JP6884029B2 - Power converter and diagnostic method of power converter - Google Patents
Power converter and diagnostic method of power converter Download PDFInfo
- Publication number
- JP6884029B2 JP6884029B2 JP2017092737A JP2017092737A JP6884029B2 JP 6884029 B2 JP6884029 B2 JP 6884029B2 JP 2017092737 A JP2017092737 A JP 2017092737A JP 2017092737 A JP2017092737 A JP 2017092737A JP 6884029 B2 JP6884029 B2 JP 6884029B2
- Authority
- JP
- Japan
- Prior art keywords
- power
- power converter
- smoothing capacitor
- current
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Inverter Devices (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Description
本発明は電力変換装置及び電力変換装置の診断方法に関し,特に,主回路を構成する平滑コンデンサの診断に好適な電力変換装置及び電力変換装置の診断方法に関する。 The present invention relates to a power conversion device and a method for diagnosing a power conversion device, and more particularly to a power conversion device and a method for diagnosing a power conversion device suitable for diagnosing a smoothing capacitor constituting a main circuit.
半導体スイッチング素子を用いた電力変換器は,産業,家電,交通,自動車および電力・社会インフラシステムなどの分野で幅広く使用されている。例えば,数百kW以上の産業向け電力変換器では,電力系統或いはモータ等の負荷と接続するため,交流電力を直流電力へ変換する順変換器(以下,コンバータ(CONV)と記載),或いは,直流電力を交流電力へ変換する逆変換器(以下,インバータ(INV)と記載)として複数の変換器でシステムを構成する。このようなシステムでは,電力変換に伴う変動を平滑するために各変換器(CONV・INV)に平滑コンデンサを有する。各変換器において,入力される電力或いは出力される電力を平滑コンデンサで平滑する。このような電力変換器は例えば特開2008-11606号公報に記載されている。 Power converters using semiconductor switching elements are widely used in fields such as industry, home appliances, transportation, automobiles, and electric power / social infrastructure systems. For example, in an industrial power converter of several hundred kW or more, a forward converter (hereinafter referred to as a converter (CONV)) that converts AC power into DC power in order to connect to a load such as a power system or a motor, or A system is composed of a plurality of converters as an inverse converter (hereinafter referred to as an inverter (INV)) that converts DC power into AC power. In such a system, each converter (CONV / INV) has a smoothing capacitor to smooth the fluctuations associated with power conversion. In each converter, the input power or the output power is smoothed by a smoothing capacitor. Such a power converter is described in, for example, Japanese Patent Application Laid-Open No. 2008-11606.
各変換器(CONV・INV)の各々に電力変換に伴う変動を平滑する平滑コンデンサが設けられているところ,この平滑コンデンサは周囲温度・印加電圧および通流電流に応じて劣化する。平滑コンデンサが劣化して静電容量が低下すると,直流電圧の変動が大きくなり,電力系統や負荷へ流れる電流に歪みを生じる原因となり得る。そのためこのような電力変換器を長期的に使用するためには,平滑コンデンサの静電容量が劣化しておらず必要な静電容量であるかを確認するために定期的な保守が必要であった。 Each converter (CONV / INV) is provided with a smoothing capacitor that smoothes fluctuations associated with power conversion, and this smoothing capacitor deteriorates according to the ambient temperature, applied voltage, and current flow. When the smoothing capacitor deteriorates and the capacitance decreases, the fluctuation of the DC voltage becomes large, which may cause distortion in the current flowing to the power system and the load. Therefore, in order to use such a power converter for a long period of time, regular maintenance is required to confirm that the capacitance of the smoothing capacitor has not deteriorated and is the required capacitance. It was.
例えば,平滑コンデンサの劣化に係り静電容量低下を検知するため,電力変換器の起動または停止時における平滑コンデンサの充電電流の立ち上がり時間または放電電流の立ち下がり時間を判定値とすることが考えられる。CR時定数で決まる充電または放電時間を利用したものであるが,電力変換器を停止した状態から平滑コンデンサの充電電流の立ち上がり等を検出する必要があり,保守作業をする時間分の電力変換器の稼働時間が短くなる。すなわち,電力変換器の運転を継続した状態で静電容量の劣化状態を検知することができないので,システムの稼働率が低下するという問題があった。 For example, in order to detect a decrease in capacitance due to deterioration of the smoothing capacitor, it is conceivable to use the rising time of the charging current or the falling time of the discharge current of the smoothing capacitor as the judgment value when the power converter is started or stopped. .. The charge or discharge time determined by the CR time constant is used, but it is necessary to detect the rise of the charging current of the smoothing capacitor from the state where the power converter is stopped, and the power converter for the time required for maintenance work. The operating time of is shortened. That is, since it is not possible to detect the deteriorated state of the capacitance while the power converter is continuously operated, there is a problem that the operating rate of the system is lowered.
本発明の目的は,平滑コンデンサの劣化検知につきシステム稼働率を維持しつつ検知可能とする電力変換装置及び電力変換装置の診断方法を提供することにある。 An object of the present invention is to provide a power conversion device and a method for diagnosing a power conversion device that can detect deterioration of a smoothing capacitor while maintaining the system operating rate.
上記目的を達成するため,本発明では,交流から直流へまたは直流から交流へ電力を変換する複数の電力変換器を有し,前記複数の電力変換器は共通の直流電圧部に接続されており,前記複数の電力変換器は各々平滑コンデンサを有しており,前記複数の電力変換器のいずれかの平滑コンデンサから他の電力変換器の平滑コンデンサに流れる電流を解析することで前記平滑コンデンサの劣化状態を検知する機能を有するように構成した。 In order to achieve the above object, the present invention has a plurality of power converters for converting power from AC to DC or DC to AC, and the plurality of power converters are connected to a common DC voltage unit. Each of the plurality of power converters has a smoothing capacitor, and the smoothing capacitor can be obtained by analyzing the current flowing from the smoothing capacitor of any of the plurality of power converters to the smoothing capacitor of the other power converter. It is configured to have a function to detect the deterioration state.
あるいは,交流から直流へ,または直流から交流へ電力を変換する電力変換装置において,該電力変換装置は複数の電力変換器で構成され,該電力変換器は個別に平滑コンデンサを持ち,かつ,該電力変換器の直流電圧部は共通の直流電圧部に接続されており,各電力変換器が接続されている直流電圧部に流れている電流を観測するセンサまたは推定する機能を有し,該直流電圧部の電流を解析することで各電力変換器に搭載された平滑コンデンサの劣化状態を検知する機能を有し,該劣化状態を外部インターフェースを通じて外部へ出力する機構を持つ構成とする。 Alternatively, in a power converter that converts power from alternating current to direct current or from direct current to alternating current, the power converter is composed of a plurality of power converters, and the power converters have smoothing capacitors individually and the power converter is used. The DC voltage section of the power converter is connected to a common DC voltage section, and has the function of observing or estimating the current flowing in the DC voltage section to which each power converter is connected, and has the function of observing or estimating the DC. It has a function to detect the deteriorated state of the smoothing capacitor mounted on each power converter by analyzing the current of the voltage section, and has a mechanism to output the deteriorated state to the outside through an external interface.
本発明によれば,システム稼働率を維持しつつ平滑コンデンサの劣化検知が可能となる。 According to the present invention, deterioration of a smoothing capacitor can be detected while maintaining the system operating rate.
本発明を実施するための形態(実施例)を以下に図面を用いて説明する。 Embodiments (Examples) for carrying out the present invention will be described below with reference to the drawings.
図1に電力変換器の構成を示す。本実施例では3相の2レベル変換器を例に説明する。半導体スイッチング素子および直流平滑用コンデンサ(平滑コンデンサとも称す。以下同様。)(103a・103b)で構成される2台の電力変換器(101a・101b)が直流電圧部(100a・100b)に接続されている。2レベル変換器であるため,直流電圧部(100a・100b)は正極側(100a)と負極側(100b)があり,本実施例では負極側(100b)に直流部の電流を観測するための電流センサ(102)を設ける。なお,該電流センサ(102)は正極側(100a)に設けても以下に示す効果は同じである。 Figure 1 shows the configuration of the power converter. In this embodiment, a three-phase two-level converter will be described as an example. Two power converters (101a / 101b) consisting of a semiconductor switching element and a DC smoothing capacitor (also referred to as a smoothing capacitor; the same shall apply hereinafter) (103a / 103b) are connected to the DC voltage section (100a / 100b). ing. Since it is a two-level converter, the DC voltage section (100a / 100b) has a positive electrode side (100a) and a negative electrode side (100b). A current sensor (102) is provided. Even if the current sensor (102) is provided on the positive electrode side (100a), the effects shown below are the same.
各電力変換器(101a・101b)はコントローラ(105)からの運転指令(107a・107b)によって制御され,入力または出力(104a・104b)を制御する。コントローラ(105)は各電力変換器の運転状態(108)を直流平滑用コンデンサ(103a・103b)の劣化診断部(106)へ出力し,該劣化診断部(106)では直流電圧部(100a・100b)の電流情報(109)と組み合わせて直流平滑用コンデンサ(103a・103b)の静電容量低下を算出することで劣化状態を検知する。該劣化状態は直流平滑用コンデンサ(103a・103b)の劣化状態のみを示すものであり,電力変換器稼働率の情報は含まない。 Each power converter (101a / 101b) is controlled by an operation command (107a / 107b) from the controller (105) to control an input or an output (104a / 104b). The controller (105) outputs the operating state (108) of each power converter to the deterioration diagnosis unit (106) of the DC smoothing capacitor (103a / 103b), and the deterioration diagnosis unit (106) outputs the DC voltage unit (100a / 103b). The deterioration state is detected by calculating the decrease in capacitance of the DC smoothing capacitors (103a and 103b) in combination with the current information (109) of 100b). The deteriorated state shows only the deteriorated state of the DC smoothing capacitors (103a and 103b), and does not include information on the operating rate of the power converter.
ここで,各電力変換器(101a・101b)の運転状態(108)とは,各電力変換器(101a・101b)の出力または入力電流の周波数,変調率,ゲートパルスパターンである。また,直流平滑用コンデンサ(103a・103b)の劣化要因を特定するために,各電力変換器(101a・101b)の出力または入力電流値,各電力変換器(101a・101b)の盤の内部・外部温度,各電力変換器(101a・101b)の直流電圧値,電力変換器(101a・101b)の装置・制御盤の接地電流値を含めてもよい。
本実施例では,電力変換器(101a)は,コントローラ(105)からの運転指令(107a)によって,直流電圧部(100a・100b)からの直流電力を3相の交流に変換して交流出力部(104a)に出力する。また,電力変換器(101b)は,コントローラ(105)からの運転指令(107b)によって,直流電圧部(100a・100b)からの直流電力を3相の交流に変換して交流出力部(104b)に出力する。
ここで,電力変換器(101a・101b)について,端子(104a・104b)から交流電力を入力して電力変換器(101a・101b)により直流に変換して直流電圧部(100a・100b)に直流電力を供給するように構成しても良い。あるいは,電力変換器(101a・101b)の一方を交流から直流に変換し,電力変換器(101a・101b)の他方を直流から交流に変換するように構成しても良い。
Here, the operating state (108) of each power converter (101a / 101b) is the frequency, modulation factor, and gate pulse pattern of the output or input current of each power converter (101a / 101b). In addition, in order to identify the deterioration factor of the DC smoothing capacitor (103a / 103b), the output or input current value of each power converter (101a / 101b), the inside of the board of each power converter (101a / 101b), The external temperature, the DC voltage value of each power converter (101a / 101b), and the ground current value of the device / control panel of the power converter (101a / 101b) may be included.
In this embodiment, the power converter (101a) converts the DC power from the DC voltage section (100a / 100b) into a three-phase AC according to the operation command (107a) from the controller (105) and converts it into an AC output section. Output to (104a). In addition, the power converter (101b) converts the DC power from the DC voltage section (100a / 100b) into three-phase AC according to the operation command (107b) from the controller (105), and the AC output section (104b). Output to.
Here, regarding the power converter (101a / 101b), AC power is input from the terminal (104a / 104b), converted to DC by the power converter (101a / 101b), and DC to the DC voltage section (100a / 100b). It may be configured to supply power. Alternatively, one of the power converters (101a / 101b) may be configured to convert from alternating current to direct current, and the other of the power converters (101a / 101b) may be configured to convert from direct current to alternating current.
また,交流電力への変換は一定の周波数として電力系統に接続しても良く,また,可変周波数として電動機等に供給しても良い。 Further, the conversion to AC power may be connected to the power system as a constant frequency, or may be supplied to an electric motor or the like as a variable frequency.
図2に,劣化診断部(106)で実行される直流平滑用コンデンサ(103a・103b)の劣化状態を検出するフローチャートを示す。電力変換器(101a・101b)が運転状態(S101)において直流電圧部(100a・100b)の共振周波数を演算する(S102)。 Figure 2 shows a flowchart for detecting the deterioration state of the DC smoothing capacitors (103a and 103b) executed by the deterioration diagnosis unit (106). The power converter (101a / 101b) calculates the resonance frequency of the DC voltage section (100a / 100b) in the operating state (S101) (S102).
この共振周波数の演算について初めに概略的な考え方を説明し,後に具体的な演算の詳細を説明する。図3に直流電圧部(100a・100b)の電流を周波数分析した概略図を示す。周波数分析は例えば電流センサ(102)の出力を劣化診断部(106)でフーリエ変換の演算を行って得ることができる。直流電圧部(100a・100b)の電流には,各電力変換器(101a・101b)の運転パターンで決まる周波数成分(200a・200b),各電力変換器(101a・101b)のキャリア周波数で決まる周波数成分(201a・201b)に加え,各電力変換器(101a・101b)に搭載された直流平滑用コンデンサ(103a・103b)の間の共振電流(113)の成分(202)を含む。 The general idea of the calculation of the resonance frequency will be explained first, and the details of the specific calculation will be explained later. Figure 3 shows a schematic diagram of frequency analysis of the current of the DC voltage section (100a / 100b). Frequency analysis can be obtained, for example, by performing a Fourier transform operation on the output of the current sensor (102) in the deterioration diagnosis unit (106). The current of the DC voltage section (100a / 100b) includes the frequency components (200a / 200b) determined by the operation pattern of each power converter (101a / 101b) and the frequency determined by the carrier frequency of each power converter (101a / 101b). In addition to the components (201a and 201b), the component (202) of the resonance current (113) between the DC smoothing capacitors (103a and 103b) mounted on each power converter (101a and 101b) is included.
電力変換器(101a・101b)の運転パターンおよびキャリア周波数で決まる電流成分は運転状態によって変化するが,各電力変換器(101a・101b)に搭載された直流平滑用コンデンサ(103a・103b)の静電容量と,各電力変換器(101a・101b)を接続している直流電圧部(100a・100b)の寄生インダクタンスで決まる共振電流の周波数は比較的に短い期間では運転状態によらず一定である。しかし,直流平滑用コンデンサ(103a・103b)が劣化し,静電容量が低下した場合,共振周波数(202)は高い周波数へ移動する。 The current component determined by the operating pattern and carrier frequency of the power converters (101a / 101b) changes depending on the operating conditions, but the static DC smoothing capacitors (103a / 103b) mounted on each power converter (101a / 101b) are static. The frequency of the resonance current determined by the capacitance and the parasitic inductance of the DC voltage section (100a / 100b) connecting each power converter (101a / 101b) is constant for a relatively short period of time regardless of the operating condition. .. However, when the DC smoothing capacitors (103a and 103b) deteriorate and the capacitance decreases, the resonance frequency (202) moves to a higher frequency.
従って,各電力変換器(101a・101b)の運転状態(108)および直流電圧部(100a・100b)の電流(113)に係る検出信号(109)を解析し,電力変換器を出荷する際に測定しておく共振周波数と比較することで,直流平滑用コンデンサ(103a・103b)の劣化状態を検知することが可能となる。 Therefore, when the detection signal (109) related to the operating state (108) of each power converter (101a / 101b) and the current (113) of the DC voltage unit (100a / 100b) is analyzed and the power converter is shipped. By comparing with the measured resonance frequency, it is possible to detect the deterioration state of the DC smoothing capacitors (103a and 103b).
さらに,劣化診断部(106)で実行される直流平滑用コンデンサ(103a・103b)の劣化状態の検出について,詳細を説明する。図2に示されるフローチャートにおいては,直流電圧部(100a・100b)の共振周波数が規定値1を越えた場合に直流平滑用コンデンサ(103a・103b)が劣化したアラームを出力する(S104a)。ここで,直流電圧部(100a・100b)の共振周波数として,以下にf0として示す電力変換器出荷時における直流電圧部(100a・100b)の共振周波数より低い周波数をフィルタリングによりカットしてから,規定値1(規定値2と比較するときも同様としてよい)と比較しても良い。該アラームは例えば図1で示した電力変換器(101a・101b)に備え付けられたモニタ等(112a,112b)へ出力される。
Further, the detection of the deterioration state of the DC smoothing capacitors (103a and 103b) executed by the deterioration diagnosis unit (106) will be described in detail. In the flowchart shown in FIG. 2, when the resonance frequency of the DC voltage section (100a / 100b) exceeds the specified
本実施例では,直流平滑用コンデンサ(103a・103b)の劣化状態を2段階に分け出力させる場合を示した。劣化状態1は,直流平滑用コンデンサ(103a・103b)の静電容量が低減しているが電力変換器(101a・101b)の運転継続は可能な状態を表す。劣化状態2は電力変換器(101a・101b)が安定して運転することが困難な状態になったことを表す。
In this example, the case where the deterioration state of the DC smoothing capacitors (103a and 103b) is output in two stages is shown.
ここで電力変換器(101a・101b)の出荷時における直流平滑用コンデンサ(103a・103b)の静電容量をC0とし,劣化状態時の静電容量をC1,C2とする(C1> C2)。直流電圧部の共振周波数は電力変換器(101a・101b)の間を接続しているブスバーまたは配線の寄生インダクタンスLと,静電容量により次式で表される。 Here, the capacitance of the DC smoothing capacitor (103a / 103b) at the time of shipment of the power converter (101a / 101b) is C 0, and the capacitance in the deteriorated state is C 1 and C 2 (C 1). > C 2 ). The resonance frequency of the DC voltage section is expressed by the following equation by the parasitic inductance L of the bus bar or wiring connecting between the power converters (101a and 101b) and the capacitance.
劣化状態1段階目の静電容量を初期状態から5%低減した状態,劣化状態2段階目の静電容量を初期状態から10%低減した状態を規定値とする場合,共振周波数変化の規定値1は初期状態の1.026倍,規定値2は初期状態の1.054倍とする。仮に初期状態の静電容量を2mF,電力変換器(101a・101b)の間の寄生インダクタンスを500nHとした場合,初期状態の共振周波数は約5kHz,劣化状態1での共振周波数は約5.2kHz(f1),劣化状態2での共振周波数は約5.3kHz(f2)となる。
When the specified value is the state where the capacitance of the first stage of deterioration is reduced by 5% from the initial state and the state where the capacitance of the second stage of deterioration is reduced by 10% from the initial state is the specified value of the resonance frequency change. 1 is 1.026 times the initial state, and the specified value 2 is 1.054 times the initial state. Assuming that the capacitance in the initial state is 2 mF and the parasitic inductance between the power converters (101a and 101b) is 500 nH, the resonance frequency in the initial state is about 5 kHz, and the resonance frequency in the deteriorated
ここで,例えば,劣化状態1段階目(規定値1)の静電容量を初期状態から5%〜15%低減した範囲から規定値として選択し,劣化状態2段階目(規定値2)の静電容量を劣化状態1段階目よりも大きく且つ初期状態から10%〜20%低減した範囲から規定値として選択しても良い。 Here, for example, the capacitance of the first stage of deterioration state (specified value 1) is selected as the specified value from the range of 5% to 15% reduction from the initial state, and the static electricity of the second stage of deterioration state (specified value 2) is static. The capacitance may be selected as a specified value from a range that is larger than the first stage of the deteriorated state and reduced by 10% to 20% from the initial state.
アラームを出力後(S104b),電力変換器(101a・101b)を停止させる(S105)。このように劣化状態を複数の段階で出力することで,電力変換器(101a・101b)の運用者または保守担当者に直流平滑用コンデンサ(103a・103b)の交換時期が近づいていることを認識させることが可能となる。
ここで,電力変換器(101a・101b)の運転を継続している間,一定または任意の時間間隔で共振周波数を算出し,共振周波数の遷移を逐次観測することで直流平滑用コンデンサ(103a・103b)の劣化状態を検知することが可能となる。
このように,該劣化状態は直流平滑用コンデンサ(103a・103b)の劣化診断部(106)で解析され,直流平滑用コンデンサ(103a・103b)の劣化情報として出力される(110)。該劣化情報は,電力変換器(101a・101b)に備え付けられたモニタ(112a)もしくは保守時に電力変換器に接続するパーソナルコンピュータ等の保守機器へ表示することで保守作業者へ通知する。または,ネットワーク(111)で接続された遠隔地の監視センタ(112b)へ通知することで電力変換器(101a・101b)の運転状態を継続したまま直流平滑用コンデンサ(103a・103b)の劣化状態を観測することが可能となる。
After outputting the alarm (S104b), stop the power converters (101a and 101b) (S105). By outputting the deteriorated state in multiple stages in this way, the operator or maintenance staff of the power converter (101a / 101b) recognizes that the replacement time of the DC smoothing capacitor (103a / 103b) is approaching. It becomes possible to make it.
Here, while the power converter (101a / 101b) is being operated, the resonance frequency is calculated at a constant or arbitrary time interval, and the transition of the resonance frequency is sequentially observed to obtain a DC smoothing capacitor (103a / 101b). It is possible to detect the deterioration state of 103b).
In this way, the deterioration state is analyzed by the deterioration diagnosis unit (106) of the DC smoothing capacitor (103a / 103b) and output as deterioration information of the DC smoothing capacitor (103a / 103b) (110). The deterioration information is notified to the maintenance worker by displaying it on the monitor (112a) provided in the power converter (101a / 101b) or the maintenance device such as a personal computer connected to the power converter at the time of maintenance. Alternatively, by notifying the monitoring center (112b) in a remote location connected by the network (111), the deterioration state of the DC smoothing capacitor (103a / 103b) is maintained while the operating state of the power converter (101a / 101b) is maintained. Can be observed.
実施例1では,直流平滑用コンデンサの劣化診断を共振周波数の演算により行っているが,直流平滑用コンデンサの劣化診断のために共振周波数に相当する他の要因に基づいて行っても良い。 In the first embodiment, the deterioration diagnosis of the DC smoothing capacitor is performed by calculating the resonance frequency, but the deterioration diagnosis of the DC smoothing capacitor may be performed based on another factor corresponding to the resonance frequency.
図4aに,3相の3レベル変換器の例を,図5に本実施例における直流電圧部電流を周波数分析した概略図をそれぞれ示す。半導体スイッチング素子および直流平滑用コンデンサ(303a・303c・303b・303d)で構成される2台の電力変換器(301a・301b)が直流電圧部(300a・300b・300c)に接続されている。本実施例では,直流電圧部正極側(300a)の共振電流(313a)と直流電圧部負極側(300b)の共振電流(313b)の両方が流れるコモン(300c)に直流電圧部の電流センサ(302)を設け,直流電圧部の電流(309)を直流平滑用コンデンサの劣化診断部(106)へ与える。本実施例では共振経路が2箇所あるため,2つの共振周波数に該当する周波数ピーク(402a・402b)が現れる。なお一般的に電力変換器は対象性を持たせて構成されるため,正極側の共振周波数と負極側の共振周波数は概ね一致することが多いが,図5では異なる共振周波数で表現した。 Fig. 4a shows an example of a three-phase three-level converter, and Fig. 5 shows a schematic diagram of frequency analysis of the DC voltage section current in this embodiment. Two power converters (301a, 301b) composed of a semiconductor switching element and a DC smoothing capacitor (303a, 303c, 303b, 303d) are connected to a DC voltage section (300a, 300b, 300c). In this embodiment, the current sensor of the DC voltage section (300c) is connected to the common (300c) in which both the resonance current (313a) on the positive side (300a) of the DC voltage section and the resonance current (313b) on the negative side (300b) of the DC voltage section flow. 302) is provided to supply the current (309) of the DC voltage section to the deterioration diagnosis section (106) of the DC smoothing capacitor. In this embodiment, since there are two resonance paths, frequency peaks (402a and 402b) corresponding to the two resonance frequencies appear. In general, power converters are configured with objectivity, so the resonance frequency on the positive electrode side and the resonance frequency on the negative electrode side often almost match, but in Fig. 5, they are represented by different resonance frequencies.
実施例1と同様,各変換器(301a・301b)の運転状態を継続したまま直流平滑用コンデンサ(303a・303c・303b・303d)の劣化状態を観測することが可能となる。 Similar to Example 1, it is possible to observe the deteriorated state of the DC smoothing capacitors (303a, 303c, 303b, 303d) while continuing the operating state of each converter (301a, 301b).
図4bに,3相の3レベル変換器の別の実施例を,図5に本実施例における直流電圧部電流を周波数分析した概略図をそれぞれ示す。本実施例では,直流電圧部正極側(300a)の共振電流(313a)と直流電圧部負極側(300b)の共振電流(313b)をそれぞれ観測する電流センサ(302a・302b)を設ける。本実施例では共振経路が2箇所あるため,2つの共振周波数に該当する周波数ピーク(402a・402b)が現れる。なお一般的に電力変換器は対象性を持たせて構成されるため,正極側の共振周波数と負極側の共振周波数は概ね一致することが多いが,図5では異なる共振周波数で表現した。 Fig. 4b shows another example of a three-phase three-level converter, and Fig. 5 shows a schematic diagram of frequency analysis of the DC voltage section current in this example. In this embodiment, current sensors (302a and 302b) are provided to observe the resonance current (313a) on the positive electrode side (300a) of the DC voltage section and the resonance current (313b) on the negative electrode side (300b) of the DC voltage section, respectively. In this embodiment, since there are two resonance paths, frequency peaks (402a and 402b) corresponding to the two resonance frequencies appear. In general, power converters are configured with objectivity, so the resonance frequency on the positive electrode side and the resonance frequency on the negative electrode side often almost match, but in Fig. 5, they are represented by different resonance frequencies.
実施例1と同様,各変換器の運転状態を継続したまま直流平滑用コンデンサの劣化状態を観測することが可能となる。 Similar to Example 1, it is possible to observe the deterioration state of the DC smoothing capacitor while continuing the operating state of each converter.
図6に,3相2レベル変換器の別の実施例を示す。本実施例では,直流平滑用コンデンサの電圧センサ(502a・502b)の信号(509)を用い,各電圧センサの電位差から直流電圧部の電流を推定する。直流電圧部の電流を算出した後は実施例1と同様にして,直流電圧部に流れる共振電流を観測し,直流平滑用コンデンサの劣化状態を検知する。 Figure 6 shows another example of a three-phase, two-level converter. In this embodiment, the signal (509) of the voltage sensors (502a and 502b) of the DC smoothing capacitor is used, and the current of the DC voltage section is estimated from the potential difference of each voltage sensor. After calculating the current in the DC voltage section, the resonance current flowing in the DC voltage section is observed in the same manner as in Example 1 to detect the deterioration state of the DC smoothing capacitor.
図7に,3相3レベル変換器の別の実施例を示す。実施例3と同様に直流平滑用コンデンサ(303a・303c・303b・303d)の電圧センサ(602a・602c・602b・602d)の信号(609)から直流電圧部の電流を推定する。直流電圧部正極側(300a)の電流は電圧センサ(602a)および電圧センサ(602b)の電位差によって,直流電圧部負極側(300b)の電流は電圧センサ(602c)および電圧センサ(602d)の電位差によって推定する。直流電圧部(300a・300b・300c)の電流を算出した後は実施例2と同様にして,直流電圧部に流れる共振電流の周波数ピーク(402a・402b)を観測し,直流平滑用コンデンサの劣化状態を検知する。 Figure 7 shows another example of a three-phase, three-level converter. Similar to Example 3, the current of the DC voltage section is estimated from the signal (609) of the voltage sensor (602a, 602c, 602b, 602d) of the DC smoothing capacitor (303a, 303c, 303b, 303d). The current on the positive side (300a) of the DC voltage section is the potential difference between the voltage sensor (602a) and the voltage sensor (602b), and the current on the negative side (300b) of the DC voltage section is the potential difference between the voltage sensor (602c) and the voltage sensor (602d). Estimated by. After calculating the current of the DC voltage section (300a, 300b, 300c), the frequency peak (402a, 402b) of the resonance current flowing in the DC voltage section is observed in the same manner as in Example 2, and the deterioration of the DC smoothing capacitor is observed. Detect the state.
図8に,3相3レベル変換器の別の実施例を示す。実施例4および実施例5と同様に直流平滑用コンデンサ(303a・303c・303b・303d)の電圧センサ(702a・702b)の信号(709)から直流電圧部の電流を推定する。本実施例では直流電圧部(300a・300b・300c)の正極−負極間を一括した電圧センサを用いており,直流電圧部正極側(300a)および負極側(300b)を合わせた電流を推定する。直流電圧部(300a・300b・300c)の電流を算出した後は実施例2と同様にして,直流電圧部(300a・300b・300c)に流れる共振電流周波数ピーク(402a・402b)を観測し,直流平滑用コンデンサの劣化状態を検知する。 Figure 8 shows another example of a three-phase, three-level converter. Similar to the fourth and fifth embodiments, the current of the DC voltage section is estimated from the signal (709) of the voltage sensor (702a / 702b) of the DC smoothing capacitor (303a / 303c / 303b / 303d). In this embodiment, a voltage sensor is used for the positive electrode and the negative electrode of the DC voltage section (300a, 300b, 300c), and the combined current of the positive electrode side (300a) and the negative electrode side (300b) of the DC voltage section is estimated. .. After calculating the current of the DC voltage section (300a, 300b, 300c), the resonance current frequency peak (402a, 402b) flowing through the DC voltage section (300a, 300b, 300c) is observed in the same manner as in Example 2. Detects the deterioration state of the DC smoothing capacitor.
100a・300a…直流電圧部(正極),100b・300b…直流電圧部(負極),101a・101b・301a・301b…電力変換器,102・302・302a・302b…電流センサ,103a・103b・303a・303b・303c・303d…直流平滑用コンデンサ,104a・104b…交流出力部,105…電力変換器制御部(コントローラ),106…直流平滑用コンデンサの劣化診断部,107a・107b…電力変換器制御信号,108…電力変換器運転情報,109・309…直流電圧部電流情報,110…直流平滑用コンデンサの劣化情報,111…ネットワーク回線,112a…電力変換器に備え付けられたモニタまたは保守時に電力変換器に接続するパーソナルコンピュータ等の保守機器,112b…遠隔地の監視センタ,113…共振電流経路,200a・200b…電力変換器の運転状態に起因する周波数,201a・201b…電力変換器のキャリア周波数に起因する周波数,202・402a・402b…電力変換器間の共振周波数,300c…直流電圧部(コモン),502a・502b・602a・602b・602c・602d・702a・702b…電圧センサ,509・609・709…直流電圧部情報,S101…変換器が運転している状態,S102…直流電圧部の共振周波数演算,S103a…共振周波数の規定値1との比較,S103b…共振周波数の規定値2との比較,S104a…直流平滑用コンデンサの劣化アラーム1出力,S104b…直流平滑用コンデンサの劣化アラーム2出力,S105…変換器が停止している状態
100a / 300a ... DC voltage part (positive side), 100b / 300b ... DC voltage part (negative side), 101a / 101b / 301a / 301b ... Power converter, 102/302/302a / 302b ... Current sensor, 103a / 103b / 303a・ 303b ・ 303c ・ 303d… DC smoothing capacitor, 104a ・ 104b… AC output unit, 105… Power converter control unit (controller), 106… DC smoothing capacitor deterioration diagnosis unit, 107a ・ 107b… Power converter control Signal, 108 ... Power converter operation information, 109/309 ... DC voltage section current information, 110 ... DC smoothing capacitor deterioration information, 111 ... Network line, 112a ... Power conversion during monitoring or maintenance installed in the power converter Maintenance equipment such as personal computers connected to the device, 112b ... Remote monitoring center, 113 ... Resonant current path, 200a / 200b ... Frequency caused by the operating state of the power converter, 201a / 201b ... Carrier frequency of the power converter Frequency caused by, 202, 402a, 402b ... Resonance frequency between power converters, 300c ... DC voltage section (common), 502a, 502b, 602a, 602b, 602c, 602d, 702a, 702b ... Voltage sensor, 509, 609・ 709… DC voltage section information, S101… The state where the converter is operating, S102… DC voltage section resonance frequency calculation, S103a… Comparison with the specified
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017092737A JP6884029B2 (en) | 2017-05-09 | 2017-05-09 | Power converter and diagnostic method of power converter |
CN201810338346.0A CN108880279B (en) | 2017-05-09 | 2018-04-16 | Power conversion device and diagnosis method for power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017092737A JP6884029B2 (en) | 2017-05-09 | 2017-05-09 | Power converter and diagnostic method of power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018191446A JP2018191446A (en) | 2018-11-29 |
JP6884029B2 true JP6884029B2 (en) | 2021-06-09 |
Family
ID=64326970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017092737A Active JP6884029B2 (en) | 2017-05-09 | 2017-05-09 | Power converter and diagnostic method of power converter |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6884029B2 (en) |
CN (1) | CN108880279B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7188222B2 (en) * | 2019-03-25 | 2022-12-13 | Tdk株式会社 | monitoring module |
WO2021009831A1 (en) * | 2019-07-16 | 2021-01-21 | 株式会社日立産機システム | Power conversion device and deterioration diagnostic system |
WO2021014604A1 (en) * | 2019-07-24 | 2021-01-28 | 東芝三菱電機産業システム株式会社 | Capacitor diagnosis device and capacitor diagnosis method |
US20240264213A1 (en) * | 2021-10-05 | 2024-08-08 | Hitachi Industrial Equipment Systems Co., Ltd. | Power Conversion Apparatus, Deterioration Determination Method for Smoothing Capacitor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09297158A (en) * | 1996-05-07 | 1997-11-18 | Hitachi Eng & Services Co Ltd | Test method and test device for capacitor |
JP3585733B2 (en) * | 1998-06-05 | 2004-11-04 | 株式会社東芝 | Power converter |
JP3994883B2 (en) * | 2003-02-03 | 2007-10-24 | トヨタ自動車株式会社 | Voltage conversion device and computer-readable recording medium recording a program for causing computer to execute failure determination of voltage conversion device |
JP4151651B2 (en) * | 2003-03-17 | 2008-09-17 | 三菱電機株式会社 | Inverter device |
WO2005088814A1 (en) * | 2004-03-15 | 2005-09-22 | Hitachi Medical Corporation | Power converter, inverter x-ray high voltage unit, fluoroscopic system, x-ray ct system, mri system |
JP2016119550A (en) * | 2014-12-19 | 2016-06-30 | ファナック株式会社 | Quartz oscillator |
JP6227581B2 (en) * | 2015-03-20 | 2017-11-08 | ファナック株式会社 | Motor drive apparatus having means for determining DC capacitor life |
JP6438453B2 (en) * | 2016-12-21 | 2018-12-12 | ファナック株式会社 | Motor drive device |
-
2017
- 2017-05-09 JP JP2017092737A patent/JP6884029B2/en active Active
-
2018
- 2018-04-16 CN CN201810338346.0A patent/CN108880279B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108880279B (en) | 2020-10-13 |
CN108880279A (en) | 2018-11-23 |
JP2018191446A (en) | 2018-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6884029B2 (en) | Power converter and diagnostic method of power converter | |
US9488686B2 (en) | Filter capacitor degradation identification using computed current | |
US9389263B2 (en) | Filter capacitor degradation identification using measured and expected voltage | |
US9091742B2 (en) | Fault identification techniques for high resistance grounded systems | |
EP3220523B1 (en) | Phase loss detection in active front end converters | |
KR101668174B1 (en) | Electric motor control device | |
US20200292629A1 (en) | An on-line diagnostic method for electronic switch faults in neutral-point-clamped converters | |
CN104124876A (en) | Method and apparatus for active front end filter capacitor degradation detection | |
US20150153397A1 (en) | Impedance detector apparatus and method | |
US9176199B2 (en) | Method and system for detecting a defect on the DC power supply bus of a power converter | |
EP2680424B1 (en) | Power conversion device | |
CN111448752A (en) | Power conversion device and air conditioner | |
JP2009141997A (en) | Parallel operation control system for power conversion device | |
JP2008191108A (en) | System for evaluating quality of electric power | |
JP7068024B2 (en) | Power converter and abnormality detection method | |
JP4596251B2 (en) | Phase loss detection device and AC-AC direct conversion device | |
JP5660222B2 (en) | Elevator control device | |
US10797512B2 (en) | Uninterruptible power supply | |
CN112335163B (en) | Method and device for determining function of passive filter circuit capacitor and electric equipment | |
US20190195962A1 (en) | Method for maintenance of a frequency converter and software program realizing the same | |
JP4741366B2 (en) | Phase loss detection device and load drive device | |
JP6946799B2 (en) | Power system | |
EP4002670A1 (en) | Power conversion device and deterioration diagnostic system | |
JP2023182980A (en) | Power conversion device | |
KR20040060227A (en) | Real-Time Deterioration Diagnosis Apparatus And Real-Time On-line Deterioration Diagnosis System of Power Converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210511 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6884029 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |