JP6561448B2 - Method and apparatus for electrodeionization treatment of vanadium-containing water - Google Patents
Method and apparatus for electrodeionization treatment of vanadium-containing water Download PDFInfo
- Publication number
- JP6561448B2 JP6561448B2 JP2014204875A JP2014204875A JP6561448B2 JP 6561448 B2 JP6561448 B2 JP 6561448B2 JP 2014204875 A JP2014204875 A JP 2014204875A JP 2014204875 A JP2014204875 A JP 2014204875A JP 6561448 B2 JP6561448 B2 JP 6561448B2
- Authority
- JP
- Japan
- Prior art keywords
- vanadium
- electrodeionization
- water
- containing water
- orp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 106
- 238000009296 electrodeionization Methods 0.000 title claims description 86
- 229910052720 vanadium Inorganic materials 0.000 title claims description 66
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 title claims description 66
- 238000000034 method Methods 0.000 title claims description 15
- 239000012528 membrane Substances 0.000 claims description 60
- 239000003638 chemical reducing agent Substances 0.000 claims description 30
- 239000003957 anion exchange resin Substances 0.000 claims description 18
- 238000001223 reverse osmosis Methods 0.000 claims description 10
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 6
- 239000012466 permeate Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000008239 natural water Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 238000010525 oxidative degradation reaction Methods 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003729 cation exchange resin Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- -1 sodium sulfite Chemical compound 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- WQEVDHBJGNOKKO-UHFFFAOYSA-K vanadic acid Chemical compound O[V](O)(O)=O WQEVDHBJGNOKKO-UHFFFAOYSA-K 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
本発明はバナジウム含有水の電気脱イオン処理方法及び処理装置に係り、特にバナジウム含有水を電気脱イオン装置で処理する際の電気脱イオン装置の濃縮室の差圧上昇を防止して、長期に亘り安定運転を行える処理方法と処理装置に関する。 The present invention relates to a method and an apparatus for electrodeionization treatment of vanadium-containing water, and in particular, prevents an increase in the differential pressure in the concentration chamber of the electrodeionization apparatus when treating vanadium-containing water with the electrodeionization apparatus. The present invention relates to a processing method and a processing apparatus capable of stable operation.
工水、市水、天然水、各種工場排水の処理水等を処理して純水を製造するシステムとして、原水を逆浸透膜(RO膜)装置で処理した後、電気脱イオン装置で処理する装置が周知である(例えば特許文献1)。 As a system to produce pure water by treating industrial water, city water, natural water, various industrial wastewater, etc., raw water is treated with a reverse osmosis membrane (RO membrane) device and then treated with an electrodeionization device. The apparatus is well known (for example, Patent Document 1).
図1はRO膜装置及び電気脱イオン装置を用いた従来の純水製造装置の一例を示す系統図である。
原水は、原水槽1を経て膜式前処理装置2で除濁処理された後、活性炭塔3で濾過処理され、次いで濾過水槽4を経て、RO膜装置5、膜脱気装置6、及び電気脱イオン装置7に順次通水されて処理される。
FIG. 1 is a system diagram showing an example of a conventional pure water production apparatus using an RO membrane apparatus and an electrodeionization apparatus.
The raw water is turbidized by the membrane pretreatment device 2 through the raw water tank 1, then filtered by the activated carbon tower 3, and then passed through the filtration water tank 4, followed by the RO membrane device 5, the membrane deaeration device 6, and the electricity. Water is sequentially passed through the deionizer 7 for processing.
このようにRO膜装置5と電気脱イオン装置7を組み合わせて脱イオン処理する純水製造装置においては、RO膜装置5に導入される活性炭濾過水のORP(酸化還元電位)が350mV以上の場合、濾過水槽4に還元剤を添加して、ORPを下げることが行われている。これは、酸化性物質によるRO膜や後段の電気脱イオン装置の酸化劣化を防止するためであり、RO膜装置5の給水のORPが350mV未満の場合には還元剤の添加は行われない。 Thus, in the pure water manufacturing apparatus which deionizes by combining the RO membrane device 5 and the electrodeionization device 7, the ORP (oxidation reduction potential) of the activated carbon filtrate introduced into the RO membrane device 5 is 350 mV or more. The ORP is lowered by adding a reducing agent to the filtered water tank 4. This is to prevent oxidative degradation of the RO membrane and the subsequent electrodeionization device due to the oxidizing substance. When the ORP of the water supply of the RO membrane device 5 is less than 350 mV, no reducing agent is added.
一方で、バナジウムは触媒として使用されており、石炭、石油等の灰分中に含まれるほか、特定の天然水中にも含まれている。従来、原水中のバナジウムがカチオン交換樹脂を酸化劣化させることは知られているが(例えば特許文献2〜4)、アニオン交換樹脂への影響についての認識はない。 On the other hand, vanadium is used as a catalyst, and is contained in ash such as coal and petroleum, and also in certain natural waters. Conventionally, vanadium in raw water is known to oxidize and degrade cation exchange resins (for example, Patent Documents 2 to 4), but there is no recognition of the influence on anion exchange resins.
また、電気脱イオン装置において、濃縮室の溶存酸素(DO)を低減して処理水の水質を高める目的で、DO低減手段として電気脱イオン装置の前段に脱気装置を設けたり、電気脱イオン装置の給水に亜硫酸塩を添加することが行われている(例えば特許文献5〜7)。 In addition, in the electrodeionization device, a deaeration device is provided in front of the electrodeionization device as a DO reduction means for reducing the dissolved oxygen (DO) in the concentrating chamber and improving the quality of the treated water. A sulfite is added to the water supply of the apparatus (for example, Patent Documents 5 to 7).
上記の通り、従来において、RO膜装置と電気脱イオン装置で原水を処理する場合、RO膜装置の給水のORPが350mV以上の場合にRO膜装置の給水に還元剤を添加してORPを下げる制御が行われているが、ORPが350mVよりも低い場合には、このような制御は行われていない。 As described above, conventionally, when raw water is processed by the RO membrane device and the electrodeionization device, when the ORP of the RO membrane device is 350 mV or higher, a reducing agent is added to the RO membrane device to lower the ORP. Control is performed, but such control is not performed when the ORP is lower than 350 mV.
しかしながら、本発明者の検討により、原水がバナジウムを多く含む場合、例えばバナジウムを5ppb以上含む場合には、RO膜装置の給水のORPが350mV以下の条件、例えば330mVであっても、長期間運転を継続することにより、電気脱イオン装置の濃縮室の閉塞で差圧が上昇する問題があることが見出された。この場合、通常であれば5年に1回の頻度のモジュール交換を2年に1回の頻度で行う必要があった。 However, according to the study of the present inventor, when the raw water contains a large amount of vanadium, for example, when the vanadium contains 5 ppb or more, even if the ORP of the RO membrane device is 350 mV or less, for example, 330 mV, it is operated for a long time. It has been found that there is a problem that the differential pressure rises due to the blockage of the concentration chamber of the electrodeionization apparatus by continuing the process. In this case, normally, it was necessary to replace the module once every five years with a frequency of once every two years.
本発明は、バナジウム含有水を電気脱イオン装置で処理する際の電気脱イオン装置の濃縮室の閉塞を防止して長期に亘り安定運転を行えるバナジウム含有水の電気脱イオン処理方法及び処理装置を提供することを目的とする。 The present invention provides an electrodeionization treatment method and a treatment apparatus for vanadium-containing water that can prevent the blockage of the concentration chamber of the electrodeionization apparatus when the vanadium-containing water is treated with the electrodeionization apparatus and can perform stable operation over a long period of time. The purpose is to provide.
本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、バナジウム含有水を電気脱イオン装置で処理する際に、電気脱イオン装置に導入されるバナジウム含有水のORPを300mV以下に調整することにより、濃縮室の閉塞を抑制することができることを見出した。
即ち、本発明は以下を要旨とする。
As a result of intensive studies to solve the above problems, the present inventors adjusted the ORP of vanadium-containing water introduced into the electrodeionization device to 300 mV or less when the vanadium-containing water is processed by the electrodeionization device. As a result, it was found that the blockage of the concentration chamber can be suppressed.
That is, the gist of the present invention is as follows.
[1] バナジウム含有水を電気脱イオン装置で処理する方法において、該電気脱イオン装置は、濃縮室にアニオン交換樹脂が充填された電気脱イオン装置であり、該電気脱イオン装置に導入する該バナジウム含有水のORPを300mV以下に調整することを特徴とするバナジウム含有水の電気脱イオン処理方法。 [1] In the method of treating vanadium-containing water with an electrodeionization device, the electrodeionization device is an electrodeionization device in which a concentration chamber is filled with an anion exchange resin, and is introduced into the electrodeionization device. An electrodeionization method for vanadium-containing water, wherein the ORP of vanadium-containing water is adjusted to 300 mV or less.
[2] [1]において、前記バナジウム含有水に還元剤を添加することによりORPを調整することを特徴とするバナジウム含有水の電気脱イオン処理方法。 [2] The electrodeionization method for vanadium-containing water according to [1], wherein ORP is adjusted by adding a reducing agent to the vanadium-containing water.
[3] [2]において、前記還元剤が重亜硫酸塩、亜硫酸塩、及び水素ガスよりなる群から選択される1種又は2種以上であることを特徴とするバナジウム含有水の電気脱イオン処理方法。 [3] The electrodeionization treatment of vanadium-containing water according to [2], wherein the reducing agent is one or more selected from the group consisting of bisulfite, sulfite, and hydrogen gas. Method.
[4] [2]又は[3]において、前記バナジウム含有水を逆浸透膜装置で処理した後、前記電気脱イオン装置で処理する方法であって、該逆浸透膜装置の透過水に前記還元剤を添加した後該電気脱イオン装置で処理することを特徴とするバナジウム含有水の電気脱イオン処理方法。 [4] The method according to [2] or [3], wherein the vanadium-containing water is treated with a reverse osmosis membrane device and then treated with the electrodeionization device, and the reduced water is permeated through the reverse osmosis membrane device. A method for electrodeionization treatment of vanadium-containing water, wherein the agent is treated with the electrodeionization apparatus after the agent is added.
[5] バナジウム含有水を電気脱イオン装置で処理する装置において、該電気脱イオン装置は、濃縮室にアニオン交換樹脂が充填された電気脱イオン装置であり、該電気脱イオン装置に導入される該バナジウム含有水のORPを300mV以下に調整するORP調整手段を備えることを特徴とするバナジウム含有水の処理装置。 [5] In an apparatus for treating vanadium-containing water with an electrodeionization apparatus, the electrodeionization apparatus is an electrodeionization apparatus in which a concentration chamber is filled with an anion exchange resin, and is introduced into the electrodeionization apparatus. An apparatus for treating vanadium-containing water, comprising ORP adjusting means for adjusting the ORP of vanadium-containing water to 300 mV or less.
[6] [5]において、前記ORP調整手段が、前記バナジウム含有水に還元剤を添加する還元剤添加手段であることを特徴とするバナジウム含有水の処理装置。 [6] The treatment apparatus for vanadium-containing water according to [5], wherein the ORP adjusting means is a reducing agent adding means for adding a reducing agent to the vanadium-containing water.
[7] [6]において、前記還元剤が重亜硫酸塩、亜硫酸塩、及び水素ガスよりなる群から選択される1種又は2種以上であることを特徴とするバナジウム含有水の処理装置。 [7] The treatment apparatus for vanadium-containing water according to [6], wherein the reducing agent is one or more selected from the group consisting of bisulfite, sulfite, and hydrogen gas.
[8] [6]又は[7]において、前記バナジウム含有水を処理する逆浸透膜装置と、該逆浸透膜装置の透過水を処理する前記電気脱イオン装置とを有し、前記還元剤添加手段により、該逆浸透膜装置の透過水に還元剤が添加されることを特徴とするバナジウム含有水の処理装置。 [8] In [6] or [7], the apparatus includes a reverse osmosis membrane device for treating the vanadium-containing water and the electrodeionization device for treating the permeated water of the reverse osmosis membrane device, and adding the reducing agent An apparatus for treating vanadium-containing water, wherein a reducing agent is added to the permeated water of the reverse osmosis membrane device by means.
本発明によれば、バナジウム含有水を電気脱イオン装置で処理するにあたり、電気脱イオン装置の濃縮室の閉塞を防止して、長期に亘り安定運転を行うことができる。 ADVANTAGE OF THE INVENTION According to this invention, when processing vanadium containing water with an electrodeionization apparatus, obstruction | occlusion of the concentration chamber of an electrodeionization apparatus can be prevented, and stable operation can be performed over a long period of time.
以下に本発明のバナジウム含有水の電気脱イオン処理方法及び処理装置の実施の形態を詳細に説明する。 Embodiments of the electrodeionization treatment method and treatment apparatus for vanadium-containing water of the present invention will be described in detail below.
バナジウム含有水を電気脱イオン装置で処理した場合に、経時により濃縮室が差圧が上昇する理由は次の通りである。
原水由来のバナジウムは、例えば、電気脱イオン装置の前段にRO膜装置を設けた場合、RO膜で除去され、RO膜装置の透過水(電気脱イオン装置の給水)のバナジウム濃度は分析下限の1ppb未満となる。ただし、バナジウム濃度はゼロになることはなく、RO膜の除去性能にもよるが、0.5ppb程度存在する。このようなごく微量のバナジウムの存在下において、アニオン交換樹脂が酸化劣化することは、従来においては認識されていなかった。
しかし、電気脱イオン装置の給水中のバナジウムは、水中でバナジン酸(アニオン種)の形態で存在するため、電気脱イオン装置内で電気的に移動し、濃縮室に流入する。この濃縮室内のバナジウムの一部は濃縮水中に含まれて排出されるが、殆どのバナジウムは、濃縮室のアニオン交換樹脂に吸着されて蓄積する。
例えば、本発明者が検証したところ、バナジウム濃度<1ppbの給水を電気脱イオン装置で約2年通水処理すると、濃縮室のアニオン交換樹脂1L当たり1mgのバナジウムが吸着されることが判明した。
このため、たとえ、給水のバナジウム濃度が低くても、電気脱イオン装置の濃縮室のアニオン交換樹脂にあっては、局所的にバナジウム濃度の高い状態となり、給水のORPが330mV程度であってもバナジウムの酸化触媒機能でアニオン交換樹脂が酸化劣化して樹脂破砕に到り、濃縮室の差圧を上昇させる。
When vanadium-containing water is treated with an electrodeionization apparatus, the reason why the pressure difference in the concentration chamber increases with time is as follows.
The vanadium derived from raw water is removed by the RO membrane, for example, when the RO membrane device is provided in front of the electrodeionization device, and the vanadium concentration of the permeated water of the RO membrane device (water supply of the electrodeionization device) is the lower limit of analysis. Less than 1 ppb. However, the vanadium concentration does not become zero, and there is about 0.5 ppb depending on the RO membrane removal performance. Conventionally, it has not been recognized that anion exchange resins undergo oxidative degradation in the presence of such a small amount of vanadium.
However, since vanadium in the feed water of the electrodeionization apparatus exists in the form of vanadic acid (anion species) in the water, it moves electrically in the electrodeionization apparatus and flows into the concentration chamber. A part of the vanadium in the concentration chamber is contained and discharged in the concentrated water, but most of the vanadium is adsorbed and accumulated in the anion exchange resin in the concentration chamber.
For example, as a result of verification by the present inventor, it was found that 1 mg of vanadium is adsorbed per 1 L of anion exchange resin in the concentrating chamber when the water supply with vanadium concentration <1 ppb is treated for about 2 years with an electrodeionization apparatus.
For this reason, even if the vanadium concentration of the feed water is low, the anion exchange resin in the concentration chamber of the electrodeionization device has a locally high vanadium concentration, and the ORP of the feed water is about 330 mV. The vanadium oxidation catalyst function causes the anion exchange resin to oxidize and deteriorate, leading to resin crushing, and increases the differential pressure in the concentration chamber.
そこで、本発明では、電気脱イオン装置の給水のORPが300mV以下となるように調整する。給水のORPが300mV以下であれば給水中の酸化性物質が減少し、バナジウムを触媒とする上記の濃縮室内のアニオン交換樹脂の酸化劣化及びそれによる樹脂破砕は抑制される。
これにより、電気脱イオン装置の濃縮室の差圧上昇が抑制され、長期間の安定運転が可能となる。
Therefore, in the present invention, the ORP of the water supply of the electrodeionization apparatus is adjusted to be 300 mV or less. When the ORP of the feed water is 300 mV or less, the oxidizing substances in the feed water are reduced, and the oxidative deterioration of the anion exchange resin in the concentration chamber using vanadium as a catalyst and the resulting resin crushing are suppressed.
As a result, an increase in the differential pressure in the concentration chamber of the electrodeionization apparatus is suppressed, and long-term stable operation is possible.
本発明において処理対象とする原水は、バナジウムを含有するものであり、バナジウムを含有する天然水、井水、市水、工水、各種工場排水等が挙げられる。原水のバナジウム濃度については特に制限はないが、例えば、原水をRO膜装置及び電気脱イオン装置で順次処理する場合、RO膜装置の給水のバナジウム濃度として1〜40ppbとなるような原水が挙げられる。例えば、図1に示す装置では、原水のバナジウム濃度は通常5〜30ppb程度である。 The raw water to be treated in the present invention contains vanadium and includes natural water, well water, city water, industrial water, various factory effluents and the like containing vanadium. Although there is no restriction | limiting in particular about the vanadium density | concentration of raw | natural water, For example, when processing raw | natural water with a RO membrane apparatus and an electrodeionization apparatus sequentially, raw | natural water which becomes 1-40ppb as vanadium density | concentration of the feed water of RO membrane apparatus is mentioned. . For example, in the apparatus shown in FIG. 1, the vanadium concentration of raw water is usually about 5 to 30 ppb.
このような原水を、図1のように電気脱イオン装置の前段にRO膜装置を備える装置で処理すると、得られるRO膜透過水のバナジウム濃度は通常分析下限の1ppb未満となる。前述の通り、バナジウム濃度<1ppbの水であってもバナジウムを全く含まないものではなく、0.5ppb程度のバナジウムを含有するものである。このようなごく微量のバナジウムを含有する水を電気脱イオン装置の給水とする場合であっても、本発明によるORPの調整を行わないと、後掲の比較例1のように、電気脱イオン装置の濃縮室の閉塞が起こる。 When such raw water is processed by an apparatus equipped with an RO membrane device upstream of the electrodeionization device as shown in FIG. 1, the vanadium concentration of the RO membrane permeated water obtained is usually less than 1 ppb, which is the lower limit of analysis. As described above, even water with a vanadium concentration <1 ppb does not contain vanadium at all, but contains about 0.5 ppb vanadium. Even when water containing such a very small amount of vanadium is used as water supply for the electrodeionization apparatus, if the ORP is not adjusted according to the present invention, the electrodeionization is performed as in Comparative Example 1 described later. Blocking of the concentration chamber of the device occurs.
なお、本発明において、原水は、ORPの調整を行わないと、電気脱イオン装置の給水のORPが300mVより高く、例えば330〜350mVとなるようなものである。 In the present invention, the raw water is such that if the ORP is not adjusted, the ORP of the water supply of the electrodeionization apparatus is higher than 300 mV, for example, 330 to 350 mV.
前述のように、従来、RO膜装置と電気脱イオン装置で処理する場合、RO膜装置や電気脱イオン装置の酸化劣化を防止するために、RO膜装置の給水のORPを350mV以下に調整することが行われているが、この調整でORP330〜350mV程度となった水をRO膜装置及び電気脱イオン装置で処理すると、電気脱イオン装置の給水のORPも330〜350mV程度となり、上記のような濃縮室内のアニオン交換樹脂の酸化劣化が起こる。 As described above, when processing is conventionally performed with an RO membrane device and an electrodeionization device, the ORP of the RO membrane device is adjusted to 350 mV or less in order to prevent oxidative deterioration of the RO membrane device and the electrodeionization device. However, when the water that has become ORP 330 to 350 mV by this adjustment is processed with the RO membrane device and the electrodeionization device, the ORP of the water supply of the electrodeionization device also becomes about 330 to 350 mV, as described above. Oxidative deterioration of the anion exchange resin in the concentrated chamber occurs.
ORPの調整は、還元剤の添加により行うことが好ましく、還元剤としては、重亜硫酸ソーダ等の重亜硫酸塩、亜硫酸ソーダ等の亜硫酸塩、水素ガス等の従来公知の還元剤の1種又は2種以上を用いることができる。
このうち、水素ガスを用いる場合には、比抵抗やシリカ、ホウ素の除去率に影響する電気脱イオン装置の給水の塩類濃度の増加の問題はなく、塩類負荷を抑えて処理水質を維持ないしは向上させることができる。
The ORP is preferably adjusted by adding a reducing agent. As the reducing agent, bisulfite such as sodium bisulfite, sulfite such as sodium sulfite, one kind of conventionally known reducing agents such as hydrogen gas, or 2 More than seeds can be used.
Among these, when hydrogen gas is used, there is no problem of increase in the salt concentration of the feed water of the electrodeionization device which affects the specific resistance and the removal rate of silica and boron, and the treated water quality is maintained or improved by suppressing the salt load. Can be made.
ORPの調整のために、還元剤を添加する場合、還元剤は、電気脱イオン装置の入口で添加してもよく、電気脱イオン装置の前段にRO膜装置を備える場合は、RO膜装置の入口で添加してもよくRO膜装置の出口(RO膜装置の透過水)に添加してもよい。
また、還元剤は、電気脱イオン装置の脱塩室からの処理水の一部を濃縮室に送給する送液ラインに添加してもよい。
When adding a reducing agent for the adjustment of ORP, the reducing agent may be added at the entrance of the electrodeionization apparatus. When the RO membrane apparatus is provided in the front stage of the electrodeionization apparatus, It may be added at the inlet or may be added to the outlet of the RO membrane device (permeated water of the RO membrane device).
Moreover, you may add a reducing agent to the liquid feeding line which supplies a part of treated water from the demineralization chamber of an electrodeionization apparatus to a concentration chamber.
重亜硫酸塩等の還元剤をRO膜装置の入口で添加した場合、重亜硫酸塩等の還元剤はRO膜装置で除去されるため、電気脱イオン装置の負荷にはならないが、RO膜装置の透過水に添加した場合は電気脱イオン装置の負荷となり得る。ただし、後掲の実施例のように、ORPを50〜100mV程度低下させるための還元剤の必要量は比較的少ないため、電気脱イオン装置の塩類負荷を大きく増大させるものではない。従って、RO膜装置の透過水に還元剤を添加することが還元剤の使用量削減の点で好ましい。 When a reducing agent such as bisulfite is added at the entrance of the RO membrane device, the reducing agent such as bisulfite is removed by the RO membrane device, so it does not load the electrodeionization device. When added to the permeate, it can be a load on the electrodeionization device. However, as in the examples described later, since the necessary amount of reducing agent for reducing ORP by about 50 to 100 mV is relatively small, the salt load of the electrodeionization apparatus is not greatly increased. Therefore, it is preferable to add a reducing agent to the permeated water of the RO membrane device from the viewpoint of reducing the amount of reducing agent used.
また、添加した還元剤が、水中の酸化性物質と効率的に反応してこれを還元できる点から、図1のように、RO膜装置5、膜脱気装置6及び電気脱イオン装置7で順次処理する場合、RO膜装置5の透過水に還元剤を添加すると、膜脱気装置6での撹拌作用で、還元剤と水中の酸化性物質との接触効率が向上するため好ましい。 In addition, since the added reducing agent can efficiently react with an oxidizing substance in water and reduce it, the RO membrane device 5, the membrane deaerator 6 and the electrodeionization device 7 as shown in FIG. In the case of sequential treatment, it is preferable to add a reducing agent to the permeated water of the RO membrane device 5 because the contact efficiency between the reducing agent and the oxidizing substance in water is improved by the stirring action of the membrane deaerator 6.
本発明において、電気脱イオン装置の給水(電気脱イオン装置に導入される水)のORPは300mV以下であればよく、通常200〜300mV、好ましくは230〜280mV程度に調整される。電気脱イオン装置の給水のORPが上記上限より高いと電気脱イオン装置の濃縮室のアニオン交換樹脂の酸化劣化を防止し得ない。このORPを過度に低くしようとすると、例えば重亜硫酸塩等の還元剤の添加量が多くなり、RO膜装置或いは電気脱イオン装置の負荷が増大し、好ましくない。
なお、電気脱イオン装置の給水中のDOは通常0.1〜1ppm程度であり、1ppm未満であればDOによる電気脱イオン装置の酸化劣化は抑制される。上記DOの範囲では、給水中のDOは十分に低減されており、DO除去によるORPの影響はほとんどない。
In the present invention, the ORP of water supplied to the electrodeionization device (water introduced into the electrodeionization device) may be 300 mV or less, and is usually adjusted to about 200 to 300 mV, preferably about 230 to 280 mV. If the ORP of the feed water of the electrodeionization apparatus is higher than the above upper limit, oxidative deterioration of the anion exchange resin in the concentration chamber of the electrodeionization apparatus cannot be prevented. If the ORP is excessively lowered, the amount of reducing agent such as bisulfite added is increased, which increases the load on the RO membrane device or the electrodeionization device, which is not preferable.
In addition, DO in the water supply of an electrodeionization apparatus is about 0.1-1 ppm normally, and if it is less than 1 ppm, the oxidative degradation of the electrodeionization apparatus by DO will be suppressed. In the range of the DO, the DO in the water supply is sufficiently reduced, and there is almost no influence of the ORP due to the DO removal.
本発明においては、電気脱イオン装置の濃縮室内のアニオン交換樹脂の酸化劣化を防止するものであり、従って、本発明で用いる電気脱イオン装置は、濃縮室内にアニオン交換樹脂が充填されたものである。通常、濃縮室内には、アニオン交換樹脂と共にカチオン交換樹脂が混合樹脂として充填される。その他、アニオン交換樹脂とカチオン交換樹脂を積層して充填してもよい。
なお、イオン交換樹脂の代りにイオン交換体が充填されるものであってもよい。
In the present invention, the oxidative degradation of the anion exchange resin in the concentration chamber of the electrodeionization apparatus is prevented. Therefore, the electrodeionization apparatus used in the present invention is one in which the anion exchange resin is filled in the concentration chamber. is there. Usually, the concentration chamber is filled with a cation exchange resin as a mixed resin together with an anion exchange resin. In addition, an anion exchange resin and a cation exchange resin may be laminated and filled.
An ion exchanger may be filled instead of the ion exchange resin.
以下に実施例及び比較例を挙げて、本発明をより具体的に説明する。
なお、以下の実施例及び比較例では、RO膜装置、膜脱気装置及び電気脱イオン装置として以下のものを用いた。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
In the following examples and comparative examples, the following were used as the RO membrane device, membrane deaeration device, and electrodeionization device.
<RO膜装置>
日東電工(株)「KROA−2032」 8インチ、12本
<膜脱気装置>
ヘキスト社 「リキセルX−50」 10インチ、1本
<電気脱イオン装置>
栗田工業(株)「KCDI−UPz−100H」 処理量10m3/hr、1台
<RO membrane device>
Nitto Denko "KROA-2032" 8 inches, 12 pieces <Membrane deaerator>
Hoechst “Lixel X-50” 10 inches, 1 piece <Electrical deionization equipment>
Kurita Kogyo Co., Ltd. “KCDI-UPz-100H” throughput 10m 3 / hr, 1 unit
[実施例1]
バナジウム濃度19ppb、ORP約330mVの市水を原水として、RO膜装置、膜脱気装置及び電気脱イオン装置に順次通水して処理した。
RO膜装置の透過水はバナジウム濃度1ppb未満、ORP約330mVで、濃縮水のバナジウム濃度は76ppbであった。このRO膜装置の透過水に重亜硫酸ソーダを添加して膜脱気装置で脱気処理し、バナジウム濃度<1ppb、DO<1ppm、ORP約260mVの脱気処理水を得た。
電気脱イオン装置では、ORP約260mVの脱気処理水を給水としてバナジウム濃度<1ppbの処理水と濃縮水を得た。
この処理を1年間継続して行ったが、電気脱イオン装置の濃縮室の差圧は運転開始時の0.06MPaに対して、1年後の差圧も0.08MPaであり、差圧の上昇は殆ど認められなかった。
[Example 1]
Treated with city water having a vanadium concentration of 19 ppb and an ORP of about 330 mV as raw water, the water was sequentially passed through an RO membrane device, a membrane deaerator, and an electrodeionization device.
The permeated water of the RO membrane device had a vanadium concentration of less than 1 ppb, an ORP of about 330 mV, and the vanadium concentration of the concentrated water was 76 ppb. Sodium bisulfite was added to the permeated water of this RO membrane device, and the membrane was deaerated with a membrane deaerator to obtain deaerated water with a vanadium concentration <1 ppb, DO <1 ppm, and an ORP of about 260 mV.
In the electrodeionization apparatus, treated water and concentrated water having a vanadium concentration <1 ppb were obtained using deaerated treated water having an ORP of about 260 mV as feed water.
Although this treatment was continued for one year, the differential pressure in the concentration chamber of the electrodeionization apparatus was 0.06 MPa at the start of operation, and the differential pressure after one year was 0.08 MPa. Little increase was observed.
[比較例1]
実施例1において、RO膜装置の透過水に重亜硫酸ソーダを添加しなかったこと以外は、同様に処理を行ったところ、1年間の運転で、電気脱イオン装置の濃縮室の差圧は0.30MPaにまで上昇し、運転を継続することが困難となった。
この比較例1において、1年の運転後、電気脱イオン装置の濃縮室内を調べたところ、アニオン交換樹脂が酸化劣化して破砕されていることにより、濃縮室が閉塞していることが確認された。
[Comparative Example 1]
In Example 1, the same treatment was performed except that sodium bisulfite was not added to the permeated water of the RO membrane device. As a result, the differential pressure in the concentration chamber of the electrodeionization device was 0 in one year of operation. The pressure rose to 30 MPa, making it difficult to continue operation.
In Comparative Example 1, after the operation for one year, the concentration chamber of the electrodeionization apparatus was examined, and it was confirmed that the concentration chamber was closed because the anion exchange resin was oxidatively deteriorated and crushed. It was.
1 原水槽
2 膜式前処理装置
3 活性炭塔
4 濾過水槽
5 RO膜装置
6 膜脱気装置
7 電気脱イオン装置
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Membrane-type pretreatment device 3 Activated carbon tower 4 Filtration water tank 5 RO membrane device 6 Membrane deaeration device 7 Electrodeionization device
Claims (4)
該逆浸透膜装置の透過水に還元剤を添加することにより該電気脱イオン装置に導入する該バナジウム含有水のORPを300mV以下に調整することを特徴とするバナジウム含有水の電気脱イオン処理方法。 In the method of treating vanadium-containing water with a reverse osmosis membrane device and then treating with an electrodeionization device, the electrodeionization device is an electrodeionization device in which the concentration chamber is filled with an anion exchange resin,
A method for electrodeionization treatment of vanadium-containing water, wherein the ORP of the vanadium-containing water introduced into the electrodeionization device is adjusted to 300 mV or less by adding a reducing agent to the permeate of the reverse osmosis membrane device. .
該ORP調整手段が、該逆浸透膜装置の透過水に還元剤を添加する還元剤添加手段であることを特徴とするバナジウム含有水の処理装置。 A reverse osmosis membrane apparatus for treating vanadium-containing water, in the device for chromatic and electrodeionization apparatus which processes the permeate from the inverse osmosis unit, electric deionizer, the anion exchange resin is filled in the concentrating compartment Comprising an ORP adjusting means for adjusting the ORP of the vanadium-containing water introduced into the electrodeionization apparatus to 300 mV or less ,
The ORP adjustment means, said reverse osmosis membrane vanadium-containing water treatment apparatus characterized by the reducing agent adding means der Rukoto adding a reducing agent to permeate the device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014204875A JP6561448B2 (en) | 2014-10-03 | 2014-10-03 | Method and apparatus for electrodeionization treatment of vanadium-containing water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014204875A JP6561448B2 (en) | 2014-10-03 | 2014-10-03 | Method and apparatus for electrodeionization treatment of vanadium-containing water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016073902A JP2016073902A (en) | 2016-05-12 |
JP6561448B2 true JP6561448B2 (en) | 2019-08-21 |
Family
ID=55950494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014204875A Active JP6561448B2 (en) | 2014-10-03 | 2014-10-03 | Method and apparatus for electrodeionization treatment of vanadium-containing water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6561448B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7052461B2 (en) * | 2018-03-22 | 2022-04-12 | 栗田工業株式会社 | Operation control method of electric regeneration type deionization device and water treatment device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001191086A (en) * | 2000-01-07 | 2001-07-17 | Kurita Water Ind Ltd | Water treating apparatus |
JP2012206008A (en) * | 2011-03-29 | 2012-10-25 | Kurita Water Ind Ltd | Treatment method of oxidizer-containing water, and water treatment device |
CN103421953A (en) * | 2013-07-29 | 2013-12-04 | 大连博融新材料有限公司 | Method for deep separation of vanadium and molybdenum |
-
2014
- 2014-10-03 JP JP2014204875A patent/JP6561448B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016073902A (en) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5733351B2 (en) | Method and apparatus for treating boron-containing water | |
JP5617231B2 (en) | Method and apparatus for purifying ion exchange resin | |
KR20180131347A (en) | A treatment ystem of wastewater and method using the same | |
JP2009028695A (en) | Apparatus and method for manufacturing pure water | |
JP7289206B2 (en) | Boron removal device, boron removal method, pure water production device, and pure water production method | |
WO2021131360A1 (en) | Pure water production method, pure water production system, ultra-pure water production method, and ultra-pure water production system | |
JP3864934B2 (en) | Pure water production equipment | |
JP2014000575A (en) | Apparatus and method for producing purified water | |
JP2007307561A (en) | High-purity water producing apparatus and method | |
JP3137831B2 (en) | Membrane processing equipment | |
JP2013063372A (en) | Desalination system | |
JP2018001072A (en) | Cleaning method of electric demineralizer | |
JP5257619B2 (en) | Pure water production equipment | |
WO2020184044A1 (en) | Pure-water production device and pure-water production method | |
JP6561448B2 (en) | Method and apparatus for electrodeionization treatment of vanadium-containing water | |
JP2009160500A (en) | Ultrapure water production method and apparatus | |
JP2001191080A (en) | Electric deionizing device and electric deionizing treatment method using the same | |
JP5285135B2 (en) | Water treatment system and water treatment method | |
JP2010036173A (en) | Water treatment system and water treatment method | |
WO2021235107A1 (en) | Boron removal device and boron removal method, and pure water production device and pure water production method | |
CN212269740U (en) | Ultrapure water manufacturing system | |
JP5782675B2 (en) | Water treatment method and ultrapure water production method | |
JP3259557B2 (en) | How to remove organic matter | |
JP5604913B2 (en) | Water treatment method and ultrapure water production method | |
JP2021171678A (en) | Wastewater treatment method, ultrapure water production method, and wastewater treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6561448 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |