horizontal
[実施の形態3]
次に実施の形態1、2に示した既存岸壁の改良構造1の施工方法について説明する。
箱状構造体11を予め工場等において製作し、改良する既存岸壁41のある施工現場に搬入する。
施工現場では、既存壁体45の水域側に既存壁体45と所定の隙間を設けて箱状構造体11を水底地盤43に埋設する(箱状構造体11埋設工程)。この際、後述する間詰工程において確実に間詰材を配設できるように、杭挿通孔9の内部に地盤の土が入らないよう、杭挿通孔9の下端に蓋を設けておいてもよい。
[Embodiment 3]
Next, a construction method of the existing quay
The box-
At the construction site, the box-
その後、箱状構造体11の杭挿通孔9を通して鋼管杭等の杭13を打設する(杭打設工程)。
次に、杭挿通孔9と杭13との隙間に、間詰材を配設する(間詰工程)。間詰材は、箱状構造体11と杭13とを一体化するためのもので、水中コンクリート又は水中モルタルが望ましい。
最後に、箱状構造体11と既存壁体45との隙間に、水中コンクリート又は水中モルタルを打設して水平力伝達部材12を構築する(水平力伝達部材構築工程)。
Thereafter, a
Next, a filling material is provided in the gap between the
Finally, underwater concrete or underwater mortar is placed in the gap between the box-
なお、施工順序は特に限定されず、どの工程を先に行ってもよい。特に、杭13の打設位置精度を確保する必要があるが、箱状構造体11埋設工程の前に杭打設工程を行うことで、箱状構造体11の埋設時に杭挿通孔9の内部に土が入りにくくなることが想定されるので、杭挿通孔9の下端に蓋を設けずに間詰材を配設することが可能になるという効果が考えられる。
Note that the construction order is not particularly limited, and any step may be performed first. In particular, it is necessary to ensure the accuracy of the driving position of the
以上のように、本実施の形態によれば、陸上部48での施工がなく水域側のみでの施工が可能であり、陸側の施工が制限される場合にも適用可能である。
また、既存壁体45と箱状構造体11との間では、水平力を伝達できればよく、それ故に既存壁体45と箱状構造体11は一体化される必要がなく、水中におけるスタッド溶接等を不要とすることができる。スタッド溶接の場合、鋼材が溶接に対応した成分のものでないと溶接による脆化が懸念されるが、本実施の形態ではこのようなことが懸念されることがない。
As described above, according to the present embodiment, construction can be performed only on the water side without construction on the
In addition, it is sufficient that horizontal force can be transmitted between the existing
なお、本実施の形態では、既存壁体45の水域側に、箱状構造体11が埋設されるため、岸壁法線が水域側に出っ張ることがある。この場合には、船舶の接岸の支障とならないように、図1に示すように、既存の上部工47を水域側に拡幅する増幅上部工22を設置するようにすればよい。もっとも、増幅上部工22は岸壁全長の必要はなく、また、増幅上部工22を設けることなく接岸用の防舷材を変えることで対応可能なこともある。
In addition, in this embodiment, since the box-
なお、前述の箱状構造体11埋設工程において、水底地盤43の掘削を行わずに箱状構造体11を埋設できる合理的な施工方法について図8に基づいて説明する。なお、図8において図1と同一部分及び対応する部分には同一の符号が付してある。後述の図9においても同じである。
施工現場に搬入された箱状構造体11は、天面部7の通水口5を通じて内部の空気量や水量を調整することができる。
そこで、通水口5を閉じた状態で箱状構造体11の内部の空気量を調整して水面に浮かぶように浮力を調整し、水面を曳航させることで、埋設場所の位置調整を容易に行うことができる(図8(a)参照)。
In addition, in the above-mentioned box-
The box-
Therefore, with the
次に、箱状構造体11の内部の空気を排気することで箱状構造体11を水中に沈め、水底地盤43上に自沈させる(図8(b)参照)。その後、ポンプ等で通水口5から内部の水を強制的に排水する。排水することで、箱状構造体11の内外に生じる水圧差によって発生するサクション力により、箱状構造体11が地盤内に押し込まれる。その結果、箱状構造体11を地盤内に沈設させることができる(図8(c)参照)。箱状構造体11の沈設後に、杭13を打設する(図8(d)参照)。
Next, by exhausting the air inside the box-
なお、施工順序は特に限定されず、どの工程を先に行ってもよい。杭打設工程を箱状構造体埋設工程より先に行った例を図9に示す。
箱状構造体11を埋設場所の水面に曳航させ(図9(a)参照)、水底地盤43上に自沈させる(図9(b)参照)。
その後、杭挿通孔9に杭13を挿通して杭13を支持層まで打設し、杭打設に使用した仮継ぎ杭23を残した状態にしておき(図9(c)参照)、仮継ぎ杭23をガイド軸として箱状構造体11の沈設を行う(図9(d)参照)。
このようにすることで、沈設時の強制排水時に箱状構造体11の鉛直精度を調整する必要がなく、施工が安定すると考えられる。
Note that the construction order is not particularly limited, and any step may be performed first. FIG. 9 shows an example in which the pile driving process was performed before the box-shaped structure burying process.
The box-
Thereafter, the
By doing so, there is no need to adjust the vertical accuracy of the box-
船舶の大型化に伴う岸壁水深の増深が必要な場合は、箱状構造体11埋設工程の前に、水域側水底地盤43を掘削して水深を深くする水底地盤掘削工程を行うようにすればよい(図10参照)。既存岸壁41が増深に対して構造上の余裕がない場合においても、本実施の形態では箱状構造体11、杭13等の諸元を適正に変更することで、構造上の余裕を持たせることができるので、増深を問題なく行うことができる。
If it is necessary to increase the quay water depth due to an increase in the size of the ship, a water bottom ground excavation process to deepen the water depth by excavating the water area side water
[実施例1]
ケーソン24を用いた重力式岸壁25を対象に、本発明の改良構造1で増深改良を行った例を図10に示す。図10において、図1と同一部分及び対応する部分には同一の符号を付してある。この点、後述の図11~図17においても同様である。
予めケーソン24より水域側の基礎捨石27の一部を除去した上で、箱状構造体11を埋設して杭13を打設することで、基礎捨石27の厚み分の増深が可能となる。
また、水平力伝達部材12は、ケーソン24のフーチング部29に被せるように配置させることで、地震時のケーソン24の水域側への滑動を抑えることができる。
[Example 1]
FIG. 10 shows an example of deepening and improving a gravity type quay 25 using a caisson 24 using the
By removing a portion of the foundation rubble 27 on the water body side from the caisson 24 in advance, burying the box-
Furthermore, by placing the horizontal
[実施例2]
桟橋構造物31を対象に、本発明の改良構造1で増深改良を行った例を図11に示す。図11に示す例では、陸上部48と水域との境界部には土留め擁壁32が設けられている。
本実施例の場合は、増深による桟橋の鋼管杭の地盤反力低下に対する補強が主目的となるので、水平力伝達部材12は配置しなくてもよい。
本実施例によれば、箱状構造体11が地盤流動を抑制することで、鋼管杭33に作用する荷重も抑制することができる。この点、例えば、箱状構造体11の代わりに自立式矢板53を打設して増深した場合は、地震時の地盤流動量が増大して桟橋の鋼管杭33に作用する荷重が大きくなる。
[Example 2]
FIG. 11 shows an example of deepening and improving the pier structure 31 using the
In the case of this embodiment, the horizontal
According to this embodiment, since the box-
[実施例3]
陸域側に控え工49を有する矢板式岸壁の隅角部の補強として、本発明の改良構造1を適用した例の平面図を図12に示す。
控え工49の鋼管杭33は、地盤抵抗が十分に発揮されるという前提のもとで二次元断面として設計される。しかし、隅角部は控え工49が入り組んだ構造となり、十分な地盤抵抗が発揮されない可能性があるため、二次元断面とみなすことができない。
そこで、図12に示すように、本発明の改良構造1によって水域側地盤の補強を併用することで、地盤抵抗が十分に発揮されない矢板式岸壁の隅角部の補強を効果的に行うことができる。
[Example 3]
FIG. 12 shows a plan view of an example in which the
The steel pipe pile 33 of the
Therefore, as shown in FIG. 12, by using the
[実施例4]
本発明の改良構造1の岸壁以外への適用例として、重力式の津波防波堤35の補強の例を図13に示す。
防波堤の背面側の航路を阻害しない補強方法として、ケーソン24の背面に自立式の鋼矢板あるいは鋼管矢板を打設する方法が考えられるが、津波波力が作用した時に鋼矢板が背面側に大きくたわみ、十分な補強効果が得られない可能性がある。
この点、本発明の改良構造1によれば、補強部分のたわみが少ないため、粘り強い構造が期待できる。
なお、津波防波堤35の背面補強の場合には、ケーソン24に作用する揚圧力(底から上向きにかかる津波波力)を小さくするため、水平力伝達部材12は透水性の高いものにすることが望ましい。
[Example 4]
As an example of application of the
As a reinforcing method that does not obstruct the navigation route on the back side of the breakwater, it is possible to install self-supporting steel sheet piles or steel pipe sheet piles on the back side of the caisson 24. Deflection may occur, and sufficient reinforcing effect may not be obtained.
In this regard, according to the
In addition, in the case of reinforcing the back of the tsunami breakwater 35, the horizontal
[実施例5]
本発明の効果を確認するため、シミュレーション解析を行ったので、以下これについて説明する。
実験は、図14に示す-12.6m水深の既存の矢板式岸壁(既存壁体45は鋼管矢板)を対象とし、水深は変えずに補強改良を行う場合について検討した。
検討条件として、鋼材部分は50年分の標準的な腐食量による減肉を考慮した。
本発明の改良構造1を図15に、また、用いた箱状構造体11の形状を図16にそれぞれ示す。
また、本発明の改良構造1の構造諸元を表2に示す。なお、表2中の改良構造における鋼管杭33と箱状構造体11の規格名称は、鋼板の規格を記載している。
[Example 5]
In order to confirm the effects of the present invention, a simulation analysis was performed, which will be described below.
The experiment targeted an existing sheet pile type quay wall (the existing
As a condition for consideration, we took into account the thickness loss of the steel parts due to the standard amount of corrosion over 50 years.
The
Further, the structural specifications of the
比較のため、従来技術として矢板式岸壁の水域側地盤の地盤改良37を行った補強構造を図17に示す。
地盤改良37はセメント固化を想定しており、既存矢板の近傍は高圧噴射撹拌工法、それ以外は深層混合処理工法による原位置改良を前提としている。改良幅は、箱状構造体11の幅と同じ6mとした。
本発明に係る改良構造1(以下、「本発明改良構造1」という)と従来技術の概算コストを比較試算すると、本発明改良構造1の方が5%程度安価となった。また、施工現場での概略工程を比較すると、本発明改良構造1は3割程度工事期間が短くなる結果となった。
For comparison, FIG. 17 shows a reinforced structure in which ground improvement 37 has been performed on the ground on the water side of a sheet pile type quay as a conventional technique.
Ground Improvement 37 assumes cement solidification, and the area near the existing sheet piles is premised on high-pressure injection stirring method, and the rest is premised on in-situ improvement using deep mixing method. The improved width was set to 6 m, which is the same as the width of the box-
When the estimated costs of
本発明改良構造1と従来技術の耐震性能を比較するため、構造物と地盤の相互作用を考慮した地震応答解析を行った。解析プログラムは、下記の文献に示されたFLIPを用いた。
文献:Iai,S.,Matsunaga,Y.and Kameoka,T.:Strain space plasticity model for cyclic mobility, Soils and Foundations, Vol.32,No.2,pp.1-15,1992.
また、主な解析定数を表3に示す。設計対象の地震動は図18に示すものである。
In order to compare the seismic performance of the
Literature: Iai, S., Matsunaga, Y. and Kameoka, T.: Strain space plasticity model for cyclic mobility, Soils and Foundations, Vol. 32, No. 2, pp. 1-15, 1992.
In addition, the main analysis constants are shown in Table 3. The seismic motion to be designed is shown in Figure 18.
岸壁天端(図14、図15、図17のA点)の水平変位の時刻歴を、図19~図21に示す。図19が、図14に示した改良前のもの、図20が図15に示した本発明による改良後のもの、図21が図17に示した従来技術による改良後のものである。
ここで、水平変位は水域側への変位が負の値をとる。
図19においては、15秒後から20秒後におけるA点の変位が-50cmとなるのに対し、図20と図21では、15秒後から20秒後におけるA点の変位が-45cm程度に収まっている。この図19~図21に示す結果から、本発明改良構造1によって改良前よりも岸壁天端の変位を抑制することが可能となり、その耐震性能は従来技術と遜色ないことが分かる。
The time history of the horizontal displacement of the top of the quay (point A in Figures 14, 15, and 17) is shown in Figures 19 to 21. 19 shows the one before the improvement shown in FIG. 14, FIG. 20 shows the one after the improvement according to the present invention shown in FIG. 15, and FIG. 21 shows the one after the improvement according to the prior art shown in FIG. 17.
Here, the horizontal displacement toward the water area takes a negative value.
In Figure 19, the displacement of point A from 15 seconds to 20 seconds is -50cm, whereas in Figures 20 and 21, the displacement of point A from 15 seconds to 20 seconds is approximately -45cm. It's settled. From the results shown in FIGS. 19 to 21, it can be seen that the
1 既存岸壁の改良構造
3 周壁面部
5 通水口
7 天面部
9 杭挿通孔
11 箱状構造体
13 杭
12 水平力伝達部材
15 H形鋼
17 鋼板
19 リブ材
21 仕切り壁体
22 増幅上部工
23 仮継ぎ杭
24 ケーソン
25 重力式岸壁
27 基礎捨石
29 フーチング部
31 桟橋式構造物
32 土留め擁壁
33 鋼管杭
35 津波防波堤
37 地盤改良
41 既存岸壁(既存の矢板式岸壁)
43 水底地盤
45 既存壁体
47 上部工
48 陸上部
49 控え工
51 タイ材
53 自立式矢板
55 補強杭
1 Improved structure of existing
43
Claims (4)
該箱状構造体の前記杭挿通孔に挿通されて、前記水底地盤に打設された複数の杭と、
前記杭挿通孔と前記杭との隙間に配設された間詰材と、
前記既存壁体と前記箱状構造体との間に配設されて前記既存壁体からの水平力を前記箱状構造体に伝達する水平力伝達部材と、を備え、
前記箱状構造体は、4面の周壁部と天板部を有する矩形状の箱形状であり、長辺側を前記既存岸壁に対向させて配置され、短辺側の壁体は長辺側の壁体よりも剛性が高められていることを特徴とする既存岸壁の改良構造。 A box-shaped structure having a peripheral wall surface portion, a top surface portion provided with a water inlet, and a plurality of pile insertion holes, and is disposed on the water bottom ground on the water body side of the existing wall body in the existing quay wall;
a plurality of piles inserted into the pile insertion holes of the box-like structure and driven into the underwater ground;
a filler material disposed in a gap between the pile insertion hole and the pile;
a horizontal force transmission member disposed between the existing wall and the box-like structure to transmit horizontal force from the existing wall to the box-like structure ;
The box-like structure has a rectangular box shape having four peripheral walls and a top plate, and is arranged with the long side facing the existing quay wall, and the wall on the short side faces the long side. This is an improved structure for an existing quay wall that is characterized by higher rigidity than the existing quay wall .
D:既存岸壁の矢板の根入長(m)
HT:既存岸壁の水底地盤からタイ材取り付け位置までの高さ(m)
E:既存岸壁の矢板のヤング率(kN/m2)
I:既存岸壁の単位幅あたりの矢板の断面2次モーメント(m4/m)
lh:既存岸壁の矢板が根入れされている地盤の地盤反力係数(kN/m3)
H:水底地盤から水平力伝達部材上端までの高さ(m) In the case where the existing quay is a sheet pile type quay in which the lower end side is rooted in the ground and the upper end side is supported by tie materials with a buttress, the horizontal force transmission member is arranged at a position that satisfies formula (1). The improved structure for an existing quay according to claim 1 or 2, characterized in that:
D: Penetration length of existing quay sheet pile (m)
H T : Height (m) from the underwater ground of the existing quay to the tie material installation position
E: Young's modulus of existing quay sheet pile (kN/m 2 )
I: Second moment of inertia of sheet pile per unit width of existing quay (m 4 /m)
l h : Ground reaction force coefficient of the ground into which the existing quay sheet pile is embedded (kN/m 3 )
H: Height from the bottom of the water to the top of the horizontal force transmission member (m)
前記既存壁体の水域側に、該既存壁体と所定の隙間を設けて前記箱状構造体を水底地盤上に自沈させる工程と、
前記箱状構造体の杭挿通孔を通して前記杭を打設し、杭打設に使用した仮継ぎ杭を残した状態にする工程と、
前記箱状構造体の通水口から内部の水を強制的に排水し、前記仮継ぎ杭をガイド軸として前記箱状構造体を水底地盤内に沈設させる工程と、
前記杭挿通孔と前記杭との隙間に間詰材を配設する工程と、
前記既存壁体と前記箱状構造体との間に水平伝達部材を配設する工程と、を備えたことを特徴とする既存岸壁の改良構造の施工方法。 A method for constructing an improved structure for an existing quay according to any one of claims 1 to 3, comprising:
A step of scuttling the box-shaped structure onto the underwater ground by providing a predetermined gap with the existing wall on the water body side of the existing wall;
Driving the pile through the pile insertion hole of the box-like structure, leaving the temporary joint pile used for pile driving ;
forcibly draining water inside the box-like structure from a water inlet, and sinking the box-like structure into underwater ground using the temporary joint pile as a guide shaft;
arranging a filler material in the gap between the pile insertion hole and the pile;
A method for constructing an improved structure for an existing quay, comprising the step of arranging a horizontal transmission member between the existing wall and the box-like structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021104555A JP7396331B2 (en) | 2021-06-24 | 2021-06-24 | Improvement structure of existing quay wall and construction method of the improvement structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021104555A JP7396331B2 (en) | 2021-06-24 | 2021-06-24 | Improvement structure of existing quay wall and construction method of the improvement structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023003461A JP2023003461A (en) | 2023-01-17 |
JP7396331B2 true JP7396331B2 (en) | 2023-12-12 |
Family
ID=85100925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021104555A Active JP7396331B2 (en) | 2021-06-24 | 2021-06-24 | Improvement structure of existing quay wall and construction method of the improvement structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7396331B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012097415A (en) | 2010-10-29 | 2012-05-24 | Jfe Steel Corp | Steel pipe sheet pile quaywall |
JP2020204151A (en) | 2019-06-14 | 2020-12-24 | Jfeスチール株式会社 | Improvement structure and improvement method of existing sheet pile type quay |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2873622B2 (en) * | 1990-11-05 | 1999-03-24 | 大成建設株式会社 | Rigid connection method between box and supporting pile |
JP3387398B2 (en) * | 1997-11-13 | 2003-03-17 | 株式会社大林組 | How to penetrate caisson foundation |
JP3603193B2 (en) * | 1997-11-28 | 2004-12-22 | 株式会社大林組 | How to build an underwater foundation |
-
2021
- 2021-06-24 JP JP2021104555A patent/JP7396331B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012097415A (en) | 2010-10-29 | 2012-05-24 | Jfe Steel Corp | Steel pipe sheet pile quaywall |
JP2020204151A (en) | 2019-06-14 | 2020-12-24 | Jfeスチール株式会社 | Improvement structure and improvement method of existing sheet pile type quay |
Also Published As
Publication number | Publication date |
---|---|
JP2023003461A (en) | 2023-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5445351B2 (en) | Filling reinforcement structure | |
CN100557147C (en) | The job practices of steel cavity stranded caisson-pile inverse-way composite base | |
JP5471797B2 (en) | Seismic reinforcement structure of revetment structure and existing revetment structure | |
KR101211811B1 (en) | Cast in concrete pile With precast type Caisson | |
CN110258582A (en) | Bearing diagonal foundation pit supporting construction and construction method based on steel-pipe pile Yu Larsen steel plate | |
JP3423394B2 (en) | Underwater frame structure | |
JP7149919B2 (en) | Improvement structure and improvement method of existing wharf | |
KR101256274B1 (en) | Reverse Drill Method With precast type Caisson and Jacket | |
CN113047215B (en) | High stake pier structure of medium plate stake | |
JP7396331B2 (en) | Improvement structure of existing quay wall and construction method of the improvement structure | |
JP4958064B2 (en) | Seismic reinforcement structure of quay | |
JPH06146305A (en) | Underwater foundation and installation method thereof | |
JP7396332B2 (en) | Improvement structure of existing quay wall and construction method of the improvement structure | |
JP2021139162A (en) | Levee reinforcement structure and levee reinforcement method | |
CN111305050B (en) | Protection process for existing piers on two sides in tunnel construction | |
JPH09296427A (en) | Structure in water area and construction method thereof | |
Tokumasu et al. | Model experiment for influence of sheet pile characteristics on mechanical behavior of buried flexible pipe | |
JP7489350B2 (en) | Improvement structure and method of existing wharf | |
JP7495904B2 (en) | Improvement structure and method of existing wharf | |
JP2020117959A (en) | Levee body reinforcement structure | |
JP7359515B2 (en) | Liquefaction countermeasure structure for underground structures | |
JP7503998B2 (en) | Liquefaction countermeasures for linear embankment structures and liquefaction countermeasures | |
JP2564819B2 (en) | Seismic reinforcement structure of existing caisson | |
El-Sayed | A Study to Select Optimum Quay Wall Structural | |
CN116043862A (en) | Method for treating collapse of steel sheet pile supporting structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230829 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7396331 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |