Nothing Special   »   [go: up one dir, main page]

JP7030475B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP7030475B2
JP7030475B2 JP2017212354A JP2017212354A JP7030475B2 JP 7030475 B2 JP7030475 B2 JP 7030475B2 JP 2017212354 A JP2017212354 A JP 2017212354A JP 2017212354 A JP2017212354 A JP 2017212354A JP 7030475 B2 JP7030475 B2 JP 7030475B2
Authority
JP
Japan
Prior art keywords
layer
metal oxide
resin layer
oxide layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017212354A
Other languages
English (en)
Other versions
JP2018078292A (ja
Inventor
雅博 片山
正佳 土橋
昌孝 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2018078292A publication Critical patent/JP2018078292A/ja
Priority to JP2022025483A priority Critical patent/JP2022078131A/ja
Application granted granted Critical
Publication of JP7030475B2 publication Critical patent/JP7030475B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明の一態様は、剥離方法、半導体装置の作製方法、及び表示装置の作製方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、又はそれらの製造方法を一例として挙げることができる。
有機EL(Electro Luminescence)素子や、液晶素子が適用された表示装置が知られている。そのほか、発光ダイオード(LED:Light Emitting Diode)等の発光素子を備える発光装置、電気泳動方式などにより表示を行う電子ペーパなども、表示装置の一例として挙げることができる。
有機EL素子の基本的な構成は、一対の電極間に発光性の有機化合物を含む層を挟持したものである。この素子に電圧を印加することにより、発光性の有機化合物から発光を得ることができる。このような有機EL素子が適用された表示装置は、薄型、軽量、高コントラストで且つ低消費電力な表示装置を実現できる。
また、可撓性を有する基板(フィルム)上に、トランジスタなどの半導体素子や、有機EL素子などの表示素子を形成することによりフレキシブルな表示装置が実現できる。
特許文献1では、犠牲層を介して耐熱性樹脂層及び電子素子が設けられた支持基板(ガラス基板)にレーザ光を照射して、耐熱性樹脂層をガラス基板から剥離することで、フレキシブルな表示装置を作製する方法が開示されている。
特開2015-223823号公報
本発明の一態様は、新規な剥離方法、半導体装置の作製方法、または表示装置の作製方法を提供することを課題の一つとする。本発明の一態様は、低コストで量産性の高い剥離方法、半導体装置の作製方法、または表示装置の作製方法を提供することを課題の一つとする。本発明の一態様は、歩留まりの高い剥離方法を提供することを課題の一つとする。本発明の一態様は、大判基板を用いて半導体装置または表示装置を作製することを課題の一つとする。本発明の一態様は、半導体装置または表示装置を低温で作製することを課題の一つとする。
本発明の一態様は、消費電力の低い表示装置を提供することを課題の一つとする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一つとする。本発明の一態様は、表示装置の薄型化または軽量化を課題の一つとする。本発明の一態様は、可撓性を有する、または曲面を有する表示装置を提供することを課題の一つとする。本発明の一態様は、破損しにくい表示装置を提供することを課題の一つとする。本発明の一態様は、新規な表示装置、入出力装置、または電子機器などを提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様の半導体装置の作製方法は、基板上に島状の金属酸化物層を形成する工程、金属酸化物層の端部を覆うように、金属酸化物層上に樹脂層を形成する工程、及び、光を照射することで、金属酸化物層と樹脂層とを分離する工程を有する。さらに、樹脂層を形成した後、かつ、光を照射する前に、樹脂層上に絶縁層を形成する工程を有してもよい。樹脂層は、島状に形成される。絶縁層は、樹脂層の端部を覆うように形成される。
本発明の一態様の半導体装置の作製方法は、基板上に島状の金属酸化物層を形成する工程、金属酸化物層の端部を覆うように、金属酸化物層上に樹脂層を形成する工程、金属酸化物層及び樹脂層と重ねて、接着層を形成する工程、及び、光を照射することで、金属酸化物層と樹脂層とを分離する工程を有する。接着層は、金属酸化物層の端部よりも内側に接着層の端部が位置するように形成される。さらに、樹脂層を形成した後、かつ、接着層を形成する前に、樹脂層上に絶縁層を形成する工程を有してもよい。樹脂層は、島状に形成される。絶縁層は、樹脂層の端部を覆うように形成される。さらに、接着層を形成する工程の前に、樹脂層上に枠状の隔壁を形成する工程を有してもよい。このとき、接着層は、隔壁の内側に形成される。
樹脂層は、厚さが0.1μm以上5μm以下の領域を有するように形成されてもよい。
光として、レーザ光を用いてもよい。レーザ光が、金属酸化物層と樹脂層との界面またはその近傍に照射されることにより、金属酸化物層と樹脂層とが分離する。
照射する光は、180nm以上450nm以下の波長を有していてもよい。照射する光は、308nm又はその近傍の波長を有してもよい。光は、線状レーザ装置を用いて照射されてもよい。光のエネルギー密度は、250mJ/cm以上360mJ/cm以下であってもよい。
金属酸化物層は、チタン、モリブデン、アルミニウム、タングステン、シリコン、インジウム、亜鉛、ガリウム、タンタル、及び錫のうち一つまたは複数を有するように形成されてもよい。金属酸化物層は、チタン及び酸化チタンのうち一方または双方を有するように形成されてもよい。
本発明の一態様により、新規な剥離方法、半導体装置の作製方法、または表示装置の作製方法を提供することができる。本発明の一態様により、低コストで量産性の高い剥離方法、半導体装置の作製方法、または表示装置の作製方法を提供することができる。本発明の一態様により、歩留まりの高い剥離方法を提供することができる。本発明の一態様により、大判基板を用いて半導体装置または表示装置を作製することができる。本発明の一態様により、半導体装置または表示装置を低温で作製することができる。
本発明の一態様により、消費電力の低い表示装置を提供することができる。本発明の一態様により、信頼性の高い表示装置を提供することができる。本発明の一態様により、表示装置の薄型化または軽量化が可能となる。本発明の一態様により、可撓性を有する、または曲面を有する表示装置を提供することができる。本発明の一態様により、破損しにくい表示装置を提供することができる。本発明の一態様により、新規な表示装置、入出力装置、または電子機器などを提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
金属酸化物層と樹脂層を含む積層構造を説明する上面図及び断面図。 金属酸化物層と樹脂層を含む積層構造を説明する上面図及び断面図。 金属酸化物層と樹脂層を含む積層構造を説明する上面図及び断面図。 金属酸化物層と樹脂層を含む積層構造を説明する上面図及び断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図及び上面図。 表示装置の作製方法の一例を示す断面図及び上面図。 表示装置の作製方法の一例を示す断面図。 表示装置の一例を示す上面図及び断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 表示装置の一例を示す上面図及び断面図。 表示装置の一例を示す斜視図。 表示装置の一例を示す断面図。 表示装置の作製方法の一例を示すフロー図。 表示装置の作製方法の一例を示す断面図。 表示装置の作製方法の一例を示す断面図。 入出力装置の一例を示す断面図。 電子機器の一例を示す図。 電子機器の一例を示す図。 実施例で作製した装置の外観写真及び断面観察写真。 実施例で作製した装置の断面観察写真。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OS FETと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
(実施の形態1)
本実施の形態では、本発明の一態様の剥離方法及び表示装置の作製方法について図1~図19を用いて説明する。
本実施の形態では、トランジスタ及び有機EL素子を有する表示装置(アクティブマトリクス型の有機EL表示装置ともいう)を例に挙げて説明する。当該表示装置は、基板に可撓性を有する材料を用いることで、フレキシブルデバイスとすることができる。なお、本発明の一態様は、有機EL素子を用いた発光装置、表示装置、及び入出力装置(タッチパネルなど)に限られず、他の機能素子を用いた半導体装置、発光装置、表示装置、及び入出力装置等の各種装置に適用することができる。
本実施の形態では、まず、基板上に金属酸化物層を形成する。次に、金属酸化物層上に樹脂層を形成する。そして、光を照射することで、金属酸化物層と樹脂層とを分離する。
本実施の形態では、基板と樹脂層の間に下地となる層(下地層ともいう)を形成する。本実施の形態では、下地層として金属酸化物層を用いる場合を例に挙げて説明するが、これに限られない。
金属酸化物層と樹脂層とを分離する際に、光を用いると好ましい。光は、金属酸化物層と樹脂層との界面またはその近傍(界面または界面近傍とも記す)に照射されることが好ましい。また、光は、金属酸化物層中に照射されてもよい。また、光は、樹脂層中に照射されてもよい。なお、本明細書等において、「AとBとの界面またはその近傍」、「AとBとの界面または界面近傍」とは、少なくともAとBとの界面を含み、AとBとの界面から、AまたはBのいずれか一方の厚さの20%以内の範囲を含むものとする。
光を照射することで、金属酸化物層と樹脂層との界面(さらには金属酸化物層中及び樹脂層中)を加熱し、金属酸化物層と樹脂層との密着性(接着性)を低くすることができる。さらには金属酸化物層と樹脂層とを分離することができる。
ここで、図1~図4に、本発明の一態様に係る、金属酸化物層と樹脂層を含む積層構造を示す。
図1(A)、図2(A)、図3(A)、及び図4(A)は、それぞれ、本発明の一態様に係る積層構造の上面図である。図1(B)は、図1(A)に示す上面図における一点鎖線X1-Y1間の断面図である。図2(B)は、図2(A)に示す上面図における一点鎖線X2-Y2間の断面図である。図3(B)は、図3(A)に示す上面図における一点鎖線X3-Y3間の断面図である。図4(B)は、図4(A)に示す上面図における一点鎖線X4-Y4間の断面図である。なお、各上面図において、後述する絶縁層31は省略している。
図1(A)、(B)において、作製基板14上には、島状の金属酸化物層20が1つ設けられている。金属酸化物層20上には、島状の樹脂層23が設けられている。樹脂層23は、金属酸化物層20の端部を覆っている。金属酸化物層20の四辺いずれにおいても、金属酸化物層20の端部よりも外側に樹脂層23の端部が位置する。言い換えると、樹脂層23の四辺いずれにおいても、樹脂層23の端部よりも内側に金属酸化物層20の端部が位置する。図1(B)に示すように、樹脂層23上に絶縁層31が設けられている。絶縁層31は、作製基板14と接する部分と、樹脂層23と接する部分とを有する。
図2(A)において、作製基板14上には、島状の金属酸化物層20が4つ設けられている。金属酸化物層20上には、島状の樹脂層23が設けられている。1つの金属酸化物層20に対して、1つの樹脂層23が設けられている。樹脂層23は、金属酸化物層20の端部を覆っている。金属酸化物層20の四辺いずれにおいても、金属酸化物層20の端部よりも樹脂層23の端部は外側に位置する。図2(B)に示すように、樹脂層23上に絶縁層31が設けられている。絶縁層31は、作製基板14と接する部分と、樹脂層23と接する部分とを有する。
図3(A)において、作製基板14上には、島状の金属酸化物層20が4つ設けられている。4つの金属酸化物層20上には、1つの島状の樹脂層23が設けられている。すなわち、1つの島状の樹脂層23が複数の島状の金属酸化物層20の上に設けられている。樹脂層23は、4つの金属酸化物層20の端部を覆っている。樹脂層23の端部よりも内側に、4つの金属酸化物層20の端部が位置する。図3(B)に示すように、樹脂層23上に絶縁層31が設けられている。絶縁層31は、作製基板14と接する部分と、樹脂層23と接する部分とを有する。
図4(A)において、作製基板14上には、4つの島状の金属酸化物層20が設けられている。金属酸化物層20上には、島状の樹脂層23が設けられている。1つの金属酸化物層20に対して、1つの樹脂層23が設けられている。樹脂層23の端部は、金属酸化物層20の端部よりも内側に位置する。図4(B)に示すように、樹脂層23上に絶縁層31が設けられている。絶縁層31は、作製基板14と接する部分と、金属酸化物層20と接する部分と、樹脂層23と接する部分とを有する。
図4(B)では、絶縁層31が、金属酸化物層20と接する部分を有する。ここで、金属酸化物層20と絶縁層31との密着性が低いと、装置の作製工程中に意図せず膜剥がれ(ピーリングともいう)が生じ、歩留まりが低下するという問題が生じる。例えば、金属酸化物層20に酸化チタン膜を用い、絶縁層31に酸化シリコン膜、酸化窒化シリコン膜等の無機絶縁膜を用いる際に、膜剥がれが確認されることがある。
なお、本明細書等において「酸化窒化シリコン」とは、その組成として、窒素よりも酸素の含有量が多いものをいう。また、本明細書等において、「窒化酸化シリコン」とは、その組成として、酸素よりも窒素の含有量が多いものをいう。
そのため、図4に示す積層構造において、絶縁層31が金属酸化物層20と接する領域を極力狭くすることが好ましい。これにより、積層構造に密着性の低い部分が生じることを抑制し、意図しない膜剥がれを低減することができる。
また、図1~図3に示す積層構造では、金属酸化物層20の端部を覆うように樹脂層23が設けられる。金属酸化物層20が樹脂層23から露出する部分を低減する、さらにはなくすことで、金属酸化物層20と絶縁層31とが接する部分を低減する、さらにはなくすことができる。これにより、積層構造に密着性の低い部分が生じることを抑制し、意図しない膜剥がれを防止することができる。したがって、装置の作製工程における歩留まりを高めることができる。また、金属酸化物層20と絶縁層31の密着性等を考慮する必要が無いため、金属酸化物層20及び絶縁層31それぞれに用いる材料の選択の幅が広がる。
なお、本発明の一態様に係る積層構造では、作製基板14上に形成する金属酸化物層20の数及び樹脂層23の数はそれぞれ限定されない。
図1(A)に示すように、作製基板14上に、金属酸化物層20及び樹脂層23の双方を1つ形成してもよい。例えば、1つの金属酸化物層20上に、1つまたは複数の装置を作製することができる。このような構成とすることで、複数の装置を作製する場合であっても、1度の分離工程で、複数の装置を作製基板14と分離することができる。そして、作製基板14から分離した後に、分断により1つ1つの装置に分けることができる。分離工程を行ってから、装置毎に分断する場合、作製基板14を分断する必要がないため、作製基板14の再利用が容易となることがある。
また、図2(A)、図3(A)、及び図4(A)に示すように、作製基板14上に、金属酸化物層20を複数形成してもよい。例えば、1つの金属酸化物層20上に、1つの装置を作製することができる。1つの金属酸化物層20上に複数の装置を作製すると、分離工程で不良が生じた際、一度に複数の装置が不良となり、歩留まりが低下してしまうことがある。装置毎に金属酸化物層20を形成すると、装置毎に作製基板14から分離することができるため、分離工程における歩留まりを高めることができる。また、各装置をそれぞれ異なるタイミングで作製基板14から分離することができる。また、作製基板14を分断し、1つ1つの装置に分けてから分離工程を行うことで、分離装置を小型化できることがある。
作製基板14上に、金属酸化物層20を複数形成する場合、樹脂層23は、1つまたは複数形成することができる。図2(A)及び図4(A)では、樹脂層23を金属酸化物層20と同じ数設ける例を示す。図3(A)では、樹脂層23を1つ設ける例を示す。
樹脂層23が分断ラインや各種マーカを覆ってしまうと、分断不良やアライメントの不具合が生じることがある。そのため、樹脂層23を複数設け、樹脂層23が分断ラインや各種マーカと重ならないようにすることが好ましい。これにより、各種工程の歩留まりを高めることができる。具体的には、1つの金属酸化物層20に対して1つの樹脂層23を設けることが好ましい。なお、レイアウト等によっては、樹脂層23を1つ設けても構わない。
以上のように、本発明の一態様では、密着性の低い界面が形成されることを抑制し、所望のタイミングで金属酸化物層と樹脂層とを分離することができる。これにより、工程中の意図しない膜剥がれを抑制し、歩留まりを高めることができる。
次に、光の照射について説明する。
ランプ、レーザ装置等を用いて光を照射することができる。
線状レーザ装置を用いてレーザ光を照射することが好ましい。低温ポリシリコン(LTPS(Low Temperature Poly-Silicon))等の製造ラインのレーザ装置を使用することができるため、これらの装置の有効利用が可能である。線状レーザは、矩形長尺状に集光(線状レーザビームに成形)して、金属酸化物層と樹脂層との界面に光を照射する。
照射する光は、180nm以上450nm以下の波長を有することが好ましい。光は、308nm又はその近傍の波長を有することがより好ましい。
光のエネルギー密度は、250mJ/cm以上400mJ/cm以下が好ましく、250mJ/cm以上360mJ/cm以下がより好ましい。
レーザ装置を用いて光を照射する場合、同一箇所に照射されるレーザ光のショット数は、1ショット以上50ショット以下とすることができ、1ショットより多く10ショット以下が好ましく、1ショットより多く5ショット以下がより好ましい。
ビームの短軸方向の両端には、光の強度が低い部分が存在する。そのため、当該光の強度が低い部分の幅以上、一つのショットと次のショットの間にオーバーラップする部分を設けることが好ましい。そのため、レーザ光のショット数は、1.1ショット以上とすることが好ましく、1.25ショット以上とすることがより好ましい。
なお、本明細書中、レーザ光のショット数とは、ある点(領域)に照射されるレーザ光の照射回数を指し、ビーム幅、スキャン速度、周波数、またはオーバーラップ率などで決定される。また、線状のビームをあるスキャン方向に移動させているパルスとパルスの間、即ち、一つのショットと次のショットの間にオーバーラップする部分があり、その重なる比率がオーバーラップ率である。なお、オーバーラップ率が100%に近ければ近いほどショット数は多く、離れれば離れるほどショット数は少なくなり、スキャン速度が速ければ速いほどショット数は少なくなる。
上記のレーザ光のショット数が1.1ショットとは、連続する2つのショットの間にビームの10分の1程度の幅のオーバーラップを有することを示し、オーバーラップ率10%といえる。同様に、1.25ショットとは、連続する2つのショットの間にビームの4分の1程度の幅のオーバーラップを有することを示し、オーバーラップ率25%といえる。
ここで、LTPSのレーザ結晶化の工程で照射する光のエネルギー密度は高く、例えば350mJ/cm以上400mJ/cm以下が挙げられる。また、レーザのショット数も多く必要であり、例えば10ショット以上100ショット以下が挙げられる。
一方、本実施の形態において、金属酸化物層20と樹脂層23とを分離するために行う光の照射は、レーザ結晶化の工程で用いる条件よりも低いエネルギー密度、または少ないショット数で行うことができる。そのため、レーザ装置での処理可能な基板枚数を増やすことができる。また、レーザ装置のメンテナンスの頻度の低減など、レーザ装置のランニングコストの低減が可能となる。したがって、表示装置などの作製コストを低減することができる。
また、光の照射が、レーザ結晶化の工程で用いる条件よりも低いエネルギー密度、または少ないショット数で行われることから、基板がレーザ光の照射により受けるダメージを低減できる。そのため、基板を一度使用しても、強度が低下しにくく、基板を再利用できる。したがって、コストを抑えることが可能となる。
また、本実施の形態では、作製基板14と樹脂層23との間に金属酸化物層20を配置する。金属酸化物層20を用いることで、金属酸化物層20を用いない場合に比べて、光の照射を、低いエネルギー密度、または少ないショット数で行うことができることがある。
作製基板を介して光を照射する際、作製基板の光照射面にゴミなどの異物が付着していると、光の照射ムラが生じ、剥離性が低い部分が形成され、金属酸化物層と樹脂層とを分離する工程の歩留まりが低下することがある。そのため、光を照射する前、または光を照射している間に、光照射面を洗浄することが好ましい。例えば、アセトンなどの有機溶剤、水等を用いて作製基板の光照射面を洗浄することができる。また、エアナイフを用いて気体を噴きつけながら光を照射してもよい。これにより、光の照射ムラを低減し、分離の歩留まりを向上させることができる。
本発明の一態様の剥離方法、表示装置の作製方法を用いて作製する表示装置に特に限定はない。以下では、本発明の一態様を用いて作製できる表示装置の一例について、説明する。
本実施の形態の表示装置は、トランジスタのチャネル形成領域に、金属酸化物を有することが好ましい。金属酸化物は、酸化物半導体として機能することができる。
トランジスタのチャネル形成領域にLTPSを用いる場合、500℃から550℃程度の温度をかける必要があるため、樹脂層に耐熱性が求められる。また、レーザ結晶化の工程でのダメージを緩和するため、樹脂層の厚膜化が必要となることがある。
一方、チャネル形成領域に金属酸化物を用いたトランジスタは、350℃以下、さらには300℃以下で形成することができる。そのため、樹脂層に高い耐熱性は求められない。したがって、樹脂層の耐熱温度を低くすることができ、材料の選択の幅が広がる。
また、チャネル形成領域に金属酸化物を用いたトランジスタは、レーザ結晶化の工程が不要である。そして、本実施の形態では、レーザ結晶化の工程で用いる条件よりも、低いエネルギー密度または少ないショット数で光を照射することができる。また、レーザ結晶化の工程では、レーザ光が基板を介さずに樹脂層に照射されるが、本実施の形態では、作製基板と金属酸化物層とを介して樹脂層に照射される。このように、樹脂層が受けるダメージが少ないため、樹脂層の厚さを薄くすることができる。樹脂層に高耐熱性が要求されず、薄膜化できることで、デバイス作製の大幅なコストダウンが期待できる。また、LTPSを用いる場合に比べて、工程が簡略化でき好ましい。
ただし、本発明の一態様の表示装置は、トランジスタのチャネル形成領域に、金属酸化物を有する構成に限定されない。例えば、本実施の形態の表示装置は、トランジスタのチャネル形成領域に、シリコンを用いることができる。シリコンとしては、アモルファスシリコンまたは結晶性シリコンを用いることができる。結晶性シリコンとしては、微結晶シリコン、多結晶シリコン、単結晶シリコン等が挙げられる。
チャネル形成領域には、LTPSを用いることが好ましい。LTPSなどの多結晶シリコンは、単結晶シリコンに比べて低温で形成でき、かつアモルファスシリコンに比べて高い電界効果移動度と高い信頼性を備える。
樹脂層23の厚さは、0.1μm以上5μm以下としてもよい。樹脂層23を薄く形成することで、低コストで表示装置を作製できる。また、表示装置の軽量化及び薄型化が可能となる。また、表示装置の可撓性を高めることができる。
樹脂層23の可視光の透過性は特に限定されない。例えば、有色の層であってもよく、透明の層であってもよい。ここで、表示装置の表示面側に樹脂層23が位置する場合、樹脂層23が着色している(有色である)と、光取り出し効率が低下する、取り出される光の色味が変わる、表示品位が低下する等の不具合が生じることがある。
樹脂層23は、ウエットエッチング装置、ドライエッチング装置、アッシング装置等を用いて除去することができる。特に、酸素プラズマを用いたアッシングを行って樹脂層23を除去することが好適である。
本実施の形態では、作製基板14と樹脂層23との間に金属酸化物層20を有する。金属酸化物層20が光を吸収する機能を有するため、樹脂層23の光の吸収率が低くても、光照射による効果が得られる。したがって、可視光の透過率が高い樹脂層23を用いることができる。そのため、表示装置の表示面側に樹脂層23が位置していても、高い表示品位を実現できる。また、表示品位を高めるために、着色している(有色の)樹脂層23を除去する工程を削減できる。また、樹脂層23の材料の選択の幅が広がる。
樹脂層23の波長450nm以上700nm以下の範囲の光の透過率の平均値は、70%以上100%以下が好ましく、80%以上100%以下が好ましく、90%以上100%以下がより好ましい。
本実施の形態では、樹脂層の耐熱温度以下の温度で、トランジスタ等を形成する。樹脂層の耐熱性は、例えば、加熱による重量減少率、具体的には5%重量減少温度等で評価できる。本実施の形態の剥離方法及び表示装置の作製方法では、工程中の最高温度を低くすることができる。例えば、本実施の形態では、樹脂層の5%重量減少温度を、200℃以上650℃以下、200℃以上500℃以下、200℃以上400℃以下、または200℃以上350℃以下とすることができる。そのため、材料の選択の幅が広がる。なお、樹脂層の5%重量減少温度は、650℃より高くてもよい。
分離前または分離中に、分離界面に水を含む液体を供給することが好ましい。分離界面に水が存在することで、樹脂層23と金属酸化物層20との密着性もしくは接着性をより低下させ、分離に要する力を低減させることができる。また、分離界面に水を含む液体を供給することで、樹脂層23と金属酸化物層20との間の結合を弱めるもしくは切断する効果を奏することがある。液体との化学結合を利用して、樹脂層23と金属酸化物層20の間の結合を切って分離を進行させることができる。例えば、樹脂層23と金属酸化物層20との間に水素結合が形成されている場合、水を含む液体が供給されることで、水と、樹脂層23または金属酸化物層20との間に水素結合が形成され、樹脂層23と金属酸化物層20との間の水素結合が切れることが考えられる。
金属酸化物層20は、表面張力が小さく、水を含む液体に対する濡れ性が高いことが好ましい。これにより、金属酸化物層20の表面全体に水を含む液体を行き渡らせ、分離界面に水を含む液体を容易に供給できる。金属酸化物層20全体に水が広がることで、均一な剥離ができる。
金属酸化物層20の水を含む液体との接触角は、0°より大きく60°以下が好ましく、0°より大きく50°以下がより好ましい。なお、水を含む液体に対する濡れ性が極めて高い場合(例えば接触角が約20°以下の場合)には、接触角の正確な値の取得が困難なことがある。金属酸化物層20は、水を含む液体に対する濡れ性が高いほど好適であるため、上記接触角の正確な値が取得できないほど、水を含む液体に対する濡れ性が高くてもよい。
分離界面に水を含む液体が存在することで、分離時に生じる静電気が、被剥離層に含まれる機能素子に悪影響を及ぼすこと(半導体素子が静電気により破壊されるなど)を抑制できる。また、イオナイザなどを用いて、分離により露出した被剥離層の表面を除電してもよい。
分離界面に液体を供給した場合は、分離により露出した被剥離層の表面を乾燥してもよい。
以下では、本実施の形態の表示装置の作製方法について、具体的に説明する。
なお、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、原子層成膜(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法や、熱CVD法でもよい。熱CVD法の例として、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法を使ってもよい。
表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
表示装置を構成する薄膜を加工する際には、リソグラフィ法等を用いて加工することができる。または、遮蔽マスクを用いた成膜方法により、島状の薄膜を形成してもよい。または、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。フォトリソグラフィ法としては、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法と、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法と、がある。
リソグラフィ法において光を用いる場合、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra-violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
薄膜のエッチングには、ドライエッチング法、ウエットエッチング法、サンドブラスト法などを用いることができる。
[剥離方法]
まず、作製基板14上に、金属酸化物層20を形成する(図5(A1))。または、作製基板14上に、金属層19と金属酸化物層20とを積層する(図5(A2))。金属酸化物層20(金属層19及び金属酸化物層20)は、島状に形成される。
作製基板14は、搬送が容易となる程度に剛性を有し、かつ作製工程にかかる温度に対して耐熱性を有する。作製基板14に用いることができる材料としては、例えば、ガラス、石英、セラミック、サファイヤ、樹脂、半導体、金属または合金などが挙げられる。ガラスとしては、例えば、無アルカリガラス、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス等が挙げられる。
上述の通り、本実施の形態では、作製基板14と樹脂層23の間に下地層を形成する。本実施の形態では、金属酸化物層20を用いる場合を例に挙げて説明するが、これに限られない。
具体的には、下地層には、チタン、モリブデン、アルミニウム、タングステン、シリコン、インジウム、亜鉛、ガリウム、タンタル、錫、ハフニウム、イットリウム、ジルコニウム、マグネシウム、ランタン、セリウム、ネオジム、ビスマス、及びニオブのうち一つまたは複数を有する層を用いることができる。下地層には、金属、合金、及びそれらの化合物(金属酸化物など)を含むことができる。下地層は、チタン、モリブデン、アルミニウム、タングステン、シリコン、インジウム、亜鉛、ガリウム、タンタル、及び錫のうち一つまたは複数を有することが好ましい。
金属層19には、各種金属や合金等を用いることができる。
金属酸化物層20には、各種金属の酸化物を用いることができる。金属酸化物としては、例えば、酸化チタン(TiO)、酸化モリブデン、酸化アルミニウム、酸化タングステン、シリコンを含むインジウム錫酸化物(ITSO)、インジウム亜鉛酸化物、In-Ga-Zn酸化物等が挙げられる。
そのほか、金属酸化物としては、酸化インジウム、チタンを含むインジウム酸化物、タングステンを含むインジウム酸化物、インジウム錫酸化物(ITO)、チタンを含むITO、タングステンを含むインジウム亜鉛酸化物、酸化亜鉛(ZnO)、ガリウムを含むZnO、酸化ハフニウム、酸化イットリウム、酸化ジルコニウム、酸化ガリウム、酸化タンタル、酸化マグネシウム、酸化ランタン、酸化セリウム、酸化ネオジム、酸化スズ、酸化ビスマス、チタン酸塩、タンタル酸塩、ニオブ酸塩等が挙げられる。
金属酸化物層20の形成方法に特に限定は無い。例えば、スパッタリング法、プラズマCVD法、蒸着法、ゾルゲル法、電気泳動法、スプレー法等を用いて形成することができる。
金属層を成膜した後に、当該金属層に酸素を導入することで、金属酸化物層20を形成することができる。このとき、金属層の表面のみ、または金属層全体を酸化させる。前者の場合、金属層に酸素を導入することで、金属層19と金属酸化物層20との積層構造が形成される(図5(A2))。
例えば、酸素を含む雰囲気下で金属層を加熱することで、金属層を酸化させることができる。酸素を含むガスを流しながら金属層を加熱することが好ましい。金属層を加熱する温度は、100℃以上500℃以下が好ましく、100℃以上450℃以下がより好ましく、100℃以上400℃以下がより好ましく、100℃以上350℃以下がさらに好ましい。
金属層は、トランジスタの作製における最高温度以下の温度で加熱されることが好ましい。これにより、表示装置の作製における最高温度が高くなることを防止できる。トランジスタの作製における最高温度以下とすることで、トランジスタの作製工程における製造装置などを流用することが可能となるため、追加の設備投資などを抑制することができる。したがって、生産コストが抑制された表示装置とすることができる。例えば、トランジスタの作製温度が350℃までである場合、加熱処理の温度は350℃以下とすることが好ましい。
または、金属層の表面にラジカル処理を行うことで金属層を酸化させることができる。ラジカル処理では、酸素ラジカル及びヒドロキシラジカルのうち少なくとも一方を含む雰囲気に、金属層の表面を曝すことが好ましい。例えば、酸素または水蒸気(HO)のうち一方または双方を含む雰囲気でプラズマ処理を行うことが好ましい。
金属酸化物層20の表面または内部に、水素、酸素、水素ラジカル(H)、酸素ラジカル(O)、ヒドロキシラジカル(OH)等を含ませることで、金属酸化物層20と樹脂層23との分離に要する力を低減できる。このことからも、金属酸化物層20の形成に、ラジカル処理もしくはプラズマ処理を行うことは好適である。
金属層の表面にラジカル処理もしくはプラズマ処理を行うことで金属層を酸化させる場合、金属層を高温で加熱する工程が不要となる。そのため、表示装置の作製における最高温度が高くなることを防止できる。
または、酸素雰囲気下で、金属酸化物層20を形成することができる。例えば、酸素を含むガスを流しながら、スパッタリング法を用いて金属酸化物膜を成膜することで、金属酸化物層20を形成できる。この場合も、金属酸化物層20の表面にラジカル処理を行うことが好ましい。ラジカル処理では、酸素ラジカル、水素ラジカル、及びヒドロキシラジカルのうち少なくとも1種を含む雰囲気に、金属酸化物層20の表面を曝すことが好ましい。例えば、酸素、水素、または水蒸気(HO)のうち一つまたは複数を含む雰囲気でプラズマ処理を行うことが好ましい。
ラジカル処理は、プラズマ発生装置またはオゾン発生装置を用いて行うことができる。
例えば、酸素プラズマ処理、水素プラズマ処理、水プラズマ処理、オゾン処理等を行うことができる。酸素プラズマ処理は、酸素を含む雰囲気下でプラズマを生成して行うことができる。水素プラズマ処理は、水素を含む雰囲気下でプラズマを生成して行うことができる。水プラズマ処理は、水蒸気(HO)を含む雰囲気下でプラズマを生成して行うことができる。特に水プラズマ処理を行うことで、金属酸化物層20の表面または内部に水分を多く含ませることができ好ましい。
酸素、水素、水(水蒸気)、及び不活性ガス(代表的にはアルゴン)のうち2種以上を含む雰囲気下でのプラズマ処理を行ってもよい。当該プラズマ処理としては、例えば、酸素と水素とを含む雰囲気下でのプラズマ処理、酸素と水とを含む雰囲気下でのプラズマ処理、水とアルゴンとを含む雰囲気下でのプラズマ処理、酸素とアルゴンとを含む雰囲気下でのプラズマ処理、または酸素と水とアルゴンとを含む雰囲気下でのプラズマ処理などが挙げられる。プラズマ処理のガスの一つとして、アルゴンガスを用いることで金属層または金属酸化物層20にダメージを与えながら、プラズマ処理を行うことが可能となるため好適である。
2種以上のプラズマ処理を大気に暴露することなく連続で行ってもよい。例えば、アルゴンプラズマ処理を行った後に、水プラズマ処理を行ってもよい。
そのほか、酸素、水素、水等の導入方法としては、イオン注入法、イオンドーピング法、プラズマイマージョンイオン注入法等を用いることができる。
金属層19の厚さは、1nm以上100nm以下が好ましく、1nm以上50nm以下がより好ましく、1nm以上20nm以下がより好ましい。
金属酸化物層20の厚さは、例えば、1nm以上200nm以下が好ましく、5nm以上100nm以下がより好ましく、5nm以上50nm以下がより好ましい。なお、金属層を用いて金属酸化物層20を形成する場合、最終的に形成される金属酸化物層20の厚さは、成膜した金属層の厚さよりも厚くなることがある。
分離前または分離中に、金属酸化物層20と樹脂層23との界面に水を含む液体を供給することで、分離に要する力を低減させることができる。金属酸化物層20と当該液体との接触角が小さいほど、液体供給による効果を高めることができる。具体的には、金属酸化物層20の水を含む液体との接触角は、0°より大きく60°以下が好ましく、0°より大きく50°以下がより好ましい。
金属酸化物層20には、酸化チタン、酸化タングステン等が好適である。酸化チタンを用いると、酸化タングステンよりもコストを低減でき、好ましい。
次に、島状の金属酸化物層20を覆うように、島状の樹脂層23を形成する(図5(B))。
樹脂層23は、各種樹脂材料(樹脂前駆体を含む)を用いて形成することができる。
樹脂層23は、熱硬化性を有する材料を用いて形成することが好ましい。
樹脂層23は、感光性を有する材料を用いて形成してもよく、感光性を有さない材料(非感光性の材料ともいう)を用いて形成してもよい。
感光性を有する材料を用いると、光を用いたリソグラフィ法により、所望の形状の樹脂層23を形成することができる。例えば、樹脂層23は、開口または凹凸形状を有していてもよい。
樹脂層23は、ポリイミド樹脂またはポリイミド樹脂前駆体を含む材料を用いて形成されることが好ましい。樹脂層23は、例えば、ポリイミド樹脂と溶媒を含む材料、またはポリアミック酸と溶媒を含む材料等を用いて形成できる。ポリイミドは、表示装置の平坦化膜等に好適に用いられる材料であるため、成膜装置や材料を共有することができる。そのため本発明の一態様の構成を実現するために新たな装置や材料を必要としない。
そのほか、樹脂層23の形成に用いることができる樹脂材料としては、例えば、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
樹脂層23は、スピンコータを用いて形成することが好ましい。スピンコート法を用いることで、大判基板に薄い膜を均一に形成することができる。
樹脂層23は、粘度が5cP以上500cP未満、好ましくは5cP以上100cP未満、より好ましくは10cP以上50cP以下の溶液を用いて形成することが好ましい。溶液の粘度が低いほど、塗布が容易となる。また、溶液の粘度が低いほど、気泡の混入を抑制でき、良質な膜を形成できる。
そのほか、樹脂層23の形成方法としては、ディップ、スプレー塗布、インクジェット印刷、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等が挙げられる。
樹脂層23となる膜(第1の層ともいう)を形成した後、当該膜に対して加熱処理を行うことで、樹脂層23を形成することができる。
加熱処理は、例えば、加熱装置のチャンバーの内部に、酸素、窒素、及び希ガス(アルゴンなど)のうち一つまたは複数を含むガスを流しながら行うことができる。または、加熱処理は、大気雰囲気下で加熱装置のチャンバー、ホットプレート等を用いて行うことができる。
大気雰囲気下や酸素を含むガスを流しながら加熱を行うと、樹脂層23が酸化により着色し、可視光に対する透過性が低下することがある。
そのため、窒素ガスを流しながら、加熱を行うことが好ましい。これにより、加熱雰囲気中に含まれる酸素を大気雰囲気よりも少なくすることができ、樹脂層23の酸化を抑制し、樹脂層23の可視光に対する透過性を高めることができる。
加熱処理により、樹脂層23中の脱ガス成分(例えば、水素、水等)を低減することができる。特に、樹脂層23上に形成する各層の作製温度以上の温度で加熱することが好ましい。これにより、トランジスタの作製工程における、樹脂層23からの脱ガスを大幅に抑制することができる。
例えば、トランジスタの作製温度が350℃までである場合、樹脂層23となる膜を350℃以上450℃以下で加熱することが好ましく、400℃以下がより好ましく、375℃以下がさらに好ましい。これにより、トランジスタの作製工程における、樹脂層23からの脱ガスを大幅に抑制することができる。
加熱処理の温度は、トランジスタの作製における最高温度以下の温度とすることが好ましい。トランジスタの作製における最高温度以下とすることで、トランジスタの作製工程における製造装置などを流用することが可能となるため、追加の設備投資などを抑制することができる。したがって、生産コストが抑制された表示装置とすることができる。例えば、トランジスタの作製温度が350℃までである場合、加熱処理の温度は350℃以下とすることが好ましい。
トランジスタの作製における最高温度と、加熱処理の温度を等しくすると、加熱処理を行うことで表示装置の作製における最高温度が高くなることを防止でき、かつ樹脂層23の脱ガス成分を低減できるため、好ましい。
処理時間を長くすることで、加熱温度が比較的低い場合であっても、加熱温度がより高い条件の場合と同等の剥離性を実現できる場合がある。そのため、加熱装置の構成により加熱温度を高められない場合には、処理時間を長くすることが好ましい。
加熱処理の時間は、例えば、5分以上24時間以下が好ましく、30分以上12時間以下がより好ましく、1時間以上6時間以下がさらに好ましい。なお、加熱処理の時間はこれに限定されない。例えば、加熱処理を、RTA(Rapid Thermal Annealing)法を用いて行う場合などは、5分未満としてもよい。
加熱装置としては、電気炉や、抵抗発熱体などの発熱体からの熱伝導または熱輻射によって被処理物を加熱する装置等、様々な装置を用いることができる。例えば、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置等のRTA装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置である。GRTA装置は、高温のガスを用いて加熱処理を行う装置である。RTA装置を用いることによって、処理時間を短縮することができるので、量産する上で好ましい。また、加熱処理はインライン型の加熱装置を用いて行ってもよい。
加熱処理を行う前に、樹脂層23となる膜に含まれる溶媒を除去するための熱処理(プリベーク処理ともいう)を行ってもよい。プリベーク処理の温度は用いる材料に応じて適宜決定することができる。例えば、50℃以上180℃以下、80℃以上150℃以下、または90℃以上120℃以下で行うことができる。または、加熱処理がプリベーク処理を兼ねてもよく、加熱処理によって、当該溶媒を除去してもよい。
樹脂層23は、可撓性を有する。作製基板14は、樹脂層23よりも可撓性が低い。
樹脂層23の厚さは、0.01μm以上10μm未満であることが好ましく、0.1μm以上5μm以下であることがより好ましく、0.5μm以上3μm以下であることがさらに好ましい。樹脂層を薄く形成することで、低コストで表示装置を作製できる。また、表示装置の軽量化及び薄型化が可能となる。また、表示装置の可撓性を高めることができる。低粘度の溶液を用いることで、樹脂層23を薄く形成することが容易となる。ただし、これに限定されず、樹脂層23の厚さは、10μm以上としてもよい。例えば、樹脂層23の厚さを10μm以上200μm以下としてもよい。樹脂層23の厚さを10μm以上とすることで、表示装置の剛性を高めることができるため好適である。
樹脂層23の熱膨張係数は、0.1ppm/℃以上50ppm/℃以下であることが好ましく、0.1ppm/℃以上20ppm/℃以下であることがより好ましく、0.1ppm/℃以上10ppm/℃以下であることがさらに好ましい。樹脂層23の熱膨張係数が低いほど、加熱により、トランジスタ等を構成する層にクラックが生じることや、トランジスタ等が破損することを抑制できる。
次に、樹脂層23上に絶縁層31を形成する(図5(C))。金属酸化物層20は、樹脂層23で覆われている。そのため、金属酸化物層20と絶縁層31とが接する部分を低減する、さらには無くすことができる。これにより、表示装置の作製工程中の膜剥がれを抑制することができる。本発明の一態様では、金属酸化物層20が樹脂層23に覆われているため、絶縁層31と金属酸化物層20との密着性は問わない。したがって、絶縁層31の材料の選択の幅が広い。
絶縁層31は、後の加熱工程において、金属酸化物層20及び樹脂層23などから放出される水素、酸素、及び水をブロックする機能を有することが好ましい。
絶縁層31は、例えば、窒化シリコン膜、酸化窒化シリコン膜、または窒化酸化シリコン膜を有することが好ましい。例えば、窒化シリコン膜を、シランガス、水素ガス、及びアンモニア(NH)ガスを含む成膜ガスを用いたプラズマCVD法により成膜する。絶縁層31の厚さは特に限定されない。例えば、50nm以上600nm以下、好ましくは100nm以上300nm以下の厚さとすることができる。
次に、樹脂層23上に、被剥離層25を形成する(図5(D1)または図5(D2))。
被剥離層25として、例えば、絶縁層、機能素子(トランジスタ、表示素子など)を設けることができる。なお、絶縁層31も被剥離層25の一部とみなすことができる。
そして、被剥離層25上に保護層を形成する。保護層は、表示装置の最表面に位置する層である。保護層は、可視光に対する透過性が高いことが好ましい。保護層が、有機絶縁膜を有すると、表示装置の表面に傷がつくことや、クラックが生じてしまうことを抑制できるため好ましい。
図5(D1)、(D2)には、接着層75bを用いて被剥離層25上に基板75aを貼り合わせた例を示す。
図5(D1)では、接着層75bの端部が、金属酸化物層20の端部よりも内側に位置する例を示す。
接着層75bが金属酸化物層20と重ならない領域を有すると、その領域の広さや、接着層75bと接する層との密着性の程度によって、分離不良が生じやすくなる場合がある。したがって、接着層75bは、金属酸化物層20の端部よりも外側に位置しないように形成することが好ましい。これにより、後の工程で光を照射することで、金属酸化物層20と樹脂層23とを簡便に分離することができる。なお、接着層75bの端部と金属酸化物層20の端部が揃っていてもよい。
図5(D2)では、接着層75bの端部が、金属酸化物層20の端部よりも外側に位置する例を示す。
図5(D2)に示す積層構造は、接着層75bによって、金属酸化物層20を介さずに、作製基板14と基板75aとが貼り合わされている領域を有する。当該領域には、金属酸化物層20が設けられていないため、当該領域の密着性は、後の工程で光を照射しても、大きく低下しない。そのため、光を照射した後に、樹脂層23が作製基板14から意図せず剥がれることを抑制できる。例えば、レーザ装置から別の場所に作製基板14を搬送する時などに樹脂層23が剥がれることを抑制できる。そして、分離の起点を形成することで、所望のタイミングで、金属酸化物層20と樹脂層23とを分離することができる。つまり、金属酸化物層20と樹脂層23の分離のタイミングを制御でき、かつ、分離に要する力が小さい。これにより、金属酸化物層20と樹脂層23の分離工程、及び表示装置の作製工程の歩留まりを高めることができる。
接着層75bには、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤等の各種硬化型接着剤を用いることができる。また、接着シート等を用いてもよい。
基板75aには、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板75aには、可撓性を有する程度の厚さのガラス、石英、樹脂、金属、合金、半導体等の各種材料を用いてもよい。
次に、レーザ光55を照射する。図6(A)には、図5(D1)の積層構造にレーザ光55を照射する例を示す。図7(A)には、図5(D2)の積層構造にレーザ光55を照射する例を示す。
レーザ光55は、例えば、図6(A)及び図7(A)においては、左側から右側に走査される線状レーザビームで、その長軸は、その走査方向及びその入射方向(上から下)に垂直である。レーザ装置において、作製基板14が上側にくるように積層体を配置する。積層体には、積層体(作製基板14)の上側からレーザ光55が照射される。
レーザ光55は、作製基板14を介して金属酸化物層20と樹脂層23との界面またはその近傍に照射されることが好ましい(図6(A)及び図7(A)の加工領域640参照)。また、レーザ光55は、金属酸化物層20中に照射されてもよく、樹脂層23中に照射されてもよい。
金属酸化物層20は、レーザ光55を吸収する。樹脂層23は、レーザ光55を吸収してもよい。
作製基板14と金属酸化物層20の積層構造におけるレーザ光55の吸収率は、50%以上100%以下が好ましく、75%以上100%以下がより好ましく、80%以上100%以下がさらに好ましい。当該積層構造が、レーザ光55の大半を吸収することで、金属酸化物層20と樹脂層23との界面で確実に分離することが可能となる。また、樹脂層23が光から受けるダメージを低減できる。
レーザ光55の照射により、金属酸化物層20と樹脂層23の密着性もしくは接着性が低下する。レーザ光55の照射により、樹脂層23が脆弱化されることがある。
レーザ光55としては、少なくともその一部が作製基板14を透過し、かつ金属酸化物層20に吸収される波長の光を選択して用いる。レーザ光55は、可視光線から紫外線の波長領域の光であることが好ましい。例えば波長が180nm以上450nm以下の光、好ましくは200nm以上400nm以下の光、より好ましくは波長が250nm以上350nm以下の光を用いることができる。
レーザ光55は、金属酸化物層20のエネルギーギャップよりも高いエネルギーを有することが好ましい。例えば、酸化チタンのエネルギーギャップは、約3.2eVである。したがって、金属酸化物層20に酸化チタンを用いる場合、光は、3.2eVより高いエネルギーを有することが好ましい。
特に、波長308nmのエキシマレーザを用いると、生産性に優れるため好ましい。エキシマレーザは、LTPSにおけるレーザ結晶化にも用いるため、既存のLTPS製造ラインの装置を流用することができ、新たな設備投資を必要としないため好ましい。波長308nmの光のエネルギーは、約4.0eVである。つまり、金属酸化物層20に酸化チタンを用いる場合、波長308nmのエキシマレーザは好適である。また、Nd:YAGレーザの第三高調波である波長355nmのUVレーザなどの固体UVレーザ(半導体UVレーザともいう)を用いてもよい。固体レーザはガスを用いないため、エキシマレーザに比べて、ランニングコストを低減でき、好ましい。また、ピコ秒レーザ等のパルスレーザを用いてもよい。
レーザ光55として、線状のレーザ光を用いる場合には、作製基板14と光源とを相対的に移動させることでレーザ光55を走査し、分離したい領域に亘ってレーザ光55を照射する。
次に、作製基板14と樹脂層23とを分離する。金属酸化物層20と樹脂層23との密着性もしくは接着性が低いため、金属酸化物層20と樹脂層23との界面で分離が生じる。また、脆弱化された樹脂層23中で分離が生じる場合もある。
図6(B)には、図5(D1)の積層構造を分離する例を示す。当該積層構造では、接着層75bの端部が、金属酸化物層20の端部よりも内側に位置するため、金属酸化物層20が設けられていない部分に、密着性の高い部分が生じにくい。そのため、レーザ光55の照射により、金属酸化物層20と樹脂層23とを簡便に分離させることができる。なお、本実施の形態では、金属酸化物層20が設けられていない部分の被剥離層25等が、作製基板14上に残る例を示すが、これに限られず、一部が基板75a側に残存する場合がある。
なお、レーザ光55の照射条件等によっては、分離の起点を形成してもよい。例えば、作製基板14と基板75aとの間に、刃物などの鋭利な形状の器具を差し込むことで分離の起点を形成してもよい。または、基板75a側から鋭利な形状の器具で樹脂層23を切り込み、分離の起点を形成してもよい。または、レーザアブレーション法等のレーザを用いた方法で、分離の起点を形成してもよい。
図7(B)、(C)には、図5(D2)の積層構造を分離する例を示す。
図7(B)に示す積層構造における、金属酸化物層20を介さずに、作製基板14と基板75aとが貼り合わされている領域の密着性は、光を照射しても、大きく低下しない。そのため、レーザ光55を照射した後に、樹脂層23が作製基板14から意図せず剥がれることを抑制できる。そして、分離の起点を形成する(図7(B))ことで、所望のタイミングで、金属酸化物層20と樹脂層23とを分離することができる(図7(C))。
例えば、基板75a側から、金属酸化物層20の端部よりも内側に刃物などの鋭利な形状の器具65を差し込み、枠状に切れ目64を入れる。または、基板75aに、枠状にレーザ光を照射してもよい。
例えば、樹脂層23に垂直方向に引っ張る力をかけることにより、作製基板14と樹脂層23とを分離することができる。具体的には、基板75aの上面の一部を吸着し、上方に引っ張ることにより、作製基板14から樹脂層23を引き剥がすことができる。
ここで、分離時に、分離界面に水や水溶液など、水を含む液体を添加し、該液体が分離界面に浸透するように分離を行うことで、分離を容易に行うことができる。また、分離時に生じる静電気が、トランジスタなどの機能素子に悪影響を及ぼすこと(半導体素子が静電気により破壊されるなど)を抑制できる。
供給する液体としては、水(好ましくは純水)、中性、アルカリ性、もしくは酸性の水溶液や、塩が溶けている水溶液が挙げられる。また、エタノール、アセトン等が挙げられる。また、各種有機溶剤を用いてもよい。
本実施の形態では、金属酸化物層20及び樹脂層23を積層し、光を照射する。これにより、金属酸化物層20と樹脂層23との密着性もしくは接着性を低下させることができる。そのため、作製基板14と樹脂層23とを容易に分離することができる。
また、金属酸化物層20を樹脂層23で覆い、金属酸化物層20と絶縁層31とが接する部分を低減することで、膜剥がれを抑制し、装置の作製工程における歩留まりを高めることができる。
また、金属酸化物層20と接着層75bとの配置を制御することにより、光の照射と同時に分離する構成と、光の照射後、所望のタイミングで分離する構成と、のいずれも簡便に作製することができる。
本実施の形態の剥離方法を用いることで、低コストで量産性の高い剥離方法、または半導体装置の作製方法を提供することができる。例えば、本実施の形態の剥離方法では、作製基板14(例えば、ガラス基板)、または作製基板14と金属酸化物層20との積層体を、複数回繰り返し使うことが可能となるため、生産コストを抑制することができる。
[作製方法例1]
次に、本実施の形態の表示装置の作製方法例について説明する。先に説明した剥離方法と同様の部分について、説明を省略することがある。
まず、作製基板14上に、島状の金属酸化物層20を形成する(図8(A))。金属酸化物層20については、上記剥離方法における記載を参照できる。
次に、金属酸化物層20上に、第1の層24を形成する(図8(B))。
本実施の形態では、感光性及び熱硬化性を有する材料を用いて第1の層24を形成する。なお、第1の層24は、非感光性の材料を用いて形成してもよい。
第1の層24を成膜した後、溶媒を除去するための熱処理(プリベーク処理)を行い、その後フォトマスクを用いて露光を行う。続いて、現像処理を施すことで、不要な部分を除去することができる。次に、所望の形状に加工された第1の層24に対して加熱処理を行うことで、樹脂層23を形成する(図8(C))。図8(C)では、島状の金属酸化物層20を覆うように、島状の樹脂層23を形成する。
なお、樹脂層23の形状は1つの島状に限られず、例えば、複数の島状、開口を有する形状などでもよい。また、ハーフトーンマスクもしくはグレートーンマスクを用いた露光技術、または多重露光技術などを用い、樹脂層23の表面に凹凸形状を形成してもよい。
第1の層24または樹脂層23上にレジストマスク、ハードマスク等のマスクを形成し、エッチングすることで、所望の形状の樹脂層23を形成することができる。この方法は、非感光性の材料を用いる場合に特に好適である。
例えば、樹脂層23上に無機膜を形成し、無機膜上にレジストマスクを形成する。レジストマスクを用いて、無機膜をエッチングした後、無機膜をハードマスクに用いて、樹脂層23をエッチングすることができる。
ハードマスクとして用いることができる無機膜としては、各種無機絶縁膜や、導電層に用いることができる金属膜及び合金膜などが挙げられる。
マスクを極めて薄い厚さで形成し、エッチングと同時にマスクを除去することができると、マスクを除去する工程を削減でき、好ましい。
加熱処理の詳細は、上記剥離方法における加熱処理の記載を参照できる。
次に、樹脂層23上に、絶縁層31を形成する(図8(D))。絶縁層31は、樹脂層23の端部を覆って形成される。金属酸化物層20は、樹脂層23で覆われている。そのため、金属酸化物層20と絶縁層31とが接する部分を低減する、さらには無くすことができる。これにより、表示装置の作製工程中の膜剥がれを抑制することができる。
絶縁層31は、樹脂層23の耐熱温度以下の温度で形成する。加熱処理の温度より低い温度で形成することが好ましい。
絶縁層31は、樹脂層23に含まれる不純物が、後に形成するトランジスタや表示素子に拡散することを防ぐバリア層として用いることができる。例えば、絶縁層31は、樹脂層23を加熱した際に、樹脂層23に含まれる水分等がトランジスタや表示素子に拡散することを防ぐことが好ましい。そのため、絶縁層31は、バリア性が高いことが好ましい。
絶縁層31としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などの無機絶縁膜を用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。特に、樹脂層23上に窒化シリコン膜を形成し、窒化シリコン膜上に酸化シリコン膜を形成することが好ましい。
無機絶縁膜は、成膜温度が高いほど緻密でバリア性の高い膜となるため、高温で形成することが好ましい。
絶縁層31の成膜時の基板温度は、室温(25℃)以上350℃以下が好ましく、100℃以上300℃以下がさらに好ましい。
次に、絶縁層31上に、トランジスタ40を形成する(図8(E))。
表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート構造またはボトムゲート構造のいずれのトランジスタ構造としてもよい。または、チャネルの上下にゲート電極が設けられていてもよい。
ここではトランジスタ40として、金属酸化物層44を有する、ボトムゲート構造のトランジスタを作製する場合を示す。金属酸化物層44は、トランジスタ40の半導体層として機能することができる。金属酸化物は、酸化物半導体として機能することができる。
本実施の形態において、トランジスタの半導体には、酸化物半導体を用いる。シリコンよりもバンドギャップが広く、且つキャリア密度の小さい半導体材料を用いると、トランジスタのオフ状態における電流を低減できるため好ましい。
トランジスタ40は、樹脂層23の耐熱温度以下の温度で形成する。トランジスタ40は、加熱処理の温度より低い温度で形成することが好ましい。
具体的には、まず、絶縁層31上に導電層41を形成する。導電層41は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することで形成できる。
導電膜の成膜時の基板温度は、室温以上350℃以下が好ましく、室温以上300℃以下がさらに好ましい。
表示装置が有する導電層には、それぞれ、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、もしくはタングステン等の金属、またはこれを主成分とする合金を単層構造または積層構造として用いることができる。または、酸化インジウム、インジウム錫酸化物(ITO)、タングステンを含むインジウム酸化物、タングステンを含むインジウム亜鉛酸化物、チタンを含むインジウム酸化物、チタンを含むITO、インジウム亜鉛酸化物、酸化亜鉛(ZnO)、ガリウムを含むZnO、またはシリコンを含むITO等の透光性を有する導電性材料を用いてもよい。また、不純物元素を含有させる等して低抵抗化させた、多結晶シリコンもしくは酸化物半導体等の半導体、またはニッケルシリサイド等のシリサイドを用いてもよい。また、グラフェンを含む膜を用いることもできる。グラフェンを含む膜は、例えば酸化グラフェンを含む膜を還元して形成することができる。また、不純物元素を含有させた酸化物半導体等の半導体を用いてもよい。または、銀、カーボン、もしくは銅等の導電性ペースト、またはポリチオフェン等の導電性ポリマーを用いて形成してもよい。導電性ペーストは、安価であり、好ましい。導電性ポリマーは、塗布しやすく、好ましい。
続いて、絶縁層32を形成する。絶縁層32は、絶縁層31に用いることのできる無機絶縁膜を援用できる。
続いて、金属酸化物層44を形成する。金属酸化物層44は、金属酸化物膜を成膜した後、レジストマスクを形成し、当該金属酸化物膜をエッチングした後にレジストマスクを除去することで形成できる。
金属酸化物膜の成膜時の基板温度は、350℃以下が好ましく、室温以上200℃以下がより好ましく、室温以上130℃以下がさらに好ましい。
金属酸化物膜は、不活性ガス及び酸素ガスのいずれか一方または双方を用いて成膜することができる。なお、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)に、特に限定はない。ただし、電界効果移動度が高いトランジスタを得る場合においては、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)は、0%以上30%以下が好ましく、5%以上30%以下がより好ましく、7%以上15%以下がさらに好ましい。
金属酸化物膜は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。
金属酸化物は、エネルギーギャップが2eV以上であることが好ましく、2.5eV以上であることがより好ましく、3eV以上であることがさらに好ましい。このように、エネルギーギャップの広い金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
金属酸化物膜は、スパッタリング法により形成することができる。そのほか、PLD法、PECVD法、熱CVD法、ALD法、真空蒸着法などを用いてもよい。
続いて、導電層43a及び導電層43bを形成する。導電層43a及び導電層43bは、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。導電層43a及び導電層43bは、それぞれ、金属酸化物層44と接続される。
なお、導電層43a及び導電層43bの加工の際に、レジストマスクに覆われていない金属酸化物層44の一部がエッチングにより薄膜化する場合がある。
導電膜の成膜時の基板温度は、室温以上350℃以下が好ましく、室温以上300℃以下がさらに好ましい。
以上のようにして、トランジスタ40を作製できる(図8(E))。トランジスタ40において、導電層41の一部はゲートとして機能し、絶縁層32の一部はゲート絶縁層として機能し、導電層43a及び導電層43bは、それぞれソースまたはドレインのいずれか一方として機能する。
次に、トランジスタ40を覆う絶縁層33を形成する(図9(A))。絶縁層33は、絶縁層31と同様の方法により形成することができる。
また、絶縁層33として、酸素を含む雰囲気下で成膜した酸化シリコン膜や酸化窒化シリコン膜等の酸化物絶縁膜を用いることが好ましい。さらに、当該酸化シリコン膜や酸化窒化シリコン膜上に窒化シリコン膜などの酸素を拡散、透過しにくい絶縁膜を積層することが好ましい。酸素を含む雰囲気下で形成した酸化物絶縁膜は、加熱により多くの酸素を放出しやすい絶縁膜とすることができる。このような酸素を放出する酸化物絶縁膜と、酸素を拡散、透過しにくい絶縁膜を積層した状態で、加熱処理を行うことにより、金属酸化物層44に酸素を供給することができる。その結果、金属酸化物層44中の酸素欠損、及び金属酸化物層44と絶縁層33の界面の欠陥を修復し、欠陥準位を低減することができる。これにより、極めて信頼性の高い表示装置を実現できる。
以上の工程により、樹脂層23上に絶縁層31、トランジスタ40、及び絶縁層33を形成することができる(図9(A))。
この段階において、後述する方法を用いて作製基板14とトランジスタ40とを分離することで、表示素子を有さないデバイスを作製することができる。例えば、トランジスタ40や、トランジスタ40に加えて容量素子、抵抗素子、及び配線などを形成することで、半導体装置を作製することができる。
次に、絶縁層33上に絶縁層34を形成する(図9(A))。絶縁層34は、後に形成する表示素子の被形成面を有する層であるため、平坦化層として機能することが好ましい。絶縁層34は、絶縁層31に用いることのできる有機絶縁膜または無機絶縁膜を援用できる。
絶縁層34は、樹脂層23の耐熱温度以下の温度で形成する。絶縁層34は、加熱処理の温度より低い温度で形成することが好ましい。
絶縁層34に有機絶縁膜を用いる場合、絶縁層34の形成時に樹脂層23にかかる温度は、室温以上350℃以下が好ましく、室温以上300℃以下がさらに好ましい。
絶縁層34に無機絶縁膜を用いる場合、成膜時の基板温度は、室温以上350℃以下が好ましく、100℃以上300℃以下がさらに好ましい。
次に、絶縁層34及び絶縁層33に、導電層43bに達する開口を形成する。
その後、導電層61を形成する。導電層61は、その一部が発光素子60の画素電極として機能する。導電層61は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。
導電層61は、樹脂層23の耐熱温度以下の温度で形成する。導電層61は、加熱処理の温度より低い温度で形成することが好ましい。
導電膜の成膜時の基板温度は、室温以上350℃以下が好ましく、室温以上300℃以下がさらに好ましい。
次に、導電層61の端部を覆う絶縁層35を形成する。絶縁層35は、絶縁層31に用いることのできる有機絶縁膜または無機絶縁膜を援用できる。
絶縁層35は、樹脂層23の耐熱温度以下の温度で形成する。絶縁層35は、加熱処理の温度より低い温度で形成することが好ましい。
絶縁層35に有機絶縁膜を用いる場合、絶縁層35の形成時に樹脂層23にかかる温度は、室温以上350℃以下が好ましく、室温以上300℃以下がさらに好ましい。
絶縁層35に無機絶縁膜を用いる場合、成膜時の基板温度は、室温以上350℃以下が好ましく、100℃以上300℃以下がさらに好ましい。
次に、EL層62及び導電層63を形成する。導電層63は、その一部が発光素子60の共通電極として機能する。
EL層62は、蒸着法、塗布法、印刷法、吐出法などの方法で形成することができる。EL層62を画素毎に作り分ける場合、メタルマスクなどのシャドウマスクを用いた蒸着法、またはインクジェット法等により形成することができる。EL層62を画素毎に作り分けない場合には、メタルマスクを用いない蒸着法を用いることができる。
EL層62には、低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。
導電層63は、蒸着法やスパッタリング法等を用いて形成することができる。
導電層63は、樹脂層23の耐熱温度以下かつEL層62の耐熱温度以下の温度で形成する。また、加熱処理の温度より低い温度で形成することが好ましい。
以上のようにして、発光素子60を形成することができる(図9(A))。発光素子60は、一部が画素電極として機能する導電層61、EL層62、及び一部が共通電極として機能する導電層63が積層された構成を有する。
ここでは、発光素子60として、トップエミッション型の発光素子を作製する例を示したが、本発明の一態様はこれに限られない。
発光素子は、トップエミッション型、ボトムエミッション型、デュアルエミッション型のいずれであってもよい。光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
次に、導電層63を覆って絶縁層74を形成する(図9(A))。絶縁層74は、発光素子60に水などの不純物が拡散することを抑制する保護層として機能する。発光素子60は、絶縁層74によって封止される。導電層63を形成した後、大気に曝すことなく、絶縁層74を形成することが好ましい。
絶縁層74は、樹脂層23の耐熱温度以下かつ発光素子60の耐熱温度以下の温度で形成する。絶縁層74は、加熱処理の温度より低い温度で形成することが好ましい。
絶縁層74は、例えば、上述した絶縁層31に用いることのできるバリア性の高い無機絶縁膜が含まれる構成とすることが好ましい。また、無機絶縁膜と有機絶縁膜を積層して用いてもよい。
絶縁層74は、ALD法やスパッタリング法等を用いて形成することができる。ALD法及びスパッタリング法は低温成膜が可能であるため好ましい。ALD法を用いると絶縁層74のカバレッジが良好となり好ましい。
次に、絶縁層74上に保護層75を形成する(図9(A))。保護層75としては、図5(D1)等に示すように、接着層75b及び基板75aを用いてもよい。
次に、レーザ光55を照射する(図9(B1))。レーザ光55は、例えば、図9(B1)においては、左側から右側に走査される線状レーザビームで、その長軸は、その走査方向及びその入射方向(上から下)に垂直である。レーザ装置において、作製基板14が上側にくるように積層体を配置する。積層体には、積層体(作製基板14)の上側からレーザ光55が照射される。
レーザ光の照射工程については、上記剥離方法における記載を参照できる。
なお、1枚の作製基板で複数の表示装置を形成する(多面取りする)場合、1つの樹脂層23を用いて、複数の表示装置を形成することができる。または、複数の樹脂層23を用いて、表示装置ごとに樹脂層23を作り分けてもよい。図9(B2)は作製基板に1つの樹脂層23を有する例である。図9(B3)、(B4)は作製基板に4つの樹脂層23を有する例である。
レーザ装置は、大判の基板の処理が困難であること、もしくは高価であることがある。そのため、作製基板のサイズによっては、図9(B4)に示すように、作製基板を分断した後に、分断した作製基板それぞれに対してレーザ光を照射してもよい。
次に、樹脂層23に分離の起点を形成する(図10(A)~(C))。
例えば、保護層75側から、樹脂層23の端部よりも内側に刃物などの鋭利な形状の器具65を差し込み、枠状に切れ目64を入れる。
または、樹脂層23に、枠状にレーザ光を照射してもよい。
上述の通り、多面取りにより、1つの樹脂層23を用いて、複数の表示装置を形成することができる。例えば、図10(B)の切れ目64の内側に、複数の表示装置が配置される。これにより、複数の表示装置を一度にまとめて作製基板と分離することができる。
または、複数の樹脂層23を用いて、表示装置ごとに樹脂層23を作り分けてもよい。図10(C)では、作製基板上に、4つの樹脂層23を形成する例を示す。4つの樹脂層23それぞれに、枠状に切れ目64を入れることで、各表示装置を異なるタイミングで作製基板と分離することができる。
作製方法例1では、作製基板14上に、金属酸化物層20が接する部分と、絶縁層31が接する部分と、を設ける。作製基板14と絶縁層31が接する部分では、金属酸化物層20を介さずに、作製基板14と基板75aとが貼り合わされており、その密着性は、光を照射しても大きく低下しない。そのため、樹脂層23が金属酸化物層20から意図せず剥がれることを抑制できる。そして、分離の起点を形成することで、所望のタイミングで、金属酸化物層20と樹脂層23とを分離することができる。したがって、分離のタイミングを制御でき、かつ、分離に要する力が小さい。これにより、分離工程、及び表示装置の作製工程の歩留まりを高めることができる。
次に、金属酸化物層20と樹脂層23とを分離する(図11(A))。
そして、露出した樹脂層23に、接着層28を用いて、基板29を貼り合わせる(図11(B))。
基板29は、表示装置の支持基板として機能することができる。基板29にはフィルムを用いることが好ましく、特に樹脂フィルムを用いることが好ましい。これにより表示装置の軽量化、薄型化が可能となる。また、フィルム基板を用いた表示装置は、ガラスや金属などを用いる場合に比べて、破損しにくい。また、表示装置の可撓性を高めることができる。
本実施の形態の剥離方法を用いることで、作製基板14上に作製したトランジスタ40及び発光素子60等を、作製基板14から基板29に転置することができる。
接着層28には、接着層75bに用いることができる材料を適用することができる。基板29には、基板75aに用いることができる材料を適用することができる。
作製方法例1では、金属酸化物層20及び樹脂層23を積層し、光を照射する。これにより、金属酸化物層20と樹脂層23との密着性もしくは接着性を低下させることができる。そのため、作製基板14と樹脂層23とを容易に分離することができる。
また、金属酸化物層20を樹脂層23で覆い、金属酸化物層20と絶縁層31とが接する部分を低減することで、膜剥がれを抑制し、装置の作製工程における歩留まりを高めることができる。
[表示装置の構成例1]
図12(A)は、表示装置10Aの上面図である。図12(B)、(C)は、それぞれ、表示装置10Aの表示部381の断面図及びFPC372との接続部の断面図の一例である。
表示装置10Aは、上記の作製方法例1を用いて作製することができる。表示装置10Aは、曲がった状態に保持することや、繰り返し曲げることなどが可能である。
表示装置10Aは、保護層75及び基板29を有する。保護層75側が表示装置の表示面側である。表示装置10Aは、表示部381及び駆動回路部382を有する。表示装置10AにはFPC372が貼り付けられている。
接続体76を介して、導電層43cとFPC372とが電気的に接続されている(図12(B)、(C))。導電層43cは、トランジスタのソース及びドレインと同一の材料及び同一の工程で形成することができる。
接続体76としては、様々な異方性導電フィルム(ACF:Anisotropic Conductive Film)及び異方性導電ペースト(ACP:Anisotropic Conductive Paste)等を用いることができる。
図12(C)に示す表示装置は、トランジスタ40を有さず、トランジスタ49を有している点、及び、絶縁層33上に着色層97を有する点で、図12(B)の構成と異なる。ボトムエミッション型の発光素子60を用いる場合、発光素子60よりも基板29側に着色層97を有していてもよい。上記の作製方法例1では、樹脂層23に可視光の透過率が高い材料を用いることができる。そのため、樹脂層23を介して発光素子60の光を取り出す表示装置であっても、高い表示品位を実現できる。
図12(C)に示すトランジスタ49は、図12(B)に示すトランジスタ40の構成に加えて、ゲートとして機能する導電層45を有する。
トランジスタ49には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。このような構成とすることで、トランジスタの閾値電圧を制御することができる。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。このようなトランジスタは他のトランジスタと比較して電界効果移動度を高めることが可能であり、オン電流を増大させることができる。その結果、高速駆動が可能な回路を作製することができる。さらには、回路部の占有面積を縮小することが可能となる。オン電流の大きなトランジスタを適用することで、表示装置を大型化、または高精細化したときに配線数が増大したとしても、各配線における信号遅延を低減することが可能であり、表示ムラを抑制することができる。
または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御することができる。
[作製方法例2]
まず、上記剥離方法と同様に、作製基板14上に、金属酸化物層20から絶縁層31までを形成する(図13(A))。図13(A)に示すように、金属酸化物層20は、樹脂層23で覆われている。そのため、金属酸化物層20と絶縁層31とが接する部分を低減する、さらには無くすことができる。これにより、表示装置の作製工程中の膜剥がれを抑制することができる。
次に、絶縁層31上にトランジスタ80を形成する(図13(B))。
ここではトランジスタ80として、金属酸化物層83と2つのゲートを有するトランジスタを作製する場合を示す。
トランジスタ80は、樹脂層23の耐熱温度以下の温度で形成する。加熱処理の温度より低い温度で形成することが好ましい。
具体的には、まず、絶縁層31上に導電層81を形成する。導電層81は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することで形成できる。
続いて、絶縁層82を形成する。絶縁層82は、絶縁層31に用いることのできる無機絶縁膜を援用できる。
続いて、金属酸化物層83を形成する。金属酸化物層83は、金属酸化物膜を成膜した後、レジストマスクを形成し、当該金属酸化物膜をエッチングした後にレジストマスクを除去することで形成できる。金属酸化物層83は、金属酸化物層44に用いることのできる材料を援用できる。
続いて、絶縁層84及び導電層85を形成する。絶縁層84は、絶縁層31に用いることのできる無機絶縁膜を援用できる。絶縁層84及び導電層85は、絶縁層84となる絶縁膜と、導電層85となる導電膜とを成膜した後、レジストマスクを形成し、当該絶縁膜及び当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。
次に、金属酸化物層83、絶縁層84、及び導電層85を覆う絶縁層33を形成する。絶縁層33は、絶縁層31と同様の方法により形成することができる。
絶縁層33は、水素を含むことが好ましい。絶縁層33に含まれる水素が、絶縁層33と接する金属酸化物層83に拡散し、金属酸化物層83の一部が低抵抗化する。金属酸化物層83の一部が低抵抗領域として機能するため、トランジスタ80のオン電流の増大及び電界効果移動度の向上が可能である。
次に、絶縁層33に、金属酸化物層83に達する開口を形成する。
続いて、導電層86a及び導電層86bを形成する。導電層86a及び導電層86bは、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。導電層86a及び導電層86bは、それぞれ、絶縁層33の開口を介して金属酸化物層83と電気的に接続される。
以上のようにして、トランジスタ80を作製できる(図13(B))。トランジスタ80において、導電層81の一部はゲートとして機能し、絶縁層84の一部はゲート絶縁層として機能し、絶縁層82の一部はゲート絶縁層として機能し、導電層85の一部はゲートとして機能する。金属酸化物層83はチャネル領域と低抵抗領域とを有する。チャネル領域は絶縁層84を介して導電層85と重なる。低抵抗領域は導電層86aと接続される部分と、導電層86bと接続される部分と、を有する。
次に、絶縁層33上に絶縁層34から発光素子60までを形成する(図13(C))。これらの工程は作製方法例1を参照できる。
また、図13(A)~(C)までの工程とは独立して、図14(A)、(B)の工程を行う。まず、作製基板14上に島状の金属酸化物層20を形成する工程と同様に、作製基板91上に、島状の金属酸化物層92を形成する。次に、島状の金属酸化物層20上に島状の樹脂層23を形成する工程と同様に、島状の金属酸化物層92上に、金属酸化物層92の端部を覆う島状の樹脂層93を形成する。そして、樹脂層23上に絶縁層31を形成する工程と同様に、樹脂層93上に絶縁層95を形成する(図14(A))。金属酸化物層92は、樹脂層93で覆われている。そのため、金属酸化物層92と絶縁層95とが接する部分を低減する、さらには無くすことができる。これにより、表示装置の作製工程中の膜剥がれを抑制することができる。
次に、絶縁層95上に、着色層97及び遮光層98を形成する(図14(B))。
着色層97として、カラーフィルタ等を用いることができる。着色層97は発光素子60の表示領域と重なるように配置する。
遮光層98として、ブラックマトリクス等を用いることができる。遮光層98は、絶縁層35と重なるように配置する。
次に、作製基板14のトランジスタ80等が形成されている面と、作製基板91の樹脂層93等が形成されている面とを、接着層99を用いて貼り合わせる(図14(C1)、(C2))。
接着層99が金属酸化物層20及び金属酸化物層92と重ならない領域を有すると、その領域の広さや、接着層99と接する層との密着性の程度によって、分離不良が生じやすくなる場合がある。
そのため、図14(C1)、(C2)に示すように、接着層99を、金属酸化物層20及び金属酸化物層92の双方が設けられている部分にのみ重ねることが好ましい。つまり、金属酸化物層20及び金属酸化物層92の双方が設けられていない部分には、接着層99も設けられていない。
例えば、流動性の低い接着剤、または接着シートなどを接着層99に用いると、接着層99を島状に形成することが容易である(図14(C1))。
または、枠状の隔壁96を形成し、隔壁96に囲まれた内側に接着層99を充填し硬化してもよい(図14(C2))。
隔壁96が、金属酸化物層20及び金属酸化物層92が設けられていない部分と重なる場合、隔壁96には未硬化または半硬化の樹脂を用いることが好ましい。これにより、金属酸化物層20及び金属酸化物層92が設けられていない部分の密着性が高くなることを抑制し、分離を容易にすることができる。
隔壁96を表示装置の構成要素として用いる場合、隔壁96には、硬化した樹脂を用いることが好ましい。このとき、隔壁96も、金属酸化物層20及び金属酸化物層92が設けられている部分にのみ重ねることが好ましい。
なお、接着層99が、金属酸化物層20または金属酸化物層92と重ならない領域を有する場合、分離の起点を形成することで、所望のタイミングで分離を行うことができる。
以降の工程は、図14(C1)に示す積層構造を用いて説明する。
次に、レーザ光55を照射する(図15(A))。レーザ光55は、例えば、図15(A)においては、左側から右側に走査される線状レーザビームで、その長軸は、その走査方向及びその入射方向(上から下)に垂直である。レーザ装置において、作製基板14が上側にくるように積層体を配置する。積層体には、積層体(作製基板14)の上側からレーザ光55が照射される。
作製基板14と作製基板91はどちらを先に分離してもよい。ここでは、作製基板91よりも先に作製基板14を分離する例を示す。
レーザ光55は、作製基板14を介して金属酸化物層20と樹脂層23との界面またはその近傍に照射されることが好ましい。また、レーザ光55は、金属酸化物層20中に照射されてもよく、樹脂層23中に照射されてもよい。
金属酸化物層20は、レーザ光55を吸収する。樹脂層23は、レーザ光55を吸収してもよい。
レーザ光55の照射により、金属酸化物層20と樹脂層23の密着性もしくは接着性が低下する。レーザ光55の照射により、樹脂層23が脆弱化されることがある。
レーザ光の照射工程については、上記剥離方法における記載を参照できる。
そして、作製基板14とトランジスタ80とを分離する(図15(B))。接着層99の端部が金属酸化物層20の端部よりも内側に位置するため、分離工程の歩留まりを高めることができる。なお、本実施の形態では、金属酸化物層20が設けられていない部分の被剥離層が、作製基板14上に残る例を示すが、これに限られず、一部が作製基板91側に残存する場合がある。
作製方法例2では、金属酸化物層20及び樹脂層23を積層し、光を照射する。これにより、金属酸化物層20と樹脂層23との密着性もしくは接着性を低下させることができる。そのため、作製基板14と樹脂層23とを容易に分離することができる。
次に、作製基板14から分離することで露出した樹脂層23と、基板29とを、接着層28を用いて貼り合わせる(図16(A))。基板29は、表示装置の支持基板として機能することができる。
次に、レーザ光55を照射する(図16(B))。レーザ光55は、例えば、図16(B)においては、左側から右側に走査される線状レーザビームで、その長軸は、その走査方向及びその入射方向(上から下)に垂直である。レーザ装置において、作製基板91が上側にくるように積層体を配置する。積層体には、積層体(作製基板91)の上側からレーザ光55が照射される。
レーザ光55は、作製基板91を介して金属酸化物層92と樹脂層93との界面またはその近傍に照射されることが好ましい。また、レーザ光55は、金属酸化物層92中に照射されてもよく、樹脂層93中に照射されてもよい。
金属酸化物層92は、レーザ光55を吸収する。樹脂層93は、レーザ光55を吸収してもよい。
レーザ光55の照射により、金属酸化物層92と樹脂層93の密着性もしくは接着性が低下する。レーザ光55の照射により、樹脂層93が脆弱化されることがある。
レーザ光の照射工程については、上記剥離方法における記載を参照できる。
次に、樹脂層93に分離の起点を形成する(図17(A))。
図17(A)では、基板29側から、樹脂層93の端部よりも内側に刃物などの鋭利な形状の器具65を差し込み、枠状に切れ目を入れる。基板29に樹脂を用いる場合に好適である。
または、基板29に、枠状にレーザ光を照射してもよい。
分離の起点を形成することで、所望のタイミングで、作製基板91と樹脂層93とを分離することができる。したがって、分離のタイミングを制御でき、かつ、分離に要する力が小さい。これにより、分離工程、及び表示装置の作製工程の歩留まりを高めることができる。
次に、作製基板91とトランジスタ80とを分離する(図17(B))。ここでは、枠状に切れ目を入れた内側の部分と作製基板91とを分離する例を示す。
作製方法例2では、金属酸化物層92及び樹脂層93を積層し、光を照射する。これにより、金属酸化物層92と樹脂層93との密着性もしくは接着性を低下させることができる。そのため、作製基板91と樹脂層93とを容易に分離することができる。
次に、作製基板91から分離することで露出した樹脂層93と、基板22とを、接着層13を用いて貼り合わせる(図18(A))。基板22は、表示装置の支持基板として機能することができる。
図18(A)において、発光素子60の発光は、着色層97、絶縁層95、及び樹脂層93を通して、表示装置の外部に取り出される。そのため、樹脂層93の可視光の透過率は高いことが好ましい。本発明の一態様では、樹脂層93の厚さを薄くすることができる。そのため、樹脂層93の可視光の透過率を高め、発光素子60の光取り出し効率の低下を抑制できる。
また、本発明の一態様では、金属酸化物層92と樹脂層93との界面またはその近傍に光を照射し、金属酸化物層92が光の一部を吸収する。そのため、樹脂層93の光の吸収率が低くても、金属酸化物層92と樹脂層93とを容易に分離することができる。よって、樹脂層93に可視光の透過率が高い材料を用いることができる。したがって、発光素子60の光取り出し効率の低下を抑制できる。
樹脂層93を除去してもよい。これにより、発光素子60の光取り出し効率をさらに高めることができる。図18(B)では、樹脂層93を除去し、接着層13を用いて絶縁層95に基板22を貼り合わせた例を示す。
接着層13には、接着層75bに用いることができる材料を適用できる。
基板22には、基板75aに用いることができる材料を適用できる。
作製方法例2は、本発明の一態様の剥離方法を2回行って表示装置を作製する例である。本発明の一態様では、表示装置を構成する機能素子等は、全て作製基板上で形成するため、精細度の高い表示装置を作製する場合においても、可撓性を有する基板には、高い位置合わせ精度が要求されない。よって、簡便に可撓性を有する基板を貼り付けることができる。
[表示装置の構成例2]
図19(A)は、表示装置10Bの上面図である。図19(B)は、表示装置10Bの表示部381の断面図及びFPC372との接続部の断面図の一例である。
表示装置10Bは、上記の作製方法例2を用いて作製することができる。表示装置10Bは、曲がった状態に保持することや、繰り返し曲げることなどが可能である。
表示装置10Bは、基板22及び基板29を有する。基板22側が表示装置10Bの表示面側である。表示装置10Bは、表示部381及び駆動回路部382を有する。表示装置10BにはFPC372が貼り付けられている。
基板22及び基板29にはフィルムを用いることが好ましく、特に樹脂フィルムを用いることが好ましい。これにより表示装置の軽量化、薄型化が可能となる。また、フィルム基板を用いた表示装置は、ガラスや金属などを用いる場合に比べて、破損しにくい。また、表示装置の可撓性を高めることができる。
接続体76を介して、導電層86cとFPC372とが電気的に接続されている(図19(B))。導電層86cは、トランジスタのソース及びドレインと同一の材料及び同一の工程で形成することができる。
本実施の形態の表示装置が有するトランジスタの構造に限定はない。例えば、図19(C)に示すように、表示装置は、トップゲート構造のトランジスタ140を有していてもよい。
以上、本実施の形態では、作製基板上に島状の金属酸化物層を形成し、金属酸化物層を樹脂層で覆い、金属酸化物層と無機絶縁層とが接する部分を低減する。これにより、膜剥がれを抑制し、装置の作製工程における歩留まりを高めることができる。そして、金属酸化物層と樹脂層との界面またはその近傍に光を照射することで、金属酸化物層と樹脂層との密着性もしくは接着性を低下させることができる。そのため、所望のタイミングで、金属酸化物層と樹脂層とを容易に分離することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様を適用して作製することができる表示装置について図20~図25を用いて説明する。
本実施の形態の表示装置は、可視光を反射する第1の表示素子と、可視光を発する第2の表示素子とを有する。
本実施の形態の表示装置は、第1の表示素子が反射する光と、第2の表示素子が発する光のうち、いずれか一方、または両方により、画像を表示する機能を有する。
第1の表示素子には、外光を反射して表示する素子を用いることができる。このような素子は光源を持たない(人工光源を使用しない)ため、表示の際の消費電力を極めて小さくすることが可能となる。
第1の表示素子には、代表的には反射型の液晶素子を用いることができる。または、第1の表示素子として、シャッター方式のMEMS(Micro Electro Mechanical System)素子、光干渉方式のMEMS素子の他、マイクロカプセル方式、電気泳動方式、エレクトロウェッティング方式、電子粉流体(登録商標)方式等を適用した素子などを用いることができる。
第2の表示素子には、発光素子を用いることが好ましい。このような表示素子が射出する光は、その輝度や色度が外光に左右されることがないため、色再現性が高く(色域が広く)、コントラストの高い、鮮やかな表示を行うことができる。
第2の表示素子には、例えばOLED(Organic Light Emitting Diode)、LED(Light Emitting Diode)、QLED(Quantum-dot Light Emitting Diode)などの自発光性の発光素子を用いることができる。
本実施の形態の表示装置は、第1の表示素子のみを用いて画像を表示する第1のモード、第2の表示素子のみを用いて画像を表示する第2のモード、並びに、第1の表示素子及び第2の表示素子を用いて画像を表示する第3のモードを有し、これらのモードを自動または手動で切り替えて使用することができる。
第1のモードでは、第1の表示素子と外光を用いて画像を表示する。第1のモードは光源が不要であるため、極めて低消費電力なモードである。例えば、表示装置に外光が十分に入射されるとき(明るい環境下など)は、第1の表示素子が反射した光を用いて表示を行うことができる。例えば、外光が十分に強く、かつ外光が白色光またはその近傍の光である場合に有効である。第1のモードは、文字を表示することに適したモードである。また、第1のモードは、外光を反射した光を用いるため、目に優しい表示を行うことができ、目が疲れにくいという効果を奏する。
第2のモードでは、第2の表示素子による発光を利用して画像を表示する。そのため、照度や外光の色度によらず、極めて鮮やかな(コントラストが高く、且つ色再現性の高い)表示を行うことができる。例えば、夜間や暗い室内など、照度が極めて低い場合などに有効である。また周囲が暗い場合、明るい表示を行うと使用者が眩しく感じてしまう場合がある。これを防ぐために、第2のモードでは輝度を抑えた表示を行うことが好ましい。これにより、眩しさを抑えることに加え、消費電力も低減することができる。第2のモードは、鮮やかな画像(静止画及び動画)などを表示することに適したモードである。
第3のモードでは、第1の表示素子による反射光と、第2の表示素子による発光の両方を利用して表示を行う。第1のモードよりも鮮やかな表示をしつつ、第2のモードよりも消費電力を抑えることができる。例えば、室内照明下や、朝方や夕方の時間帯など、照度が比較的低い場合、外光の色度が白色ではない場合などに有効である。
このような構成とすることで、周囲の明るさによらず視認性が高く、利便性の高い表示装置を実現できる。具体的には、外光下でも、室内でも、視認性が高く利便性の高い表示装置を実現できる。
なお、第3のモードは、ハイブリッド表示方法を用いるモードということができる。
また、本実施の形態の表示装置及び入出力装置は、ハイブリッドディスプレイともいうことができる。
ハイブリッド表示とは、1つのパネルにおいて、反射光と自発光とを併用して、色調または光強度を互いに補完して、文字及び/または画像を表示する方法である。または、ハイブリッド表示とは、同一画素または同一副画素において、複数の表示素子からそれぞれの光を用いて、文字及び/または画像を表示する方法である。ただし、ハイブリッド表示を行っているハイブリッドディスプレイを局所的にみると、複数の表示素子のいずれか一を用いて表示される画素または副画素と、複数の表示素子の二以上を用いて表示される画素または副画素と、を有する場合がある。
なお、本明細書等において、上記構成のいずれか1つまたは複数の表現を満たすものを、ハイブリッド表示という。
また、ハイブリッドディスプレイは、同一画素または同一副画素に複数の表示素子を有する。なお、複数の表示素子としては、例えば、光を反射する反射型素子と、光を射出する自発光素子とが挙げられる。なお、反射型素子と、自発光素子とは、それぞれ独立に制御することができる。ハイブリッドディスプレイは、表示部において、反射光、及び自発光のいずれか一方または双方を用いて、文字及び/または画像を表示する機能を有する。
本実施の形態の表示装置は、第1の表示素子を有する第1の画素と、第2の表示素子を有する第2の画素とをそれぞれ複数有する。第1の画素と第2の画素は、それぞれ、マトリクス状に配置されることが好ましい。
第1の画素及び第2の画素は、それぞれ、1つ以上の副画素を有する構成とすることができる。例えば、画素には、副画素を1つ有する構成(白色(W)など)、副画素を3つ有する構成(赤色(R)、緑色(G)、及び青色(B)の3色、または、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色など)、または、副画素を4つ有する構成(赤色(R)、緑色(G)、青色(B)、白色(W)の4色、または、赤色(R)、緑色(G)、青色(B)、黄色(Y)の4色など)を適用できる。
本実施の形態の表示装置は、第1の画素でフルカラー表示を行い、第2の画素で、フルカラー表示を行う構成とすることができる。または、本実施の形態の表示装置は、第1の画素では白黒表示またはグレースケールでの表示を行い、第2の画素ではフルカラー表示を行う構成とすることができる。第1の画素を用いた白黒表示またはグレースケールでの表示は、文書情報など、カラー表示を必要としない情報を表示することに適している。
図20は、表示装置300Aの斜視概略図である。表示装置300Aは、基板351と基板361とが貼り合わされた構成を有する。図20では、基板361を破線で明示している。
表示装置300Aは、表示部362、回路364、配線365等を有する。図20では表示装置300AにIC(集積回路)373及びFPC372が実装されている例を示している。そのため、図20に示す構成は、表示装置300A、IC、及びFPCを有する表示モジュールということもできる。
回路364としては、例えば走査線駆動回路を用いることができる。
配線365は、表示部362及び回路364に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC372を介して外部から、またはIC373から配線365に入力される。
図20では、COG(Chip On Glass)方式またはCOF(Chip on Film)方式等により、基板351にIC373が設けられている例を示す。IC373は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置300A及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
図20には、表示部362の一部の拡大図を示している。表示部362には、複数の表示素子が有する電極311bがマトリクス状に配置されている。電極311bは、可視光を反射する機能を有し、液晶素子180の反射電極として機能する。
また、図20に示すように、電極311bは開口451を有する。さらに表示部362は、電極311bよりも基板351側に、発光素子170を有する。発光素子170からの光は、電極311bの開口451を介して基板361側に射出される。発光素子170の発光領域の面積と開口451の面積とは等しくてもよい。発光素子170の発光領域の面積と開口451の面積のうち一方が他方よりも大きいと、位置ずれに対するマージンが大きくなるため好ましい。特に、開口451の面積は、発光素子170の発光領域の面積に比べて大きいことが好ましい。開口451が小さいと、発光素子170からの光の一部が電極311bによって遮られ、外部に取り出せないことがある。開口451を十分に大きくすることで、発光素子170の発光が無駄になることを抑制できる。
図21に、図20で示した表示装置300Aの、FPC372を含む領域の一部、回路364を含む領域の一部、及び表示部362を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
図21に示す表示装置300Aは、基板351と基板361の間に、トランジスタ201、トランジスタ203、トランジスタ205、トランジスタ206、液晶素子180、発光素子170、絶縁層220、着色層131、着色層134等を有する。基板361と絶縁層220は接着層141を介して接着されている。基板351と絶縁層220は接着層142を介して接着されている。
基板361には、着色層131、遮光層132、絶縁層121、及び液晶素子180の共通電極として機能する電極113、配向膜133b、絶縁層117等が設けられている。基板361の外側の面には、偏光板135を有する。絶縁層121は、平坦化層としての機能を有していてもよい。絶縁層121により、電極113の表面を概略平坦にできるため、液晶層112の配向状態を均一にできる。絶縁層117は、液晶素子180のセルギャップを保持するためのスペーサとして機能する。絶縁層117が可視光を透過する場合は、絶縁層117を液晶素子180の表示領域と重ねて配置してもよい。
液晶素子180は反射型の液晶素子である。液晶素子180は、画素電極として機能する電極311a、液晶層112、電極113が積層された積層構造を有する。電極311aの基板351側に接して、可視光を反射する電極311bが設けられている。電極311bは開口451を有する。電極311a及び電極113は可視光を透過する。液晶層112と電極311aの間に配向膜133aが設けられている。液晶層112と電極113の間に配向膜133bが設けられている。
液晶素子180において、電極311bは可視光を反射する機能を有し、電極113は可視光を透過する機能を有する。基板361側から入射した光は、偏光板135により偏光され、電極113、液晶層112を透過し、電極311bで反射する。そして液晶層112及び電極113を再度透過して、偏光板135に達する。このとき、電極311bと電極113の間に与える電圧によって液晶の配向を制御し、光の光学変調を制御することができる。すなわち、偏光板135を介して射出される光の強度を制御することができる。また光は着色層131によって特定の波長領域以外の光が吸収されることにより、取り出される光は、例えば赤色を呈する光となる。
図21に示すように、開口451には可視光を透過する電極311aが設けられていることが好ましい。これにより、開口451と重なる領域においてもそれ以外の領域と同様に液晶層112が配向するため、これらの領域の境界部で液晶の配向不良が生じ、意図しない光が漏れてしまうことを抑制できる。
接続部207において、電極311bは、導電層221bを介して、トランジスタ206が有する導電層222aと電気的に接続されている。トランジスタ206は、液晶素子180の駆動を制御する機能を有する。
接着層141が設けられる一部の領域には、接続部252が設けられている。接続部252において、電極311aと同一の導電膜を加工して得られた導電層と、電極113の一部が、接続体243により電気的に接続されている。したがって、基板361側に形成された電極113に、基板351側に接続されたFPC372から入力される信号または電位を、接続部252を介して供給することができる。
接続体243としては、例えば導電性の粒子を用いることができる。導電性の粒子としては、有機樹脂またはシリカなどの粒子の表面を金属材料で被覆したものを用いることができる。金属材料としてニッケルや金を用いると接触抵抗を低減できるため好ましい。またニッケルをさらに金で被覆するなど、2種類以上の金属材料を層状に被覆させた粒子を用いることが好ましい。また接続体243として、弾性変形、または塑性変形する材料を用いることが好ましい。このとき導電性の粒子である接続体243は、図21に示すように上下方向に潰れた形状となる場合がある。こうすることで、接続体243と、これと電気的に接続する導電層との接触面積が増大し、接触抵抗を低減できるほか、接続不良などの不具合の発生を抑制することができる。
接続体243は、接着層141に覆われるように配置することが好ましい。例えば硬化前の接着層141に、接続体243を分散させておけばよい。
発光素子170は、ボトムエミッション型の発光素子である。発光素子170は、絶縁層220側から画素電極として機能する電極191、EL層192、及び共通電極として機能する電極193の順に積層された積層構造を有する。電極191は、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222aと接続されている。トランジスタ205は、発光素子170の駆動を制御する機能を有する。絶縁層216が電極191の端部を覆っている。電極193は可視光を反射する材料を含み、電極191は可視光を透過する材料を含む。電極193を覆って絶縁層194が設けられている。発光素子170が発する光は、着色層134、絶縁層220、開口451、電極311a等を介して、基板361側に射出される。
液晶素子180及び発光素子170は、画素によって着色層の色を変えることで、様々な色を呈することができる。表示装置300Aは、液晶素子180を用いて、カラー表示を行うことができる。表示装置300Aは、発光素子170を用いて、カラー表示を行うことができる。
トランジスタ201、トランジスタ203、トランジスタ205、及びトランジスタ206は、いずれも絶縁層220の基板351側の面上に形成されている。これらのトランジスタは、同一の工程を用いて作製することができる。
液晶素子180と電気的に接続される回路は、発光素子170と電気的に接続される回路と同一面上に形成されることが好ましい。これにより、2つの回路を別々の面上に形成する場合に比べて、表示装置の厚さを薄くすることができる。また、2つのトランジスタを同一の工程で作製できるため、2つのトランジスタを別々の面上に形成する場合に比べて、作製工程を簡略化することができる。
液晶素子180の画素電極は、トランジスタが有するゲート絶縁層を挟んで、発光素子170の画素電極とは反対に位置する。
ここで、チャネル形成領域に金属酸化物を有し、オフ電流が極めて低いトランジスタ206を適用した場合や、トランジスタ206と電気的に接続される記憶素子を適用した場合などでは、液晶素子180を用いて静止画を表示する際に画素への書き込み動作を停止しても、階調を維持させることが可能となる。すなわち、フレームレートを極めて小さくしても表示を保つことができる。本発明の一態様では、フレームレートを極めて小さくでき、消費電力の低い駆動を行うことができる。
トランジスタ203は、画素の選択、非選択状態を制御するトランジスタ(スイッチングトランジスタ、または選択トランジスタともいう)である。トランジスタ205は、発光素子170に流れる電流を制御するトランジスタ(駆動トランジスタともいう)である。
絶縁層220の基板351側には、絶縁層211、絶縁層212、絶縁層213、絶縁層214等の絶縁層が設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層212は、トランジスタ206等を覆って設けられる。絶縁層213は、トランジスタ205等を覆って設けられている。絶縁層214は、平坦化層としての機能を有する。なお、トランジスタを覆う絶縁層の数は限定されず、単層であっても2層以上であってもよい。
各トランジスタを覆う絶縁層の少なくとも一層に、水や水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア膜として機能させることができる。このような構成とすることで、トランジスタに対して外部から不純物が拡散することを効果的に抑制することが可能となり、信頼性の高い表示装置を実現できる。
トランジスタ201、トランジスタ203、トランジスタ205、及びトランジスタ206は、ゲートとして機能する導電層221a、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、並びに、半導体層231を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。
トランジスタ201及びトランジスタ205は、トランジスタ203及びトランジスタ206の構成に加えて、ゲートとして機能する導電層223を有する。
トランジスタ201及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。このような構成とすることで、トランジスタの閾値電圧を制御することができる。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。このようなトランジスタは他のトランジスタと比較して電界効果移動度を高めることが可能であり、オン電流を増大させることができる。その結果、高速駆動が可能な回路を作製することができる。さらには、回路部の占有面積を縮小することが可能となる。オン電流の大きなトランジスタを適用することで、表示装置を大型化、または高精細化したときに配線数が増大したとしても、各配線における信号遅延を低減することが可能であり、表示ムラを抑制することができる。
または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御することができる。
表示装置が有するトランジスタの構造に限定はない。回路364が有するトランジスタと、表示部362が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路364が有する複数のトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。同様に、表示部362が有する複数のトランジスタは、全て同じ構造であってもよく、2種類以上の構造が組み合わせて用いられていてもよい。
導電層223には、酸化物を含む導電性材料を用いることが好ましい。導電層223を構成する導電膜の成膜時に、酸素を含む雰囲気下で成膜することで、絶縁層212に酸素を供給することができる。成膜ガス中の酸素ガスの割合を90%以上100%以下の範囲とすることが好ましい。絶縁層212に供給された酸素は、後の熱処理により半導体層231に供給され、半導体層231中の酸素欠損の低減を図ることができる。
特に、導電層223には、低抵抗化された金属酸化物を用いることが好ましい。このとき、絶縁層213に水素を放出する絶縁膜、例えば窒化シリコン膜等を用いることが好ましい。絶縁層213の成膜中、またはその後の熱処理によって導電層223中に水素が供給され、導電層223の電気抵抗を効果的に低減することができる。
絶縁層213に接して着色層134が設けられている。着色層134は、絶縁層214に覆われている。
基板351と基板361とが重ならない領域には、接続部204が設けられている。接続部204では、配線365が接続層242を介してFPC372と電気的に接続されている。接続部204は接続部207と同様の構成を有している。接続部204の上面は、電極311aと同一の導電膜を加工して得られた導電層が露出している。これにより、接続部204とFPC372とを接続層242を介して電気的に接続することができる。
基板361の外側の面に配置する偏光板135として直線偏光板を用いてもよいが、円偏光板を用いることもできる。円偏光板としては、例えば直線偏光板と1/4波長位相差板を積層したものを用いることができる。これにより、外光反射を抑制することができる。また、偏光板の種類に応じて、液晶素子180に用いる液晶素子のセルギャップ、配向、駆動電圧等を調整することで、所望のコントラストが実現されるようにする。
なお、基板361の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板361の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜等を配置してもよい。
基板351及び基板361には、それぞれ、ガラス、石英、セラミック、サファイヤ、有機樹脂などを用いることができる。基板351及び基板361に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。
液晶素子180としては、例えば垂直配向(VA:Vertical Alignment)モードが適用された液晶素子を用いることができる。垂直配向モードとしては、MVA(Multi-Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モードなどを用いることができる。
液晶素子180には、様々なモードが適用された液晶素子を用いることができる。例えばVAモードのほかに、TN(Twisted Nematic)モード、IPS(In-Plane-Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro-cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード、STN(Super Twisted Nematic)モード、TBA(Transverse Bend Alignment)モード、ECB(Electrically Controlled Birefringence)モード、ゲストホストモード等が適用された液晶素子を用いることができる。
液晶素子は、液晶の光学的変調作用によって光の透過または非透過を制御する素子である。液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界または斜め方向の電界を含む)によって制御される。液晶素子に用いる液晶としては、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、高分子ネットワーク型液晶(PNLC:Polymer Network Liquid Crystal)、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。
液晶材料としては、ポジ型の液晶、またはネガ型の液晶のいずれを用いてもよく、適用するモードや設計に応じて最適な液晶材料を用いることができる。
液晶の配向を制御するため、配向膜を設けることができる。なお、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性を示す。また、ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。
反射型の液晶素子を用いる場合には、表示面側に偏光板135を設ける。またこれとは別に、表示面側に光拡散板を配置すると、視認性を向上させられるため好ましい。
偏光板135よりも外側に、フロントライトを設けてもよい。フロントライトとしては、エッジライト型のフロントライトを用いることが好ましい。LEDを備えるフロントライトを用いると、消費電力を低減できるため好ましい。
発光素子、トランジスタ、絶縁層、導電層、接着層、接続層等に用いることができる材料については、それぞれ、実施の形態1の説明を参照できる。
<応用例>
本発明の一態様では、タッチセンサが搭載された表示装置(以下、入出力装置、タッチパネルとも記す)を作製することができる。
本発明の一態様の入出力装置が有する検知素子(センサ素子ともいう)に限定は無い。指またはスタイラス等の被検知体の近接または接触を検知することのできる様々なセンサを、検知素子として適用することができる。
例えばセンサの方式としては、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、感圧方式等様々な方式を用いることができる。
本実施の形態では、静電容量方式の検知素子を有する入出力装置を例に挙げて説明する。
静電容量方式としては、表面型静電容量方式、投影型静電容量方式等がある。また、投影型静電容量方式としては、自己容量方式、相互容量方式等がある。相互容量方式を用いると、同時多点検出が可能となるため好ましい。
本発明の一態様の入出力装置は、別々に作製された表示装置と検知素子とを貼り合わせる構成、表示パネルが有する一対の基板の一方または双方に検知素子を構成する電極等を設ける構成等、様々な構成を適用することができる。
以下では、別々に作製した表示装置と検知素子とを貼り合わせた構成の入出力装置について説明する。図22に、本発明の一態様の表示装置の作製方法のフロー図を示す。図23及び図24(A)、(B)に作製中の表示装置の断面図を示す。図23は、図22に示すステップS6に対応する。同様に、図24(A)は、ステップS7、図24(B)は、ステップS8-2に対応する。
図22に示すように、まず、作製基板14を準備する(ステップS1)。次に、作製基板14上に金属酸化物層20を形成する(ステップS2)。ここでは、金属膜を形成した後、HOプラズマ処理を行うことで金属膜を酸化させ、金属酸化物層20を形成する。金属酸化物層20の形成方法については、実施の形態1を参照できる。
次に、金属酸化物層20上に樹脂層23を形成する(ステップS3)。樹脂層23の形成方法については、実施の形態1を参照できる。
本発明の一態様では、金属酸化物層20の端部を覆うように樹脂層23を形成する。これにより、樹脂層23で金属酸化物層20を覆い、金属酸化物層20が露出する部分を減らす、またはなくす。したがって、樹脂層23上に、金属酸化物層20との密着性が低い膜を形成しても、当該膜が金属酸化物層20と接する部分を減らす、またはなくすことができる。そのため、工程中に膜剥がれが生じることを抑制でき、表示装置の作製の歩留まりを高めることができる。
次に、樹脂層23上に、トランジスタ等を形成する(ステップS4)。そして、トランジスタと電気的に接続される発光素子を形成し(ステップS5)、発光素子を封止する(ステップS6)。樹脂層23上に形成する各構成について、図23を用いて説明する。なお、既に述べた構成については先の記載を参照できる。
図23に示すように、作製基板14上に、金属酸化物層20が形成され、金属酸化物層20上に樹脂層23が形成されている。樹脂層23上には、絶縁層115が形成されている。絶縁層115は、バリア性が高いことが好ましい。絶縁層115には、窒化シリコン膜が好適である。絶縁層115上には、電極311a、電極311b、及び電極311cがこの順で積層されている。電極311aの端部と電極311cの端部は、電極311bの端部よりも外側に位置し、互いに接している。電極311a及び電極311cには、可視光を透過する導電膜を用いる。電極311bには、可視光を反射する導電膜を用いる。電極311bには、開口451が設けられている。開口451は発光素子170の発光領域と重なる。電極311c上には、絶縁層220aが設けられており、絶縁層220a上には導電層224が設けられており、導電層224上には、絶縁層220bが設けられている。導電層224は、容量素子の一方の電極として機能する。絶縁層220b上には、トランジスタ203、トランジスタ205、及びトランジスタ206が設けられている。トランジスタ206のソースまたはドレインは、接続部207において、電極311cと電気的に接続されている。トランジスタ205は、2つのゲートを有する。2つのゲートは、電気的に接続されている。トランジスタ205のソースまたはドレインは、導電層228を介して、発光素子170の電極191と電気的に接続される。各トランジスタは、絶縁層212、絶縁層213、絶縁層214、絶縁層225、及び絶縁層215で覆われている。これらのうち1つまたは複数の絶縁層のバリア性が高いことが好ましい。図23では、絶縁層213及び絶縁層225にバリア性が高い材料を用いる例を示す。絶縁層213は、絶縁層220a、絶縁層220b、絶縁層212等の端部を覆って設けられる。絶縁層225は、絶縁層214の端部を覆って設けられる。被覆膜226は、可視光を反射する膜である。被覆膜226は、発光素子170の発光の一部を反射して、開口451側に供給する機能を有する。レンズ227は、発光素子170の発光を透過する機能を有する。レンズ227は、発光素子170の発光領域と重なる。発光素子170は、電極191、EL層192、及び電極193を有する。EL層192は、副画素ごとに塗り分けられている。電極191の端部は、絶縁層216で覆われている。絶縁層217は、スペーサとしての機能を有する。接着層142によって、発光素子170と基板351とが貼り合わされている。
次に、作製基板14からトランジスタ等を剥離し、基板351側に転置する(ステップS7)。ここでは、作製基板14を介して金属酸化物層20と樹脂層23との界面またはその近傍にレーザ光を照射する。金属酸化物層20と樹脂層23との界面で分離が生じることで、樹脂層23が露出する(図24(A))。
ステップS8-1は、樹脂層23を除去するか判断する工程である。分離後、樹脂層23を除去する場合は、ステップS8-2に進む。樹脂層23を除去しない場合は、ステップ9に進む。ここでは、樹脂層23を除去する場合を説明する。
次に、樹脂層23を除去することで、絶縁層115を露出する(ステップS8-2)。なお、絶縁層115の一部または全部を除去し、電極311aを露出させてもよい。バリア性の高い絶縁層115を残存させることで、トランジスタや発光素子170に水分が入り込むことを抑制でき、表示装置の信頼性を高めることができる。ここでは、アッシングにより樹脂層23を除去する(図24(B))。
そして、液晶素子180を形成する(ステップS9)。絶縁層115上(または電極311a上)に配向膜133aを形成する。また、基板361の一方の面に、着色層131、絶縁層121、絶縁層232、電極113、絶縁層117、及び配向膜133bを順に形成する。図25では、着色層131が、発光素子170の発光領域と重ならない例を示すが、着色層131は、発光素子170の発光領域に重ねて設けてもよい。絶縁層121は、オーバーコートとして機能する。絶縁層232には、バリア性の高い絶縁膜が好適である。電極113は、液晶素子180の共通電極として機能する。絶縁層117は、液晶素子180のセルギャップを保持するためのスペーサとして機能する。絶縁層117は、可視光を透過する。
配向膜133aと配向膜133bの間に液晶層112が挟持されるように、基板351と基板361とを貼り合わせることで、液晶素子180を形成する。液晶素子180は、電極311a、電極311b、電極311c、液晶層112、電極113を有する。
さらに、基板361の他方の面に、拡散フィルム233、及び偏光板135を貼り合わせる。そして、一方の面にタッチセンサが設けられた基板235を偏光板135に貼り合わせる。なお、図25では、接着層の図示を省略している箇所がある。基板235の他方の面には、反射防止加工が施されていることが好ましい。例えば、アンチグレア処理が施されていることが好ましい。表面の凹凸により、反射光を拡散し、映り込みを低減することができる。タッチセンサの導電層234aと導電層234bとの間には、絶縁層234cが設けられている。導電層234bは、絶縁層234dで覆われている。
以上により、図25に示す入出力装置310Aを形成することができる。その後、FPC、ICなどを実装する(ステップS10)。
以上のように、本実施の形態の表示装置は、2種類の表示素子を有し、複数の表示モードを切り替えて使用することができるため、周囲の明るさによらず視認性が高く、利便性が高い。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、本発明の一態様で開示されるトランジスタに用いることができる金属酸化物について説明する。以下では特に、金属酸化物とCAC(Cloud-Aligned Composite)-OSの詳細について説明する。
CAC-OSまたはCAC-metal oxideは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC-OSまたはCAC-metal oxideを、トランジスタのチャネル形成領域に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC-OSまたはCAC-metal oxideに付与することができる。CAC-OSまたはCAC-metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC-OSまたはCAC-metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC-OSまたはCAC-metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC-OSまたはCAC-metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC-OSまたはCAC-metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC-OSまたはCAC-metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
すなわち、CAC-OSまたはCAC-metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
CAC-OSは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
なお、金属酸化物は、少なくともインジウムを含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
例えば、In-Ga-Zn酸化物におけるCAC-OS(CAC-OSの中でもIn-Ga-Zn酸化物を、特にCAC-IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、及びZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、及びZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。
つまり、CAC-OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合金属酸化物である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、及びOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1-x0)(ZnO)m0(-1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC(c-axis aligned crystal)構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa-b面においては配向せずに連結した結晶構造である。
一方、CAC-OSは、金属酸化物の材料構成に関する。CAC-OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。従って、CAC-OSにおいて、結晶構造は副次的な要素である。
なお、CAC-OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC-OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。
CAC-OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC-OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
CAC-OSは、X線回折(XRD:X-ray diffraction)測定法のひとつであるOut-of-plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域のa-b面方向、及びc軸方向の配向は見られないことが分かる。
またCAC-OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リング領域に複数の輝点が観測される。従って、電子線回折パターンから、CAC-OSの結晶構造が、平面方向、及び断面方向において、配向性を有さないnc(nano-crystal)構造を有することがわかる。
また例えば、In-Ga-Zn酸化物におけるCAC-OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X-ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。
CAC-OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC-OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。従って、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。
従って、CAC-OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、及び高い電界効果移動度(μ)を実現することができる。
また、CAC-OSを用いた半導体素子は、信頼性が高い。従って、CAC-OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の電子機器について説明する。
本発明の一態様により、平面を有し、信頼性の高い電子機器を作製できる。また、本発明の一態様により、曲面を有し、信頼性の高い電子機器を作製できる。また、本発明の一態様により、可撓性を有し、信頼性の高い電子機器を作製できる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
また、本発明の一態様の表示装置は、外光の強さによらず、高い視認性を実現することができる。そのため、携帯型の電子機器、装着型の電子機器(ウェアラブル機器)、及び電子書籍端末などに好適に用いることができる。
図26(A)、(B)に示す携帯情報端末800は、筐体801、筐体802、表示部803、及びヒンジ部805等を有する。
筐体801と筐体802は、ヒンジ部805で連結されている。携帯情報端末800は、折り畳んだ状態(図26(A))から、図26(B)に示すように展開させることができる。これにより、持ち運ぶ際には可搬性に優れ、使用するときには大きな表示領域により、視認性に優れる。
携帯情報端末800には、ヒンジ部805により連結された筐体801と筐体802に亘って、フレキシブルな表示部803が設けられている。
本発明の一態様を用いて作製された表示装置を、表示部803に用いることができる。これにより、高い歩留まりで携帯情報端末を作製することができる。
表示部803は、文書情報、静止画像、及び動画像等のうち少なくとも一つを表示することができる。表示部に文書情報を表示させる場合、携帯情報端末800を電子書籍端末として用いることができる。
携帯情報端末800を展開すると、表示部803が大きく湾曲した形態で保持される。例えば、曲率半径1mm以上50mm以下、好ましくは5mm以上30mm以下に湾曲した部分を含んで、表示部803が保持される。表示部803の一部は、筐体801から筐体802にかけて、連続的に画素が配置され、曲面状の表示を行うことができる。
表示部803は、タッチパネルとして機能し、指やスタイラスなどにより操作することができる。
表示部803は、一つのフレキシブルディスプレイで構成されていることが好ましい。これにより、筐体801と筐体802の間で途切れることのない連続した表示を行うことができる。なお、筐体801と筐体802のそれぞれに、ディスプレイが設けられる構成としてもよい。
ヒンジ部805は、携帯情報端末800を展開したときに、筐体801と筐体802との角度が所定の角度よりも大きい角度にならないように、ロック機構を有することが好ましい。例えば、ロックがかかる(それ以上に開かない)角度は、90度以上180度未満であることが好ましく、代表的には、90度、120度、135度、150度、または175度などとすることができる。これにより、携帯情報端末800の利便性、安全性、及び信頼性を高めることができる。
ヒンジ部805がロック機構を有すると、表示部803に無理な力がかかることなく、表示部803が破損することを防ぐことができる。そのため、信頼性の高い携帯情報端末を実現できる。
筐体801及び筐体802は、電源ボタン、操作ボタン、外部接続ポート、スピーカ、マイク等を有していてもよい。
筐体801または筐体802のいずれか一方には、無線通信モジュールが設けられ、インターネットやLAN(Local Area Network)、Wi-Fi(登録商標)などのコンピュータネットワークを介して、データを送受信することが可能である。
図26(C)に示す携帯情報端末810は、筐体811、表示部812、操作ボタン813、外部接続ポート814、スピーカ815、マイク816、カメラ817等を有する。
本発明の一態様を用いて作製された表示装置を、表示部812に用いることができる。これにより、高い歩留まりで携帯情報端末を作製することができる。
携帯情報端末810は、表示部812にタッチセンサを備える。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指やスタイラスなどで表示部812に触れることで行うことができる。
また、操作ボタン813の操作により、電源のON、OFF動作や、表示部812に表示される画像の種類の切り替えを行うことができる。例えば、メール作成画面から、メインメニュー画面に切り替えることができる。
また、携帯情報端末810の内部に、ジャイロセンサまたは加速度センサ等の検出装置を設けることで、携帯情報端末810の向き(縦か横か)を判断して、表示部812の画面表示の向きを自動的に切り替えることができる。また、画面表示の向きの切り替えは、表示部812に触れること、操作ボタン813の操作、またはマイク816を用いた音声入力等により行うこともできる。
携帯情報端末810は、例えば、電話機、手帳または情報閲覧装置等から選ばれた一つまたは複数の機能を有する。具体的には、スマートフォンとして用いることができる。携帯情報端末810は、例えば、移動電話、電子メール、文章閲覧及び作成、音楽再生、動画再生、インターネット通信、ゲームなどの種々のアプリケーションを実行することができる。
図26(D)に示すカメラ820は、筐体821、表示部822、操作ボタン823、シャッターボタン824等を有する。またカメラ820には、着脱可能なレンズ826が取り付けられている。
本発明の一態様を用いて作製された表示装置を、表示部822に用いることができる。これにより、高い歩留まりでカメラを作製することができる。
ここではカメラ820を、レンズ826を筐体821から取り外して交換することが可能な構成としたが、レンズ826と筐体821とが一体となっていてもよい。
カメラ820は、シャッターボタン824を押すことにより、静止画、または動画を撮像することができる。また、表示部822はタッチパネルとしての機能を有し、表示部822をタッチすることにより撮像することも可能である。
なお、カメラ820は、ストロボ装置や、ビューファインダーなどを別途装着することができる。または、これらが筐体821に組み込まれていてもよい。
図27(A)~(E)は、電子機器を示す図である。これらの電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008等を有する。
本発明の一態様を用いて作製された表示装置を、表示部9001に好適に用いることができる。これにより、高い歩留まりで電子機器を作製することができる。
図27(A)~(E)に示す電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信または受信を行う機能、記録媒体に記録されているプログラムまたはデータを読み出して表示部に表示する機能、等を有することができる。なお、図27(A)~(E)に示す電子機器が有する機能はこれらに限定されず、その他の機能を有していてもよい。
図27(A)は腕時計型の携帯情報端末9200を、図27(B)は腕時計型の携帯情報端末9201を、それぞれ示す斜視図である。
図27(A)に示す携帯情報端末9200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006を有し、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また接続端子9006を介して充電を行うこともできる。なお、充電動作は接続端子9006を介さずに無線給電により行ってもよい。
図27(B)に示す携帯情報端末9201は、図27(A)に示す携帯情報端末と異なり、表示部9001の表示面が湾曲していない。また、携帯情報端末9201の表示部の外形が非矩形状(図27(B)においては円形状)である。
図27(C)~(E)は、折り畳み可能な携帯情報端末9202を示す斜視図である。なお、図27(C)が携帯情報端末9202を展開した状態の斜視図であり、図27(D)が携帯情報端末9202を展開した状態または折り畳んだ状態の一方から他方に変化する途中の状態の斜視図であり、図27(E)が携帯情報端末9202を折り畳んだ状態の斜視図である。
携帯情報端末9202は、折り畳んだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9202が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。ヒンジ9055を介して2つの筐体9000間を屈曲させることにより、携帯情報端末9202を展開した状態から折りたたんだ状態に可逆的に変形させることができる。例えば、携帯情報端末9202は、曲率半径1mm以上150mm以下で曲げることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
本実施例では、本発明の一態様が適用された装置と、比較例の装置を、実際に作製した結果について説明する。
図28(A)に、比較例の装置の外観写真を示す。白枠で囲まれた領域38は、金属酸化物層20と樹脂層23が接している領域である。領域38の外側の領域は、金属酸化物層20と絶縁層31が接している領域である。比較例の装置は、金属酸化物層20と絶縁層31が接している領域が広く設けられているという特徴を有する。当該領域では、破線で囲った領域37において、膜剥がれが生じてしまっている。
領域38では膜剥がれが生じず、領域37において膜剥がれが生じたことから、金属酸化物層20と絶縁層31との密着性が低く、膜剥がれが生じたことが考えられる。
図28(B)に、比較例の装置の断面観察写真を示す。
図28(B)に示す積層構造において、作製基板14上に金属酸化物層20が設けられ、金属酸化物層20上に、島状の樹脂層23が設けられている。そして、金属酸化物層20上及び樹脂層23上に絶縁層31が設けられている。絶縁層31上には、絶縁層32及び絶縁層33が設けられており、絶縁層33上には、断面観察用の保護膜39が設けられている。
図28(B)から、金属酸化物層20と絶縁層31との界面で、絶縁層31が剥がれていることが確認できた。また、絶縁層31は、樹脂層23と接する部分では剥がれていなかった。
ここで、金属酸化物層20は、酸化チタン膜であり、樹脂層23は、ポリイミド樹脂膜であり、絶縁層31は、酸化窒化シリコン膜である。このことから、酸化チタン膜と酸化窒化シリコン膜の密着性は、ポリイミド樹脂膜と酸化窒化シリコン膜の密着性に比べて低いと考えられる。
以上の結果から、金属酸化物層20と絶縁層31が接している領域が広く設けられていると、金属酸化物層20と絶縁層31の密着性が低いために、工程中に膜剥がれが生じ、歩留まりが低下することがわかった。
次に、本発明の一態様の図2(A)、(B)に示す積層構造を含む装置を作製した結果について説明する。当該装置は、図2(A)、(B)に示す積層構造上に、トランジスタ等が設けられた構成である。
図29に、本発明の一態様が適用された装置の断面観察写真を示す。
本発明の一態様が適用された装置では、比較例の装置と同様に、作製基板14上に、島状の金属酸化物層と、島状の樹脂層23とが設けられている。樹脂層23は、金属酸化物層の端部を覆って設けられている。図29は、樹脂層23の端部とその近傍の断面観察写真である。樹脂層23の端部は、金属酸化物層の端部よりも十分に外側に位置するため、図29では当該金属酸化物層が確認されない。さらに、本発明の一態様が適用された装置では、比較例の装置と同様に、樹脂層23上に絶縁層31が設けられている。絶縁層31上には、絶縁層32及び絶縁層33が設けられており、絶縁層33上には、断面観察用の保護膜39が設けられている。
本発明の一態様が適用された装置では、比較例の装置の作製において膜剥がれが生じた工程においても、膜剥がれが生じず、正常に工程を完了することができた。
本発明の一態様では、金属酸化物層20の端部を樹脂層23が覆うことで、金属酸化物層20と絶縁層31とが接する領域を低減させる。これにより、密着性の低い界面が生じることを防止し、膜剥がれを抑制できるとわかった。したがって、装置を歩留まり高く作製することができるとわかった。
10A 表示装置
10B 表示装置
13 接着層
14 作製基板
19 金属層
20 金属酸化物層
22 基板
23 樹脂層
24 第1の層
25 被剥離層
28 接着層
29 基板
31 絶縁層
32 絶縁層
33 絶縁層
34 絶縁層
35 絶縁層
37 領域
38 領域
39 保護膜
40 トランジスタ
41 導電層
43a 導電層
43b 導電層
43c 導電層
44 金属酸化物層
45 導電層
49 トランジスタ
55 レーザ光
60 発光素子
61 導電層
62 EL層
63 導電層
64 切れ目
65 器具
74 絶縁層
75 保護層
75a 基板
75b 接着層
76 接続体
80 トランジスタ
81 導電層
82 絶縁層
83 金属酸化物層
84 絶縁層
85 導電層
86a 導電層
86b 導電層
86c 導電層
91 作製基板
92 金属酸化物層
93 樹脂層
95 絶縁層
96 隔壁
97 着色層
98 遮光層
99 接着層
112 液晶層
113 電極
115 絶縁層
117 絶縁層
121 絶縁層
131 着色層
132 遮光層
133a 配向膜
133b 配向膜
134 着色層
135 偏光板
140 トランジスタ
141 接着層
142 接着層
170 発光素子
180 液晶素子
191 電極
192 EL層
193 電極
194 絶縁層
201 トランジスタ
203 トランジスタ
204 接続部
205 トランジスタ
206 トランジスタ
207 接続部
211 絶縁層
212 絶縁層
213 絶縁層
214 絶縁層
215 絶縁層
216 絶縁層
217 絶縁層
220 絶縁層
220a 絶縁層
220b 絶縁層
221a 導電層
221b 導電層
222a 導電層
222b 導電層
223 導電層
224 導電層
225 絶縁層
226 被覆膜
227 レンズ
228 導電層
231 半導体層
232 絶縁層
233 拡散フィルム
234a 導電層
234b 導電層
234c 絶縁層
234d 絶縁層
235 基板
242 接続層
243 接続体
252 接続部
300A 表示装置
310A 入出力装置
311a 電極
311b 電極
311c 電極
351 基板
361 基板
362 表示部
364 回路
365 配線
372 FPC
373 IC
381 表示部
382 駆動回路部
451 開口
640 加工領域
800 携帯情報端末
801 筐体
802 筐体
803 表示部
805 ヒンジ部
810 携帯情報端末
811 筐体
812 表示部
813 操作ボタン
814 外部接続ポート
815 スピーカ
816 マイク
817 カメラ
820 カメラ
821 筐体
822 表示部
823 操作ボタン
824 シャッターボタン
826 レンズ
9000 筐体
9001 表示部
9003 スピーカ
9005 操作キー
9006 接続端子
9007 センサ
9008 マイクロフォン
9055 ヒンジ
9200 携帯情報端末
9201 携帯情報端末
9202 携帯情報端末

Claims (13)

  1. 基板上に島状の金属酸化物層を形成する工程
    前記金属酸化物層の端部を覆うように、前記金属酸化物層上に樹脂層を形成する工程
    前記樹脂層上に前記樹脂層の端部を覆うように、第1の部分が第1の基板と接触し且つ第2の部分が前記樹脂層と接触する絶縁層を形成する工程と、
    光を照射することで、前記第2の部分を含む前記絶縁層と前記金属酸化物層に接する前記樹脂層とを含む積層構造を前記金属酸化物層から分離する工程と、を有する、半導体装置の作製方法。
  2. 請求項1において、
    記樹脂層は、島状である、半導体装置の作製方法。
  3. 基板上に島状の金属酸化物層を形成する工程
    前記金属酸化物層の端部を覆うように、前記金属酸化物層上に樹脂層を形成する工程
    前記樹脂層上に前記樹脂層の端部を覆うように、第1の部分が第1の基板と接触し且つ第2の部分が前記樹脂層と接触する絶縁層を形成する工程と、
    前記金属酸化物層及び前記樹脂層と重ねて、接着層を形成する工程
    光を照射することで、前記接着層と前記第2の部分を含む前記絶縁層と前記金属酸化物層に接する前記樹脂層とを含む積層構造を前記金属酸化物層から分離する工程と、を有し、
    前記接着層は、前記金属酸化物層の端部よりも内側に前記接着層の端部が位置するように形成される、半導体装置の作製方法。
  4. 請求項3において、
    記樹脂層は、島状である、半導体装置の作製方法。
  5. 請求項3または4において、
    前記接着層を形成する工程の前に、前記樹脂層上に枠状の隔壁を形成する工程を有し、
    前記接着層は、前記隔壁の内側に形成される、半導体装置の作製方法。
  6. 請求項1乃至5のいずれか一において、
    前記樹脂層は、厚さが0.1μm以上5μm以下の領域を有する、半導体装置の作製方法。
  7. 請求項1乃至6のいずれか一において、
    前記光として、レーザ光を用い、
    前記レーザ光が、前記金属酸化物層と前記樹脂層との界面またはその近傍に照射されることにより、前記金属酸化物層と前記樹脂層とが分離する、半導体装置の作製方法。
  8. 請求項1乃至7のいずれか一において、
    前記光は、180nm以上450nm以下の波長を有する、半導体装置の作製方法。
  9. 請求項1乃至8のいずれか一において、
    前記光は、308nm又はその近傍の波長を有する、半導体装置の作製方法。
  10. 請求項1乃至9のいずれか一において、
    前記光は、線状レーザ装置を用いて照射される、半導体装置の作製方法。
  11. 請求項1乃至10のいずれか一において、
    前記光のエネルギー密度は、250mJ/cm以上360mJ/cm以下である、半導体装置の作製方法。
  12. 請求項1乃至11のいずれか一において、
    前記金属酸化物層は、チタン、モリブデン、アルミニウム、タングステン、シリコン、インジウム、亜鉛、ガリウム、タンタル、及び錫のうち一つまたは複数を有する、半導体装置の作製方法。
  13. 請求項1乃至12のいずれか一において、
    前記金属酸化物層は、チタン及び酸化チタンのうち一方または双方を有する、半導体装置の作製方法。
JP2017212354A 2016-11-03 2017-11-02 半導体装置の作製方法 Active JP7030475B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022025483A JP2022078131A (ja) 2016-11-03 2022-02-22 半導体装置の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016215737 2016-11-03
JP2016215737 2016-11-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022025483A Division JP2022078131A (ja) 2016-11-03 2022-02-22 半導体装置の作製方法

Publications (2)

Publication Number Publication Date
JP2018078292A JP2018078292A (ja) 2018-05-17
JP7030475B2 true JP7030475B2 (ja) 2022-03-07

Family

ID=62075882

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017212354A Active JP7030475B2 (ja) 2016-11-03 2017-11-02 半導体装置の作製方法
JP2022025483A Withdrawn JP2022078131A (ja) 2016-11-03 2022-02-22 半導体装置の作製方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022025483A Withdrawn JP2022078131A (ja) 2016-11-03 2022-02-22 半導体装置の作製方法

Country Status (6)

Country Link
US (1) US11177373B2 (ja)
JP (2) JP7030475B2 (ja)
KR (1) KR102499027B1 (ja)
CN (1) CN109891551B (ja)
TW (1) TWI801357B (ja)
WO (1) WO2018083568A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435762B1 (ko) * 2014-01-28 2014-08-29 금오공과대학교 산학협력단 폐수에 함유된 글리콜 환원방법 및 이를 이용한 글리콜 환원장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143210B2 (ja) 2016-10-07 2022-09-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2018083568A1 (en) * 2016-11-03 2018-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP7509502B2 (ja) * 2017-11-28 2024-07-02 住友電工プリントサーキット株式会社 フレキシブルプリント配線板の製造方法及びフレキシブルプリント配線板
US10839740B2 (en) * 2018-04-18 2020-11-17 Innolux Corporation Panel and tiled device thereof
US11551975B2 (en) 2018-09-28 2023-01-10 Sharp Kabushiki Kaisha Method for manufacturing electronic device
US11138360B2 (en) 2018-10-31 2021-10-05 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with filler cell region, method of generating layout diagram and system for same
KR102456122B1 (ko) * 2019-08-14 2022-10-19 한양대학교 산학협력단 플렉서블 장치의 제조방법
TWI740212B (zh) * 2019-09-19 2021-09-21 國立陽明交通大學 微型發光二極體晶片的製作方法
JP7473645B2 (ja) * 2019-12-02 2024-04-23 アプライド マテリアルズ インコーポレイテッド インシトゥチャンバモニタリングのための方法
WO2022157885A1 (ja) * 2021-01-21 2022-07-28 信越エンジニアリング株式会社 ワーク分離装置及びワーク分離方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053479A (ja) 2013-08-06 2015-03-19 株式会社半導体エネルギー研究所 剥離方法
JP2015215611A (ja) 2014-04-23 2015-12-03 株式会社半導体エネルギー研究所 入出力装置、入出力装置の駆動方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI264121B (en) * 2001-11-30 2006-10-11 Semiconductor Energy Lab A display device, a method of manufacturing a semiconductor device, and a method of manufacturing a display device
TWI328837B (en) 2003-02-28 2010-08-11 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
US7867907B2 (en) * 2006-10-17 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7759629B2 (en) 2007-03-20 2010-07-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP5404064B2 (ja) * 2008-01-16 2014-01-29 株式会社半導体エネルギー研究所 レーザ処理装置、および半導体基板の作製方法
KR101774278B1 (ko) 2011-07-18 2017-09-04 엘지디스플레이 주식회사 플렉서블 표시장치의 제조방법
JP2014048619A (ja) * 2012-09-04 2014-03-17 Panasonic Corp フレキシブルデバイスの製造方法
TWI671141B (zh) * 2013-08-30 2019-09-11 半導體能源研究所股份有限公司 支撐體供應裝置及供應支撐體的方法
KR20180021926A (ko) * 2013-12-02 2018-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제조방법
WO2015083042A1 (ja) * 2013-12-03 2015-06-11 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
CN105793957B (zh) 2013-12-12 2019-05-03 株式会社半导体能源研究所 剥离方法及剥离装置
KR102334815B1 (ko) 2014-02-19 2021-12-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 박리 방법
KR20240069820A (ko) * 2014-02-28 2024-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전자 기기
JP6474648B2 (ja) * 2014-03-07 2019-02-27 株式会社半導体エネルギー研究所 検知器および入力装置
WO2015155663A1 (en) * 2014-04-11 2015-10-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP6354338B2 (ja) 2014-05-30 2018-07-11 東レ株式会社 積層体、積層体の製造方法、及びこれを用いたフレキシブルデバイスの製造方法
JP2016081051A (ja) * 2014-10-10 2016-05-16 株式会社半導体エネルギー研究所 機能パネル、装置、情報処理装置
WO2016083934A1 (en) * 2014-11-28 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Display module and method for manufacturing display module
US9397001B2 (en) 2014-12-11 2016-07-19 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing electronic device comprising a resin substrate and an electronic component
WO2018083568A1 (en) * 2016-11-03 2018-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053479A (ja) 2013-08-06 2015-03-19 株式会社半導体エネルギー研究所 剥離方法
JP2015215611A (ja) 2014-04-23 2015-12-03 株式会社半導体エネルギー研究所 入出力装置、入出力装置の駆動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435762B1 (ko) * 2014-01-28 2014-08-29 금오공과대학교 산학협력단 폐수에 함유된 글리콜 환원방법 및 이를 이용한 글리콜 환원장치

Also Published As

Publication number Publication date
JP2018078292A (ja) 2018-05-17
TW201820395A (zh) 2018-06-01
CN109891551A (zh) 2019-06-14
US20190288092A1 (en) 2019-09-19
WO2018083568A1 (en) 2018-05-11
JP2022078131A (ja) 2022-05-24
KR20190068564A (ko) 2019-06-18
TWI801357B (zh) 2023-05-11
CN109891551B (zh) 2023-12-01
KR102499027B1 (ko) 2023-02-10
US11177373B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
JP7030475B2 (ja) 半導体装置の作製方法
JP6945392B2 (ja) 半導体装置の作製方法
JP7076959B2 (ja) 剥離方法
JP6983569B2 (ja) 半導体装置の作製方法
JP6961419B2 (ja) 半導体装置の作製方法
JP7181370B2 (ja) 半導体装置の作製方法
JP6823745B2 (ja) 表示装置の作製方法
JP7005246B2 (ja) 半導体装置の作製方法
JP6871253B2 (ja) 表示装置の作製方法
JP6999315B2 (ja) 表示装置の作製方法
JP6910127B2 (ja) 表示装置の作製方法
JP6931985B2 (ja) 表示装置の作製方法
JP6865013B2 (ja) 表示装置の作製方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7030475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150