Nothing Special   »   [go: up one dir, main page]

JP6861341B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP6861341B2
JP6861341B2 JP2017152928A JP2017152928A JP6861341B2 JP 6861341 B2 JP6861341 B2 JP 6861341B2 JP 2017152928 A JP2017152928 A JP 2017152928A JP 2017152928 A JP2017152928 A JP 2017152928A JP 6861341 B2 JP6861341 B2 JP 6861341B2
Authority
JP
Japan
Prior art keywords
compressor
temperature
pressure
refrigeration cycle
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017152928A
Other languages
English (en)
Other versions
JP2019032108A (ja
Inventor
啓晶 中井
啓晶 中井
淳 作田
作田  淳
護 西部
護 西部
宏治 室園
宏治 室園
森本 敬
敬 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017152928A priority Critical patent/JP6861341B2/ja
Publication of JP2019032108A publication Critical patent/JP2019032108A/ja
Application granted granted Critical
Publication of JP6861341B2 publication Critical patent/JP6861341B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、HFO1123もしくはHFO1132を含む作動流体を用いる冷凍サイクル装置に関する。
一般に、冷凍サイクル装置は、圧縮機、必要に応じて四方弁、放熱器(または凝縮器)、キャピラリーチューブや膨張弁等の減圧器、蒸発器、等を配管接続して冷凍サイクルを構成し、その内部に冷媒を循環させることにより、冷却または加熱作用を行っている。
これらの冷凍サイクル装置における冷媒としては、フロン類(フロン類はR○○またはR○○○と記すことが、米国ASHRAE34規格により規定されている。以下、R○○またはR○○○と示す)と呼ばれるメタンまたはエタンから誘導されたハロゲン化炭化水素が知られている。
上記のような冷凍サイクル装置用冷媒としては、R410Aが多く用いられているが、R410A冷媒の地球温暖化係数(GWP)は2090と大きく、地球温暖化防止の観点から問題がある。
そこで、地球温暖化防止の観点からは、GWPの小さな冷媒として、例えば、HFO1123(1,1,2−トリフルオロエチレン)や、HFO1132(1,2−ジフルオロエチレン)が提案されている(例えば特許文献1または特許文献2)。
国際公開第2012/157764号 国際公開第2012/157765号
しかしながら、HFO1123(1,1,2−トリフルオロエチレン)や、HFO1132(1,2−ジフルオロエチレン)は、R410Aなどの従来の冷媒に比べて安定性が低く、ラジカルを生成した場合、自己分解反応により別の化合物に変化する恐れがある。そして、自己分解反応は大きな熱放出を伴うため、圧縮機や冷凍サイクル装置の信頼性を低下させる恐れがある。
このため、HFO1123やHFO1132を圧縮機や冷凍サイクル装置に用いる場合には、この自己分解反応を抑制する必要がある。
このような自己分解反応は、過度に高温高圧となった冷媒雰囲気下にて、高エネルギが付加されると、これが起点となって発生する。
例えば、一例を挙げると、正常な運転条件下ではない状態、すなわち、凝縮器側の送風ファン停止、冷凍サイクル回路の閉塞等によって、吐出圧力(冷凍サイクルの高圧側)が過度に上昇し、これに伴い温度も過度に上昇する。
このような状態下で圧縮機のロック異常が生じ、このロック異常下においても、圧縮機への電力供給を続けると、圧縮機の電動機へ電力が過剰に供給され、電動機が異常に発熱
する。その結果、電動機の固定子を構成する固定子巻線の導線同士でレイヤーショートと呼ばれる現象を引き起こし、これが高エネルギ源となって自己分解反応を誘起することになる。
そして、一旦、自己分解反応が発生すると、連鎖反応により瞬間的に圧縮機内の圧力が異常に上昇し、圧縮機が破損する恐れがある。そのため、自己分解反応の発生を未然に防止することが重要である。
本発明は、このような自己分解反応を誘起する作動流体の過度な高温高圧現象に鑑みてなしたもので、HFO1123もしくはHFO1132を含む作動流体を用いた圧縮機や冷凍サイクル装置の信頼性を向上させることを目的としたものである。
本発明は、上記目的を達成するため、冷凍サイクル回路に、1,1,2−トリフルオロエチレンもしくはジフルオロエチレンを含む作動流体を封入して冷凍サイクル装置を構成し、この冷凍サイクル装置に圧縮機の異常を検出して当該圧縮機の運転を停止させる保護装置を複数設けた構成としてある。
上記構成によれば、温暖化係数の低い冷凍サイクル装置としつつ、作動流体の温度や圧力が通常使用時より高い温度や圧力となる異常時には圧縮機の運転を停止させるので、作動流体の温度や圧力の過度な上昇による圧縮機等の破損を防止でき、圧縮機や冷凍サイクル装置の信頼性を向上させることができる。
本発明は、上記構成により、HFO1123もしくはHFO1132含む作動流体を用いた安全で信頼性の高い冷凍サイクル装置を提供することができる。
本発明の実施の形態1に係る冷凍サイクル装置の概略構成図 同実施の形態1に係る冷凍サイクル装置を構成する圧縮機の要部を拡大して示す概略構成図 同実施の形態1に係る冷凍サイクル装置を構成する圧縮機の集中巻の電動機の概略構成図 同実施の形態1に係る冷凍サイクル装置を構成する圧縮機の要部拡大概略断面図 同実施の形態1に係る冷凍サイクル装置に使用する作動流体の自己分解反応領域を示す特性図 本発明の実施の形態2に係る冷凍サイクル装置を構成する圧縮機の要部拡大概略断面図
第1の発明は、圧縮機と、凝縮器と、膨張弁と、蒸発器とを環状に接続して冷凍サイクル回路を構成し、前記冷凍サイクル回路に、1,1,2−トリフルオロエチレンもしくはジフルオロエチレンを含む作動流体を封入して構成した冷凍サイクル装置であって、更に、前記圧縮機の異常を検出して圧縮機の運転を停止させる保護装置を複数備えた構成としてある。
これによって、温暖化係数の低い冷凍サイクル装置としつつ、作動流体の温度や圧力が通常使用時より高い温度や圧力となる異常時には圧縮機の運転を停止させるので、作動流体の過度な温度や圧力の上昇による圧縮機等の破損を防止でき、圧縮機や冷凍サイクル装
置の信頼性を向上させることができる。
第2の発明は、第1の発明において、前記複数の保護装置の少なくとも一つは作動流体の吐出側温度を検出する温度検出手段で構成するとともに、もう一つは作動流体の吐出側の圧力を直接または間接的に検出する圧力検出手段で構成してある。
これにより、作動流体の温度や圧力を検出して通常使用時より高い温度や圧力となる異常時には圧縮機の運転を停止させて作動流体の過度な温度や圧力の上昇を防止でき、1,1,2−トリフルオロエチレンもしくはジフルオロエチレンを含む作動流体特有の自己分解反応を未然に防止することができる。これにより、圧縮機等の破損を防止でき、圧縮機や冷凍サイクル装置の信頼性を向上させることができる。
第3の発明は、第2の発明において、前記作動流体の吐出側温度を検出する温度検出手段は圧縮機の電動機近傍に設けて電動機近傍の温度を検出する構成としてある。
これにより、自己分解反応の起点となるレイヤーショート等を発生する電動機の温度を遅滞なく迅速に検出することができ、自己分解反応の発生を確実に防止することができる。
第4の発明は、第1〜第3の発明において、前記複数の保護装置は各保護装置の検出値の組み合わせが異常防止の閾値を超えると圧縮機の運転を停止させる構成としてある。
これにより、自己分解反応が生じる特有の条件、すなわち、温度と圧力という複数の異常事象の検出値の組み合わせが異常防止の閾値を超えた場合のみ圧縮機の運転を停止させるので、各保護装置の検出値単独が異常ということで圧縮機を停止させる場合に生じる誤作動、すなわち自己分解反応が生じる恐れがないのに圧縮機の運転を停止させるという誤動作を防止することができる。これにより、正確な自己分解反応の発生防止が可能となり、より信頼性の高い冷凍サイクル装置とすることができる。
第5の発明は、第4の発明において、前記複数の保護装置は各保護装置のいずれか一つの検出値が各保護装置の検出値の組み合わせの最大異常閾値より更に異常値側になると圧縮機の運転を停止させる構成としてある。
これにより、複数の保護装置のうちの一つが故障等していて複数の検出値の組み合わせで異常判定できない場合であっても、残りの保護装置の検出値が最大異常閾値より更に異常値側であることを検出すると圧縮機の運転を停止させることができ、自己分解反応の発生防止の確実性を高め、信頼性の高い冷凍サイクル装置とすることができる。
以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1に、本発明の第1の実施の形態に係る冷凍サイクル装置100を示す。本実施の形態の冷凍サイクル装置100は、室内機ユニット101aと室外機ユニット101bとが冷媒配管及び制御配線等により互いに接続された、所謂セパレート型の空気調和機である。
室内機ユニット101aは、室内熱交換器103と、室内熱交換器103に送風するとともに、室内熱交換器103で熱交換した空気を室内に吹き出す貫流ファン(クロスフローファン)である室内送風ファン107aを備えている。室外機ユニット101bは、圧
縮機102、減圧手段である膨張弁104、室外熱交換器105、四方弁106、室外熱交換器105に送風するプロペラファンである室外送風ファン107bを備えている。更に、室外機ユニット101bは、圧縮機102内に設けられた電動機を駆動する電動機駆動装置115を備えている。
室内機ユニット101a及び室外機ユニット101bは、配管接続部112を備えており、室外機ユニット101bは、更に配管接続部112と四方弁106との間に設けられた三方弁108、配管接続部112と膨張弁104との間に設けられた二方弁109を備えている。
そして、室内機ユニット101aの一方の配管接続部112と室外機ユニット101bの二方弁109が設けられた側の配管接続部112とは、冷媒配管の1つである液管111aで接続されている。また、室内機ユニット101aの他方の配管接続部112と室外機ユニット101bの三方弁108が設けられた側の配管接続部112とは、冷媒配管の1つであるガス管111bで接続されている。
このように、本実施の形態の冷凍サイクル装置100は、主に、圧縮機102、室内熱交換器103、膨張弁104、室外熱交換器105の順に冷媒配管で接続し、冷凍サイクル回路を構成している。冷凍サイクル回路は、圧縮機102と室内熱交換器103または室外熱交換器105との間に、圧縮機102から吐出された冷媒の流れ方向を室内熱交換器103または室外熱交換器105のいずれかに切替える四方弁106を備えている。
四方弁106を備えることで、本実施の形態の冷凍サイクル装置100は、冷房運転と、暖房運転の切り替えが可能となる。つまり、冷房運転時には、圧縮機102の吐出側と室外熱交換器105とを連通させるとともに、室内熱交換器103と圧縮機102の吸入側とを連通されるように、四方弁106を切換える。これによって、室内熱交換器103を蒸発器として作用させ、周囲大気(室内空気)から熱を吸熱し、室外熱交換器105を凝縮器として作用させ、室内で吸熱した熱を周囲大気(室外空気)へ放熱する。一方、暖房運転時には、圧縮機102の吐出側と室内熱交換器103とを連通させるとともに、室外熱交換器105と圧縮機102の吸入側とを連通されるように、四方弁106を切換える。これによって、室外熱交換器105を蒸発器として作用させ、(室外空気)から吸熱し、室内熱交換器103を凝縮器として作用させ、室外で吸熱した熱を室内空気へ放熱する。
なお、四方弁106は、制御装置(図示せず)からの電気的信号によって、冷房と暖房と切り替える電磁弁式のものが用いられている。
また、冷凍サイクル回路は、四方弁106をバイパスし、圧縮機102の吸入側と吐出側とを連通するバイパス手段113と、バイパス手段113の冷媒の流れを開放、閉止する開閉弁113aを備えている。
冷凍サイクル回路内には、作動流体(冷媒)が封入されている。以下、作動流体について説明する。
本実施の形態の冷凍サイクル装置100に封入される作動流体は、(1)HFO1123(1,1,2−トリフルオロエチレン)と、(2)R32(ジフオロメタン)からなる2成分系の混合作動流体であり、特に、R32が30重量%以上60重量%以下の混合作動流体である。
HFO1123にR32を30重量%以上混合することで、HFO1123の自己分解
反応を抑制できる。また、R32の濃度が高いほど自己分解反応をより抑制できる。これは、R32のフッ素原子への分極が小さいことによる自己分解反応を緩和する作用と、HFO1123とR32は物理特性が似ていることから凝縮・蒸発など相変化時の挙動が一体となることによる自己分解の反応機会を減少させる作用とにより、HFO1123の自己分解反応を抑制することができる。
また、HFO1123とR32の混合冷媒は、R32が30重量%、HFO1123が70%で共沸点を持ち、温度すべりがなくなる為、単一冷媒と同様な取り扱いが可能である。つまり、R32を60重量%以上混合すると、温度すべりが大きくなり、単一冷媒と同様な取り扱いが困難となる可能性があるため、R32を60重量%以下で混合することが望ましい。特に、自己分解を防止するとともに、共沸点に近づくため温度すべりをより小さくし、機器の設計が容易とするために、R32を40重量%以上50重量%以下で混合することが望ましい。
表1、表2は、HFO1123とR32の混合作動流体のうち、R32が30重量%以上60重量%以下となる混合割合での、冷凍サイクルの圧力、温度、圧縮機の押しのけ容積が同じ場合の冷凍能力およびサイクル効率(COP)を計算し、R410AとHFO1123と比較したものである。
まず、表1、表2の計算条件について説明する。近年、機器のサイクル効率を向上するため、熱交換器の高性能化が進み、実際の運転状態では、凝縮温度は低下し、蒸発温度は上昇する傾向にあり、吐出温度も低下する傾向にある。このため、実際の運転条件を考慮し、表1の冷房計算条件は、冷凍サイクル装置100の冷房運転時(室内乾球温度 27℃、湿球温度 19℃、室外乾球温度 35℃)に対応し、蒸発温度は15℃、凝縮温度は45℃、圧縮機の吸入冷媒の過熱度は5℃、凝縮器出口の過冷却度は8℃とした。
また、表2の暖房計算条件は、冷凍サイクル装置100の暖房運転時(室内乾球温度20℃、室外乾球温度 7℃、湿球温度 6℃)に対応した計算条件で、蒸発温度は2℃、凝縮温度は38℃、圧縮機の吸入冷媒の過熱度は2℃、凝縮器出口の過冷却度は12℃とした。
Figure 0006861341
Figure 0006861341
表1、表2より、R32を30重量%以上60重量%以下で混合することにより、冷房および暖房運転時に、R410Aと比較して、冷凍能力は約20%増加し、サイクル効率(COP)は94〜97%となり、温暖化係数はR410Aの10〜20%に低減できる。
以上説明したように、HFO1123とR32の2成分系において、自己分解の防止、温度すべりの大きさ、冷房運転時・暖房運転時の能力、COPを総合的に鑑みると(すなわち、後述する圧縮機を用いた空気調和機器に適した混合割合を特定すると)、30重量%以上60重量%以下のR32を含む混合物が望ましく、さらに望ましくは、40重量%以上50重量%以下のR32を含む混合物が望ましい。
次に、冷凍サイクル回路を構成する各構成要素について説明する。
室内熱交換器103、室外熱交換器105には、フィンアンドチューブ型熱交換器やパラレルフロー形(マイクロチューブ型)熱交換器などが用いられる。なお、これ以外の熱交換器を用いてもよいものである。
次に圧縮機102について、図2を用いて説明する。圧縮機102はいわゆる密閉型のロータリ式圧縮機であり、電動機を備える部分が高圧の作動流体で満たされる内部高圧型圧縮機である。
圧縮機102はその外郭となる密閉容器102gの内部に、電動機102e、圧縮機構102cが収納され、内部は高温高圧の吐出冷媒と、冷凍機油で満たされ、底部は冷凍機油を溜める貯油部102fとなっている。電動機(モータ)102eは、所謂ブラシレス・モータである。電動機102eは、圧縮機構102cのクランクシャフト102mに接続された回転子1021eと、回転子1021eの周囲に設けられた固定子1022eとを備えている。
固定子1022eには三相の固定子巻線が施され、固定子1022e上下方向の端部でコイルエンド1023eを形成している。そして、三相の固定子巻線の端部はそれぞれリード線102iとなっている。つまり、固定子1022eは、三相の固定子巻線それぞれから延びる3本のリード線102iを備えている。3本のリード線102iの他端は、給電ターミナル102hに接続される。給電ターミナル102hは、3つの端子を備え、それぞれの端子は、電動機駆動装置115に接続されている。そして、上記三相の固定子巻線は絶縁体(図示せず)によって絶縁されている。
図2に示すように、3本のリード線102iのそれぞれは、電動機102eの水平断面において、コイルエンド1023eの離れた位置から延びている。より詳細には、3本のリード線102iのそれぞれは、固定子1022e側(後述するコイルエンド1023e側)の隣接するリード線102i同士の間隔が、給電ターミナル102h側の隣接するリード線同士の間隔より大きくなっている。また、3本のリード線102iは、電動機102eの水平断面において、回転子1021eの回転中心を中心として約120度ごとに配
図3は、電動機102eの横断面図である。電動機102eはいわゆる集中巻の電動機である。固定子1022eは、1つのティース31と、ティース31をつなぐ環状のヨーク32からなり、固定子1022eの内周部に対向して、略円筒形の回転子コア33とその外周部に配置された永久磁石34からなる回転子1021eがクランクシャフト102mを中心として回転自在に保持されている。永久磁石34は、外周をステンレス等の非磁性体の環35を外周に挿入することにより固定されている。
なお、永久磁石の固定方法は、エポキシ樹脂等の接着剤を用いて固定しても構わない。
また、永久磁石の配置方法として、上記では、永久磁石34を回転子コア33の外周部に配置する構造として説明したが、永久磁石を回転子コアの内部に配置した構造(図示せず)としてもよい。
一方、固定子1022eは、圧縮機のシェルに焼きばめされることによって密閉容器102g内部で固定されている。固定子1022eの固定方法は、これに限らず、例えば、溶接等の方法で固定しても構わない。
ティース31には、三相の固定子巻線が施され、インバータ式の電動機駆動装置(図示せず)のスイッチング素子により、回転子1021eに回転磁界が発生するように巻線に電流を流している。回転磁界は、インバータにより可変速で発生させることが可能であり、圧縮機102の運転開始直後等には高速で、安定運転時等には低速で運転される。
固定子1022eの外周部に切り欠き、または溝、穴37を設けることにより、密閉容器102gと固定子1022eとの間または固定子1022eそのものに、固定子1022eの全長に貫通した部分があり、そこを冷凍機油が通るようになっている。
電動機102eを集中巻の電動機とすることで、巻線抵抗が低減でき、大幅に銅損が低減できると共に、モータ全長も小さくできる。
なお、電動機102eは、集中巻きの電動機であるとして説明したが、分布巻きの電動機であってもよい。
圧縮機構102cは、圧縮室1021cを形成するシリンダ1022cと、シリンダ1022c内の圧縮室1021cに配置したローリングピストン1023cを有している。ローリングピストン1023cは、前記クランクシャフト102mの回転によりベーン(図示せず)に当接しながら圧縮室内で回転運動し、吸入管102aから冷媒を吸引して圧縮する。圧縮した冷媒は、吐出マフラー102lから密閉容器102g内の吐出冷媒空間102dに移動し、吐出管102bから圧縮機102の外へと吐出される。
なお、この圧縮機構102cはシリンダ1022cを上下二段有するタイプとしているが、これはシリンダ1022cが一段だけのタイプであってもよいものである。
また、上記圧縮室1021cでの液圧縮を防止するため、吸入管102aにはアキュー
ムレータ119が設けられている。アキュームレータ119は、冷媒を気液分離し、冷媒ガスだけを吸入管102aに導く。アキュームレータ119は、円筒状の容器1190の上部に冷媒ガス導入管1191、下部に冷媒ガス導出管1192が接続されている。冷媒ガス導出管1192の一端は吸入管102aに接続され、冷媒ガス導出管1192の他端は容器1190の内部空間の上部まで延出している。
以上のようにして構成した圧縮機102において、蒸発器から流出した低圧冷媒は、四方弁106を介して、吸入管102aから吸入され、圧縮機構102cで昇圧される。昇圧され、高温高圧となった吐出冷媒は、吐出マフラー102lから吐出され、電動機102e周囲で構成される隙間(回転子1021eと固定子1022e間、固定子1022eと密閉容器102g間)を通って、吐出冷媒空間102dへと流動する。その後、吐出管102bから圧縮機102の外へと吐出され、四方弁106を介して、凝縮器へと向う。
圧縮機構102cは、電動機102eと、クランクシャフト102mを介して接続されている。電動機102eでは、外部電源から受け取った電力を電気的エネルギから機械的(回転)エネルギに変換している。圧縮機構102cでは、電動機102eからクランクシャフト102mを介して伝達される機械的エネルギを用いて、冷媒を昇圧する圧縮仕事を行っている。
ここで、既述した通り正常な運転条件下ではない状態、すなわち、凝縮器側の送風ファン停止、冷凍サイクル回路の閉塞等が生じると、作動流体の吐出圧力(冷凍サイクルの高圧側)が過度に上昇し、これに伴い作動流体の温度も過度に上昇する。
この状態下において、圧縮機102への電力供給を続けていると、圧縮機102を構成する電動機102eへ電力が過剰に供給され、電動機102eが異常に発熱し、電動機102eの固定子巻線40の絶縁が破損して、巻線の導線同士が直接接触し、レイヤーショートを引き起こしかねない状態となる。すなわち、自己分解反応が生じ難い作動流体、例えばHFO1123に対しR32を混合している作動流体を用いていても、冷媒が過度に高温高圧になって、そのような高温高圧下の冷媒雰囲気下にて、高エネルギ源が付加されると、自己分解反応が発生し、圧縮機102内の圧力が急激に上昇する可能性がある。
図5は上記自己分解反応が生じる領域を示す特性図で、例えばHFO1123に対するR32の混合比率が30重量%以上60重量%以下とした作動流体の自己分解反応領域を示す特性図である。
図5において、自己分解反応領域は自己分解反応閾値Aより右側の領域であり、作動流体の温度と圧力が関連していてその双方の組み合わせが所定の温度と圧力の組み合わせになると自己分解反応を起こす。そして、自己分解反応を起こす温度と圧力の組み合わせ条件は逆比例する相関関係を有しており、例えば、自己分解反応は温度が低くても圧力が高いと発生し、逆に圧力が低くても温度が高いと発生する。
そこでこの冷凍サイクル装置は、圧縮機102の吐出側部分の温度と圧力が自己分解反応を起こす前の所定の温度と圧力の組み合わせ領域(以下、自己分解反応防止領域と称す)になると、電動機102eへの電源供給を遮断して圧縮機102の運転を停止させる構成としてある。
具体的には、図4に示すように圧縮機102の吐出側部分、この例では吐出管部分に温度検出手段120aを主体とした第一保護装置120を設けるとともに、上記第一保護装置120に加え更に圧縮機102の吐出側部分に圧力検出手段121aを主体とした第二保護装置121を設けてある。そして、上記第一保護装置120を構成する温度検出手段
120aと第二保護装置121を構成する圧力検出手段121aが検出する温度と圧力の組み合わせが、図5のBで示す自己分解反応防止閾値(異常防止閾値)以上、すなわち自己分解反応防止領域に達すると、電動機102eへの電源供給を遮断して圧縮機102の運転を停止させる構成としてある。
さらに、この実施の形態では、上記温度検出手段120aで検出する温度が当該温度だけでも自己分解反応が起こることが懸念されるほどの極端な異常温度、例えば図5のCで示す第一・第二保護装置120、121の検出値の組み合わせの最大異常閾値である温度280℃以上、もしくは圧力検出手段121aで検出する圧力が当該圧力だけでも自己分解反応が起こることが懸念されるほどの極端な異常圧力、例えば図5のDで示す第一・第二保護装置120、121の検出値の組み合わせの最大異常閾値である圧力9MPa以上になると、他方の条件、すなわち圧力あるいは温度が自己分解反応防止領域に達していない場合であっても、電動機102eへの電源供給を遮断して圧縮機102の運転を停止させる構成としてある。
なお、上記自己分解反応防止閾値Bや最大異常閾値C、Dの具体的な温度と圧力は、混合する冷媒の種類・量に応じて変化するので、使用する作動流体の特性に応じて適宜設定すればよい。例えばこの実施の形態で例示した割合以外でHFO1123とR32を混合した作動流体や種類の異なる冷媒を混合して得た作動流体の場合、その自己分解反応防止閾値Bや最大異常閾値C、Dの具体的な温度と圧力は当然異なるものとなる。
また、本実施の形態では上記圧力検出手段121aは、圧力変動に伴って生じる事象、例えばこの例では電動機102eの駆動電流、を検出する電流検出センサ等の圧力間接検出手段で構成しており、電動機102eの固定子巻線のリード線102iの一つに設けてある。この圧力変動に伴って変動する事象を検出する圧力間接検出手段は電流検出センサに限られるものではなく圧力変動に伴って生じる事象を検出できるものであればどのような手段であってもよい。
以上のように構成した冷凍サイクル装置は、圧縮機102内の作動流体が自己分解反応を起こす前の温度と圧力、すなわち自己分解反応防止閾値B以上の温度と圧力の組み合わせにまで上昇すると、温度検出手段120aと圧力検出手段121a、すなわち第一保護装置120及び第二保護装置121がこれを検出して作動し、電動機102eへの電源供給を停止する。
これにより、圧縮機102内の温度と圧力が自己分解反応領域の温度と圧力まで上昇するのを抑制することができ、自己分解反応の発生を防止することができる。
また、温度と圧力の双方の値が自己分解反応防止閾値B以上の温度と圧力に達することによって電動機102eへの電源供給を停止する構成としているので、誤動作のない確実な自己分解反応防止の動作を行うことができる。
即ち、温度検出手段120a、圧力検出手段121aのいずれか一方の検出値が自己分解反応防止閾値B以上になると作動する構成にしていると、温度は自己分解反応防止閾値B以上の温度に達していないのに圧力が自己分解反応防止閾値B以上の高い圧力まで上昇すると作動することになる。しかしながらこの条件では自己分解反応は発生せず、誤動作したことになる。
しかしながら、本実施の形態のように、温度と圧力の双方の値が自己分解反応防止閾値B以上になると作動する構成にしていると、自己分解反応が生じる条件、すなわち温度と圧力双方の検出値の組み合わせが自己分解反応防止閾値Bを超えた場合のみ圧縮機102
の運転を停止させるので、いずれか一方の検出値が自己分解反応防止閾値Bを超えたということで誤動作するようなことがなくなり、確実な自己分解反応防止の動作を行うことができる。つまり、信頼性の高い自己分解反応防止装置とすることができる。
またこの実施の形態では温度検出手段120aが検出する温度が当該温度だけでも自己分解反応の発生が懸念されるほどの極端な異常温度になると、圧力検出手段121aが検出する圧力が自己分解反応防止閾値B以上の圧力に達していなくても第一保護装置120(温度検出手段120a)が作動して電動機102eへの電源供給を停止する。これと同様に圧力検出手段121aが検出する圧力が当該圧力だけでも自己分解反応の発生が懸念されるほどの極端な異常圧力になると、温度検出手段120aが検出する圧力が自己分解反応防止閾値B以上の温度に達していなくても第二保護装置121(圧力検出手段121a)が作動して電動機102eへの電源供給を停止する。
つまり、圧縮機102内の温度か圧力のいずれかが極端に異常な温度または圧力まで上昇すると、圧縮機102の運転を停止し、自己分解反応の発生を防止して安全性を確保する。
したがって、第一保護装置120あるいは第二保護装置121のいずれか一方側の保護装置が故障していても確実に圧縮機102の運転を停止させることができ、安全性を大きく向上させることができる。
また、上記第一保護装置120となる温度検出手段120a及び第二保護装置121となる圧力検出手段121aは、いずれも圧縮機102に設けてユニット化しているので、自己分解反応防止機能付き圧縮機として提供することが可能となる。
以上のようにこの冷凍サイクル装置は、作動流体の自己分解反応を防止して安全性を高めることができるが、上記第一保護装置120を構成する温度検出手段120aは所定温度を検出すると電源供給を停止させるものであればどのようなものであってもよい。例えば、電動機102eへの電源供給を直接遮断するバイメタルスイッチや温度ヒューズ、サーマルリアクター等で構成したり、検出した温度を制御回路、例えば電動機駆動装置115に送って電動機102eへの電源供給を間接的に停止させるサーミスタ等によって構成したりすることができ、特に限定されるものではない。
また、第二保護装置121を構成する圧力検出手段121aは、上記した電流スイッチのように圧力を間接的に検出する圧力間接検出手段のほかに、圧力を直接検出する圧力スイッチや圧電素子等によって構成することができる。そしてこの圧力検出手段121aも温度検出手段120aと同様、それ自体の動作で直接電動機102eへの電源供給を停止するものであっても、あるいは制御回路に信号を送って間接的に電動機102eへの電源供給を停止させるものであってもよく、特に限定されるものではない。
(実施の形態2)
図6は実施の形態2の冷凍サイクル装置における圧縮機102の要部を拡大して示すものである。
本実施の形態2では、第一保護装置120を構成する温度検出手段120aを電動機102eの固定子巻線40部分に設けて、特に電動機近傍の温度を検出するようにしてある。具体的には電動機102eのレイヤーショートに直接的に関係する部分、例えば固定子巻線40の絶縁を行う絶縁紙部分にサーミスタを設けるなどして構成してある。また、第二保護装置121を構成する圧力検出手段121aは圧力スイッチもしくは圧電素子等で構成し、吐出側の圧力を直接検出する構成としてある。
上記構成によれば、前記実施の形態1と同様の効果が得られるのはもちろん、より迅速な温度検出が可能となり、自己分解反応をより確実に防止することができる。
即ち、前記実施の形態1で示すように温度検出手段120aを圧縮機102の吐出管部分に設けていると、例えば冷凍サイクル回路の途中が閉塞したような状態で電動機102eに通電し続けて温度上昇異常が生じると、作動流体の流れがないため電動機102eの温度上昇に比べ吐出管部分の温度上昇は遅れが生じる。その結果、吐出管部分の温度が自己分解反応防止閾値Bを超える前に電動機102eの固定子巻線40の絶縁が破損してレイヤーショートが発生し、自己分解反応を起こしてしまう恐れがある。
しかしながら、本実施の形態のように、温度検出手段120aを電動機102eの固定子巻線40部分に設けておけば、電動機102eの固定子巻線40の温度、すなわち電動機近傍の温度を迅速に検出することができ、固定子巻線40の絶縁破損によるレイヤーショートの発生前に電動機102eを停止させることができる。よって、自己分解反応をより確実に防止することができる。
(その他の実施の形態)
本発明の実施の形態において、自己分解反応の防止は更に次のような構成を追加することによってより確実なものとすることができる。
即ち、上記実施の形態1、2において示す電動機102eの固定子巻線40、すなわち、圧縮機102への供給電力の停止に併せて、四方弁106を均圧方向へ切り替え(暖房運転ならば冷房運転へ、冷房運転ならば暖房運転へ)る構成を追加する。
または、圧縮機102への供給電力の停止に併せて、開閉弁113aを開として、バイパス手段113を介して圧縮機102の吐出側と吸入側を連通させる構成とする。
このように構成することによって、冷凍サイクル回路内の高圧側圧力を電動機の停止と同時に低下させることができるので、より確実に自己分解反応の発生を防止できる。
以上、本発明の実施の形態では、圧縮機はロータリ式圧縮機を例にして説明したが、これは他の形式、例えば、スクロール式、レシプロ式などの容積式圧縮機、もしくは、遠心式圧縮機等、いずれの圧縮機であってもよいものである。もちろん高圧型、低圧型のいずれであってもよい。
また、上記実施の形態1、2では、複数の保護装置、すなわち第一保護装置120となる温度検出手段120a及び第二保護装置121となる圧力検出手段121aはいずれも圧縮機102に設けてあるが、温度検出手段120aを電流検出センサ等で構成する場合は温度検出手段120aを制御回路側に設ける等してもよい。また、圧力検出手段121aは圧縮機102ではなく圧縮機102からの吐出圧力が検出できる配管経路に設けるなどしてもよい。このような構成としても同様の効果が得られる。
更に、上記実施の形態1、2においては、第一保護装置120となる温度検出手段120aが検出する温度と第二保護装置121となる圧力検出手段121aが検出する圧力の組み合わせが自己分解反応防止閾値B以上になると電動機102eへの電源供給を遮断するようにしている。しかしこれは、いずれか一方の検出値だけでも自己分解反応の発生が懸念されるほど極端に異常な値になると、他方の検出値が自己分解反応防止閾値B以上の値に達していなくても電動機102eへの電源供給を停止するだけの構成としてもよく、請求項1はこれを含むものである。
以上説明したように本発明は、HFO1123もしくはHFO1132を含む作動流体を用いた冷凍サイクル装置の信頼性を向上させることができ、住居及び業務用の各エアコン、カーエアコン、給湯器、冷凍冷蔵庫、ショーケース、除湿機等の用途に幅広く適用することができる。
100 冷凍サイクル装置
101a 室内機ユニット
101b 室外機ユニット
102 圧縮機
102a 吸入管
102b 吐出管
102c 圧縮機構
102e 電動機
102g 密閉容器
1021e 回転子
1022e 固定子
103 室内熱交換器
104 膨張弁
105 室外熱交換器
106 四方弁
107a 室内送風ファン
107b 室外送風ファン
119 アキュームレータ
1190 容器
1191 冷媒ガス導入管
1192 冷媒ガス導出管
120 第一保護装置
120a 温度検出手段
121 第二保護装置
121a 圧力検出手段
A 自己分解反応閾値
B 自己分解反応防止閾値(異常防止閾値)
C、D 最大異常閾値

Claims (3)

  1. 圧縮機と、凝縮器と、膨張弁と、蒸発器とを環状に接続して冷凍サイクル回路を構成し、前記冷凍サイクル回路に、1,1,2−トリフルオロエチレンもしくはジフルオロエチレンを含む作動流体を封入して構成した冷凍サイクル装置であって、更に、前記圧縮機の異常を検出して圧縮機の運転を停止させる保護装置を複数備え、複数の前記保護装置の少なくとも一つは作動流体の吐出側温度を検出する温度検出手段で構成するとともに、もう一つは作動流体の吐出側の圧力を直接または間接的に検出する圧力検出手段を有し、前記温度検出手段は電動機の固定子巻線部分に設け、前記圧力検出手段は電動機の固定子巻線のリード線の一つに設ける構成とした冷凍サイクル装置。
  2. 複数の保護装置は各保護装置の検出値の組み合わせが異常の閾値を超えると圧縮機の運転を停止させる構成とした請求項1に記載の冷凍サイクル装置。
  3. 複数の保護装置は各保護装置のいずれか一つの検出値が各保護装置の検出値の組み合わせ値の最大異常閾値より更に異常値側になると圧縮機の運転を停止させる構成とした請求項に記載の冷凍サイクル装置。
JP2017152928A 2017-08-08 2017-08-08 冷凍サイクル装置 Active JP6861341B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017152928A JP6861341B2 (ja) 2017-08-08 2017-08-08 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017152928A JP6861341B2 (ja) 2017-08-08 2017-08-08 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2019032108A JP2019032108A (ja) 2019-02-28
JP6861341B2 true JP6861341B2 (ja) 2021-04-21

Family

ID=65523243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152928A Active JP6861341B2 (ja) 2017-08-08 2017-08-08 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP6861341B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210446A1 (ja) * 2022-04-28 2023-11-02 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463571A (en) * 1981-11-06 1984-08-07 Wiggs John W Diagnostic monitor system for heat pump protection
JPS6095183U (ja) * 1983-12-02 1985-06-28 松下電器産業株式会社 密閉形圧縮機の過負荷保護装置
JPH08261160A (ja) * 1995-03-27 1996-10-08 Hitachi Ltd 空気調和機
JP4861900B2 (ja) * 2007-02-09 2012-01-25 サンデン株式会社 可変容量圧縮機の容量制御システム
JP2012067929A (ja) * 2010-09-21 2012-04-05 Panasonic Corp ヒートポンプサイクル装置
WO2014203354A1 (ja) * 2013-06-19 2014-12-24 三菱電機株式会社 冷凍サイクル装置
WO2015136981A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 圧縮機及び冷凍サイクル装置
JP6453849B2 (ja) * 2014-03-14 2019-01-16 三菱電機株式会社 冷凍サイクル装置
JP6192806B2 (ja) * 2014-03-17 2017-09-06 三菱電機株式会社 冷凍装置
EP3144601B1 (en) * 2014-05-12 2023-10-25 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle device

Also Published As

Publication number Publication date
JP2019032108A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
US10590934B2 (en) Refrigeration cycle device with motor speed estimator
KR102261053B1 (ko) 공기 조화기 및 공기 조화기의 제어 방법
KR101892880B1 (ko) 냉동 사이클 장치
KR102278116B1 (ko) 구동 장치, 공기 조화기 및 전동기의 구동 방법
KR101841869B1 (ko) 냉동 사이클 장치
CN106460847B (zh) 压缩机及制冷循环装置
KR102278117B1 (ko) 구동 장치, 공기 조화기 및 전동기의 구동 방법
JP2018025372A (ja) 冷凍サイクル装置
JP6857813B2 (ja) 冷凍サイクル装置
JP7166358B2 (ja) 駆動装置、圧縮機、及び空気調和機
KR102261057B1 (ko) 구동 장치 및 공기 조화기, 및 압축기의 제어 방법
KR102441627B1 (ko) 구동 장치, 압축기, 공기 조화기 및 구동 방법
CN110651158B (zh) 空调机及空调机的运转控制方法
JP6596667B2 (ja) 圧縮機及びそれを用いた冷凍サイクル装置
JP6861341B2 (ja) 冷凍サイクル装置
JP6805794B2 (ja) 冷凍サイクル装置
JP6906138B2 (ja) 冷凍サイクル装置
JP6667071B2 (ja) 冷凍サイクル装置
JP6872686B2 (ja) 冷凍サイクル装置
JP2018096652A (ja) 冷凍サイクル装置
JP2021025460A (ja) 圧縮機
JP2016217247A (ja) 圧縮機、及びその圧縮機を備えたヒートポンプ装置
JP2020169782A (ja) 冷凍サイクル装置
JP2020188640A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R151 Written notification of patent or utility model registration

Ref document number: 6861341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151