JP7237311B2 - Compounds, pharmaceutical compositions, KDM5C inhibitors and antidepressants - Google Patents
Compounds, pharmaceutical compositions, KDM5C inhibitors and antidepressants Download PDFInfo
- Publication number
- JP7237311B2 JP7237311B2 JP2019106166A JP2019106166A JP7237311B2 JP 7237311 B2 JP7237311 B2 JP 7237311B2 JP 2019106166 A JP2019106166 A JP 2019106166A JP 2019106166 A JP2019106166 A JP 2019106166A JP 7237311 B2 JP7237311 B2 JP 7237311B2
- Authority
- JP
- Japan
- Prior art keywords
- ring
- alkoxy
- alkyl
- mhz
- aralkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Plural Heterocyclic Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
本発明は、化合物、医薬組成物、KDM5C阻害剤及び抗うつ剤に関する。 The present invention relates to compounds, pharmaceutical compositions, KDM5C inhibitors and antidepressants.
KDM5はがんとの関係が知られており、例えば特許文献1は、KDM5拮抗剤ががん治療及びがんの薬剤耐性の防止に有効であることを開示する。また、特許文献2は、
ヒストン脱メチル化酵素の活性をモジュレートすることができる化合物ががんの治療に有効であることを開示している。
KDM5 is known to be associated with cancer. For example,
It discloses that compounds capable of modulating the activity of histone demethylase are effective in treating cancer.
本発明は、強力なKDM5C阻害作用を有する化合物、医薬組成物及び抗うつ剤を提供することを目的とする。 An object of the present invention is to provide compounds, pharmaceutical compositions, and antidepressants having potent KDM5C inhibitory activity.
本発明は、以下の化合物、医薬組成物、KDM5C阻害剤及び抗うつ剤を提供するものである。
項1. 下記式(I)
The present invention provides the following compounds, pharmaceutical compositions, KDM5C inhibitors and antidepressants.
(式中、R1~R4のいずれか1つはCOR8を示し、R1~R4の他の3つは、同一または相異なり、水素原子、ハロゲン原子、OH、NO2、CN、アルキル、シクロアルキル、アルコキシ、アルキルカルボニルアミノ、アルキルカルボニルオキシ、アリールカルボニルオキシ、カルバモイル、アリールカルボニルアミノ、アリール、アラルキル、アルキルカルボニル、SH又はアルキルチオを示す。R1とR2、R2とR3、R3とR4は、メチレンジオキシを表わすか、或いは、これらが結合している炭素原子と一緒になってシクロペンテン環、シクロペンタジエン環、シクロヘキセン環、シクロヘキサジエン環、ベンゼン環、或いは5員又は6員のヘテロ環を形成してもよい。
R5は、水素原子、ハロゲン原子、アルキル、アルコキシ、アリール、アラルキル、ヒドロキシアルキル又はシクロアルキルを示す。R4とR5は、これらが結合している炭素原子と一緒になって置換基を有していてもよいベンゼン環又は置換基を有していてもよいピリジン環を形成してもよい。
R6、R7は、同一または相異なり、水素原子、アルキル、アルコキシ、アリール、アラルキル、ヒドロキシアルキル又はシクロアルキルを示す。但し、R6とR7が同時に水素原子となることはない。
R8は、OH、アルコキシ、ヒドロキシアルキルオキシ、シクロアルキルオキシ、アリールオキシ又はアラルキルオキシを示す。
ZはN又はCR9を示す。R9は水素原子、アルキル、アリール又はアラルキルを示す。
nは0~5の整数を示す。)
で表される化合物、またはその薬学的に許容される塩もしくは溶媒和物。
項2. 項1に記載の化合物またはその薬学的に許容される塩もしくは溶媒和物と薬学的に許容される賦形剤を含む医薬組成物。
項3. 項1に記載の化合物またはその薬学的に許容される塩もしくは溶媒和物を有効成分とするKDM5C阻害剤。
項4. 項1に記載の化合物またはその薬学的に許容される塩もしくは溶媒和物を有効成分とする抗うつ剤。
(wherein any one of R 1 to R 4 represents COR 8 , and the other three of R 1 to R 4 are the same or different, hydrogen atom, halogen atom, OH, NO 2 , CN, alkyl, cycloalkyl, alkoxy, alkylcarbonylamino, alkylcarbonyloxy, arylcarbonyloxy, carbamoyl, arylcarbonylamino, aryl, aralkyl, alkylcarbonyl, SH or alkylthio R 1 and R 2 , R 2 and R 3 , R 3 and R 4 represent methylenedioxy, or together with the carbon atoms to which they are attached, a cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cyclohexadiene ring, benzene ring, or a 5-membered or A 6-membered heterocycle may be formed.
R5 represents a hydrogen atom, a halogen atom, alkyl, alkoxy, aryl, aralkyl, hydroxyalkyl or cycloalkyl. R 4 and R 5 together with the carbon atom to which they are bonded may form an optionally substituted benzene ring or an optionally substituted pyridine ring.
R 6 and R 7 are the same or different and represent a hydrogen atom, alkyl, alkoxy, aryl, aralkyl, hydroxyalkyl or cycloalkyl. However, R6 and R7 are not hydrogen atoms at the same time.
R 8 represents OH, alkoxy, hydroxyalkyloxy, cycloalkyloxy, aryloxy or aralkyloxy.
Z represents N or CR9 . R9 represents a hydrogen atom, alkyl, aryl or aralkyl.
n represents an integer of 0-5. )
A compound represented by or a pharmaceutically acceptable salt or solvate thereof.
Section 2. A pharmaceutical composition comprising the compound of
Item 3. A KDM5C inhibitor comprising the compound according to
Section 4. Item 2. An antidepressant comprising the compound of
本発明によれば、強力なKDM5C阻害作用を有する抗うつ剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the antidepressant which has a strong KDM5C inhibitory effect can be provided.
本発明の化合物は、下記式(I) The compounds of the present invention have the following formula (I)
(式中、R1~R7、Z、nは、前記に定義された通りである。)
で表される化合物、またはその薬学的に許容される塩もしくは溶媒和物である。
(Wherein, R 1 to R 7 , Z, and n are as defined above.)
is a compound represented by or a pharmaceutically acceptable salt or solvate thereof.
本発明の1つの好ましい実施形態において、R3はCOR8を示し、R1、R2、R4は同一または相異なり、水素原子、ハロゲン原子、OH、NO2、CN、アルキル、シクロアルキル、アルコキシ、アルキルカルボニルオキシ、アリールカルボニルオキシ、カルバモイル、アルキルカルボニルアミノ、アリール、アラルキル、アルキルカルボニル、SH又はアルキルチオを示す。R1とR2は、メチレンジオキシを表わすか、或いは、これらが結合している炭素原子と一緒になってシクロペンテン環、シクロペンタジエン環、シクロヘキセン環、シクロヘキサジエン環、ベンゼン環、或いは5員又は6員のヘテロ環を形成してもよい。 In one preferred embodiment of the present invention, R 3 represents COR 8 , R 1 , R 2 , R 4 are the same or different, hydrogen atom, halogen atom, OH, NO 2 , CN, alkyl, cycloalkyl, Alkoxy, alkylcarbonyloxy, arylcarbonyloxy, carbamoyl, alkylcarbonylamino, aryl, aralkyl, alkylcarbonyl, SH or alkylthio. R 1 and R 2 represent methylenedioxy, or together with the carbon atoms to which they are attached, a cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cyclohexadiene ring, benzene ring, or a 5-membered or A 6-membered heterocycle may be formed.
本発明の他の1つの好ましい実施形態において、R2はCOR8を示し、R1、R3、R4は同一または相異なり、水素原子、ハロゲン原子、OH、NO2、CN、アルキル、シクロアルキル、アルコキシ、アルキルカルボニルオキシ、アリールカルボニルオキシ、カルバモイル、アルキルカルボニルアミノ、アリール、アラルキル、アルキルカルボニル、SH又はアルキルチオを示す。R3とR4は、メチレンジオキシを表わすか、或いは、これらが結合している炭素原子と一緒になってシクロペンテン環、シクロペンタジエン環、シクロヘキセン環、シクロヘキサジエン環、ベンゼン環、或いは5員又は6員のヘテロ環を形成してもよい。 In another preferred embodiment of the present invention, R 2 represents COR 8 and R 1 , R 3 , R 4 are the same or different and represent a hydrogen atom, a halogen atom, OH, NO 2 , CN, alkyl, cyclo represents alkyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, carbamoyl, alkylcarbonylamino, aryl, aralkyl, alkylcarbonyl, SH or alkylthio. R 3 and R 4 represent methylenedioxy, or together with the carbon atoms to which they are attached, a cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cyclohexadiene ring, benzene ring, or a 5-membered or A 6-membered heterocycle may be formed.
本発明の他の1つの好ましい実施形態において、R1はCOR8を示し、R2~R4は同一または相異なり、水素原子、ハロゲン原子、OH、NO2、CN、アルキル、シクロアルキル、アルコキシ、アルキルカルボニルオキシ、アリールカルボニルオキシ、カルバモイル、アルキルカルボニルアミノ、アリール、アラルキル、アルキルカルボニル、SH又はアルキルチオを示す。R2とR3、R3とR4は、メチレンジオキシを表わすか、或いは、これらが結合している炭素原子と一緒になってシクロペンテン環、シクロペンタジエン環、シクロヘキセン環、シクロヘキサジエン環、ベンゼン環、或いは5員又は6員のヘテロ環を形成してもよい。 In another preferred embodiment of the present invention, R 1 represents COR 8 , R 2 to R 4 are the same or different, hydrogen atom, halogen atom, OH, NO 2 , CN, alkyl, cycloalkyl, alkoxy , alkylcarbonyloxy, arylcarbonyloxy, carbamoyl, alkylcarbonylamino, aryl, aralkyl, alkylcarbonyl, SH or alkylthio. R 2 and R 3 , R 3 and R 4 each represent methylenedioxy, or together with the carbon atoms to which they are attached, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cyclohexadiene ring, benzene A ring or a 5- or 6-membered heterocyclic ring may be formed.
本発明の他の1つの好ましい実施形態において、R5は水素原子、フッ素原子又はアルキルである。 In another preferred embodiment of the invention R5 is a hydrogen atom, a fluorine atom or alkyl.
本発明の他の1つの好ましい実施形態において、R6、R7は、同一または相異なり、水素原子、アルキル、アラルキル、ヒドロキシアルキル又はシクロアルキルを示し、より好ましくはアルキルを示す。 In another preferred embodiment of the invention, R 6 , R 7 are the same or different and represent a hydrogen atom, alkyl, aralkyl, hydroxyalkyl or cycloalkyl, more preferably alkyl.
本発明の他の1つの好ましい実施形態において、R8はOH、アルコキシ、アリールオキシ又はアラルキルオキシである。 In another preferred embodiment of the invention R8 is OH, alkoxy, aryloxy or aralkyloxy.
本発明の他の1つの好ましい実施形態において、R9は水素原子又はアルキルである。 In another preferred embodiment of the invention R9 is a hydrogen atom or alkyl.
本発明の他の1つの好ましい実施形態において、一般式(I)で表される本発明の好ましい化合物は、R3がCOR8を示し、R1、R2、R4、R5がいずれも水素原子である。 In another preferred embodiment of the present invention, preferred compounds of the present invention represented by general formula (I) are those in which R 3 represents COR 8 and R 1 , R 2 , R 4 , R 5 are all It is a hydrogen atom.
nは0~5の整数、好ましくは0~4の整数、より好ましくは1~3の整数、さらに好ましくは1又は2、特に好ましくは1である。 n is an integer of 0 to 5, preferably an integer of 0 to 4, more preferably an integer of 1 to 3, more preferably 1 or 2, particularly preferably 1;
Zは、N(窒素原子)又はCR9、より好ましくはNである。 Z is N (nitrogen atom) or CR 9 , more preferably N.
溶媒和物を構成する溶媒としては、水、アルコール(メタノール、エタノール、n-プロパノール、イソプロパノール、ブタノールなど)、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ベンゼン、トルエン、塩化メチレン、クロロホルム、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられる。 Solvents constituting solvates include water, alcohols (methanol, ethanol, n-propanol, isopropanol, butanol, etc.), acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran, diethyl ether, diisopropyl ether, benzene, toluene, methylene chloride, chloroform, acetonitrile, dimethylformamide, dimethylsulfoxide and the like.
薬学的に許容される塩としては、ナトリウム塩、カリウム塩、リチウム塩などのアルカリ金属塩、フッ酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、硝酸塩、リン酸塩、過塩素酸塩などの無機酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、酢酸塩、乳酸塩、マレイン酸塩、フマル酸塩、コハク酸塩、クエン酸塩、ピルビン酸塩、安息香酸塩などの有機酸塩が挙げられる。 Pharmaceutically acceptable salts include alkali metal salts such as sodium salts, potassium salts, lithium salts, hydrofluorates, hydrochlorides, hydrobromides, hydroiodide, sulfates, nitrates, phosphates salts, inorganic acid salts such as perchlorates, methanesulfonates, ethanesulfonates, benzenesulfonates, toluenesulfonates, acetates, lactates, maleates, fumarates, succinates, Organic acid salts such as citrate, pyruvate and benzoate are included.
本明細書において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、フッ素原子、塩素原子、臭素原子が好ましく、フッ素原子、塩素原子がより好ましい。 In the present specification, the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom and a bromine atom, more preferably a fluorine atom and a chlorine atom.
アルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、ヘキシル、ヘプチル、オクチル、2-エチルヘキシル、ノニル、デシル等の直鎖又は分枝を有するC1-10アルキル、好ましくはC1-8アルキル、より好ましくはC1-6アルキルが挙げられる。 Alkyl includes linear or branched chain such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl and decyl. C 1-10 alkyl, preferably C 1-8 alkyl, more preferably C 1-6 alkyl having
アルキルチオとしては、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピルチオ、n-ブチルチオ、イソブチルチオ、tert-ブチルチオ、n-ペンチルチオ、イソペンチルチオ、ヘキシルチオ等の直鎖又は分枝を有するC1-6アルキルチオが挙げられる。 Alkylthio includes linear or branched C 1-6 alkylthio such as methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, tert-butylthio, n-pentylthio, isopentylthio and hexylthio. mentioned.
ヒドロキシアルキルとしては、ヒドロキシメチル、2-ヒドロキシエチル、3-ヒドロキシプロピル、4-ヒドロキシブチル、5-ヒドロキシペンチル、6-ヒドロキシヘキシル等のC1-6ヒドロキシアルキルが挙げられる。 Hydroxyalkyl includes C 1-6 hydroxyalkyl such as hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 5-hydroxypentyl, 6-hydroxyhexyl and the like.
ヒドロキシアルキルオキシとしては、ヒドロキシメチルオキシ、2-ヒドロキシエチルオキシ、3-ヒドロキシプロピルオキシ、4-ヒドロキシブチルオキシ、5-ヒドロキシペンチルオキシ、6-ヒドロキシヘキシルオキシ等のC1-6ヒドロキシアルキルオキシが挙げられる。 Hydroxyalkyloxy includes C 1-6 hydroxyalkyloxy such as hydroxymethyloxy, 2-hydroxyethyloxy, 3-hydroxypropyloxy, 4-hydroxybutyloxy, 5-hydroxypentyloxy and 6-hydroxyhexyloxy. be done.
シクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル及びシクロヘプチル等のC3-7シクロアルキルが挙げられる。 Cycloalkyl includes C 3-7 cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
シクロアルキルオキシとしては、シクロプロピルオキシ、シクロブチルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ及びシクロヘプチルオキシ等のC3-7シクロアルキルオキシが挙げられる。 Cycloalkyloxy includes C 3-7 cycloalkyloxy such as cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy and cycloheptyloxy.
アルキルカルボニルアミノとしては、メチルカルボニルアミノ、エチルカルボニルアミノ、n-プロピルカルボニルアミノ、イソプロピルカルボニルアミノ、n-ブチルカルボニルアミノ、イソブチルカルボニルアミノ、tert-ブチルカルボニルアミノ、n-ペンチルカルボニルアミノ、イソペンチルカルボニルアミノ、ヘキシルカルボニルアミノ等の直鎖又は分岐を有するC1-6アルキルカルボニルアミノが挙げられる。 Alkylcarbonylamino includes methylcarbonylamino, ethylcarbonylamino, n-propylcarbonylamino, isopropylcarbonylamino, n-butylcarbonylamino, isobutylcarbonylamino, tert-butylcarbonylamino, n-pentylcarbonylamino and isopentylcarbonylamino. , straight or branched C 1-6 alkylcarbonylamino such as hexylcarbonylamino.
アルキルカルボニルとしては、メチルカルボニル、エチルカルボニル、n-プロピルカルボニル、イソプロピルカルボニル、n-ブチルカルボニル、イソブチルカルボニル、tert-ブチルカルボニル、n-ペンチルカルボニル、イソペンチルカルボニル、ヘキシルカルボニル等の直鎖又は分岐を有するC1-6アルキルカルボニルが挙げられる。 Alkylcarbonyl includes linear or branched chain such as methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, isopropylcarbonyl, n-butylcarbonyl, isobutylcarbonyl, tert-butylcarbonyl, n-pentylcarbonyl, isopentylcarbonyl, hexylcarbonyl, etc. C 1-6 alkylcarbonyl having.
アリールとしては、5又は6員の芳香族炭化水素環からなる単環又は多環系の基を意味し、具体的には、フェニル、ナフチル、フルオレニル、アントリル、ビフェニリル、テトラヒドロナフチル、クロマニル、2,3-ジヒドロ-1,4-ジオキサナフタレニル、インダニル及びフェナントリルが挙げられる。 Aryl means a monocyclic or polycyclic group consisting of a 5- or 6-membered aromatic hydrocarbon ring, specifically phenyl, naphthyl, fluorenyl, anthryl, biphenylyl, tetrahydronaphthyl, chromanyl, 2, 3-dihydro-1,4-dioxanaphthalenyl, indanyl and phenanthryl.
5員又は6員のヘテロ環としては、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、イソオキサゾール、イソチアゾール、ピリジン、ピラジン、ピリミジン、ピリダジンが挙げられる。 5- or 6-membered heterocycles include furan, thiophene, pyrrole, imidazole, pyrazole, oxazole, thiazole, isoxazole, isothiazole, pyridine, pyrazine, pyrimidine, pyridazine.
アルキルカルボニルオキシの具体例としては、メチルカルボニルオキシ、エチルカルボニルオキシ、n-プロピルカルボニルオキシ、イソプロピルカルボニルオキシ、n-ブチルカルボニルオキシ、イソブチルカルボニルオキシ、tert-ブチルカルボニルオキシ、n-ペンチルカルボニルオキシ、イソペンチルカルボニルオキシ、ヘキシルカルボニルオキシ等のC1-6アルキルカルボニルオキシが挙げられる。 Specific examples of alkylcarbonyloxy include methylcarbonyloxy, ethylcarbonyloxy, n-propylcarbonyloxy, isopropylcarbonyloxy, n-butylcarbonyloxy, isobutylcarbonyloxy, tert-butylcarbonyloxy, n-pentylcarbonyloxy, iso Examples include C 1-6 alkylcarbonyloxy such as pentylcarbonyloxy, hexylcarbonyloxy and the like.
アリールカルボニルオキシの具体例としては、フェニルカルボニルオキシ、ナフチルカルボニルオキシ、フルオレニルカルボニルオキシ、アントリルカルボニルオキシ、ビフェニリルカルボニルオキシ、テトラヒドロナフチルカルボニルオキシ、クロマニルカルボニルオキシ、2,3-ジヒドロ-1,4-ジオキサナフタレニルカルボニルオキシ、インダニルカルボニルオキシ及びフェナントリルカルボニルオキシが挙げられる。 Specific examples of arylcarbonyloxy include phenylcarbonyloxy, naphthylcarbonyloxy, fluorenylcarbonyloxy, anthrylcarbonyloxy, biphenylylcarbonyloxy, tetrahydronaphthylcarbonyloxy, chromanylcarbonyloxy, 2,3-dihydro-1 ,4-dioxanaphthalenylcarbonyloxy, indanylcarbonyloxy and phenanthrylcarbonyloxy.
アリールカルボニルアミノの具体例としては、フェニルカルボニルアミノ、ナフチルカルボニルアミノ、フルオレニルカルボニルアミノ、アントリルカルボニルアミノ、ビフェニリルカルボニルアミノ、テトラヒドロナフチルカルボニルアミノ、クロマニルカルボニルアミノ、2,3-ジヒドロ-1,4-ジオキサナフタレニルカルボニルアミノ、インダニルカルボニルアミノ及びフェナントリルカルボニルアミノが挙げられる。 Specific examples of arylcarbonylamino include phenylcarbonylamino, naphthylcarbonylamino, fluorenylcarbonylamino, anthrylcarbonylamino, biphenylylcarbonylamino, tetrahydronaphthylcarbonylamino, chromanylcarbonylamino, 2,3-dihydro-1 ,4-dioxanaphthalenylcarbonylamino, indanylcarbonylamino and phenanthrylcarbonylamino.
アルコキシの具体例としては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、tert-ブトキシ、n-ペンチルオキシ、イソペンチルオキシ、ヘキシルオキシ等の直鎖又は分岐を有するC1-6アルコキシが挙げられる。 Specific examples of alkoxy include linear or branched C 1- 6 alkoxy can be mentioned.
アリールオキシの具体例としては、フェニルオキシ、ナフチルオキシ、フルオレニルオキシ、アントリルオキシ、ビフェニリルオキシ、テトラヒドロナフチルオキシ、クロマニルオキシ、2,3-ジヒドロ-1,4-ジオキサナフタレニルオキシ、インダニルオキシ及びフェナントリルオキシが挙げられる。 Specific examples of aryloxy include phenyloxy, naphthyloxy, fluorenyloxy, anthryloxy, biphenylyloxy, tetrahydronaphthyloxy, chromanyloxy, 2,3-dihydro-1,4-dioxanaphthalenyl. oxy, indanyloxy and phenanthryloxy.
アラルキルの具体例としては、ベンジル、ナフチルメチル、フルオレニルメチル、アントリルメチル、ビフェニリルメチル、テトラヒドロナフチルメチル、クロマニルメチル、2,3-ジヒドロ-1,4-ジオキサナフタレニルメチル、インダニルメチル及びフェナントリルメチル、フェネチル、ナフチルエチル、フルオレニルエチル、アントリルエチル、ビフェニリルエチル、テトラヒドロナフチルエチル、クロマニルエチル、2,3-ジヒドロ-1,4-ジオキサナフタレニルエチル、インダニルエチル及びフェナントリルエチルが挙げられる。 Specific examples of aralkyl include benzyl, naphthylmethyl, fluorenylmethyl, anthrylmethyl, biphenylylmethyl, tetrahydronaphthylmethyl, chromanylmethyl, 2,3-dihydro-1,4-dioxanaphthalenylmethyl, indanylmethyl and phenanthrylmethyl, phenethyl, naphthylethyl, fluorenylethyl, anthrylethyl, biphenylylethyl, tetrahydronaphthylethyl, chromanylethyl, 2,3-dihydro-1,4-dioxanaphthalenyl Ethyl, indanylethyl and phenanthrylethyl are mentioned.
アラルキルオキシの具体例としては、ベンジルオキシ、ナフチルメチルオキシ、フルオレニルメチルオキシ、アントリルメチルオキシ、ビフェニリルメチルオキシ、テトラヒドロナフチルメチルオキシ、クロマニルメチルオキシ、2,3-ジヒドロ-1,4-ジオキサナフタレニルメチルオキシ、インダニルメチルオキシ及びフェナントリルメチルオキシ、フェネチルオキシ、ナフチルエチルオキシ、フルオレニルエチルオキシ、アントリルエチルオキシ、ビフェニリルエチルオキシ、テトラヒドロナフチルエチルオキシ、クロマニルエチルオキシ、2,3-ジヒドロ-1,4-ジオキサナフタレニルエチルオキシ、インダニルエチルオキシ及びフェナントリルエチルオキシが挙げられる。 Specific examples of aralkyloxy include benzyloxy, naphthylmethyloxy, fluorenylmethyloxy, anthrylmethyloxy, biphenylylmethyloxy, tetrahydronaphthylmethyloxy, chromanylmethyloxy, 2,3-dihydro-1,4 - dioxanaphthalenylmethyloxy, indanylmethyloxy and phenanthrylmethyloxy, phenethyloxy, naphthylethyloxy, fluorenylethyloxy, anthrylethyloxy, biphenylylethyloxy, tetrahydronaphthylethyloxy, chromanyl Ethyloxy, 2,3-dihydro-1,4-dioxanaphthalenylethyloxy, indanylethyloxy and phenanthrylethyloxy.
置換基を有していてもよいベンゼン環又は置換基を有していてもよいピリジン環の置換基としては、ハロゲン原子、OH、NO2、CN、アルキル、シクロアルキル、アルコキシ、アルキルカルボニルオキシ、アリールカルボニルオキシ、アミノ、カルバモイル、アルキルカルボニルアミノ、アリール、アラルキル、アルキルカルボニル、SH又はアルキルチオが挙げられる。 Substituents of the optionally substituted benzene ring or optionally substituted pyridine ring include a halogen atom, OH, NO 2 , CN, alkyl, cycloalkyl, alkoxy, alkylcarbonyloxy, Arylcarbonyloxy, amino, carbamoyl, alkylcarbonylamino, aryl, aralkyl, alkylcarbonyl, SH or alkylthio.
本発明の化合物は、以下のスキーム1~3に従い製造することができる。
スキーム1
The compounds of the invention can be prepared according to Schemes 1-3 below.
(式中、R1~R4、R6、R7、nは前記に定義される通りである。)
スキーム2
(Wherein, R 1 to R 4 , R 6 , R 7 and n are as defined above.)
Scheme 2
(式中、R1~R7、Z、nは前記に定義される通りである。Xは脱離基を示す。)
スキーム3
(Wherein, R 1 to R 7 , Z and n are as defined above. X represents a leaving group.)
Scheme 3
(式中、R1~R7、Z、nは前記に定義される通りである。Xは脱離基を示す。)
スキーム1において、化合物(1)1モルに対し化合物(2)を1モルから過剰量、硫酸銅を1モルから過剰量、アスコルビン酸を1モルから過剰量使用し、クリックケミストリーにより溶媒の存在下に10℃~溶媒の沸点程度の温度下に1~24時間反応させることで、R5=H、Z=Nである本発明の化合物(IA)を得ることができる。
(Wherein, R 1 to R 7 , Z and n are as defined above. X represents a leaving group.)
In
スキーム2において、化合物(3)1モルに対し化合物(4)を1モルから過剰量使用し、必要に応じて塩基及び溶媒の存在下に10℃~溶媒の沸点程度の温度下に1~24時間反応させることで、本発明の一般式(I)の化合物を得ることができる。 In scheme 2, compound (4) is used in an excess amount of 1 mol to 1 mol of compound (3), and if necessary, in the presence of a base and a solvent at a temperature of about 10 ° C. to the boiling point of the solvent. The compound of general formula (I) of the present invention can be obtained by reacting for time.
スキーム3において、化合物(5)1モルに対し化合物(6)を1モルから過剰量使用し、必要に応じて塩基及び溶媒の存在下に10℃~溶媒の沸点程度の温度下に1~24時間反応させることで、本発明の一般式(I)の化合物を得ることができる。 In scheme 3, compound (6) is used in an excess amount of 1 mol to 1 mol of compound (5), and if necessary, in the presence of a base and a solvent at a temperature of about 10 ° C. to the boiling point of the solvent. The compound of general formula (I) of the present invention can be obtained by reacting for time.
スキーム1~3の反応において、溶媒としては、塩化メチレン、1,2-ジクロロエタンなどの塩素化炭化水素、トルエン等の芳香族溶媒、酢酸エチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、ジエチルエーテル、テトラヒドロフランなどのエーテル系溶媒が挙げられる。
In the reactions of
スキーム2~3の反応において、塩基としては、DBU、ピリジン、トリエチルアミン、ジイソプロピルエチルアミンなどが挙げられる。 In the reactions of Schemes 2-3, bases include DBU, pyridine, triethylamine, diisopropylethylamine, and the like.
脱離基としては、塩素原子、臭素原子、p-トルエンスルホニルオキシ(Ts-O)、ベンゼンスルホニルオキシ、メタンスルホニルオキシ(Ms-O)などが挙げられる。 Leaving groups include chlorine atom, bromine atom, p-toluenesulfonyloxy (Ts-O), benzenesulfonyloxy, methanesulfonyloxy (Ms-O) and the like.
本発明の好ましい化合物は、KDM5C(Lysine-specific demethylase 5C)阻害剤であり、より好ましくはKDM5Cを選択的に阻害する。KDM5Cに対するIC50は100nM以下が好ましく、50nM以下がより好ましく、10nM以下がさらに好ましい。また、KDM5Cに対するIC50はKDM5Aに対するIC50よりも10倍以上低いことが好ましく、50倍以上低いことがより好ましく、100倍以上低いことがさらに好ましい。 Preferred compounds of the present invention are KDM5C (Lysine-specific demethylase 5C) inhibitors, and more preferably selectively inhibit KDM5C. The IC50 for KDM5C is preferably 100 nM or less, more preferably 50 nM or less, even more preferably 10 nM or less. Also, the IC50 for KDM5C is preferably at least 10 times lower than the IC50 for KDM5A, more preferably at least 50 times lower, even more preferably at least 100 times lower.
本発明の化合物は、KDM5Cの強力な阻害作用を有し、抗うつ剤として好ましい。 The compounds of the present invention have potent KDM5C inhibitory activity and are preferred as antidepressants.
本発明の化合物を有効成分とする医薬は、その使用目的に合わせて投与方法、剤型、投与量を適宜決定することが可能である。例えば、本発明の化合物を有効成分とする医薬の投与形態は、経口投与でも非経口投与でも良い。剤型としては、例えば錠剤、粉剤、カプセル剤、顆粒剤、エキス剤、シロップ剤等の経口投与剤、または注射剤、点滴剤、もしくは坐剤等の非経口投与剤を挙げることができる。これらの製剤は、本発明の化合物と薬学的に許容される賦形剤を含む医薬組成物として製造することができる。本発明の化合物の抗うつ剤としての有効量は、通常、成人一日当たり経口投与の場合、0.1-1000 mg、非経口投与の場合0.01-200 mg程度が適当であり、これを一日に一回乃至複数回投与する。投与量は種々の条件で変動するので、上記投与量範囲より少ない量で充分な場合もある。 The administration method, dosage form, and dosage of a drug containing the compound of the present invention as an active ingredient can be appropriately determined according to the purpose of use. For example, the dosage form of a drug containing the compound of the present invention as an active ingredient may be oral administration or parenteral administration. Dosage forms include oral administration agents such as tablets, powders, capsules, granules, extracts and syrups, and parenteral administration agents such as injections, drip infusions and suppositories. These formulations can be prepared as pharmaceutical compositions containing a compound of the invention and a pharmaceutically acceptable excipient. The effective dose of the compound of the present invention as an antidepressant is usually 0.1-1000 mg per day for adults when administered orally and 0.01-200 mg when administered parenterally. Administer once or multiple times. Since the dose varies depending on various conditions, a dose less than the above dose range may be sufficient.
以下、実施例を参照して本発明を更に具体的に説明するが、本発明は以下の特定の実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following specific examples.
・分析
融点はYanagimoto製融点測定装置を用いて測定した。
1H NMR(300 MHz)および13C NMR(75 MHz)はBRUKER社 AVANCE300 AV spectrometerを用いて測定した。化学シフト(δ)は内部標準であるテトラメチルシランを元にparts per million (ppm)で示した。
Electrospray ionization (ESI) マススペクトルはBRUKER社HCT plus mass spectrometerを用いた。
HPLCは島津製HPLC装置にCOSMOSIL Packed Column(5C18-AR-II, 4.6ID×150 mm, ナカライ製)を取り付け、以下の条件で測定した。溶媒:(A)0.1%TFA水溶液、(B)0.1%TFAアセトニトリル溶液。流速:1.0 mL/min。測定波長:254 nm。溶媒組成:A/B 0~20 分(90/10 ~ 10/90), 20~30 分 (10/90), 30 ~ 40 (10-90 ~ 90/10).
·analysis
Melting points were measured using a Yanagimoto melting point apparatus.
1 H NMR (300 MHz) and 13 C NMR (75 MHz) were measured using a BRUKER AVANCE300 AV spectrometer. Chemical shifts (δ) are shown in parts per million (ppm) based on tetramethylsilane as an internal standard.
Electrospray ionization (ESI) Mass spectra were obtained using a BRUKER HCT plus mass spectrometer.
HPLC was performed by attaching a COSMOSIL Packed Column (5C 18 -AR-II, 4.6ID×150 mm, manufactured by Nacalai) to an HPLC apparatus manufactured by Shimadzu under the following conditions. Solvents: (A) 0.1% TFA aqueous solution, (B) 0.1% TFA acetonitrile solution. Flow rate: 1.0 mL/min. Measurement wavelength: 254 nm. Solvent composition: A/B 0-20 min (90/10 to 10/90), 20-30 min (10/90), 30-40 (10-90 to 90/10).
・試薬
試薬と溶媒はAldrich、東京化成工業、キシダ化学、関東化学、和光純薬、ナカライテスクの市販品をそのまま使用した。カラムクロマトグラフィーはTOYOTAKAKO SILICA GEL製 (#AP300D)シリカゲル(粒径 200-440 mesh) を用いた。
・Reagents Commercially available reagents and solvents from Aldrich, Tokyo Chemical Industry, Kishida Chemical, Kanto Chemical, Wako Pure Chemical, and Nacalai Tesque were used as they were. For column chromatography, TOYOTA KAKO SILICA GEL (#AP300D) silica gel (particle size: 200-440 mesh) was used.
KDM5阻害剤として報告されたCPI-455は、文献(Nat Chem Biol. 2016 Jul;12(7):531-8. doi: 10.1038/nchembio.2085. Epub 2016 May 23.)に従い合成した。 CPI-455, reported as a KDM5 inhibitor, was synthesized according to the literature (Nat Chem Biol. 2016 Jul;12(7):531-8. doi: 10.1038/nchembio.2085. Epub 2016 May 23.).
KDM5阻害剤として報告されたNCDM-81aは、文献(ACS Med. Chem. Lett.2015, 6, 6, 665-670)に従い合成した。 NCDM-81a, reported as a KDM5 inhibitor, was synthesized according to the literature (ACS Med. Chem. Lett. 2015, 6, 6, 665-670).
製造例1
2-Ethynylisoniconinic acid (Alk1)
Step 1. methyl 2-bromoisonicotinate (9).
2-ブロモニコチン酸 (1.46 g, 7.23 mmol)のジクロロメタン/メタノール(10.0 mL/15.0 mL)溶液にEDCI.HCl (1.36 g, 7.20 mmol)を加え20時間室温で撹拌した。反応終了後、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン = 1/10)で精製した。無色粉末固体1.35 gの生成物9を得た。収率87%。 1H NMR (CDCl3, 300 MHz, δ; ppm) 8.52 (dd, 1H, J = 4.2, 0.6 Hz), 8.02 (t, 1H, J = 6.6 Hz), 7.80 (dd, 1H, J = 3.9, 0.6 Hz), 3.97 (s, 3H); 13C NMR (CDCl3, 75 MHz, δ; ppm) 151.04, 144.26, 141.19, 129.15, 123.30, 54.40; MS (ESI) m/z 215.7, 217.7 (MH+).
Production example 1
2-Ethynylisoniconic acid (Alk1)
EDCI.HCl (1.36 g, 7.20 mmol) was added to a dichloromethane/methanol (10.0 mL/15.0 mL) solution of 2-bromonicotinic acid (1.46 g, 7.23 mmol) and stirred at room temperature for 20 hours. After completion of the reaction, the solvent was distilled off and the residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/10). 1.35 g of product 9 was obtained as a colorless powdery solid. Yield 87%. 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 8.52 (dd, 1H, J = 4.2, 0.6 Hz), 8.02 (t, 1H, J = 6.6 Hz), 7.80 (dd, 1H, J = 3.9, 0.6 Hz), 3.97 (s, 3H); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm) 151.04, 144.26, 141.19, 129.15, 123.30, 54.40; MS (ESI) m/z 215.7, 217.7 (MH + ).
Step 2: 2-trimethylsilylethynylpyridine-4-carboxylic acid methyl ester (10)
化合物 9 (216 mg, 1.00 mmol), PdCl2(PPh3)2(36.0 mg, 51.2 μmol)とCuI (19.0 mg,100 μmol)のトリエチルアミン(200 μL)/アセトニトリル(2.00 mL)溶液にトリメチルシリルアセチレン(165 μL, 1.17 mmol)をアルゴン雰囲気下で加えた。反応溶液を室温、アルゴン雰囲気下で3時間撹拌した。反応終了後、溶媒を留去し、残渣にジエチルエーテルを加え、ろ過により固体を除去した。ろ液を濃縮後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン= 1/10)で精製し、102 mgの黄色オイル状生成物10を得た。収率70%。1H NMR (CDCl3, 300 MHz, δ; ppm) 8.68 (dd, 1H, J = 4.2, 0.6 Hz), 7.97 (s, 1H), 7.73 (dd, 1H, J = 4.2, 0.6 Hz), 3.93 (s, 3H), 0.26 (s, 9H); 13C NMR(CDCl3, 75 MHz, δ; ppm) 151.04, 144.26, 138.20, 127.06, 122.58, 103.50, 96.86,53.35, 0.18; MS (ESI) m/z 233.8 (MH+).
Step 2: 2 -trimethylsilylethynylpyridine- 4 -carboxylic acid methyl ester (10)
Trimethylsilylacetylene ( _ 165 μL, 1.17 mmol) was added under an argon atmosphere. The reaction solution was stirred at room temperature under an argon atmosphere for 3 hours. After completion of the reaction, the solvent was distilled off, diethyl ether was added to the residue, and the solid was removed by filtration. After concentrating the filtrate, the residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/10) to obtain 102 mg of a yellow oily product 10. Yield 70%. 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 8.68 (dd, 1H, J = 4.2, 0.6 Hz), 7.97 (s, 1H), 7.73 (dd, 1H, J = 4.2, 0.6 Hz), 3.93 (s, 3H), 0.26 (s, 9H); 13 C NMR(CDCl 3 , 75 MHz, δ; ppm) 151.04, 144.26, 138.20, 127.06, 122.58, 103.50, 96.86,53.35, 0.18; MS (ESI) m /z 233.8 (MH + ).
Step 3: 2-Ethynyisonicotinic acid (Alk1)
化合物10 (50.0 mg, 215 μmol)のメタノール(2.00 mL)溶液に2 N水酸化ナトリウム水溶液 (236 μL, 472 μmol)を0 °Cで加えた。反応溶液を室温、12時間撹拌した。反応終了後、反応溶液に飽和クエン酸水溶液を加えpHを4.0に調整した。析出した固体をろ取し、水で洗浄後、乾燥させた。粗生成物をメタノール/酢酸エチル=2/1で再結晶し、29.4 mgの白色固体Alk1を得た。収率93%。mp 203-205 °C; 1H NMR (DMSO-d6, 300 MHz, δ; ppm) 8.75 (dd, 1H, J = 5.1, 0.9 Hz), 7.87-7.88 (m, 1H), 7.81 (dd, 1H, J = 4.8, 1.5 Hz), 4.45 (s, 1H); 13C NMR (DMSO-d6, 75 MHz, δ; ppm) 164.95, 150.97, 143.43, 137.88, 126.11, 122.75, 82.64, 81.05; Anal. Calcd. for C8H5NO1 : C, 65.31; H, 3.43; N, 9.52. Found: C, 64.91; H, 3.60; N, 9.28. HRMS (EI) Calcd. for C8H5O2N 147.0320, Found 147.0310.
Step 3: 2-Ethynyisonicotinic acid (Alk1)
To a methanol (2.00 mL) solution of compound 10 (50.0 mg, 215 µmol) was added 2 N aqueous sodium hydroxide solution (236 µL, 472 µmol) at 0°C. The reaction solution was stirred at room temperature for 12 hours. After completion of the reaction, a saturated aqueous citric acid solution was added to the reaction solution to adjust the pH to 4.0. The precipitated solid was collected by filtration, washed with water, and dried. The crude product was recrystallized with methanol/ethyl acetate=2/1 to obtain 29.4 mg of white solid Alk1. Yield 93%. mp 203-205 °C; 1 H NMR (DMSO-d 6 , 300 MHz, δ; ppm) 8.75 (dd, 1H, J = 5.1, 0.9 Hz), 7.87-7.88 (m, 1H), 7.81 (dd, 1H, J = 4.8, 1.5 Hz), 4.45 (s, 1H); 13 C NMR (DMSO-d 6 , 75 MHz, δ; ppm) 164.95, 150.97, 143.43, 137.88, 126.11, 122.75, 82.64, 81.05; Anal H, 3.43 ; N, 9.52. Found: C , 64.91 ; H, 3.60; N, 9.28.
N-(methylsulfonyl)-2-ethynyl-4-pyridinecarboxamide (Alk2)Alk1 (147 mg, 1.00 mmol)、EDCI. HCl (388 mg, 2.00 mmol)、およびDMAP (244 mg, 2.00mmol)のジクロロメタン(15.0 mL)溶液にmethyl sulfonamide (189 mg, 2.00 mmol)を加え、室温で24時間撹拌した。反応溶液を水で洗浄し、水層を1N塩酸で酸性にした後、ジクロロメタンで抽出した。有機層を水で洗浄し、Na2SO4で乾燥したあと、エバポレーターで溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/メタノール = 10/1)で精製し、56 mgの褐色固体Alk2を得た。収率26%。 mp 141-142℃; 1H NMRDMSO-d6, 300 MHz, δ; ppm) 8.76 (1H, dd, J = 4.5, 0.9 Hz), 8.00 (1H, q, J = 0.9Hz), 7.82 (1H, dd, J = 3.6, 1.5 Hz), 4.50 (1H, s), 3.38 (3H, s); 13C NMR (DMSO-d6, 75 MHz, δ; ppm) 164.62, 151.02, 142.36, 139.99, 125.40, 121.88, 82.41, 81.39, 41.16; MS (ESI) m/z 225.1 (MH+); HPLC tR=7.58 min purity 96.5%. Anal. Calcd.for C8H5NO1: C, 65.31; H, 3.43; N, 9.52. Found: C, 64.91; H, 3.60; N, 9.28. HRMS (EI) Calcd. for C8H5O2N 147.0320, Found 147.0310. N -(methylsulfonyl)-2-ethynyl -4- pyridinecarboxamide (Alk2)Alk1 (147 mg, 1.00 mmol), EDCI.HCl (388 mg, 2.00 mmol), and DMAP (244 mg, 2.00 mmol) in dichloromethane (15.0 mL) ), methyl sulfonamide (189 mg, 2.00 mmol) was added to the solution, and the mixture was stirred at room temperature for 24 hours. The reaction solution was washed with water, and the aqueous layer was acidified with 1N hydrochloric acid and then extracted with dichloromethane. After the organic layer was washed with water and dried with Na 2 SO 4 , the solvent was removed by an evaporator. The residue was purified by silica gel column chromatography (dichloromethane/methanol = 10/1) to obtain 56 mg of brown solid Alk2. Yield 26%. mp 141-142°C; 1 H NMRDMSO-d 6 , 300 MHz, δ; ppm) 8.76 (1H, dd, J = 4.5, 0.9 Hz), 8.00 (1H, q, J = 0.9 Hz), 7.82 (1H dd, J = 3.6, 1.5 Hz) , 4.50 (1H, s ) , 3.38 (3H, s); 121.88, 82.41, 81.39, 41.16; MS ( ESI ) m/z 225.1 (MH + ); HPLC t R =7.58 min purity 96.5%. Anal. H, 3.60; N, 9.28. HRMS (EI) Calcd. for C8H5O2N 147.0320, Found 147.0310.
4-(2H-tetrazol-5-yl)-pyridine (Alk3)
Step 1:4-cyano-2-[2-(trimethylsilyl) ethynyl] pyridine (12)
2-chloro-4-cyanopyridine 11 (1.40 g, 10.0 mmol)、PdCl2(PPh3)2(138 mg, 330 μmol)およびCuI (38.0 mg, 330 μmol)のトリエチルアミン(20.0 mL)/アセトニトリル(20.0 mL)溶液にトリメチルシリルアセチレン(2.20 mL, 15.0 mmol)をアルゴン雰囲気下で加え、反応溶液をアルゴン雰囲気下3時間60 °Cで加熱した。反応終了後、溶媒をエバポレーターで留去し、ジエチルエーテルを加え1 N塩酸、飽和NaHCO3水溶液、brineで有機層を洗浄、Na2SO4で乾燥させた。溶媒を留去後、残渣をカラムクロマトグラフィー(酢酸エチル/n-ヘキサン = 1/10)で精製し、1.96 gの黄白色固体12を得た。収率98%。 mp 46.0-48.0 °C 1H NMR (CDCl3, 300 MHz, δ; ppm) 8.75 (1H, dd, J = 4.2, 0.9 Hz), 7.67 (1H, q, J = 0.3 Hz), 7.44 (1H, dd, J = 3.6, 1.5 Hz), 0.30 (9H, s); 13C NMR (CDCl3, 75 MHz, δ; ppm) 151.04, 144.62, 128.74, 124.15, 121.04, 115.89, 101.82, 98.78, 0.36; MS (ESI) m/z201.1 (MH+).
4-(2H-tetrazol-5-yl)-pyridine (Alk3)
Step 1:4-cyano-2-[2-(trimethylsilyl)ethynyl]pyridine (12)
2-chloro-4-cyanopyridine 11 (1.40 g, 10.0 mmol), PdCl 2 (PPh 3 ) 2 (138 mg, 330 μmol) and CuI (38.0 mg, 330 μmol) in triethylamine (20.0 mL)/acetonitrile (20.0 mL) ) solution was added with trimethylsilylacetylene (2.20 mL, 15.0 mmol) under an argon atmosphere and the reaction solution was heated at 60 °C for 3 h under an argon atmosphere. After completion of the reaction, the solvent was distilled off with an evaporator, diethyl ether was added, and the organic layer was washed with 1N hydrochloric acid, saturated NaHCO 3 aqueous solution and brine, and dried with Na 2 SO 4 . After distilling off the solvent, the residue was purified by column chromatography (ethyl acetate/n-hexane = 1/10) to obtain 1.96 g of a yellowish white solid 12. Yield 98%. mp 46.0-48.0 °C 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 8.75 (1H, dd, J = 4.2, 0.9 Hz), 7.67 (1H, q, J = 0.3 Hz), 7.44 (1H, dd , J = 3.6, 1.5 Hz) , 0.30 (9H, s); (ESI) m/z 201.1 (MH + ).
Step 2: 4-cyano-2-ethynylpyridine (13)
化合物12 (1.96 g, 9.79 mmol)のジクロロメタン(25.0 mL)溶液に1 M TBAF/THF (14.0 mL, 14.0 mmol)を0 °Cで加え、反応溶液を2時間、0 °Cで撹拌した。反応終了後、酢酸エチルを加え、有機層を水で洗浄し、Na2SO4で乾燥した。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン = 1/3)で精製し、黄白色固体13を823 mg得た。収率66%。 mp 104-106 °C; 1H NMR (CDCl3, 300 MHz, δ; ppm) 8.76 (1H, dd, J = 4.2, 0.9 Hz), 7.68 (1H, q, J = 0.3 Hz), 7.49 (1H, dd, J = 3.6, 1.5 Hz), 3.32 (1H, s); 13C NMR (CDCl3, 75 MHz, δ; ppm) 151.11, 143.79, 128.84, 124.70, 121.08, 115.70, 81.10, 80.05; MS (ESI) m/z 129.2 (MH+).
Step 2: 4-cyano-2-ethynylpyridine (13)
To a solution of compound 12 (1.96 g, 9.79 mmol) in dichloromethane (25.0 mL) was added 1 M TBAF/THF (14.0 mL, 14.0 mmol) at 0°C, and the reaction solution was stirred at 0°C for 2 hours. After completion of the reaction, ethyl acetate was added and the organic layer was washed with water and dried with Na2SO4 . After distilling off the solvent, the residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/3) to obtain 823 mg of a yellowish white solid 13. Yield 66%. mp 104-106 °C; 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 8.76 (1H, dd, J = 4.2, 0.9 Hz), 7.68 (1H, q, J = 0.3 Hz), 7.49 (1H 13 C NMR (CDCl 3 , 75 MHz, δ; ppm) 151.11, 143.79, 128.84, 124.70, 121.08, 115.70, 81.10, 80.05; MS ( ESI) m/z 129.2 (MH + ).
Step 3: 4-(2H-tetrazol-5-yl)-2-ethynyl-pyridine (Alk3)
化合物13 (396 mg, 3.00 mmol)のDMF (20.0 mL)溶液にアジ化ナトリウム(195 mg, 3.00 mmol)と塩化アンモニウム(162 mg, 3.00 mmol)を窒素雰囲気下で加えた。反応溶液を窒素雰囲気下、80℃で12時間加熱撹拌した。反応終了後、酢酸エチルを加え、4 N塩酸で洗浄した。有機層を水、brineで洗浄し、Na2SO4で乾燥した。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン = 2/1)で精製し、 褐色固体Alk3を62.0 mg得た。収率12%。 mp 210-212℃; 1H NMR (DMSO-d6, 300 MHz, δ; ppm) 8.79(1H, dd, J = 4.2, 0.9 Hz), 8.10 (1H, q, J = 0.6 Hz), 8.00 (1H, dd, J = 3.3, 1.8Hz), 4.51 (1H, s); 13C NMR (DMSO-d6, 75 MHz, δ; ppm) 154.74, 151.45, 142.73, 132.92, 124.12, 120.70, 82.35, 81.41; MS (ESI) m/z 172.1 (MH+); HPLC tR=7.45 minpurity 96.0%. HRMS (EI) Calcd. for C8H5N5 171.0537, Found 171.0545.
Step 3: 4-(2H-tetrazol-5-yl) -2-ethynyl- pyridine (Alk3)
Sodium azide (195 mg, 3.00 mmol) and ammonium chloride (162 mg, 3.00 mmol) were added to a solution of compound 13 (396 mg, 3.00 mmol) in DMF (20.0 mL) under nitrogen atmosphere. The reaction solution was heated and stirred at 80° C. for 12 hours under a nitrogen atmosphere. After completion of the reaction, ethyl acetate was added and washed with 4N hydrochloric acid. The organic layer was washed with water, brine and dried over Na2SO4 . After distilling off the solvent, the residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=2/1) to obtain 62.0 mg of brown solid Alk3. Yield 12%. mp 210-212°C; 1 H NMR (DMSO-d 6 , 300 MHz, δ; ppm) 8.79(1H, dd, J = 4.2, 0.9 Hz), 8.10 (1H, q, J = 0.6 Hz), 8.00 ( 1 H, dd, J = 3.3 , 1.8 Hz), 4.51 (1 H, s); ; MS (ESI) m/z 172.1 (MH + ); HPLC t R =7.45 minpurity 96.0%. HRMS (EI) Calcd. for C8H5N5 171.0537, Found 171.0545.
Methyl-2-ethynylisonicotinate (Alk4)
化合物10 (380 mg, 1.60 mmol)のTHF (2.00 mL)溶液に1 M TBAF/THF (2.20 mL, 2.20 mmol)を0℃で加え、反応溶液を0℃で2時間撹拌した。反応終了後、酢酸エチルを加え、水で洗浄し、有機層をNa2SO4で乾燥させた。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン = 1/2)で精製した。さらに粗生成物をn-ヘキサンで再結晶することにより、無色固体Alk4を248 mg得た。収率96%。 mp 64.5-65.5℃; 1H NMR (CDCl3, 300 MHz, δ; ppm) 8.75 (d, 1H, J = 5.1 Hz), 8.03 (q, 1H, J = 0.6 Hz), 7.81 (dd, 1H, J = 4.2, 0.9 Hz), 3.97 (s, 3H), 3.23 (s, 1H); 13C NMR (CDCl3, 75 MHz, δ; ppm) 164.95, 150.97, 143.43, 137.88, 126.78, 122.62, 82.21, 78.37, 53.00 ; MS (ESI) m/z 162.2 (MH+); HPLC tR= 11.7 min purity 99.4%
Methyl- 2-ethynylisonicotinate (Alk4)
To a solution of compound 10 (380 mg, 1.60 mmol) in THF (2.00 mL) was added 1 M TBAF/THF (2.20 mL, 2.20 mmol) at 0°C, and the reaction solution was stirred at 0°C for 2 hours. After completion of the reaction, ethyl acetate was added, washed with water, and the organic layer was dried with Na2SO4 . After distilling off the solvent, the residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/2). Furthermore, 248 mg of colorless solid Alk4 was obtained by recrystallizing the crude product with n-hexane. Yield 96%. mp 64.5-65.5°C; 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 8.75 (d, 1H, J = 5.1 Hz), 8.03 (q, 1H, J = 0.6 Hz), 7.81 (dd, 1H, J = 4.2, 0.9 Hz), 3.97 (s , 3H) , 3.23 (s, 1H); 78.37, 53.00 ; MS (ESI) m/z 162.2 (MH + ); HPLC t R = 11.7 min purity 99.4%
製造例2
アジド化合物Az1-7, YMA04-110-A, YMA04-110-Dの合成
Step 1: 2-Azidoethanol (15)
2-ブロモエタノール (581 μL, 10.0 mmol)の水溶液(5.00 mL)にアジ化ナトリウム(647 mg, 8.30 mmol)を加え、反応溶液を100 °Cで12時間加熱還流した。反応終了後、塩化ナトリウムを加え、水層をジクロロメタンで抽出した。有機層をNa2SO4で乾燥後溶媒を留去した。得られた無色の液体状粗生成物を直接次の反応に用いた。
Production example 2
Synthesis of Azide Compounds Az1-7, YMA04-110-A, YMA04-110-D
Step 1: 2-Azidoethanol (15)
Sodium azide (647 mg, 8.30 mmol) was added to an aqueous solution (5.00 mL) of 2-bromoethanol (581 μL, 10.0 mmol), and the reaction solution was heated to reflux at 100° C. for 12 hours. After completion of the reaction, sodium chloride was added and the aqueous layer was extracted with dichloromethane. The organic layer was dried over Na 2 SO 4 and the solvent was distilled off. The resulting colorless liquid crude product was used directly in the next reaction.
Step 2: 1-Mesyl-2-azidoethanol (16)
化合物15のジクロロメタン(10.0 mL)溶液にトリエチルアミン(1.74 mL, 12.5 mmol)とmethanesulfonyl chloride (967 μL, 12.5 mmol)を0 °Cで加え、反応溶液を室温で12時間撹拌した。反応終了後、反応溶液をろ過し、ろ液をエバポレータ―で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン= 2/3)で精製し、無色オイル状の16を560 mg得た。収率34%。 1H NMR (CDCl3, 300 MHz, δ; ppm) 4.26 (2H, t, J = 5.7 Hz), 3.52 (2H, t, J = 4.5 Hz), 3.01 (3H, s); 13C NMR (CDCl3, 75 MHz, δ; ppm) 67.88, 49.55, 37.17.
Step 2: 1-Mesyl-2-azidoethanol (16)
Triethylamine (1.74 mL, 12.5 mmol) and methanesulfonyl chloride (967 μL, 12.5 mmol) were added to a solution of compound 15 in dichloromethane (10.0 mL) at 0°C, and the reaction solution was stirred at room temperature for 12 hours. After completion of the reaction, the reaction solution was filtered, and the filtrate was concentrated by an evaporator. The residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=2/3) to obtain 560 mg of 16 as a colorless oil. Yield 34%. 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 4.26 (2H, t, J = 5.7 Hz), 3.52 (2H, t, J = 4.5 Hz), 3.01 (3H, s); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm) 67.88, 49.55, 37.17.
Step 3: 2-Azido-1-ethylhexylmethylamine (Az1)
化合物16 (189 mg, 1.15 mmol)と炭酸カリウム(482 mg, 3.50 mmol)のアセトニトリル(5 mL)溶液にN-ヘキシルメチルアミン(151 μL, 1.00 mmol)を加え、12時間、90 °Cで加熱還流した。反応終了後、反応溶液をろ過し、ろ液をエバポレータ―で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン = 1/3)で精製し、無色オイル状のAz1を50.0 mg得た。収率27%。1H NMR (CDCl3, 300 MHz, δ; ppm) 3.32 (2H, t, J = 6.0 Hz), 2.58 (2H, t, J = 6.0 Hz), 2.37 (2H, t, J = 7.8 Hz), 2.26 (3H, s), 1.42-1.49 (2H, m), 1.26-1.32 (6H, m), 0.89 (3H, t J= 6.6 Hz); 13C NMR (CDCl3, 75 MHz, δ; ppm) 58.14, 56.52, 49.16, 42.34, 31.91, 27.36, 27.16, 22.74, 14.14; MS (ESI) m/z 185.1 (MH+); HPLC tR=10.2 min purity 97.6%. HRMS (EI) Calcd. for C9H20N4 185.1764, Found 185.1761.
Step 3: 2-Azido-1-ethylhexylmethylamine (Az1)
A solution of compound 16 (189 mg, 1.15 mmol) and potassium carbonate (482 mg, 3.50 mmol) in acetonitrile (5 mL) was added with N-hexylmethylamine (151 μL, 1.00 mmol) and heated at 90 °C for 12 h. refluxed. After completion of the reaction, the reaction solution was filtered, and the filtrate was concentrated by an evaporator. The residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/3) to obtain 50.0 mg of Az1 as a colorless oil. Yield 27%. 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 3.32 (2H, t, J = 6.0 Hz), 2.58 (2H, t, J = 6.0 Hz), 2.37 (2H, t, J = 7.8 Hz), 2.26 (3H, s), 1.42-1.49 (2H, m), 1.26-1.32 (6H, m), 0.89 (3H, t J= 6.6 Hz); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm) 58.14, 56.52, 49.16, 42.34, 31.91, 27.36, 27.16, 22.74, 14.14; MS (ESI) m/z 185.1 (MH + ); HPLC t R =10.2 min purity 97.6%. , Found 185.1761.
Azides Az2-7, YMA04-110-A, YMA04-110-DはAz1の合成法に示したものと同様の方法で合成した。
2-Azido-1-benzylmethylethylamine (Az2)
収率53%; 無色オイル 1H NMR (CDCl3, 300 MHz, δ; ppm): 7.28-7.40 (5H, m), 3.61 (2H, s), 3.36 (2H, t, J = 6.0 Hz), 2.69 (2H, t, J = 6.0 Hz), 2.31 (3H, s); 13C NMR (CDCl3, 75 MHz, δ; ppm): 138.68, 128.91, 128.34, 127.15, 62.57, 56.26, 48.90, 42.15; MS (ESI) m/z 191.2 (MH+). HPLC tR=7.87 min purity 96.2%.
Azides Az2-7, YMA04-110-A and YMA04-110-D were synthesized by the same method as shown in the synthetic method of Az1.
2-Azido-1-benzylmethylethylamine (Az2)
Yield 53%; colorless oil 1 H NMR (CDCl 3 , 300 MHz, δ; ppm): 7.28-7.40 (5H, m), 3.61 (2H, s), 3.36 (2H, t, J = 6.0 Hz), 2.69 (2H, t, J = 6.0 Hz), 2.31 (3H, s); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm): 138.68, 128.91, 128.34, 127.15, 62.57, 56.26, 48.90, 42.15; MS (ESI) m/z 191.2 (MH + ). HPLC t R =7.87 min purity 96.2%.
2-Azido-1-diethylbutylamine (Az3)
収率24%; 無色オイル 1H NMR (CDCl3, 300 MHz, δ; ppm): 3.28 (2H, t, J = 6.3 Hz), 2.66 (2H, t, J = 6.3 Hz), 2.55 (2H, q, J = 6.9 Hz), 2.46 (2H, t, J = 7.8 Hz), 1.31-1.44 (4H, m), 1.04 (3H, t, J = 0.9 Hz), 0.93 (3H, t, J = 7.2 Hz); 13C NMR (CDCl3, 75 MHz, δ; ppm): 53.60, 52.85, 49.51, 47.81, 29.37, 20.55, 14.02, 11.80; MS (ESI) m/z 171.3 (MH+). HPLC tR=22.9 min purity 95.8%.
2-Azido-1-diethylbutylamine (Az3)
2-Azido-1-ethylpentylmethylamine (Az4)
収率37%; 無色オイル 1H NMR (CDCl3, 300 MHz, δ; ppm): 3.32 (2H, t, J= 6.3 Hz), 2.57 (2H, t, J = 6.0 Hz), 2.36 (2H, t, J = 6.0 Hz), 2.26 (3H, s), 1.42-1.52 (2H, m), 1.28-1.32 (4H, m), 0.90 (3H, t, J = 7.2 Hz); 13C NMR (CDCl3, 75 MHz, δ; ppm): 57.95, 56.38, 49.00, 42.18, 29.52, 26.92, 22.57, 14.00; MS (ESI) m/z 171.3 (MH+). HPLC tR = 22.7 min purity 98.5%.
2-Azido-1-ethylpentylmethylamine (Az4)
Yield 37%; colorless oil 1 H NMR (CDCl 3 , 300 MHz, δ; ppm): 3.32 (2H, t, J= 6.3 Hz), 2.57 (2H, t, J = 6.0 Hz), 2.36 (2H, t, J = 6.0 Hz), 2.26 (3H, s), 1.42-1.52 (2H, m), 1.28-1.32 (4H, m), 0.90 (3H, t, J = 7.2 Hz); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm): 57.95, 56.38, 49.00, 42.18, 29.52, 26.92, 22.57, 14.00; MS (ESI) m/z 171.3 (MH + ). HPLC t R = 22.7 min purity 98.5%.
2-Azido-1-ethylpropylbutylamine (Az5)
収率36%; 無色オイル 1H NMR (CDCl3, 300 MHz, δ; ppm): 3.25 (2H, t, J = 6.0 Hz), 2.65 (2H, t, J = 6.3 Hz), 2.39-2.47 (4H, m), 1.30-1.50 (6H, m), 0.89 (6H, q, J = 7.2 Hz); 13C NMR (CDCl3, 75 MHz, δ; ppm): 56.49, 54.20, 53.56, 49.54, 29.38, 20.52, 20.38, 14.01, 11.76; MS (ESI) m/z 185.3 (MH+). HPLC tR = 10.2 min purity 97.6%
2-Azido-1-ethylpropylbutylamine (Az5)
Yield 36%; colorless oil 1 H NMR (CDCl 3 , 300 MHz, δ; ppm): 3.25 (2H, t, J = 6.0 Hz), 2.65 (2H, t, J = 6.3 Hz), 2.39-2.47 ( 4H, m), 1.30-1.50 (6H, m), 0.89 (6H, q, J = 7.2 Hz); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm): 56.49, 54.20, 53.56, 49.54, 29.38 , 20.52, 20.38, 14.01, 11.76; MS (ESI) m/z 185.3 (MH + ). HPLC t R = 10.2 min purity 97.6%
2-Azido-1-ethyldibutylamine (Az6)
収率48%; 無色オイル 1H NMR (CDCl3, 300 MHz, δ; ppm): 3.25 (2H, t, J = 6.3 Hz), 2.63 (2H, t, J = 6.3 Hz), 2.44 (4H, t, J = 7.2 Hz), 1.30-1.43 (8H, m), 0.92 (6H, t, J = 7.2 Hz); 13C NMR (CDCl3, 75 MHz, δ; ppm): 54.19, 53.52, 49.53, 29.39, 20.51, 13.99; MS (ESI) m/z 199.3 (MH+). HPLC tR = 9.15 min purity 99.9%.
2-Azido-1-ethyldibutylamine (Az6)
Yield 48%; colorless oil 1 H NMR (CDCl 3 , 300 MHz, δ; ppm): 3.25 (2H, t, J = 6.3 Hz), 2.63 (2H, t, J = 6.3 Hz), 2.44 (4H, t, J = 7.2 Hz), 1.30-1.43 (8H, m), 0.92 (6H, t, J = 7.2 Hz); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm): 54.19, 53.52, 49.53, 29.39, 20.51, 13.99; MS (ESI) m/z 199.3 (MH + ). HPLC t R = 9.15 min purity 99.9%.
2-Azido-1-ethylbutylbenzylamine (Az7)
収率16%; 無色オイル 1H NMR (CDCl3, 300 MHz, δ; ppm): 7.25-7.39 (5H, m), 3.65 (2H, s), 3.26 (2H, t, J = 6.0 Hz), 2.71 (2H, t, J = 6.3 Hz), 2.51 (2H, t, J = 7.2 Hz), 1.47-1.57 (2H, m), 1.29-1.41 (2H, m), 0.92 (3H, t, J = 7.2 Hz); 13C NMR (CDCl3, 75 MHz, δ; ppm): 139.49, 128.73, 128.23, 126.95, 59.09, 54.13, 53.31, 49.43, 29.29, 20.44, 14.01; MS (ESI) m/z 233.3 (MH+). HPLC tR = 11.1 min purity 96.3%
2-Azido-1-ethylbutylbenzylamine (Az7)
Yield 16%; colorless oil 1 H NMR (CDCl 3 , 300 MHz, δ; ppm): 7.25-7.39 (5H, m), 3.65 (2H, s), 3.26 (2H, t, J = 6.0 Hz), 2.71 (2H, t, J = 6.3 Hz), 2.51 (2H, t, J = 7.2 Hz), 1.47-1.57 (2H, m), 1.29-1.41 (2H, m), 0.92 (3H, t, J = 7.2 Hz); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm): 139.49, 128.73, 128.23, 126.95, 59.09, 54.13, 53.31, 49.43, 29.29, 20.44, 14.01; MS (ESI) m/z 233.3 ( MH + ). HPLC tR = 11.1 min purity 96.3%
1-(2-Azidoethyl)piperidine (YMA04-110-A)
収率42%; 黄色オイル 1H NMR (CDCl3, 300 MHz, δ; ppm) 3.31 (2H, t, J = 6.3 Hz), 2.52 (2H, t, J = 6.3 Hz), 2.41 (4H, t, J = 5.4 Hz), 1.53-1.59 (4H, m), 1.37-1.45 (2H, m); 13C NMR (CDCl3, 75 MHz, δ; ppm) 57.92, 54.69, 49.77, 48.50, 25.98, 24.34; MS (ESI) m/z 155.0 (MH+)
1-(2-Azidoethyl)piperidine (YMA04-110-A)
Yield 42%; yellow oil 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 3.31 (2H, t, J = 6.3 Hz), 2.52 (2H, t, J = 6.3 Hz), 2.41 (4H, t , J = 5.4 Hz), 1.53-1.59 (4H, m ) , 1.37-1.45 ( 2H, m); ; MS (ESI) m/z 155.0 (MH + )
2-Azido-N-methyl-N-(phenyl methyl)Ethan amine (YMA04-110-D)
収率43%; 黄色オイル: 1H NMR (CDCl3, 300 MHz, δ; ppm) 7.28-7.40 (5H, m), 3.61 (2H, s), 3.36 (2H, t, J = 6.0 Hz), 2.69 (2H, t, J = 6.0 Hz), 2.31 (3H, s); 13C NMR (CDCl3, 75 MHz, δ; ppm) 138.7, 128.9, 128.3, 127.2, 62.57, 56.26, 48.90, 42.15; MS (ESI) m/z 190.1 (MH+)
2-Azido-N-methyl-N-(phenyl methyl)ethanamine (YMA04-110-D)
Yield 43%; yellow oil: 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 7.28-7.40 (5H, m), 3.61 (2H, s), 3.36 (2H, t, J = 6.0 Hz), 2.69 (2H, t, J = 6.0 Hz), 2.31 (3H, s); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm) 138.7, 128.9, 128.3, 127.2, 62.57, 56.26, 48.90, 42.15; (ESI) m/z 190.1 (MH + )
製造例3
2-Azido-1-ethylbutylhexylamine (Az8)
Step1:N-butyl-1-hexanamine (17)
BH3
.SMe2(1.00 mL, 10.0 mmol)を1-ヘキセン(5.00 mL, 40.0 mmol)に0 °C、窒素雰囲気下で滴下した。滴下終了後、反応溶液を室温、窒素雰囲気下で12時間撹拌した、Sodium hypochlorite (18.4 mL, 10.0 mmol)をN-ブチルアミン(1.00 mL, 10.0 mmol)のTHF (10.0 mL)溶液に0 °C、窒素雰囲気下で滴下した。この溶液を窒素雰囲気下0 °Cでtrialkylborane溶液に素早く加えた。この反応溶液を窒素雰囲気下、室温で3時間撹拌した。反応終了後、10% HClを加えて反応溶液をpH 1.0に調整し、ジエチルエーテルで洗浄した。水層に6 N NaOH水溶液を加えpH >13に調整後、エーテルで目的物を抽出した。有機層をNa2SO4で乾燥し、エバポレータ―で濃縮して650 mgの無色オイル状の生成物17 を得た。収率41%。 1H NMR (CDCl3, 300 MHz, δ; ppm) 2.56 (2H, t, J = 7.2 Hz), 2.56 (1H, t, J = 7.5 Hz), 1.26-1.47 (12H, m), 0.83-0.99 (6H, m); 13C NMR (CDCl3, 75 MHz, δ; ppm) 50.16, 49.81, 32.32, 31.79, 30.15, 27.09, 22.60, 20.52, 14.00; MS (ESI) m/z158.3 (MH+).
Production example 3
2-Azido-1-ethylbutylhexylamine (Az8)
Step 1: N-butyl-1-hexanamine (17)
BH 3 .SMe 2 (1.00 mL, 10.0 mmol) was added dropwise to 1-hexene (5.00 mL, 40.0 mmol) at 0° C. under nitrogen atmosphere. After the dropwise addition was completed, the reaction solution was stirred at room temperature for 12 hours under a nitrogen atmosphere. It was added dropwise under a nitrogen atmosphere. This solution was added quickly to the trialkylborane solution at 0°C under a nitrogen atmosphere. The reaction solution was stirred at room temperature for 3 hours under a nitrogen atmosphere. After completion of the reaction, 10% HCl was added to adjust the reaction solution to pH 1.0 and washed with diethyl ether. A 6 N NaOH aqueous solution was added to the aqueous layer to adjust the pH to >13, and the desired product was extracted with ether. The organic layer was dried over Na 2 SO 4 and concentrated by an evaporator to obtain 650 mg of product 17 as a colorless oil. Yield 41%. 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 2.56 (2H, t, J = 7.2 Hz), 2.56 (1H, t, J = 7.5 Hz), 1.26-1.47 (12H, m), 0.83-0.99 (6H, m); 13C NMR ( CDCl3 , 75 MHz, δ; ppm) 50.16, 49.81, 32.32, 31.79, 30.15, 27.09, 22.60, 20.52, 14.00; MS (ESI) m/z 158.3 (MH + ).
Step2:2-Azido-1-ethylbutylhexylamine(Az8)
化合物16 (189 mg, 1.15 mmol) と炭酸カリウム(482 mg, 3.50 mmol) のアセトニトリル(5.00 mL)溶液に化合物17 (157 mg, 1.00 mmol)を加え、90 °Cで12時間加熱還流した。反応終了後、反応溶液をろ過し、ろ液をエバポレータ―で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン= 1/3)で精製し、104 mgの無色オイル状のAz8 を得た。収率46%。 1H NMR (CDCl3, 300 MHz, δ; ppm): 3.26 (2H, t, J = 6.0 Hz), 2.64 (2H, t, J = 6.3 Hz), 2.44 (2H, t, J = 7.2 Hz), 2.44 (2H, t, J = 7.2 Hz), 1.40-1.45 (4H, m), 1.27-1.32 (8H, m), 0.87-0.94 (6H, m); 13C NMR (CDCl3, 75 MHz, δ; ppm): 54.67, 54.35, 53.64, 49.68, 31.96, 29.50, 27.29, 27.24, 22.80, 20.70, 14.19; MS (ESI) m/z 227.3 (MH+). HPLC tR = 13.3 min purity 98.3%
Step 2: 2-Azido-1-ethylbutylhexylamine (Az8)
Compound 17 (157 mg, 1.00 mmol) was added to a solution of compound 16 (189 mg, 1.15 mmol) and potassium carbonate (482 mg, 3.50 mmol) in acetonitrile (5.00 mL), and the mixture was heated under reflux at 90 °C for 12 hours. After completion of the reaction, the reaction solution was filtered, and the filtrate was concentrated by an evaporator. The residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/3) to obtain 104 mg of Az8 as a colorless oil. Yield 46%. 1 H NMR (CDCl 3 , 300 MHz, δ; ppm): 3.26 (2H, t, J = 6.0 Hz), 2.64 (2H, t, J = 6.3 Hz), 2.44 (2H, t, J = 7.2 Hz) , 2.44 (2H, t, J = 7.2 Hz), 1.40-1.45 (4H, m), 1.27-1.32 (8H, m), 0.87-0.94 (6H, m); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm): 54.67, 54.35, 53.64, 49.68, 31.96, 29.50, 27.29, 27.24, 22.80, 20.70, 14.19; MS (ESI) m/z 227.3 (MH + ). HPLC t R = 13.3 min purity 98.3%
4-(2-Azidoethyl)morpholine (YMA04-112)
モルホリン(948 μL, 10.0 mmol)のトルエン溶液(20 mL)にブロモエタノール(349 μL, 5.00 mmol)を滴下し、反応溶液を3時間加熱還流した。反応終了後、反応溶液をろ過し、ろ液をエバポレータ―で濃縮した。残渣をジクロロメタン(8 mL)に溶かし、トリメチルアミン(1.67 mL, 12.0 mmol)を加えた。さらにmethanesulfonyl chloride (902 μL, 12.0 mmol)を0 oCで滴下した後、反応溶液を室温で3時間撹拌した。反応終了後、飽和重曹水を加えジクロロメタンで抽出した。有機層をbrineで洗浄、Na2SO4で乾燥し、溶媒をエバポレータ―で留去した。残渣にDMSO (30 mL)とアジ化ナトリウム(780 mg, 12.0 mmol)を加え、反応溶液を80 oCで2時間加熱撹拌した。反応終了後、水を加え、酢酸エチルで抽出した。有機層を水で洗浄、Na2SO4.で乾燥し、溶媒をエバポレーターで留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製し、黄色オイル状の4-(2-Azidoethyl)morpholine (YMA04-112, 収率18%)を得た。 1H NMR (CDCl3, 300 MHz, δ; ppm) 3.69-3.78 (4H, m), 3.34 (2H, t, J = 6.0 Hz), 2.57 (2H, t, J = 1.5 Hz), 2.49-2.50 (4H, m); 13C NMR (CDCl3, 75 MHz, δ; ppm) 66.95, 57.67, 53.68, 48.01; MS (ESI) m/z 157.1 (MH+)
4-(2-Azidoethyl)morpholine (YMA04-112)
Bromoethanol (349 μL, 5.00 mmol) was added dropwise to a toluene solution (20 mL) of morpholine (948 μL, 10.0 mmol), and the reaction solution was heated under reflux for 3 hours. After completion of the reaction, the reaction solution was filtered, and the filtrate was concentrated by an evaporator. The residue was dissolved in dichloromethane (8 mL) and trimethylamine (1.67 mL, 12.0 mmol) was added. After methanesulfonyl chloride (902 μL, 12.0 mmol) was added dropwise at 0 ° C., the reaction solution was stirred at room temperature for 3 hours. After completion of the reaction, saturated aqueous sodium bicarbonate was added and the mixture was extracted with dichloromethane. The organic layer was washed with brine, dried over Na 2 SO 4 and the solvent was removed by an evaporator. DMSO (30 mL) and sodium azide (780 mg, 12.0 mmol) were added to the residue, and the reaction solution was heated with stirring at 80 ° C. for 2 hours. After completion of the reaction, water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried over Na 2 SO 4 , and the solvent was removed by an evaporator. The residue was purified by silica gel column chromatography (ethyl acetate) to obtain yellow oily 4-(2-Azidoethyl)morpholine (YMA04-112, yield 18%). 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 3.69-3.78 (4H, m), 3.34 (2H, t, J = 6.0 Hz), 2.57 (2H, t, J = 1.5 Hz), 2.49-2.50 (4H, m); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm) 66.95, 57.67, 53.68, 48.01; MS (ESI) m/z 157.1 (MH + )
トリアゾール化合物NPC-3422, YMA04-115, YMA04-118, YMA04-119の合成
実施例1
2-(1-(2-(hexyl(methyl)amino)ethyl)-1H-[1,2,3]triazol-4-yl)-pyridine-4-carboxylic acid (NPC-3422)
Step 1: Methyl-2-(1-(2-(hexyl(methyl)amino)ethyl)-1H-[1,2,3]triazol-4-yl)-pyridine-4-carboxylate (NPC-3543)
Alk4 (16.2 mg, 100 μmol)とAz1 (18.3 mg, 100 μmol)のtert-ブチルアルコール (2.50mL)と水(2.50 mL)溶液にCuSO4・5H2 O (25.0 mg, 100 μmol)とsodium ascorbate (20.0mg, 100 μmol)を加え、反応溶液を室温で12時間撹拌した。反応終了後、溶媒をエバポレーターで留去し、水を加えて酢酸エチルで抽出した。有機層をbrineで洗浄し、Na2SO4で乾燥した。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン= 1/3 to ジクロロメタン/メタノール= 5/1)で精製し、16.2 mgのオレンジ色オイルNPC-3543 得た。収率47%。 1H NMR (CDCl3, 300 MHz, δ; ppm) 8.71-8.74 (2H, m), 8.30 (1H, s), 7.78 (1H, dd, J = 3.6, 0.6 Hz), 4.52 (2H, t, J = 6.3 Hz), 3.99 (3H,s), 2.88 (2H, t, J = 6.0 Hz), 2.40 (2H, t, J = 7.5 Hz), 2.31 (3H, s), 1.22-1.42(8H, m), 0.83 (3H, t, J = 6.6 Hz); 13C NMR (CDCl3, 75 MHz, δ; ppm) 165.60, 151.70, 150.21, 147.54, 138.35, 123.25, 121.74, 119.50, 57.98, 57.03, 52.70, 48.57,42.09, 31.75, 27.21, 27.02, 22.63, 14.02; MS (ESI) m/z 346.4 (MH+); HPLC tR= 12.13 min purity 95.6%
Synthesis Example 1 of Triazole Compounds NPC-3422, YMA04-115, YMA04-118, YMA04-119
2 -(1-( 2-( hexyl ( methyl ) amino o)ethyl) -1H-[1,2,3]triazol- 4 -yl)-pyridine- 4 -carboxylic acid (NPC-3422)
Step 1: Methyl-2 -(1-( 2-( hexyl ( methyl ) amino o)ethyl) -1H-[1,2,3]triazol- 4 -yl)-pyridine- 4 -carboxylate (NPC-3543)
CuSO4 5H2 O (25.0 mg, 100 μmol) and sodium ascorbate (20.0 mg, 100 μmol) was added and the reaction solution was stirred at room temperature for 12 hours. After completion of the reaction, the solvent was distilled off using an evaporator, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4 . After distilling off the solvent, the residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/3 to dichloromethane/methanol=5/1) to obtain 16.2 mg of orange oil NPC-3543. Yield 47%. 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 8.71-8.74 (2H, m), 8.30 (1H, s), 7.78 (1H, dd, J = 3.6, 0.6 Hz), 4.52 (2H, t, J = 6.3 Hz), 3.99 (3H,s), 2.88 (2H, t, J = 6.0 Hz), 2.40 (2H, t, J = 7.5 Hz), 2.31 (3H, s), 1.22-1.42(8H, m), 0.83 (3H, t, J = 6.6 Hz); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm) 165.60, 151.70, 150.21, 147.54, 138.35, 123.25, 121.74, 119.50, 57.98, 52.03, 57.03 , 48.57,42.09, 31.75, 27.21, 27.02, 22.63, 14.02; MS (ESI) m/z 346.4 (MH + ); HPLC t R = 12.13 min purity 95.6%
Step 2: 2-(1-(2-(hexyl(methyl)amino)ethyl)-1H-[1,2,3]triazol-4-yl)-pyridine-4-carboxylic acid hydrochloride (NPC-3422HCl塩)
NPC-3543 (16.2 mg, 47.0 μmol)をメタノール(3.00 mL)に溶かし、2.00 mLの2 N 水酸化ナトリウム水溶液を加えた。反応溶液を室温で12時間撹拌した。反応終了後、溶媒をエバポレーターで留去し、残渣に4N HCl/ジオキサンを加えpHを1.0に調整した。溶液をろ過し、ろ液を濃縮して10.0 mgの無色固体NPC-3422(HCl塩)を得た。収率25% 1H NMR (MeOD, 300 MHz, δ; ppm) 8.79 (1H, d, J = 4.5 Hz), 8.64 (1H, s), 8.61 (1H, s), 7.89 (1H,dd, J = 3.6, 1.5 Hz), 4.99 (2H, t, J = 6.0Hz), 3.92 (2H, s), 3.30 (2H, s), 3.02(3H, s), 1.73 (2H, quin., J = 7.8 Hz), 1.38 (6H, m), 0.93 (3H, t, J = 7.2 Hz); 13C NMR (MeOD, 75 MHz, δ; ppm) 166.00, 150.45, 150.21, 147.56, 139.83, 124.01, 122.37, 119.36, 56.67, 54.24, 44.53, 39.71, 30.92, 25.73, 23.56, 22.03, 12.79; MS(ESI) m/z 332.1(MH+); HPLC tR= 10.10 min purity 99.6% HRMS (EI) Calcd. for C17H25N5O2 331.2008, Found 331.2041.
Step 2: 2- (1-( 2-( hexyl ( methyl ) amino )ethyl) -1H-[1,2,3]triazol- 4 -yl)-pyridine- 4 -carboxylic acid hydrochloride (NPC-3422 HCl salt )
NPC-3543 (16.2 mg, 47.0 μmol) was dissolved in methanol (3.00 mL), and 2.00 mL of 2 N aqueous sodium hydroxide solution was added. The reaction solution was stirred at room temperature for 12 hours. After completion of the reaction, the solvent was distilled off with an evaporator, and 4N HCl/dioxane was added to the residue to adjust the pH to 1.0. The solution was filtered and the filtrate was concentrated to give 10.0 mg of colorless solid NPC-3422 (HCl salt).
トリアゾール化合物YMA04-115, YMA04-118およびYMA04-119は対応するアジド化合物を原料として、NPC-3422の合成と同様の方法で合成した。 Triazole compounds YMA04-115, YMA04-118 and YMA04-119 were synthesized using the corresponding azide compounds as starting materials in the same manner as for the synthesis of NPC-3422.
2-(1-(2-(methyl(benzyl)amino)ethyl)-1H-[1,2,3]triazol-4-yl)-pyridine-4-carboxylic acid hydrochloride (YMA04-115)
収率66%; 黄白色固体 1H NMR (DMSO-d6, 300 MHz, δ; ppm): 8.82 (2H, s), 8.45 (1H,s), 7.78 (1H, d, J = 3.9 Hz), 7.59-7.56 (2H, m), 7.48-7.46 (3H, m), 5.01 (2H, t,J = 6.6 Hz), 4.40 (2H, s), 3.72 (2H, t, J = 3.0 Hz), 2.73 (3H, s); 13C NMR (DMSO-d6, 75 MHz, δ; ppm): 166.5, 159.1, 151.4, 147.4, 139.8, 131.9, 130.3, 130.2,129.4, 125.1, 122.5, 118.8, 59.5, 53.9, 45.0; HRMS (EI) Calcd. for C18H19O2N5 (MH+) 338.1612, Found 338.1609(MH+). HPLC tR=11.87 min purity 96.2%.
2 -(1-( 2-( methyl ( benzyl ) amino o)ethyl) -1H-[1,2,3]triazol- 4 -yl)-pyridine- 4 -carboxylic acid hydrochloride (YMA04-115)
Yield 66%; yellowish white solid 1 H NMR (DMSO-d 6 , 300 MHz, δ; ppm): 8.82 (2H, s), 8.45 (1H,s), 7.78 (1H, d, J = 3.9 Hz) , 7.59-7.56 (2H, m), 7.48-7.46 (3H, m), 5.01 (2H, t, J = 6.6 Hz), 4.40 (2H, s), 3.72 (2H, t, J = 3.0 Hz), 2.73 (3H, s); 13C NMR (DMSO- d6 , 75 MHz, δ; ppm): 166.5, 159.1, 151.4, 147.4, 139.8, 131.9, 130.3, 130.2,129.4, 125.1, 122.5, 118.8, 59.5 53.9, 45.0; HRMS (EI) Calcd. for C18H19O2N5 (MH + ) 338.1612, Found 338.1609(MH + ). HPLC t R =11.87 min purity 96.2%.
2-(2-(1-piperidyl)ethyl)-1H-[1,2,3]triazol-4-yl)-pyridine-4-carboxylic acid hydrochloride (YMA04-118HCl塩)
収率 38%; 無色固体 1H NMR (DMSO-d6, 300 MHz, δ; ppm): 8.88 (1H, s), 8.80 (1H, d, J = 4.8 Hz), 8.44 (1H, s), 7.77 (1H, d, J = 3.9 Hz), 5.02 (2H, t, J = 6.6 Hz),3.67 (2H, d, J = 4.2 Hz), 3.41 (2H, d, J = 3.9 Hz), 2.99-2.93 (2H, m), 1.84-1.35 (6H, m); 13C NMR (DMSO-d6, 75 MHz, δ; ppm): 166.3, 151.1, 151.0, 147.1, 139.9, 124.9, 122.4, 118.8, 54.5, 52.6, 44.6, 22.6, 21.6; MS (ESI) (MH+). HRMS (EI) Calcd. for C15H19O2N5 (MH+) 302.1612, Found 302.1610(MH+). HPLC tR=5.93 min purity 98.0%.
2 -( 2 -( 1- piperid yl)ethyl) -1H-[1,2,3]triazol- 4 -yl)-pyridine- 4 -carboxylic acid hydrochloride (YMA04-118 HCl salt )
Yield 38%; colorless solid 1 H NMR (DMSO-d 6 , 300 MHz, δ; ppm): 8.88 (1H, s), 8.80 (1H, d, J = 4.8 Hz), 8.44 (1H, s), 7.77 (1H, d, J = 3.9 Hz), 5.02 (2H, t, J = 6.6 Hz), 3.67 (2H, d, J = 4.2 Hz), 3.41 (2H, d, J = 3.9 Hz), 2.99- 2.93 (2H, m), 1.84-1.35 (6H, m); 13 C NMR (DMSO-d 6 , 75 MHz, δ; ppm): 166.3, 151.1, 151.0, 147.1, 139.9, 124.9, 122.4, 118.8, 54.5 , 52.6, 44.6, 22.6, 21.6; MS (ESI) (MH + ). HRMS (EI) Calcd. for C15H19O2N5 (MH + ) 302.1612, Found 302.1610(MH + ).
2-(2-(4-morpholinyl)ethyl)-1H-[1,2,3]triazol-4-yl)-pyridine-4-carboxylic acid hydrochloride (YMA04-119HCl塩)
収率 35%; オレンジ色固体 1H NMR (DMSO-d6, 300 MHz, δ; ppm): 8.82 (2H, s), 8.45(1H, s), 7.78 (1H, d, J = 3.9 Hz), 7.59-7.56 (2H, m), 7.48-7.46 (3H, m), 5.01 (2H, t, J = 6.6 Hz), 4.40 (2H, s), 3.72 (2H, t, J = 3.0 Hz), 2.73 (3H, s); 13C NMR(DMSO-d6, 75 MHz, δ; ppm): 166.5, 159.1, 151.4, 147.4, 139.8, 131.9, 130.3, 130.2, 129.4, 125.1, 122.5, 118.8, 59.5, 53.9, 45.0; HRMS (EI) Calcd. for C14H17O3N5 (MH+) 304.1404, Found 304.1406 (MH+). HPLC tR=1.75 min purity 96.0%.
2 -( 2 -( 4- morpholin yl)ethyl) -1H-[1,2,3]triazol- 4 -yl)-pyridine- 4 -carboxylic acid hydrochloride (YMA04-119 HCl salt )
Yield 35%; orange solid 1 H NMR (DMSO-d 6 , 300 MHz, δ; ppm): 8.82 (2H, s), 8.45(1H, s), 7.78 (1H, d, J = 3.9 Hz) , 7.59-7.56 (2H, m), 7.48-7.46 (3H, m), 5.01 (2H, t, J = 6.6 Hz), 4.40 (2H, s), 3.72 (2H, t, J = 3.0 Hz), 2.73 (3H, s); 13 C NMR (DMSO-d 6 , 75 MHz, δ; ppm): 166.5, 159.1, 151.4, 147.4, 139.8, 131.9, 130.3, 130.2, 129.4, 125.1, 122.5, 118.5, 59 53.9, 45.0; HRMS (EI) Calcd. for C14H17O3N5 (MH + ) 304.1404, Found 304.1406 (MH + ). HPLC t R =1.75 min purity 96.0%.
2-(1-(2-(hexyl(methyl)amino)ethyl)-1H-[1,2,3]triazol-5-yl)-pyridine-4-carboxylic acid (syn-T1)及びNPC-3422
Step 1: Methyl-2-(1-(2-(hexyl(methyl)amino)ethyl)-1H-[1,2,3]triazol-5-yl)-pyridine-4-carboxylate (syn-T4)及びNPC-3543
Alk4 (123 mg, 0.760 mmol)とAz1 (210 mg, 1.14 mmol)を5.00 mLのトルエンに溶かし、100℃で30時間加熱還流した。反応終了後溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン= 1/1 to 1/0)で精製し、76.0 mgの黄色オイル状のsyn-triazole (収率29%) (syn-T4)と68.0 mgのオレンジ色オイル状のanti- triazole (収率26%) (NPC-3543)をそれぞれ得た。
syn-T4: 1H NMR (CDCl3, 300 MHz, δ; ppm) 8.79 (1H, dd, J = 4.2, 0.9 Hz), 8.12 (1H, t, J = 0.9 Hz), 8.02 (1H, s), 7.80 (1H, dd, J = 3.6, 1.5 Hz), 4.97 (2H, t, J= 7.2 Hz), 3.96 (3H, s), 2.83 (2H, t, J = 7.2 Hz), 2.32 (2H, t, J= 7.2 Hz), 2.22(3H, s), 1.15-1.29 (8H, m), 0.82 (3H, t, J = 7.2 Hz); 13C NMR (CDCl3, 75 MHz,δ; ppm) 164.94, 150.46, 148.40, 138.72, 135.30, 133.77, 122.21, 122.01, 57.75,56.84, 53.02, 47.80, 42.34, 31.76, 27.14, 26.98, 22.64, 14.07; MS (ESI) m/z 346.4 (MH+); HPLC tR= 12.65 min purity 95.6%
NPC-3543: 1H NMR (CDCl3, 300 MHz, δ; ppm) 8.71-8.74 (2H, m), 8.30 (1H, s), 7.78(1H, dd, J= 3.6, 0.6 Hz), 4.52 (2H, t, J = 6.3Hz), 3.99 (3H, s), 2.88 (2H, t, J= 6.0 Hz), 2.40 (2H, t, J = 7.5 Hz), 2.31 (3H, s), 1.22-1.42 (8H, m), 0.83 (3H, t, J= 6.6 Hz); 13C NMR (CDCl3, 75 MHz, δ; ppm) 165.60, 151.70, 150.21, 147.54,138.35, 123.25, 121.74, 119.50, 57.98, 57.03, 52.70, 48.57, 42.09, 31.75, 27.21, 27.02, 22.63, 14.02; MS (ESI) m/z 346.4 (MH+); HPLC tR= 12.13 min purity 95.6%
2- (1-( 2-( hexyl ( methyl ) amino )ethyl) -1H-[1,2,3]triazol-5-yl)-pyridine-4-carboxylic acid (syn-T1 ) and NPC-342 2
Step 1: Methyl-2 -(1-( 2-( hexyl ( methyl ) amino )ethyl) -1H-[1,2,3]triazol-5-yl)-pyridine-4-carboxylate (syn-T4 ) and NPC-354 3
Alk4 (123 mg, 0.760 mmol) and Az1 (210 mg, 1.14 mmol) were dissolved in 5.00 mL of toluene and heated under reflux at 100° C. for 30 hours. After completion of the reaction, the solvent was evaporated, and the residue was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1/1 to 1/0) to give 76.0 mg of yellow oily syn-triazole (yield 29%). ) (syn-T4) and 68.0 mg of orange oily anti-triazole (26% yield) (NPC-3543), respectively.
syn-T4: 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 8.79 (1H, dd, J = 4.2, 0.9 Hz), 8.12 (1H, t, J = 0.9 Hz), 8.02 (1H, s) , 7.80 (1H, dd, J = 3.6, 1.5 Hz), 4.97 (2H, t, J = 7.2 Hz), 3.96 (3H, s), 2.83 (2H, t, J = 7.2 Hz), 2.32 (2H, t, J = 7.2 Hz), 2.22(3H, s), 1.15-1.29 (8H, m), 0.82 (3H, t, J = 7.2 Hz); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm) 164.94, 150.46, 148.46, 148.46, 138.72, 135.70, 133.77, 122.01, 122.01, 57.75, 53.02, 53.02, 47.80, 42.34, 31.76, 31.76, 27.98 , 22.98 tR = 12.65 min purity 95.6%
NPC-3543: 1 H NMR (CDCl 3 , 300 MHz, δ; ppm) 8.71-8.74 (2H, m), 8.30 (1H, s), 7.78(1H, dd, J= 3.6, 0.6 Hz), 4.52 ( 2H, t, J = 6.3Hz), 3.99 (3H, s), 2.88 (2H, t, J = 6.0 Hz), 2.40 (2H, t, J = 7.5 Hz), 2.31 (3H, s), 1.22- 1.42 (8H, m), 0.83 (3H, t, J= 6.6 Hz); 13 C NMR (CDCl 3 , 75 MHz, δ; ppm) 165.60, 151.70, 150.21, 147.54,138.35, 123.25, 121.74, 119.50, 57.98 , 57.03, 52.70, 48.57, 42.09, 31.75, 27.21, 27.02, 22.63, 14.02; MS (ESI) m/z 346.4 (MH + ); HPLC t R = 12.13 min purity 95.6%
Step 2: 2-(1-(2-(hexyl(methyl)amino)ethyl)-1H-[1,2,3]triazol-5-yl)-pyridine-4-carboxylic acid (syn-T1)及びNPC-3422
syn体およびanti体のトリアゾール化合物(50.0 mg, 145 μmol)のメタノール溶液(3.00 mL)に2.00 mLの2 N 水酸化ナトリウム水溶液をそれぞれ加え、反応溶液を室温、12時間撹拌した。反応終了後、溶媒を留去し、残渣に4N 塩酸/ジオキサンを加え、pH 1.0に調整した。溶液をろ過し、ろ液を濃縮して13.9 mgのsyn-T1および10.0 mgのanti-T1 を得た。(収率29%/21%).
syn-T1: 1H NMR (MeOD, 300 MHz, δ; ppm) 8.92 (1H, dd, J = 4.5, 0.6 Hz), 8.43 (1H, s), 8.40 (1H, t, J = 0.3 Hz), 7.97 (1H, dd, J = 3.6, 1.5 Hz), 5.36 (2H, t, J =6.0 Hz), 3.92 (2H, s), 3.29 (2H, t, J = 8.4 Hz), 3.05 (3H, s), 1.75 (2H, quin., J = 8.1 Hz), 1.37 (6H, m), 0.93 (3H, t, J = 7.2 Hz); 13C NMR (MeOD, 75 MHz, δ; ppm) 166.99, 151.80, 148.47, 141.77, 137.53, 135.20, 124.35, 123.72, 58.00, 56.08, 46.15, 41.34, 32.32, 27.14, 25.03, 23.41, 14.21; MS (ESI) m/z 332.1(MH+); HPLC tR= 10.98 min purity 99.5%
NPC-3422: 1H NMR (MeOD, 300 MHz, δ; ppm) 8.79 (1H, d, J = 4.5 Hz), 8.64 (1H, s), 8.61 (1H, s), 7.89 (1H, dd, J = 3.6, 1.5 Hz), 4.99 (2H, t, J = 6.0 Hz), 3.92 (2H, s), 3.30 (2H, s), 3.02 (3H, s), 1.73 (2H, quin., J = 7.8 Hz), 1.38 (6H, m),0.93 (3H, t, J = 7.2 Hz); 13C NMR (MeOD, 75 MHz, δ; ppm) 166.00, 150.45, 150.21, 147.56, 139.83, 124.01, 122.37, 119.36, 56.67, 54.24, 44.53, 39.71, 30.92, 25.73, 23.56, 22.03, 12.79; MS (ESI) m/z 332.1(MH+); HPLC tR= 10.10 min purity 99.6%
Step 2: 2 -(1-( 2-( hexyl ( methyl ) amino )ethyl) -1H-[1,2,3]triazol-5-yl)-pyridine-4-carboxylic acid (syn-T1 ) and NPC-342 2
To a methanol solution (3.00 mL) of syn-isomer and anti-triazole compound (50.0 mg, 145 μmol), 2.00 mL of 2 N aqueous sodium hydroxide solution was added, and the reaction solution was stirred at room temperature for 12 hours. After completion of the reaction, the solvent was distilled off, and 4N hydrochloric acid/dioxane was added to the residue to adjust the pH to 1.0. The solution was filtered and the filtrate was concentrated to give 13.9 mg of syn-T1 and 10.0 mg of anti-T1. (29%/21% yield).
syn-T1: 1 H NMR (MeOD, 300 MHz, δ; ppm) 8.92 (1H, dd, J = 4.5, 0.6 Hz), 8.43 (1H, s), 8.40 (1H, t, J = 0.3 Hz), 7.97 (1H, dd, J = 3.6, 1.5 Hz), 5.36 (2H, t, J = 6.0 Hz), 3.92 (2H, s), 3.29 (2H, t, J = 8.4 Hz), 3.05 (3H, s ), 1.75 (2H, quin., J = 8.1 Hz), 1.37 (6H, m), 0.93 (3H, t, J = 7.2 Hz); 13 C NMR (MeOD, 75 MHz, δ; ppm) 166.99, 151.80 , 148.47, 141.77, 137.53, 135.20 , 124.35, 123.72, 58.00, 56.08, 46.15, 41.34, 32.32, 27.14, 25.03, 23.41, 14.21 ; Purity 99.5%
NPC-3422: 1 H NMR (MeOD, 300 MHz, δ; ppm) 8.79 (1H, d, J = 4.5 Hz), 8.64 (1H, s), 8.61 (1H, s), 7.89 (1H, dd, J = 3.6, 1.5 Hz), 4.99 (2H, t, J = 6.0 Hz), 3.92 (2H, s), 3.30 (2H, s), 3.02 (3H, s), 1.73 (2H, quin., J = 7.8 Hz), 1.38 (6H, m), 0.93 ( 3H , t, J = 7.2 Hz); , 56.67, 54.24, 44.53, 39.71, 30.92, 25.73, 23.56, 22.03, 12.79; MS (ESI) m/z 332.1(MH + ); HPLC t R = 10.10 min purity 99.6%
試験例1
酵素活性試験
KDM酵素の活性評価はAlpha screenアッセイシステムを用いた。評価に用いたバッファーおよび試薬を表S1に示した。2.5 μLの阻害剤溶液(3.0% DMSO/アッセイバッファー溶液)もしくはアッセイバッファー(50 mM HEPES pH 7.5, 0.1% w/v BSA, 0.01% v/v Tween-20 containing 3% DMSO、コントロールとブランク用)をOptiPlateTM-384白色プレートの各ウェルに添加した。そこに5.0 μLの酵素溶液を添加した。(ブランクのウェルには5.0 μLのアッセイバッファーを加えた)。室温で5分置いた後、2.5 μLの基質タンパク質/2-OG (50 μM)/Fe(II)(5 μM)/アスコルビン酸ナトリウム (100 μM)のバッファー溶液を各ウェルに添加した。酵素や基質タンパク質の最終濃度を表S2にまとめた。これらの反応溶液を室温で1時間もしくは2時間、おだやかに振盪撹拌した(250 rpm)。5.0 μLのアクセプタービーズのepigeneticバッファー溶液(100 μg/mL)を各ウェルに添加し、室温、1時間穏やかに振盪撹拌した(250 rpm)。最後に、10 μLのドナービーズのepigeneticバッファー溶液(50 μg/mL)を加え室温、30分間暗所で振盪撹拌した(250 rpm)。その後、AlphaシグナルをEnsight(R)readers(PerkinElmer Ltd)で検出した。(励起光波長:615 nm、発光波長: 655 nm)。酵素活性(%)は阻害剤のウェルのAlphaシグナルをコントロールのウェルのシグナルで割った値で算出した。結果を図1に示す。
Test example 1
Enzyme activity test
Alpha screen assay system was used to evaluate the activity of KDM enzyme. The buffers and reagents used for evaluation are shown in Table S1. 2.5 μL of inhibitor solution (3.0% DMSO/assay buffer solution) or assay buffer (50 mM HEPES pH 7.5, 0.1% w/v BSA, 0.01% v/v Tween-20 containing 3% DMSO, for control and blank) was added to each well of the OptiPlate ™ -384 white plate. 5.0 μL of enzyme solution was added there. (5.0 μL assay buffer was added to blank wells). After 5 minutes at room temperature, 2.5 μL of substrate protein/2-OG (50 μM)/Fe(II) (5 μM)/sodium ascorbate (100 μM) buffer solution was added to each well. The final concentrations of enzymes and substrate proteins are summarized in Table S2. These reaction solutions were stirred at room temperature for 1 or 2 hours with gentle shaking (250 rpm). 5.0 μL of an epigenetic buffer solution of acceptor beads (100 μg/mL) was added to each well and gently shaken (250 rpm) at room temperature for 1 hour. Finally, 10 μL of an epigenetic buffer solution (50 μg/mL) of donor beads was added and shaken at room temperature for 30 minutes in the dark (250 rpm). Alpha signals were then detected with Ensight (R) readers (PerkinElmer Ltd). (Excitation wavelength: 615 nm, emission wavelength: 655 nm). Enzyme activity (%) was calculated by dividing the Alpha signal of inhibitor wells by the signal of control wells. The results are shown in FIG.
細胞培養
ヒト前立腺がん細胞PC3 (Japanese Collection of Research Bioresources; JCRB9110, Japan)を10% ウシ胎児血清アルブミン(FBS; SIGMA, #172012-500ML)、5% penicillin/streptomyc (Nacalai, #09366-44)を含むHam's F-12K (Kaighn's)培地(Gibco, #21127022)で 5% CO2雰囲気下、37 °Cで培養した。ヒト前立腺がん細胞LNCaP (American type culture collection, ATCC)およびヒト胃がん細胞MKN45(provided by RIKEN BRC cell bank; RCB1001, Japan)は10% FBS, 5% penicillin/streptomycin mixtureを含むRPMI-1640 (Sigma, R8758)培地中、5% CO2雰囲気下、37 °Cで培養した。
Cell-cultured human prostate cancer cell PC3 (Japanese Collection of Research Bioresources; JCRB9110, Japan) was mixed with 10% fetal bovine serum albumin (FBS; SIGMA, #172012-500ML), 5% penicillin/streptomyc (Nacalai, #09366-44) was cultured in Ham's F-12K (Kaighn's) medium (Gibco, #21127022) containing 5% CO 2 at 37°C. Human prostate cancer cells LNCaP (American type culture collection, ATCC) and human gastric cancer cells MKN45 (provided by RIKEN BRC cell bank; RCB1001, Japan) were incubated with RPMI-1640 (Sigma, R8758) medium, cultured at 37°C under 5% CO 2 atmosphere.
ウェスタンブロッティング
PC3, LnCAP および MKN45 細胞 (5 x 105cells/2 mL/dish)にNPC-3543 を処理し、48時間培養した。その後細胞ペレットをSDSバッファーで抽出した。抽出したライセートのタンパク質濃度をBCA protein assayを用いて測定した。ライセートのタンパク濃度を揃え、5-20% SDS-polyacrylamideゲルを用いて電気泳動を行った。さらにPVDFメンブレンに転写した。メンブレンを5%スキムミルクTBS-T溶液でブロッキングを行った後、一次抗体polyclonal H3K4me3 antibody (Abcam, #ab8580) (1:5000希釈), H3K4me2 antibody (CST, #9725) (1:5000希釈), H3K4me1 antibody (Abcam, #ab8895) (1:5000希釈), H3 antibody (Abcam, #ab1791) (1:200000 希釈), KDM5A antibody (CST, #3876) (1:1000希釈), KDM5B antibody (CST, #3273) (1:1000希釈)、KDM5C antibody (CST, #5361) (1:1000希釈)、mouse monoclonal α-tubulin antibody (sigma, #T8203) (1:1000希釈)をそれぞれ5%スキムミルクTBS-T溶液で希釈し、室温で1時間振盪撹拌して反応させた。メンブレンを3回TBS-Tで洗浄後、二次抗体ECL rabbit/mouse IgG, HRP-linked whole Anti-body (GE Healthcare Life Sciences, #NA934) (1:2500希釈)を室温1時間反応させた。再び3回 TBS-Tで洗浄した。バンドは化学発光により検出し、ImmobilonTMWestern Chemiluminescent HRP Substrate (Millipore, #P90718)を検出薬として使用した。結果を図2に示す。KDM5C過剰発現細胞PC3でのみ、H3K4のメチル化が亢進していた。このことから、NPC-3543は細胞系でもKDM5Cを選択的に阻害することが明らかになった。
western blotting
PC3, LnCAP and MKN45 cells (5 x 105 cells/2 mL/dish) were treated with NPC-3543 and cultured for 48 hours. Cell pellets were then extracted with SDS buffer. The protein concentration of the extracted lysate was determined using the BCA protein assay. After adjusting the protein concentration of the lysate, electrophoresis was performed using a 5-20% SDS-polyacrylamide gel. Further transferred to PVDF membrane. After blocking the membrane with 5% skim milk TBS-T solution, primary antibodies polyclonal H3K4me3 antibody (Abcam, #ab8580) (1:5000 dilution), H3K4me2 antibody (CST, #9725) (1:5000 dilution), H3K4me1 antibody (Abcam, #ab8895) (1:5000 dilution), H3 antibody (Abcam, #ab1791) (1:200000 dilution), KDM5A antibody (CST, #3876) (1:1000 dilution), KDM5B antibody (CST, # 3273) (1:1000 dilution), KDM5C antibody (CST, #5361) (1:1000 dilution), mouse monoclonal α-tubulin antibody (sigma, #T8203) (1:1000 dilution) each in 5% skim milk TBS-T solution and reacted with shaking and stirring at room temperature for 1 hour. After washing the membrane three times with TBS-T, the secondary antibody ECL rabbit/mouse IgG, HRP-linked whole Anti-body (GE Healthcare Life Sciences, #NA934) (diluted 1:2500) was reacted at room temperature for 1 hour. Washed again with TBS-T three times. Bands were detected by chemiluminescence using Immobilon ™ Western Chemiluminescent HRP Substrate (Millipore, #P90718) as detection reagent. The result is shown in figure 2. H3K4 was hypermethylated only in KDM5C-overexpressing PC3 cells. This reveals that NPC-3543 also selectively inhibits KDM5C in cell lines.
試験例2
NPC-3543投与マウスの行動評価試験(図3-6)
8週齢の雄性DBA/2マウス(以下、DBAマウス)の内側前頭前野にカニューレを留置し、NPC-3543 (100μM)あるいは溶媒を投与し、その2時間後に社会性敗北ストレス(*1)を負荷した。これを5日間連続して行い、社会性試験(*2)を施行した。
Test example 2
Behavioral evaluation test of NPC-3543-administered mice (Figure 3-6)
A cannula was placed in the medial prefrontal cortex of 8-week-old male DBA/2 mice (hereinafter referred to as DBA mice), NPC-3543 (100 μM) or vehicle was administered, and 2 hours later, social defeat stress (*1) was applied. loaded. After doing this for 5 consecutive days, a social test (*2) was conducted.
*1社会性敗北ストレス
テストマウスを攻撃性の高いCD-1マウスのケージに5分間入れる。この時、CD-1マウスはテストマウスに対して一方的に攻撃を仕掛ける(肉体的ストレス負荷)。5分経過後、CD-1マウスとテストマウスを透明なアクリル板で仕切り、24時間飼育する(心理ストレス負荷)。これを5日間連続で行った(図3)。
*1 Social defeat stress test mice are placed in a cage of highly aggressive CD-1 mice for 5 min. At this time, the CD-1 mice unilaterally attack the test mice (physical stress load). After 5 minutes have passed, the CD-1 mouse and the test mouse are separated by a transparent acrylic plate and kept for 24 hours (psychological stress load). This was done for 5 consecutive days (Fig. 3).
*2社会性試験
42 cm四方の箱に新奇マウスとしてCD-1マウスを置く(ターゲットエリア)。この箱の中にテストマウス(DBAマウス)を置き、3分間でターゲットエリアに滞在した時間をビデオトラッキングシステム(Any-Mazeソフトウェア)により測定した(図4)。
*2Sociability test
A CD-1 mouse is placed as a novel mouse in a 42 cm square box (target area). A test mouse (DBA mouse) was placed in this box, and the time spent in the target area for 3 minutes was measured by a video tracking system (Any-Maze software) (Fig. 4).
<スクロース嗜好性試験の方法>
1%スクロース溶液と通常水の入ったボトルを同時に与えた。4時間でスクロース溶液と通常水を飲んだ量を計測し、スクロース水を飲んだ割合(sucrose preference)をアンヘドニアの指標とした(図5)。通常、動物は甘いスクロースを好むが、うつ病の病態の1つであるanhedonia(無感症)の状態にある動物はスクロースに対する選択性が低下する。
<Method of sucrose preference test>
A 1% sucrose solution and a bottle of normal water were given simultaneously. The amount of sucrose solution and normal water ingested in 4 hours was measured, and the sucrose preference was used as an index of anhedonia (Fig. 5). Animals usually prefer sweet sucrose, but animals in anhedonia, one of the conditions of depression, become less selective for sucrose.
KDM5C阻害薬(NPC-3543)は、Sucrose Preference試験において、抗うつ効果を示した。このことから、KDM5C阻害剤(NPC-3543)が抗うつ薬として有効であることが示された。 A KDM5C inhibitor (NPC-3543) showed antidepressant effects in the Sucrose Preference trial. From this, it was shown that the KDM5C inhibitor (NPC-3543) is effective as an antidepressant.
<遺伝子発現解析(図6)>
ストレス脆弱性DBAマウスに軽度ストレスを5日間与えた。このときにNPC-3543 (100μM)又は溶媒(vehicle、水)を毎日投与し、次世代シーケンサーを用いた遺伝子発現解析(RNA-seq)を行い、主成分分析(PCA)とクラスタリング解析を行った。その結果、ストレス負荷によって生じた異常な遺伝子発現パターンがKDM5C阻害剤(NPC-3543)によって正常化することが明らかになった。
<Gene expression analysis (Fig. 6)>
Stress-vulnerable DBA mice were given mild stress for 5 days. At this time, NPC-3543 (100 μM) or solvent (vehicle, water) was administered daily, gene expression analysis (RNA-seq) using a next-generation sequencer was performed, and principal component analysis (PCA) and clustering analysis were performed. . As a result, it was revealed that the abnormal gene expression pattern caused by stress load was normalized by KDM5C inhibitor (NPC-3543).
Claims (4)
R5は、水素原子、ハロゲン原子、アルキル、アルコキシ、アリール、アラルキル、ヒドロキシアルキル又はシクロアルキルを示す。R4とR5は、これらが結合している炭素原子と一緒になって置換基を有していてもよいベンゼン環又は置換基を有していてもよいピリジン環を形成してもよい。
R6、R7は、同一または相異なり、水素原子、アルキル、アルコキシ、アリール、アラルキル、ヒドロキシアルキル又はシクロアルキルを示す。但し、R6とR7が同時に水素原子となることはない。
R8は、OH、アルコキシ、ヒドロキシアルキルオキシ、シクロアルキルオキシ、アリールオキシ又はアラルキルオキシを示す。
ZはNを示す。
nは0~5の整数を示す。)
で表される化合物、またはその薬学的に許容される塩もしくは溶媒和物。 Formula (I) below
R5 represents a hydrogen atom, a halogen atom, alkyl, alkoxy, aryl, aralkyl, hydroxyalkyl or cycloalkyl. R 4 and R 5 together with the carbon atom to which they are bonded may form an optionally substituted benzene ring or an optionally substituted pyridine ring.
R 6 and R 7 are the same or different and represent a hydrogen atom, alkyl, alkoxy, aryl, aralkyl, hydroxyalkyl or cycloalkyl. However, R6 and R7 are not hydrogen atoms at the same time.
R 8 represents OH, alkoxy, hydroxyalkyloxy, cycloalkyloxy, aryloxy or aralkyloxy.
Z indicates N.
n represents an integer of 0-5. )
A compound represented by or a pharmaceutically acceptable salt or solvate thereof.
R 5 は、水素原子、ハロゲン原子、アルキル、アルコキシ、アリール、アラルキル、ヒドロキシアルキル又はシクロアルキルを示す。R 4 とR 5 は、これらが結合している炭素原子と一緒になって置換基を有していてもよいベンゼン環又は置換基を有していてもよいピリジン環を形成してもよい。
R 6 、R 7 は、同一または相異なり、水素原子、アルキル、アルコキシ、アリール、アラルキル、ヒドロキシアルキル又はシクロアルキルを示す。但し、R 6 とR 7 が同時に水素原子となることはない。
R 8 は、OH、アルコキシ、ヒドロキシアルキルオキシ、シクロアルキルオキシ、アリールオキシ又はアラルキルオキシを示す。
ZはN又はCR 9 を示す。R 9 は水素原子、アルキル、アリール又はアラルキルを示す。
nは0~5の整数を示す。)
で表される化合物またはその薬学的に許容される塩もしくは溶媒和物を有効成分とする抗うつ剤。 Formula (I) below
R5 represents a hydrogen atom, a halogen atom, alkyl, alkoxy , aryl, aralkyl, hydroxyalkyl or cycloalkyl. R 4 and R 5 together with the carbon atom to which they are bonded may form an optionally substituted benzene ring or an optionally substituted pyridine ring.
R 6 and R 7 are the same or different and represent a hydrogen atom, alkyl, alkoxy, aryl, aralkyl, hydroxyalkyl or cycloalkyl. However, R6 and R7 are not hydrogen atoms at the same time.
R 8 represents OH, alkoxy, hydroxyalkyloxy, cycloalkyloxy, aryloxy or aralkyloxy.
Z represents N or CR9 . R9 represents a hydrogen atom, alkyl, aryl or aralkyl .
n represents an integer of 0-5. )
An antidepressant comprising a compound represented by or a pharmaceutically acceptable salt or solvate thereof as an active ingredient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019106166A JP7237311B2 (en) | 2019-06-06 | 2019-06-06 | Compounds, pharmaceutical compositions, KDM5C inhibitors and antidepressants |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019106166A JP7237311B2 (en) | 2019-06-06 | 2019-06-06 | Compounds, pharmaceutical compositions, KDM5C inhibitors and antidepressants |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020200247A JP2020200247A (en) | 2020-12-17 |
JP7237311B2 true JP7237311B2 (en) | 2023-03-13 |
Family
ID=73742443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019106166A Active JP7237311B2 (en) | 2019-06-06 | 2019-06-06 | Compounds, pharmaceutical compositions, KDM5C inhibitors and antidepressants |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7237311B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016501882A (en) | 2012-12-06 | 2016-01-21 | クオンティセル ファーマシューティカルズ,インク. | Histone demethylase inhibitor |
JP2016514159A (en) | 2013-03-14 | 2016-05-19 | クオンティセル ファーマシューティカルズ,インク. | Histone demethylase inhibitor |
JP2016520528A5 (en) | 2014-03-14 | 2017-04-20 | ||
JP2017512804A (en) | 2014-03-31 | 2017-05-25 | ギリアード サイエンシーズ, インコーポレイテッド | Inhibitors of histone demethylase |
JP2018511621A (en) | 2015-04-14 | 2018-04-26 | ギリアード サイエンシーズ, インコーポレイテッド | Method for treating hepatitis B virus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2015143437A (en) * | 2013-03-15 | 2017-04-27 | Дженентек, Инк. | METHODS FOR TREATING CANCER AND PREVENTING RESISTANCE TO MEDICINES FOR TREATING CANCER |
-
2019
- 2019-06-06 JP JP2019106166A patent/JP7237311B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016501882A (en) | 2012-12-06 | 2016-01-21 | クオンティセル ファーマシューティカルズ,インク. | Histone demethylase inhibitor |
JP2016514159A (en) | 2013-03-14 | 2016-05-19 | クオンティセル ファーマシューティカルズ,インク. | Histone demethylase inhibitor |
JP2016520528A5 (en) | 2014-03-14 | 2017-04-20 | ||
JP2017512804A (en) | 2014-03-31 | 2017-05-25 | ギリアード サイエンシーズ, インコーポレイテッド | Inhibitors of histone demethylase |
JP2018511621A (en) | 2015-04-14 | 2018-04-26 | ギリアード サイエンシーズ, インコーポレイテッド | Method for treating hepatitis B virus |
Non-Patent Citations (4)
Title |
---|
MedChemComm,2014年,Vol. 5, No. 12,pp. 1879-1886 |
Neuropsychopharmacology,2013年,Vol. 38,pp. 124-137 |
Nucleic Acids Research,Vol. 45, No. 4,2017年,pp. 1743-1759 |
Phil. Trans. R. Soc. B ,Vol. 369, 20130514,pp. 1-10,http://dx.doi.org/10.1098/rstb.2013.0514 |
Also Published As
Publication number | Publication date |
---|---|
JP2020200247A (en) | 2020-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3459925B1 (en) | Method for preparing 2-hydroxyl-4-(2, 3-disubstituted benzyloxy)-5-substituted benzaldehyde derivative | |
Kim et al. | Synthesis and biological evaluation of phenyl-1H-1, 2, 3-triazole derivatives as anti-inflammatory agents | |
AU2008315651B2 (en) | Histone deacetylase inhibitors | |
Calcaterra et al. | Chemical, computational and functional insights into the chemical stability of the Hedgehog pathway inhibitor GANT61 | |
Chen et al. | Design, synthesis and biological evaluation of quinoline derivatives as HDAC class I inhibitors | |
JP2007504160A (en) | c-Kit Regulator and Method of Use | |
JP2009242437A (en) | Sulfonamide derivative | |
Lu et al. | Discovery and biological evaluation of thiobarbituric derivatives as potent p300/CBP inhibitors | |
Li et al. | Synthesis of isothiocyanates by reaction of amines with phenyl chlorothionoformate via one-pot or two-step process | |
Zhang et al. | Development of small-molecule BRD4 degraders based on pyrrolopyridone derivative | |
JP4972266B2 (en) | Α, β-unsaturated sulfones for the treatment of proliferative diseases | |
Li et al. | Combined molecular docking, 3D‐QSAR, and pharmacophore model: design of novel tubulin polymerization inhibitors by binding to colchicine‐binding site | |
Huang et al. | Discovering novel quercetin-3-O-amino acid-esters as a new class of Src tyrosine kinase inhibitors | |
KR100704009B1 (en) | 6-Alkylamino-2-methyl-2'-N-methyl substituted sulfonamidomethyl-2H-1-benzopyran derivatives as anti-inflammatory inhibitors | |
Alidmat et al. | Synthesis, characterization, molecular docking and cytotoxicity evaluation of new thienyl chalcone derivatives against breast cancer cells | |
Hamdani et al. | Densely substituted piperidines as a new class of elastase inhibitors: Synthesis and molecular modeling studies | |
Prasad et al. | Design, Synthesis, Antioxidant, and Anti‐Breast Cancer Activities of Novel Diethyl (alkyl/aryl/heteroarylamino)(4‐(pyridin‐2‐yl) phenyl) methylphosphonates | |
Xie et al. | The application of tandem Aza‐Wittig reaction to synthesize artemisinin–guanidine hybrids and their anti‐tumor activity | |
Haider et al. | Design, synthesis, biological evaluation, and in silico studies of 2‐aminobenzothiazole derivatives as potent PI3Kα inhibitors | |
JP7237311B2 (en) | Compounds, pharmaceutical compositions, KDM5C inhibitors and antidepressants | |
Ghoteimi et al. | Second‐Generation CD73 Inhibitors Based on a 4, 6‐Biaryl‐2‐thiopyridine Scaffold | |
Khanapur et al. | Synthesis and anti-inflammatory in vitro, in silico, and in vivo studies of flavone analogues | |
O’Brien et al. | Synthesis and biological evaluation of 2-anilino-4-substituted-7H-pyrrolopyrimidines as PDK1 inhibitors | |
Zhang et al. | Synthesis, Biological Evaluation, and Computer‐Aided Drug Designing of New Derivatives of Hyperactive Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitors | |
CN109369554A (en) | A kind of compound substitution heterocycle class and its preparation method and application containing hydroxamic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190726 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20221013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7237311 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |