JP7366553B2 - Method for manufacturing aluminum alloy parts - Google Patents
Method for manufacturing aluminum alloy parts Download PDFInfo
- Publication number
- JP7366553B2 JP7366553B2 JP2019019440A JP2019019440A JP7366553B2 JP 7366553 B2 JP7366553 B2 JP 7366553B2 JP 2019019440 A JP2019019440 A JP 2019019440A JP 2019019440 A JP2019019440 A JP 2019019440A JP 7366553 B2 JP7366553 B2 JP 7366553B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- cooling
- manufacturing
- less
- sec
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Extrusion Of Metal (AREA)
Description
本発明は、高強度で耐応力腐食割れ性に優れたアルミニウム合金製の構造部材等に関する。 TECHNICAL FIELD The present invention relates to structural members etc. made of aluminum alloy that have high strength and excellent stress corrosion cracking resistance.
Al-Zn-Mg系及びAl-Zn-Mg-Cu系等のJIS7000系のアルミニウム合金は、高い強度が得られることから、自動車,鉄道車両等の車両構造部材として、あるいは船舶や航空機等の輸送機の構造部材等に採用されている。
しかし、これらの構造部材にあっては、応力が負荷された状態で使用されることが多く、応力腐食割れに対する対策が必要となる。
例えば特許文献1には、0.4℃/秒以上の昇温速度で加熱し、200~550℃の温度範囲に0秒を超えて保持し、次いで0.5℃/秒以上の冷却速度で冷却する復元処理を行い、さらに72時間以内に拡管加工を行うことで、残留応力を低減する製造方法が開示されている。
しかし、同公報に開示するプロセスは、合金成分に大きな制限があるとともに、高強度を得るにはMn,Cr,Zr等の遷移元素を多く添加する必要があり、冷却速度の影響が大きくなる。
JIS 7000 series aluminum alloys such as Al-Zn-Mg series and Al-Zn-Mg-Cu series have high strength and are therefore used as structural components of vehicles such as automobiles and railway vehicles, or for transportation such as ships and aircraft. It is used in structural components of aircraft.
However, these structural members are often used under stress, and therefore, countermeasures against stress corrosion cracking are required.
For example,
However, the process disclosed in the publication has major restrictions on alloy components, and in order to obtain high strength, it is necessary to add a large amount of transition elements such as Mn, Cr, Zr, etc., and the cooling rate has a large effect.
特許文献2には、溶体化処理後に150~350℃の範囲で5分~30分の焼入れをした後に水冷し、時効させる製造技術を開示する。
しかし、同公報に開示するプロセスでは、結晶粒界におけるミクロ組織を制御する必要があり、高強度を得るには高濃度のCu成分を添加する必要がある。
However, in the process disclosed in the publication, it is necessary to control the microstructure at grain boundaries, and to obtain high strength, it is necessary to add a high concentration of Cu component.
特許文献3には、結晶粒の平均厚さ25μm以下、アスペクト比を4以上にすることで、耐応力腐食割れ性を改善する方法が開示されている。
本技術は、ミクロ組織の制御が難しい問題がある。
Patent Document 3 discloses a method of improving stress corrosion cracking resistance by setting the average thickness of crystal grains to 25 μm or less and the aspect ratio to 4 or more.
This technique has a problem in that it is difficult to control the microstructure.
本発明は、高強度でありながら耐応力腐食割れ性に優れたアルミニウム合金部材の製造方法の提供を目的とする。 An object of the present invention is to provide a method for manufacturing an aluminum alloy member that has high strength and excellent stress corrosion cracking resistance.
本発明に係るアルミニウム合金部材の製造方法は、7000系のアルミニウム合金からなる部材を400~500℃の温度で溶体化処理するステップと、冷却速度0.1~2.0℃/秒の空冷を行うステップとを有し、その後に人工時効処理するものであることを特徴とする。
この場合に、溶体化処理を押出成形における加工熱を利用してもよく、7000系のアルミニウム合金を用いて部材を押出加工し、その後直に、冷却速度0.1~2.0℃/秒の空冷を行うステップを有し、その後に人工時効処理するものであってもよい。
The method for manufacturing an aluminum alloy member according to the present invention includes the steps of solution-treating a member made of 7000 series aluminum alloy at a temperature of 400 to 500°C, and air cooling at a cooling rate of 0.1 to 2.0°C/sec. The method is characterized in that it has a step of performing an artificial aging treatment after that.
In this case, the solution treatment may be performed using the processing heat during extrusion molding, in which the member is extruded using 7000 series aluminum alloy, and immediately thereafter, the cooling rate is 0.1 to 2.0°C/sec. The method may include a step of performing air cooling, followed by an artificial aging treatment.
従来の7000系のアルミニウム合金においては、高い強度を得る方法として、溶体化処理後の焼入れに水冷を用いた水焼入れがT6処理として、一般的に採用されている。
しかし、水焼入れは急速に冷却できるものの、部材の表層部と内部との冷却速度に大きな差が生じやすく、構造部材のように相対的に肉厚の厚い部材においては、その差が大きく、表層部に大きな残留応力が生じやすい問題あった。
そこで本発明は、冷却速度を所定の範囲に制御することで、表層部の焼入れを内部に対して、やや弱くした点に特徴がある。
In conventional 7000 series aluminum alloys, as a method for obtaining high strength, water quenching using water cooling for quenching after solution treatment is generally employed as T6 treatment.
However, although water quenching allows for rapid cooling, there tends to be a large difference in the cooling rate between the surface layer and the interior of the component, and in relatively thick components such as structural components, the difference is large and the surface layer There was a problem that large residual stress was likely to occur in the parts.
Therefore, the present invention is characterized in that by controlling the cooling rate within a predetermined range, the hardening of the surface layer is made slightly weaker than that of the inside.
本発明者らの調査では、7000系アルミニウム合金からなる部材においては、400~500℃の範囲で溶体化し、初期の段階を所定の速度で冷却すれば、その後の冷却により大きな強度低下がなかった。
そこで、部材の温度が約300℃~200℃以下になるまでは、冷却速度0.1~2.0℃/秒の空冷を行うのが望ましい。
According to the inventors' research, in a member made of 7000 series aluminum alloy, if it is solution-treated in the range of 400 to 500°C and cooled at a predetermined rate in the initial stage, there is no significant decrease in strength due to subsequent cooling. .
Therefore, it is desirable to perform air cooling at a cooling rate of 0.1 to 2.0° C./sec until the temperature of the member falls below about 300° C. to 200° C.
本発明において、部材の表層部とは、部材の肉厚全体の寸法に対して、その20%以内の表面側の深さを表層部と表現する。
従って、それよりも内側の部分が内部となる。
本発明は、人工時効処理後において表層部の0.2%耐力又は、引張強さが内部のそれよりも相対的に4%以上低いのがよく、好ましくは6%以上低いのがよい。
硬さHRBで示すと、表層部の硬さが内部の硬さより3%以上、さらには5%以上低いのが好ましい。
また、電気伝導度にて比較すると、IACS値で表層部が内部よりも2%以上高いのが好ましい。
In the present invention, the surface layer portion of a member is expressed as the depth on the surface side within 20% of the overall wall thickness of the member.
Therefore, the part inside is considered to be internal.
In the present invention, after artificial aging treatment, the 0.2% yield strength or tensile strength of the surface layer portion is preferably lower than that of the inner portion by 4% or more, preferably 6% or more.
In terms of hardness HRB, the hardness of the surface layer is preferably 3% or more, more preferably 5% or more lower than the internal hardness.
Furthermore, when comparing electrical conductivity, it is preferable that the IACS value of the surface layer is 2% or more higher than that of the inside.
人工時効処理は、その材料の有する最高強度が得られる条件が好ましい。
例えば、1段目:90~120℃で1~24時間,2段目:130~180℃で1~24時間の二段時効処理条件が例として挙げられる。
Artificial aging treatment is preferably performed under conditions that allow the maximum strength of the material to be obtained.
For example, a two-stage aging treatment condition may be given, in which the first stage: 90 to 120°C for 1 to 24 hours, and the second stage: 130 to 180°C for 1 to 24 hours.
本発明にて用いることができるアルミニウム合金は、Al-Zn-Mg系,Al-Zn-Mg-Cu系の一般的なJIS7000系合金を用いることができる。
例えば、JIS7075材の場合に以下全て質量%にて、Zn:6.40~6.90%,Mg:2.1~2.9%,Cu:1.20~2.20%,Mn:0.3%以下,Cr:0.18~0.28%,Fe:0.5%以下,Si:0.4%以下,Ti:0.005~0.05%,残部がAlと不純物となっている。
特に好ましい高強度材としては、下記のアルミニウム合金(A)が例として挙げられる。
合金(A):Zn:6.40~6.90%,Mg:1.60~1.80%,Cu:0.20~0.30,Mn:0.20~0.30%,Zr:0.17~0.23%,Cr:0.20%以下,Ti:0.005~0.05%,Fe:0.20%以下,Si:0.10%以下,残部がAlと不純物である。
As the aluminum alloy that can be used in the present invention, general JIS 7000 series alloys such as Al-Zn-Mg series and Al-Zn-Mg-Cu series can be used.
For example, in the case of JIS7075 material, the following are all mass%: Zn: 6.40 to 6.90%, Mg: 2.1 to 2.9%, Cu: 1.20 to 2.20%, Mn: 0 .3% or less, Cr: 0.18 to 0.28%, Fe: 0.5% or less, Si: 0.4% or less, Ti: 0.005 to 0.05%, the remainder being Al and impurities. ing.
As a particularly preferable high-strength material, the following aluminum alloy (A) is exemplified.
Alloy (A): Zn: 6.40-6.90%, Mg: 1.60-1.80%, Cu: 0.20-0.30, Mn: 0.20-0.30%, Zr: 0.17 to 0.23%, Cr: 0.20% or less, Ti: 0.005 to 0.05%, Fe: 0.20% or less, Si: 0.10% or less, the remainder being Al and impurities. be.
本発明に係るアルミニウム合金部材の製造方法にあっては、溶体化処理後に、部材の温度が約300℃~200℃以下になるまでの冷却速度を0.1~2.0℃/秒の範囲に制御することで、表層部と内部とで物性値に傾斜を生じさせることができ、耐応力腐食割れ性に優れた高強度部材が得られる。 In the method for manufacturing an aluminum alloy member according to the present invention, after the solution treatment, the cooling rate until the temperature of the member becomes about 300°C to 200°C or less is set in a range of 0.1 to 2.0°C/sec. By controlling this, it is possible to create a gradient in the physical property values between the surface layer and the inside, and a high-strength member with excellent stress corrosion cracking resistance can be obtained.
本発明に係る製造方法は、厚肉の部材に適用するのが効果的であり、肉厚が3mm以上、例えば3~20mm,5~15mmの範囲であってよい。
これにより、各種車両,輸送機のアルミニウム合金製の構造部材が得られる。
The manufacturing method according to the present invention is effectively applied to thick-walled members, and the wall thickness may be 3 mm or more, for example, in the range of 3 to 20 mm, 5 to 15 mm.
As a result, structural members made of aluminum alloy for various vehicles and transportation machines can be obtained.
本発明に係る製造方法と従来のT6処理とを比較評価したので、以下説明する。
図1の表中、実施例1~5は上記で説明した合金(A)を用いて、溶体化後に表中の冷却速度にて焼入れをしたものである。
比較例1は、合金(A)を用いて従来の水冷(T6処理)をしたものである。
比較例2は、7075合金を用いて従来の水冷をしたものである。
以下、具体的に説明する。
The manufacturing method according to the present invention and the conventional T6 treatment were compared and evaluated, and will be explained below.
In the table of FIG. 1, Examples 1 to 5 were obtained by using the alloy (A) described above and quenching at the cooling rate shown in the table after solution treatment.
Comparative Example 1 is an example in which Alloy (A) was subjected to conventional water cooling (T6 treatment).
Comparative Example 2 uses 7075 alloy and performs conventional water cooling.
This will be explained in detail below.
実施例1~5及び比較例1,2は、いずれも肉厚10mmの押出材(部材)を用いた。
実施例1~5は、約450℃で溶体化後にそれぞれ0.16,0.47,0.77,1.30,2.02℃/秒の平均冷却速度にて冷却した。
その後の90℃~120℃+130~180℃の二段人工時効処理した。
比較例1,2は、溶体化後に直に水冷したものである。
機械的性質は、評価部位を切り出し、JIS-Z2241に基づいて評価した。
電気伝導度は、ASTM E1004に基づいて、International Annealed Copper Standard(IACS)の値を100%として比較評価した。
耐SCC性は、ASTM G47に基づいて評価し、腐食性の試験はASTM G34に基づいて試験評価した。
In Examples 1 to 5 and Comparative Examples 1 and 2, extruded materials (members) with a wall thickness of 10 mm were used.
Examples 1 to 5 were cooled at average cooling rates of 0.16, 0.47, 0.77, 1.30, and 2.02°C/sec after solutionization at about 450°C, respectively.
Thereafter, a two-stage artificial aging treatment was performed at 90°C to 120°C + 130 to 180°C.
Comparative Examples 1 and 2 were water-cooled immediately after solution treatment.
Mechanical properties were evaluated based on JIS-Z2241 by cutting out the evaluation site.
The electrical conductivity was comparatively evaluated based on ASTM E1004, with the International Annealed Copper Standard (IACS) value set as 100%.
The SCC resistance was evaluated based on ASTM G47, and the corrosion test was evaluated based on ASTM G34.
表に示す評価結果から、比較例1,2のように水冷による焼入れを行うと、耐力及び引張り強度のいずれも表面(表層部)と内部とで2%以下の差しかない分だけ、表層部の残留応力が大きいことが推定され、耐SCC性,腐食性が劣っていた。
これに対して実施例1~5は、焼入れ初期の冷却速度を順次速くしたものである。
実施例5の冷却速度2.02℃/秒では、表層部が内部より耐力4%低いものの、引張り強度が2%しか差がなく、耐SCC性が目標ぎりぎりであったことから、焼入れ初期の冷却速度は2.0℃/秒以下が好ましいことが明らかになった。
実施例1のように冷却速度を0.16℃/秒にすると、表層部が内部よりも耐力で9%低く、引張強度で10%低くなり、耐SCC性及び腐食性に優れる。
なお、冷却速度0.1~2.0℃/秒の範囲にて焼入れ初期の冷却速度が遅い方が、耐SCC性,腐食性が改善されるものの、機械的性質がやや低下する傾向が認められる。
アルミニウム合金(A)を用いた場合に、部材全体の耐力420MPa,引張強度470MPa以上を確保しつつ、優れた耐SCC性,腐食性を得るには、冷却速度0.5~2.0℃/秒の範囲が好ましいことも明らかになった。
また、本発明は焼入れ初期の冷却速度を所定の範囲に制御することで、表層部の残留応力を抑えたものであり、部材の温度が300℃以下になると、20℃/秒以上の高速冷却を用いた二段冷却であってもよい。
その方が焼入れ品質が安定する。
From the evaluation results shown in the table, when quenching is performed by water cooling as in Comparative Examples 1 and 2, the yield strength and tensile strength of the surface layer are only 2% or less different between the surface (surface layer) and the inside. It was estimated that the residual stress was large, and the SCC resistance and corrosion resistance were poor.
On the other hand, in Examples 1 to 5, the cooling rate at the initial stage of quenching was gradually increased.
At a cooling rate of 2.02°C/sec in Example 5, although the yield strength of the surface layer was 4% lower than that of the inside, the difference in tensile strength was only 2%, and the SCC resistance was just below the target. It has become clear that the cooling rate is preferably 2.0° C./second or less.
When the cooling rate is set to 0.16° C./sec as in Example 1, the yield strength of the surface layer portion is 9% lower and the tensile strength is 10% lower than that of the inner portion, resulting in excellent SCC resistance and corrosion resistance.
It should be noted that when the cooling rate is in the range of 0.1 to 2.0°C/sec, the SCC resistance and corrosion resistance are improved when the cooling rate is slow in the initial stage of quenching, but there is a tendency for the mechanical properties to deteriorate slightly. It will be done.
When using aluminum alloy (A), in order to obtain excellent SCC resistance and corrosion resistance while ensuring proof stress of 420 MPa and tensile strength of 470 MPa or more for the entire member, a cooling rate of 0.5 to 2.0°C/ It has also been found that a range of seconds is preferred.
In addition, the present invention suppresses residual stress in the surface layer by controlling the cooling rate at the initial stage of quenching within a predetermined range, and when the temperature of the member falls below 300°C, high-speed cooling of 20°C/second or more is possible. Two-stage cooling using .
That way, the quenching quality will be more stable.
Claims (3)
前記溶体化処理後に前記部材の温度が300℃になるまでは平均冷却速度0.5~2.0℃/秒の範囲にて空冷し、その後に20℃/秒以上の高速冷却する二段冷却するステップと、
その後に人工時効処理するステップを有し、
前記部材の肉厚全体の寸法に対して表面からの深さが20%の表層部の耐力がそれより内部の耐力よりも4%以上低いことを特徴とするアルミニウム合金部材の製造方法。 a step of solution-treating a member made of 7000 series aluminum alloy and having a wall thickness of 10 to 20 mm at a temperature of 400 to 500°C;
Two-stage cooling in which air cooling is performed at an average cooling rate of 0.5 to 2.0°C/sec until the temperature of the member reaches 300°C after the solution treatment, and then rapid cooling is performed at a rate of 20°C/sec or more. the step of
After that, there is a step of artificial aging treatment,
A method for manufacturing an aluminum alloy member, characterized in that the yield strength of a surface layer portion at a depth of 20% from the surface with respect to the overall thickness of the member is 4% or more lower than the yield strength of the inner part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019019440A JP7366553B2 (en) | 2019-02-06 | 2019-02-06 | Method for manufacturing aluminum alloy parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019019440A JP7366553B2 (en) | 2019-02-06 | 2019-02-06 | Method for manufacturing aluminum alloy parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020125524A JP2020125524A (en) | 2020-08-20 |
JP7366553B2 true JP7366553B2 (en) | 2023-10-23 |
Family
ID=72084736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019019440A Active JP7366553B2 (en) | 2019-02-06 | 2019-02-06 | Method for manufacturing aluminum alloy parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7366553B2 (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119904A (en) | 2005-09-27 | 2007-05-17 | Aisin Keikinzoku Co Ltd | High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same |
JP2009221566A (en) | 2008-03-18 | 2009-10-01 | Kobe Steel Ltd | Aluminum alloy material for high pressure gas vessel having excellent hydrogen embrittlement resistance |
JP2009542912A (en) | 2006-06-30 | 2009-12-03 | アルカン ロールド プロダクツ−レイヴンズウッド,エルエルシー | Heat-treatable high-strength aluminum alloy |
JP2010275611A (en) | 2009-05-29 | 2010-12-09 | Aisin Keikinzoku Co Ltd | 7,000 series aluminum alloy extruded material having excellent scc resistance and method for producing the same |
JP2011001563A (en) | 2007-09-06 | 2011-01-06 | Aisin Keikinzoku Co Ltd | Aluminum alloy extruded product exhibiting excellent impact cracking resistance |
JP2012207302A (en) | 2011-03-16 | 2012-10-25 | Kobe Steel Ltd | METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY |
JP2012246555A (en) | 2011-05-30 | 2012-12-13 | Kobe Steel Ltd | 7000-based aluminum alloy extruded material for case-type |
JP2013518184A (en) | 2010-01-29 | 2013-05-20 | 北京有色金属研究総院 | Aluminum alloy product for manufacturing structural member and method for manufacturing the same |
JP2013108131A (en) | 2011-11-21 | 2013-06-06 | Sumitomo Light Metal Ind Ltd | Aluminum alloy expanded product and method for producing the same |
JP2014234527A (en) | 2013-05-31 | 2014-12-15 | アイシン軽金属株式会社 | Aluminum alloy extrusion material |
JP2015140460A (en) | 2014-01-29 | 2015-08-03 | 株式会社Uacj | High strength aluminum alloy and manufacturing method therefor |
JP2018090839A (en) | 2016-11-30 | 2018-06-14 | アイシン軽金属株式会社 | Extrusion material aluminium alloy, extrusion material using the same and method for manufacturing extrusion material |
CN108265246A (en) | 2018-01-25 | 2018-07-10 | 湖南大学 | A kind of method for improving intensity non-uniformity after 7 line aluminium alloy of large scale quenches |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05255823A (en) * | 1992-03-09 | 1993-10-05 | Furukawa Electric Co Ltd:The | Method for heat treating high tensile strength aluminum alloy |
JPH09310141A (en) * | 1996-05-16 | 1997-12-02 | Nippon Light Metal Co Ltd | High strength al-zn-mg alloy extruded member for structural material excellent in extrudability and its production |
-
2019
- 2019-02-06 JP JP2019019440A patent/JP7366553B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119904A (en) | 2005-09-27 | 2007-05-17 | Aisin Keikinzoku Co Ltd | High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same |
JP2009542912A (en) | 2006-06-30 | 2009-12-03 | アルカン ロールド プロダクツ−レイヴンズウッド,エルエルシー | Heat-treatable high-strength aluminum alloy |
JP2011001563A (en) | 2007-09-06 | 2011-01-06 | Aisin Keikinzoku Co Ltd | Aluminum alloy extruded product exhibiting excellent impact cracking resistance |
JP2009221566A (en) | 2008-03-18 | 2009-10-01 | Kobe Steel Ltd | Aluminum alloy material for high pressure gas vessel having excellent hydrogen embrittlement resistance |
JP2010275611A (en) | 2009-05-29 | 2010-12-09 | Aisin Keikinzoku Co Ltd | 7,000 series aluminum alloy extruded material having excellent scc resistance and method for producing the same |
JP2013518184A (en) | 2010-01-29 | 2013-05-20 | 北京有色金属研究総院 | Aluminum alloy product for manufacturing structural member and method for manufacturing the same |
JP2012207302A (en) | 2011-03-16 | 2012-10-25 | Kobe Steel Ltd | METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY |
JP2012246555A (en) | 2011-05-30 | 2012-12-13 | Kobe Steel Ltd | 7000-based aluminum alloy extruded material for case-type |
JP2013108131A (en) | 2011-11-21 | 2013-06-06 | Sumitomo Light Metal Ind Ltd | Aluminum alloy expanded product and method for producing the same |
JP2014234527A (en) | 2013-05-31 | 2014-12-15 | アイシン軽金属株式会社 | Aluminum alloy extrusion material |
JP2015140460A (en) | 2014-01-29 | 2015-08-03 | 株式会社Uacj | High strength aluminum alloy and manufacturing method therefor |
JP2018090839A (en) | 2016-11-30 | 2018-06-14 | アイシン軽金属株式会社 | Extrusion material aluminium alloy, extrusion material using the same and method for manufacturing extrusion material |
CN108265246A (en) | 2018-01-25 | 2018-07-10 | 湖南大学 | A kind of method for improving intensity non-uniformity after 7 line aluminium alloy of large scale quenches |
Also Published As
Publication number | Publication date |
---|---|
JP2020125524A (en) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7321828B2 (en) | High-strength 6xxx aluminum alloy and method for making same | |
JP5149629B2 (en) | Al-Zn-Cu-Mg alloy mainly composed of aluminum and method for producing and using the same | |
WO2017169962A1 (en) | High strength extruded aluminum alloy material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor | |
EP3795712A1 (en) | Methods for artificially aging aluminum-zinc-magnesium alloys, and products based on the same | |
EP2563944A1 (en) | Damage tolerant aluminium material having a layered microstructure | |
JP7044863B2 (en) | Al-Mg-Si based aluminum alloy material | |
EP3208361B1 (en) | Method for producing aluminum alloy member, and aluminum alloy member obtained by same | |
JP7018274B2 (en) | Aluminum alloy for extrusion molding and method for manufacturing extruded material using it | |
EP2811043B1 (en) | High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same | |
CN110193530B (en) | Method for manufacturing curved molded article using aluminum alloy | |
EP3135790B1 (en) | Method for manufacturing an aluminum alloy member and aluminum alloy member manufactured by the same | |
JP7093611B2 (en) | Aluminum alloy for extruded material and method for manufacturing extruded material and extruded material using it | |
WO2021157356A1 (en) | Production method of high-strength aluminum alloy extruded material | |
JP3485577B2 (en) | Diffusion bonded sputter target assembly having a precipitation hardened backing plate and method of making same | |
TWI434939B (en) | Aluminium alloy and process of preparation thereof | |
JP2020139228A (en) | Method for producing aluminum alloy extrusion material | |
JP2011063885A (en) | Method for producing plastic worked article made of aluminum alloy | |
KR101820012B1 (en) | High-strength aluminum alloy plate with superior bake-hardenability and manufacturing method thereof | |
JPH08269652A (en) | Production of aluminum alloy extruded shape having excellent bendability and high strength | |
JP5532462B2 (en) | Manufacturing method of plastic products made of aluminum alloy | |
JP6096488B2 (en) | Billet for extrusion molding of 7000 series aluminum alloy and method for producing extruded profile | |
JP7366553B2 (en) | Method for manufacturing aluminum alloy parts | |
US20230357902A1 (en) | Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability | |
JP2006274415A (en) | Aluminum alloy forging for high strength structural member | |
US11827967B2 (en) | Method for producing aluminum alloy extruded material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230203 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230810 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231011 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7366553 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |