Nothing Special   »   [go: up one dir, main page]

JP7170222B2 - 気相式加熱装置 - Google Patents

気相式加熱装置 Download PDF

Info

Publication number
JP7170222B2
JP7170222B2 JP2019069897A JP2019069897A JP7170222B2 JP 7170222 B2 JP7170222 B2 JP 7170222B2 JP 2019069897 A JP2019069897 A JP 2019069897A JP 2019069897 A JP2019069897 A JP 2019069897A JP 7170222 B2 JP7170222 B2 JP 7170222B2
Authority
JP
Japan
Prior art keywords
steam
space
heating furnace
heated
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019069897A
Other languages
English (en)
Other versions
JP2020169737A (ja
Inventor
智大 宇治野
耕一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019069897A priority Critical patent/JP7170222B2/ja
Publication of JP2020169737A publication Critical patent/JP2020169737A/ja
Application granted granted Critical
Publication of JP7170222B2 publication Critical patent/JP7170222B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、熱転移液の蒸気の凝縮潜熱を利用して、被加熱物を加熱する気相式加熱装置に関するものである。
近年、様々な工業製品もしくは家電の組み立て製造工程、又はそれらの製品の構成部品となる各種電子部品、各種の電池、もしくは、電子部品が実装された基板などのデバイス製造工程において、各種熱処理装置で処理される被加熱物の形状が複雑化している。例えば、電子部品が実装された基板においても、平面基板だけでなく、立体的な基板の水平面以外の部分に、はんだペーストを塗布してはんだペーストの上に電子部品を配置しただけの電子部品の保持力が弱い状態で、はんだペーストを溶融して接合するための加熱処理が行われている。また、立体となることで、被加熱物の熱容量そのものも、増加する傾向にある。ここで、各種熱処理装置とは、例えば乾燥炉、キュア炉、もしくは電子部品の実装工程などではんだ付けに使用されるリフロー炉などである。
これらの被加熱物の加熱工程では、不均一な加熱能力による被加熱物の各箇所における温度上昇のばらつきがある場合は、加熱工程の所望の所要時間を得るために、全ての部分が、所望の温度に昇温した状態から、さらに所望の時間を保持する必要がある。また、昇温の遅い部分を所望の時間だけ保持するためには、昇温の早い部分は、必要以上の熱にさらされることになる。また、被加熱物において特に熱影響の大きい場合は、品質への影響が懸念される。また、熱風の衝突による熱伝達を利用した加熱工程の場合、被加熱物の熱容量が大きい場合は、所望の昇温速度を得るために、熱風の被加熱物への衝突速度を速めることで、熱伝達率を高くすることが出来る。しかしながら、例えば、立体的な基板の水平面以外の部分に、はんだペーストを塗布して電子部品を配置しただけの保持力が弱い状態で加熱処理をする必要がある場合、はんだの溶融、その後の冷却によるはんだの凝固が完了する以前に、熱風を高速で衝突させることで、部品が基板から剥離してしまう可能性が大きくなる。
そこで、熱容量の大きい基板についても熱風の衝突による部品の剥離などを回避し、高い熱伝達率を利用して被加熱物を効率良く加熱する方法として、熱転移液の蒸気が有する凝縮潜熱を利用して加熱する気相式加熱装置が知られている(例えば、特許文献1参照)。
図7は特許文献1の概略構成図である。特許文献1で開示されている構成は、以下のような構成である。加熱装置10は、搬入口8と、搬出口9と、コンベア3と、ヒータ4、温度センサ6、電力調節器11を備えた蒸気槽1とで構成されている。搬入口8から投入された被加熱物2は、コンベア3によって蒸気槽1まで搬送され、蒸気槽1内で加熱された後、コンベア3によって搬出口9まで搬送され、加熱装置10外へ搬出される。蒸気槽1内の底部には、対空気比重の大きい熱転移液5が保持されており、蒸気槽1内の底部に設置されたヒータ4で熱転移液5を加熱し、蒸気7を発生させている。蒸気槽1の上部には温度センサ6が設置されており、蒸気槽1の底部で発生した蒸気7が押し上げられ、蒸気7と空気との境界面である蒸気面が温度センサ6の先端6aの高さに到達すると、温度センサ6の先端6aが蒸気7の温度を検知するため、電力調節器11によってヒータ4の出力を制御することで、蒸気面を温度センサ6の先端6aの高さに維持するように調節することができる。温度センサ6の先端6aは、高さ方向に上下移動できるようになっており、被加熱物2がコンベア3上に無い場合は、温度センサ6の先端6aの高さを低く設定し、蒸気7の発生量を抑制する。そして、被加熱物2がコンベア3上にある場合は、温度センサ6の先端6aの高さを高く設定し、蒸気槽1内の蒸気量を増やし、その蒸気7の凝縮潜熱によって被加熱物2を加熱する。
特開平5-111755号公報
しかしながら、前記特許文献1の構成では、被加熱物の加熱により蒸気槽内の蒸気量が減少したときに、温度センサで蒸気面の低下を検知してからヒータの出力を上げ、熱転移液を加熱するように構成している。このため、被加熱物近傍への蒸気の供給には、蒸気槽の底部から被加熱物が位置する高さまで熱転移液の蒸気が上昇するまでの時間を要し、被加熱物の加熱による蒸気の減少と被加熱物近傍への蒸気の供給に時間差が生じるため、プロセス時間が長くなるという課題がある。
本発明は、このような点を鑑み、被加熱物の加熱によって蒸気量が減少した際に、被加熱物近傍に蒸気を即時に供給する、気相式加熱装置を提供することを目的とする。
前記目的を達成するために、本発明の1つの態様にかかる気相式加熱装置は、
熱転移液の蒸気の凝縮潜熱を利用して被加熱物を加熱する気相式加熱装置であって、
外部空間から内部空間が遮断される蒸気加熱炉と、
前記蒸気加熱炉に前記蒸気を供給する蒸気供給部と、
前記蒸気加熱炉で加熱位置と搬送位置との間で前記被加熱物を搬送する搬送部と、
前記蒸気加熱炉で、前記加熱位置の前記被加熱物の上端より上方に設けられた冷却部と、
前記蒸気加熱炉の側部に設けられて前記蒸気加熱炉と接続口を介して連通可能に前記蒸気を蓄える蒸気保持部とを有し、
前記蒸気保持部は、
前記蒸気加熱炉に連通する第1の空間と、
内部空間の容積が変化することにより前記第1の空間の容積を変化させる第2の空間と、
前記第1の空間と前記第2の空間とを仕切る仕切り部とを有し、
前記蒸気保持部と前記蒸気加熱炉とを接続する前記接続口の下端の高さは、前記被加熱物の前記加熱位置の前記被加熱物の下端より上方に配置され、前記接続口の上端の高さは、前記冷却部より下方で、且つ前記被加熱物の前記加熱位置の前記被加熱物の上端より上方に配置され、
前記蒸気加熱炉内の前記冷却部より下方の空間が前記蒸気で満たされているときは、前記仕切り部の移動により前記第2の空間の容積が減少し、前記第1の空間に前記蒸気が取り込まれ、前記蒸気加熱炉内の前記蒸気が減少したときは、前記第1の空間と前記第2の空間との間の圧力差に基づく前記仕切り部の移動により、前記第2の空間の容積が増加し、前記第1の空間に取り込まれた前記蒸気を前記蒸気加熱炉内に供給する。
以上のように、本発明の前記態様の気相式加熱装置によれば、被加熱物の加熱により蒸気加熱炉内の蒸気量が減少した際に、蒸気を被加熱物近傍に即時に供給することができ、プロセス時間を短縮することが可能となる。
本発明の実施形態における気相式加熱装置の側面から見た概略構成図 本発明の実施形態における気相式加熱装置の正面から見た概略構成図 本発明の実施形態における気相式加熱装置の正面から見た概略構成図 本発明の実施形態における気相式加熱装置の説明図 本発明の実施形態における気相式加熱装置の説明図 本発明の実施形態における気相式加熱装置の説明図 従来の気相式加熱装置の概略構成図
以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の実施形態における気相式加熱装置100の側面から見た概略構成図である。
気相式加熱装置100は、熱転移液106の蒸気の凝縮潜熱を利用して被加熱物102を加熱する装置であり、少なくとも、蒸気加熱炉101と、蒸気供給部107と、搬送部103Bと、冷却部110と、蒸気保持部111とを有している。
蒸気加熱炉101は、外部空間90から内部空間101aが遮断されて、底部に熱転移液106が保持されているとともに、加熱処理時には、被加熱物102を内部で加熱する。
蒸気供給部107は、蒸気加熱炉101の底部に配置されて、熱転移液106を加熱して、蒸気加熱炉101内に熱転移液106の蒸気108を供給する。
搬送部103Bは、蒸気加熱炉101内で被加熱物102を搬送位置と加熱位置との間で搬送する。
冷却部110は、蒸気加熱炉101で、加熱時言い換えれば加熱位置の被加熱物102の上端より上方に設けられている。
蒸気保持部111は、蒸気加熱炉101の側部に設けられて、蒸気加熱炉101と接続口92を介して連通可能に、熱転移液106の蒸気を蓄えている。
気相式加熱装置100は、より具体的には、加熱準備室104と蒸気加熱炉101の上部とが連結している。開閉可能な第1シャッタ105Aによって、外部空間90と加熱準備室104とが仕切られている。また、開閉可能な第2シャッタ105Bによって、加熱準備室104と蒸気加熱炉101が仕切られている。
被加熱物102を気相式加熱装置100内に投入するとき以外は、第1、第2シャッタ105A、105Bを閉じた状態になっている。加熱準備室104には、ポンプと開放弁と等で構成された圧力調節部117が接続されており、加熱準備室104内の圧力を任意の値に圧力調節部117で調節できるようになっている。
加熱準備室104と蒸気加熱炉101とには、それぞれ圧力計119A、119Bが設置されて、加熱準備室104内の圧力と蒸気加熱炉101内の圧力とをそれぞれ計測している。計測されたそれら二つの圧力計119A、119Bの値を基に、圧力調節部117を制御する圧力制御部118が設置されている。
被加熱物102を蒸気加熱炉101内に投入する際には、まず、第1シャッタ105Aを開け、加熱準備室104内の第1搬送ステージ103A上に被加熱物102を搬入する。次いで、第1シャッタ105Aを閉じた後、圧力調節部117によって加熱準備室104内の圧力を蒸気加熱炉101内と同等の圧力に調節する。その後、第2シャッタ105Bを開け、被加熱物102を蒸気加熱炉101内の搬送位置の第2搬送ステージ103B上に搬送し、第2シャッタ105Bを閉じる。第2搬送ステージ103Bは搬送部の一例として機能する。第2搬送ステージ103Bは、被加熱物102を載置した状態で、上側の搬送位置と下側の加熱位置との間で蒸気加熱炉101内で昇降可能としている。すなわち、第2搬送ステージ103Bは、被加熱物102を載置した状態で、搬送位置から、後述するように蒸気加熱炉101内の冷却部110より下方でかつ蒸気108で満たされている空間内の加熱位置まで、被加熱物102を下降可能とする。
一方、被加熱物102を蒸気加熱炉101から取り出す際は、加熱準備室104内の圧力を蒸気加熱炉101内と同等の圧力に圧力調節部117で調節した後、第2シャッタ105Bを開け、被加熱物102を、搬送位置の第2搬送ステージ103Bから第1搬送ステージ103Aに搬送し、第2シャッタ105Bを閉じる。その後、圧力調節部117で加熱準備室104内の圧力を外部空間90の大気圧と同等の圧力に調節し、第1シャッタ105Aを開け、被加熱物102を気相式加熱装置外の外部空間90に取り出す。
また、蒸気加熱炉101は、詳しくは後述するが、ヒータ107と冷却コイル110とを備えており、ヒータ107で熱転移液106を加熱し、蒸気108を発生させている。冷却コイル110は冷却部の一例として機能する。ヒータ107は蒸気供給部の一例として機能する。
図2及び図3は、本発明の第1実施形態における気相式加熱装置100の正面から見た概略構成図である。図2のように、気相式加熱装置100の蒸気加熱炉101の底部には、所定量の熱転移液106が保持されており、その熱転移液106を加熱し、蒸気108にするヒータ107が備わっている。蒸気加熱炉101の上方の壁面には、配管内に冷却水を循環させる冷却コイル110が備わっている。蒸気加熱炉101の底部で蒸発し、蒸気加熱炉101の内部空間101a内を上昇する蒸気108が冷却コイル110の高さに達すると、蒸気108が冷却コイル110で冷やされて凝縮し、熱転移液106に戻り、蒸気加熱炉101内の壁面を伝って、底部の熱転移液106に再び供給される。この冷却コイル110により、内部空間101a内で熱転移液106の蒸気108と空気との境界面である蒸気面109の高さが、冷却コイル110の高さに設定される。
また、蒸気加熱炉101の側部には、冷却コイル110の高さよりも低い位置で内部空間101aと接続口92を介して連通する蒸気保持部111が設置されている。蒸気保持部111は、内部の空間を上下に2分割するように、蒸気保持部111内を摺動可能な仕切り部112によって仕切られて、第1の空間(例えば図2では上側の空間)113と第2の空間(例えば図2では下側の空間)114とが形成されている。仕切り部112によって仕切られた蒸気保持部111内の第1の空間113は、蒸気加熱炉101の内部空間101aに連通するように接続されている。一方、仕切り部112によって仕切られた蒸気保持部111内の第2の空間114は、外部空間90から遮断された密閉構造になっており、第2の空間114内の圧力を調節できるように圧力調節接続部116を有している。圧力調節接続部116は、弁を有しており、第2の空間114の圧力を調節するときは、弁を開放して第2の空間114と外部空間90とを連通させ、ポンプなどの圧力調節器を圧力調節接続部116に接続し、第2の空間114を所望の圧力に調節する。それ以外のときは、圧力調節接続部116の弁を閉じて第2の空間114を外部空間90から遮断するようにしている。仕切り部112は、第1の空間113と第2の空間114との圧力差に応じて自在に上下に移動可能となっている。よって、第2の空間114の内部空間の容積が変化することにより、第1の空間113の容積を変化させるようになっている。また、蒸気保持部111内には、仕切り部112がある一定の高さ以上にならないように保持する固定部115を有している。
気相式加熱装置100の運転開始前の初期状態においては、第2の空間114内の圧力は、仕切り部112に掛かる重力による下方向の力を少し上回り、仕切り部112が固定部115の高さまで押し上げられ、固定部115に接触した状態になる程度に、大気圧に対して正圧に設定されている。
気相式加熱装置100の運転が開始されると、まず、蒸気加熱炉101内でヒータ107により熱転移液106が加熱され、熱転移液106は、蒸発して蒸気108になり、蒸気加熱炉101内の冷却コイル110より下方の空間を満たしていく。一定時間が経過すると、蒸気加熱炉101内の冷却コイル110より下方の空間は、熱転移液106の沸点の温度の蒸気108で満たされるようになり、前述したように、蒸気面109は、冷却コイル110の高さに維持される。
それと同時に、蒸気108は、接続口92を介して、蒸気保持部111内の第1の空間113内にも拡散するため、第1の空間113内も蒸気108で満たされた状態になる。その状態になると、蒸気加熱炉101と第1の空間113内との圧力は、熱転移液106の沸点の蒸気圧分だけ上昇するため、蒸気保持部111内の仕切り部112は、第1の空間113の圧力に押されて、下方向に移動する。仕切り部112の下方向への移動により、第2の空間114の容積が減少するため、その容積の減少に反比例して、第2の空間114の圧力が上昇する。図3のように、第2の空間114内の圧力が蒸気加熱炉101内の圧力と釣り合ったところで、仕切り部112が停止し、第1の空間113は、第2の空間114の容積が減少した分だけ容積が増加し、その容積分の蒸気108が第1の空間113内に蓄えられる。
次いで、図4及び図5は、蒸気加熱炉101内に導入した被加熱物102を蒸気108によって加熱するときの説明図である。被加熱物102を載せた第2搬送ステージ103Bを、蒸気加熱炉101内でかつ冷却コイル110より下方の蒸気108で満たされている空間まで下降させると、被加熱物102の周辺の蒸気108が被加熱物102の表面で凝縮し、凝縮潜熱によって被加熱物102が加熱される。さらに、蒸気108の凝縮による蒸気量の減少に伴い、被加熱物102の周辺の圧力が減少するため、蒸気加熱炉101内に圧力分布が生じる。すると、その圧力差によって、被加熱物102の上方に存在する蒸気108が、被加熱物102に接近する方向に引き寄せられ、蒸気面109の高さが下降する。また、蒸気加熱炉101内の蒸気108の凝縮が進むと、蒸気加熱炉101内全体の圧力が減少するため、蒸気保持部111内の仕切り部112が第2の空間114の圧力によって押され、仕切り部112が上方向へ移動する。
仕切り部112の上方向への移動により、第1の空間113を満たしていた蒸気108が、接続口92を介して蒸気加熱炉101内に供給される。仕切り部112の移動は、被加熱物102の温度が蒸気108の温度に到達し、蒸気108の凝縮が終わり、蒸気加熱炉101内の圧力が一定になるか、仕切り部112が固定部115に到達するまで、継続する。そして、仕切り部112が上向きに移動している間は、第1の空間113から蒸気加熱炉101内への蒸気108の供給は、継続する。
このように、被加熱物102の加熱の際の蒸気108の凝縮による蒸気加熱炉101内の圧力減少を利用し、余分な時間を要することなく、第1の空間113内に蓄えられていた蒸気108を、蒸気108が減少した分だけ蒸気加熱炉101内へ供給することができる。
被加熱物102の加熱が完了した後は、被加熱物102を載せた第2搬送ステージ103Bを、搬送位置の高さまで上昇させ、前述したように加熱準備室104を経由して、気相式加熱装置外へ被加熱物102が搬出される。
蒸気保持部111と蒸気加熱炉101との接続口92の下端は、被加熱物102の加熱時の加熱位置の被加熱物102の下端より上方に、例えば、加熱時の被加熱物102の下端の高さと同等以上の高さに配置される。また、接続口92の上端は、冷却コイル110より下方で、例えば、冷却コイル110の高さ以下の高さで、且つ被加熱物102の加熱時の加熱位置の被加熱物102の上端より上方に配置される。
このような構成により、蒸気加熱炉101内の冷却コイル110より下方の空間が蒸気108で満たされているときは、第1の空間113と第2の空間114との圧力差に基づく仕切り部112の移動により、第2の空間114の容積が減少し、第1の空間113に蒸気が取り込まれる。一方、蒸気加熱炉101内の蒸気が減少したときは、第1の空間113と第2の空間114との間の圧力差に基づく仕切り部112の移動により、第2の空間114の容積が増加し、第1の空間113に取り込まれて保持されていた蒸気を、蒸気加熱炉101内に供給することができる。
被加熱物102に対する所望の加熱を実施するために、第2の空間114の初期の容積は、熱転移液106の種類と、被加熱物102の加熱に必要な蒸気量と、蒸気加熱炉101内の容積とから設定される。
一例として、蒸発潜熱62.7J/g、沸点270℃であるフッ素系熱転移液を使用し、熱容量30J/Kの被加熱物102を20℃から270℃まで加熱する場合について、以下、説明する。前記の加熱に必要な熱量は、7500Jとなるので、必要な蒸気量は、120gとなる。フッ素系熱転移液の270℃における蒸気密度は22kg/mとすると、被加熱物102を270℃まで加熱するのに必要な蒸気108の容積は、5.5Lである。ここで、所望の加熱に必要な蒸気108の容積の6割の3.3L分は、蒸気加熱炉101内の加熱位置の被加熱物102の上端の高さより上方にある初期の蒸気108で賄うとして、残りの4割の2.2L分を、第1の空間113内に蓄えるものとする。すなわち、仕切り部112が固定部115の高さに位置しているときの第2の空間114の容積と、蒸気108を第1の空間113内に所望の加熱に必要な蒸気量を蓄えたときの第2の空間114の容積との差を、2.2Lとする。第2の空間114の初期の体積をV、圧力をP、所望の加熱に必要な蒸気108を第1の空間113内に蓄えたときの第2の空間114の体積をV、圧力をPとすると蒸気を満たすために、P×(V/V)=P、V-V=2.2L が成り立つ。第2の空間114の初期の圧力Pは、前述のように大気圧に対して数Pa程度正圧に設定されており、仮に10Pa正圧に設定されているとし、標準状態の大気圧を1.013×10^5Paとして計算すると、第2の空間114の初期の圧力Pは、1.014×10^5Paである。また、所望の加熱に必要な蒸気108を第1の空間113内に蓄えたときの第2の空間114の圧力Pは、そのときの蒸気加熱炉101内の圧力と平衡状態にあり、蒸気加熱炉101内の圧力は、蒸気加熱炉101内の温度が熱転移液106の沸点温度に達しており、沸点における蒸気圧分上昇していることから、2.026×10^5Pa程度になっている。
以上から、第2の空間114の初期の体積V、所望の加熱に必要な蒸気108を第1の空間113内に蓄えたときの第2の空間114の体積Vを計算すると、V=4.4L、V=2.2L程度に設定すればよい。
前記実施形態によれば、蒸気加熱炉101の側部に蒸気を蓄える空間として蒸気保持部111を設け、被加熱物102の加熱によって蒸気量が減少した際に、蒸気量の減少に伴う炉内の圧力変化を一定に保持するように、蒸気を蓄える空間である蒸気保持部111の容積を変化させる機構として蒸気保持部111を設けている。このため、被加熱物102の加熱により蒸気加熱炉101内の蒸気量が減少した際に、蒸気加熱炉101の側部に設置した、蒸気を蓄える空間である蒸気保持部111から、蒸気108を被加熱物近傍に即時に供給することができ、プロセス時間を短縮することが可能となる。
なお、本発明は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、図6のように蒸気保持部111を二つ以上設置することで、蒸気保持部111一つ当たりの容積を、蒸気保持部111の数だけ分割し、小さくしてもよい。
なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。
本発明の前記態様にかかる気相式加熱装置は、熱転移液の蒸気の減少による被加熱物近傍の圧力減少を駆動力として、蒸気保持部内の蒸気を即時に被加熱物近傍に供給できるため、被加熱物を短時間で所望の温度に昇温できる。そのため、本発明の前記態様は、高効率な加熱装置として、工業製品又は家電製品の製造工程又は各種電子部品の製造工程における乾燥炉、焼成炉、キュア炉、又はリフロー炉などの各種熱処理を行う熱処理装置に適用できる。
1 蒸気槽
2 被加熱物
3 コンベア
4 ヒータ
5 熱転移液
6 温度センサ
6a 温度センサの先端
7 蒸気
8 搬入口
9 搬出口
10 加熱装置
11 電力調節器
90 外部空間
92 接続口
100 気相式加熱装置
101 蒸気加熱炉
101a 内部空間
102 被加熱物
103A 第1搬送ステージ
103B 第2搬送ステージ
104 加熱準備室
105A 第1シャッタ
105B 第2シャッタ
106 熱転移液
107 ヒータ
108 蒸気
109 蒸気面
110 冷却コイル
111 蒸気保持部
112 仕切り部
113 第1の空間
114 第2の空間
115 固定部
116 圧力調節接続部
117 圧力調節部
118 圧力制御部
119A 圧力計
119B 圧力計

Claims (3)

  1. 熱転移液の蒸気の凝縮潜熱を利用して被加熱物を加熱する気相式加熱装置であって、
    外部空間から内部空間が遮断される蒸気加熱炉と、
    前記蒸気加熱炉に前記蒸気を供給する蒸気供給部と、
    前記蒸気加熱炉で加熱位置と搬送位置との間で前記被加熱物を搬送する搬送部と、
    前記蒸気加熱炉で、前記加熱位置の前記被加熱物の上端より上方に設けられた冷却部と、
    前記蒸気加熱炉の側部に設けられて前記蒸気加熱炉と接続口を介して連通可能に前記蒸気を蓄える蒸気保持部とを有し、
    前記蒸気保持部は、
    前記蒸気加熱炉に連通する第1の空間と、
    内部空間の容積が変化することにより前記第1の空間の容積を変化させる第2の空間と、
    前記第1の空間と前記第2の空間とを仕切る仕切り部とを有し、
    前記蒸気保持部と前記蒸気加熱炉とを接続する前記接続口の下端の高さは、前記被加熱物の前記加熱位置の前記被加熱物の下端より上方に配置され、前記接続口の上端の高さは、前記冷却部より下方で、且つ前記被加熱物の前記加熱位置の前記被加熱物の上端より上方に配置され、
    前記蒸気加熱炉内の前記冷却部より下方の空間が前記蒸気で満たされているときは、前記仕切り部の移動により前記第2の空間の容積が減少し、前記第1の空間に前記蒸気が取り込まれ、前記蒸気加熱炉内の前記蒸気が減少したときは、前記第1の空間と前記第2の空間との間の圧力差に基づく前記仕切り部の移動により、前記第2の空間の容積が増加し、前記第1の空間に取り込まれた前記蒸気を前記蒸気加熱炉内に供給する、気相式加熱装置。
  2. 前記蒸気保持部を2つ以上備える、請求項1に記載の気相式加熱装置。
  3. 前記蒸気加熱炉と連通可能に配置し、内部の圧力を前記蒸気加熱炉内の圧力と前記蒸気加熱炉外の圧力との間で調節できる加熱準備室をさらに備えて、前記蒸気加熱炉外の圧力での前記加熱準備室を介して、前記被加熱物を前記蒸気加熱炉外と前記加熱準備室との間で移動可能とし、前記蒸気加熱炉内の圧力での前記加熱準備室を介して、前記被加熱物を前記蒸気加熱炉内と前記加熱準備室との間で移動可能とする、請求項1又は2に記載の気相式加熱装置。
JP2019069897A 2019-04-01 2019-04-01 気相式加熱装置 Active JP7170222B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019069897A JP7170222B2 (ja) 2019-04-01 2019-04-01 気相式加熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069897A JP7170222B2 (ja) 2019-04-01 2019-04-01 気相式加熱装置

Publications (2)

Publication Number Publication Date
JP2020169737A JP2020169737A (ja) 2020-10-15
JP7170222B2 true JP7170222B2 (ja) 2022-11-14

Family

ID=72746693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069897A Active JP7170222B2 (ja) 2019-04-01 2019-04-01 気相式加熱装置

Country Status (1)

Country Link
JP (1) JP7170222B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327816A (ja) 2003-04-25 2004-11-18 Denso Corp リフロー半田付け方法及び装置
JP2020076540A (ja) 2018-11-07 2020-05-21 パナソニックIpマネジメント株式会社 気相式加熱方法及び気相式加熱装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151267A (ja) * 1985-12-26 1987-07-06 Tamura Seisakusho Co Ltd 気相式はんだ付け装置
JP2582796B2 (ja) * 1987-08-10 1997-02-19 株式会社 タムラ製作所 気相式はんだ付け装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327816A (ja) 2003-04-25 2004-11-18 Denso Corp リフロー半田付け方法及び装置
JP2020076540A (ja) 2018-11-07 2020-05-21 パナソニックIpマネジメント株式会社 気相式加熱方法及び気相式加熱装置

Also Published As

Publication number Publication date
JP2020169737A (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
KR100397196B1 (ko) 유기 반도체 장치의 유기물질 증착원 장치 및 그 방법
CN110385494B (zh) 气相式加热方法以及气相式加热装置
KR101763545B1 (ko) 납땜 장치 및 진공 납땜 방법
CN103557704B (zh) 坩埚加热设备及方法
EP3190295B1 (en) Vacuum-processing device and control method therefor, and vacuum soldering device and control method therefor
CN108971683B (zh) 气相式加热方法以及气相式加热装置
CN104957967A (zh) 一种烹饪器具及其控制方法
EP2385886A1 (en) Method and apparatus for reflow soldering
JP7170222B2 (ja) 気相式加熱装置
JP2001047223A (ja) 少なくとも一つの熱伝達液によるワークピースの熱処理方法及びその方法を実現するための凝縮炉
CN110244801B (zh) 煮饭设备及煮饭控制方法
CN111156703B (zh) 气相式加热方法以及气相式加热装置
JP6466190B2 (ja) 真空乾燥装置
JP7182109B2 (ja) 気相式加熱方法及び気相式加熱装置
JP2021169118A (ja) 気相式加熱装置
JP6909998B2 (ja) 気相式加熱方法及び気相式加熱装置
JP2007321993A (ja) 加熱調理器
KR20140064400A (ko) 리플로우 장치
JP4398798B2 (ja) 蒸気調理器
JP2011196621A (ja) ミスト冷却装置、熱処理装置及び冷却方法
JP2008107059A (ja) 加熱調理器
JP6737094B2 (ja) 基板加熱装置、基板加熱方法及び記憶媒体
JP2509935B2 (ja) 気相式はんだ付け装置
JP2007227741A (ja) リフロー半田付け方法及び装置
JPS63242469A (ja) 基板加熱装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221019

R151 Written notification of patent or utility model registration

Ref document number: 7170222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151