以下、多気筒エンジンの吸気構造の実施形態を図面に基づいて詳細に説明する。尚、以下の説明は例示である。図1は、ここに開示する多気筒エンジンの吸気構造が適用された多気筒エンジン(以下、単に「エンジン」という)1を例示する概略図である。また、図2は、4つのシリンダ11周辺の構成を概略的に示す平面図である。そして、図3は、エンジン1の構成を一部省略して示す斜視図であり、図4は、エンジン1の構成を一部省略して示す正面図であり、図5は、エンジン1の構成を一部省略して示す側面図である。
エンジン1は、FF方式の車両に搭載されるガソリンエンジン(特に、4ストローク式の内燃機関)であり、図1に示すように、機械駆動式の過給機(所謂スーパーチャージャ)34を備えた構成としている。
また、本実施形態に係るエンジン1は、図2に示すように、列状に配置された4つのシリンダ(気筒)11を備えており、4つのシリンダ11が車幅方向に沿って並ぶような姿勢で搭載される、いわゆる直列4気筒の横置きエンジンとして構成されている。これにより、本実施形態では、4つのシリンダ11の配列方向(気筒列方向)であるエンジン前後方向が車幅方向と略一致していると共に、エンジン幅方向が車両前後方向と略一致している。
以下、特に断らない限り、前側とはエンジン幅方向の一方側(車両前後方向の前側)を指し、後側とはエンジン幅方向の他方側(車両前後方向の後側)を指し、左側とはエンジン前後方向(気筒列方向)の一方側(車幅方向の左側であり且つ、エンジンフロント側)を指し、右側とはエンジン前後方向(気筒列方向)の他方側(車幅方向の右側であり且つ、エンジンリア側)を指す。
また、以下の記載において、上側とはエンジン1を車両に搭載した状態(以下、「車両搭載状態」ともいう)における車高方向の上側を指し、下側とは車両搭載状態における車高方向の下側を指す。
(エンジンの概略構成)
エンジン1は、前方吸気後方排気式に構成されている。すなわち、エンジン1は、図2に示すように、4つのシリンダ11(図1には1つのシリンダのみを図示)を有するエンジン本体10と、エンジン本体10の前側に配置され、吸気ポート17、18を介して各シリンダ11に連通する吸気通路30と、エンジン本体10の後側に配置され、排気ポート19、19を介して各シリンダ11に連通する排気通路50とを備えている。
本実施形態に係る吸気通路30は、ガスを導く複数の通路と、過給機34やインタークーラ36等の装置と、これらの装置を迂回するバイパス通路40とが組み合わされてユニット化された吸気装置を構成している。以下、その吸気装置を、単に「吸気通路」と呼称する。
エンジン本体10は、吸気通路30から供給されたガスと燃料との混合気を、各シリンダ11内で、所定の燃焼順に従って燃焼させるように構成されている。具体的に、エンジン本体10は、シリンダブロック12と、その上に載置されるシリンダヘッド13とを有している。
シリンダブロック12の内部には、4つのシリンダ11が形成されている。4つのシリンダ11は、クランクシャフト15の中心軸方向(つまり気筒列方向)に沿って列を成すように並んでいる。4つのシリンダ11は、それぞれ円筒状に形成されており、各シリンダ11の中心軸(以下、「気筒軸」という)は、互いに平行に且つ、気筒列方向に対して垂直に延びている。以下、図2に示す4つのシリンダ11を、気筒列方向に沿って右側から順に、1番気筒11A、2番気筒11B、3番気筒11C及び4番気筒11Dという場合がある。
各シリンダ11内には、ピストン14が摺動自在に挿入されている。ピストン14は、コネクティングロッド141を介してクランクシャフト15に連結されている。ピストン14は、シリンダ11及びシリンダヘッド13と共に燃焼室16を区画する。
シリンダヘッド13には、1つのシリンダ11につき、2つの吸気ポート17、18が形成されている。2つの吸気ポート17、18は、それぞれ燃焼室16に連通しており、シリンダ11毎に、第1ポート17と、該第1ポート17に対して気筒列方向に隣接した第2ポート18とを有している。1番気筒11A〜4番気筒11Dのいずれにおいても、第1ポート17と第2ポート18が同じ順番で並んでいる。具体的には、図2に示すように、各シリンダ11において、気筒列方向に沿って右側から順に、第2ポート18と第1ポート17とが並んでいる。
各吸気ポート17、18の上流端は、それぞれ、エンジン本体10の外面に開口しており、吸気通路30の下流端が接続されている。対して、各ポート17、18の下流端は、それぞれ、燃焼室16の天井面に開口している。
以下、1番気筒11Aに通じる第1ポートに対し、符号“17”ではなく“17A”を付すと共に、当該気筒11Aに通じる第2ポートに対し、符号“18”ではなく“18A”を付す場合がある。2番気筒11B〜4番気筒11Dについても同様である。例えば、3番気筒11Cに通じる第2ポートに対し、符号“18”ではなく“18C”を付す場合がある。
2つの吸気ポート17、18には、それぞれ吸気バルブ21が配設されている。吸気バルブ21は、燃焼室16と吸気ポート17、18のそれぞれとの間を開閉する。吸気バルブ21は、吸気動弁機構によって所定のタイミングで開閉する。
吸気動弁機構は、この構成例では、図1に示すように、可変動弁機構である吸気電動VVT(Variable Valve Timing)23を有している。吸気電動VVT23は、吸気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、吸気バルブ21の開弁時期及び閉弁時期は、連続的に変化する。尚、吸気動弁機構は、電動VVTに代えて、液圧式のVVTを有していてもよい。
シリンダヘッド13にはまた、1つのシリンダ11につき、2つの排気ポート19、19が形成されている。2つの排気ポート19、19は、それぞれ燃焼室16に連通している。
2つの排気ポート19、19には、それぞれ排気バルブ22が配設されている。排気バルブ22は、燃焼室16と排気ポート19、19のそれぞれとの間を開閉する。排気バルブ22は、排気動弁機構によって所定のタイミングで開閉する。
排気動弁機構は、この構成例では、図1に示すように、可変動弁機構である排気電動VVT(Variable Valve Timing)24を有している。排気電動VVT24は、排気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、排気バルブ22の開弁時期及び閉弁時期は、連続的に変化する。尚、排気動弁機構は、電動VVTに代えて、液圧式のVVTを有していてもよい。
詳細は省略するが、このエンジン1は、吸気電動VVT23及び排気電動VVT24によって、吸気バルブ21の開弁時期と排気バルブ22の閉弁時期とに係るオーバーラップ期間の長さを調整する。これによって、燃焼室16の中の残留ガスを掃気したり、燃焼室16の中に熱い既燃ガスを閉じ込めたり(つまり、内部EGR(Exhaust Gas Recirculation)ガスを燃焼室16の中に導入したり)する。この構成例においては、吸気電動VVT23及び排気電動VVT24が内部EGRシステムを構成している。尚、内部EGRシステムは、VVTによって構成されるとは限らない。
シリンダヘッド13には、シリンダ11毎にインジェクタ6が取り付けられている。インジェクタ6は、この構成例においては多噴口型の燃料噴射弁であり、燃焼室16の中に燃料を直接噴射するよう構成されている。
インジェクタ6には、燃料供給システム61が接続されている。燃料供給システム61は、燃料を貯留するよう構成された燃料タンク63と、燃料タンク63とインジェクタ6とを互いに連結する燃料供給路62とを備えている。燃料供給路62には、燃料ポンプ65とコモンレール64とが介設している。燃料ポンプ65は、コモンレール64に燃料を圧送する。燃料ポンプ65は、この構成例においては、クランクシャフト15によって駆動されるプランジャー式のポンプである。コモンレール64は、燃料ポンプ65から圧送された燃料を、高い燃料圧力で蓄えるよう構成されている。インジェクタ6が開弁すると、コモンレール64に蓄えられていた燃料が、インジェクタ6の噴口から燃焼室16の中に噴射される。
シリンダヘッド13には、シリンダ11毎に点火プラグ25が取り付けられている。点火プラグ25は、その先端が燃焼室16の中に臨むような姿勢で取り付けられており、燃焼室16の中の混合気を強制的に点火する。一方、点火プラグ25の基端部は、エンジン本体10の外部に露出しており、図3〜図5に示すように、吸気通路30を構成するサージタンク38の上面(以下、「タンク上面」ともいう)38cに沿うように、気筒列方向に並んで設けられている。
吸気通路30は、図3〜図5に示すように、エンジン本体10における前側の側面に接続されており、各シリンダ11の吸気ポート17、18に連通している。吸気通路30は、燃焼室16に導入するガスが流れる通路である。吸気通路30の上流端部には、新気を濾過するエアクリーナ31が配設されている。吸気通路30の下流端近傍には、サージタンク38が配設されている。サージタンク38よりも下流の吸気通路30は、シリンダ11毎に2本ずつ分岐する独立通路39を構成している。尚、これら複数の独立通路39は、「下流側通路」を例示している。
詳細は後述するが、2本の独立通路39のうちの一方が第1ポート17に接続され、他方が第2ポート18に接続される。以下、前者の独立通路39に対して符号“391”を付す一方、後者に対して符号“392”を付す場合がある。このように、独立通路39の下流端が、各シリンダ11の吸気ポート17、18に接続されている。
吸気通路30におけるエアクリーナ31とサージタンク38との間には、スロットルバルブ32が配設されている。スロットルバルブ32は、その開度を調整することによって、燃焼室16に導入する新気の量を調整するよう構成されている。
吸気通路30にはまた、スロットルバルブ32の下流に、過給機34が配設されている。過給機34は、燃焼室16に導入するガスを過給するよう構成されている。この構成例において、過給機34は、エンジン1によって駆動される機械式の過給機である。本実施形態に係る過給機34は、ルーツ式のスーパーチャージャとして構成されているものの、この構成はどのようなものであってもよい。例えば、リショルム式や遠心式であってもよい。
過給機34とエンジン1との間には、電磁クラッチ34aが介設している。電磁クラッチ34aは、過給機34とエンジン1との間で駆動力を伝達させたり、駆動力の伝達を遮断したりする。ECU(Engine Control Unit)など、不図示の制御手段が電磁クラッチ34aの遮断及び接続を切り替えることによって、過給機34のオンとオフとが切り替わる。つまり、このエンジン1は、過給機34のオンとオフとを切り替えることにより、燃焼室16に導入するガスを過給する運転と、燃焼室16に導入するガスを過給しない運転とを切り替えることができるよう構成されている。
吸気通路30における過給機34の下流には、インタークーラ36が配設されている。インタークーラ36は、過給機34において圧縮されたガスを冷却するよう構成されている。この構成例におけるインタークーラ36は、水冷式に構成されている。
また、吸気通路30に組み込まれた各種の装置を結ぶ通路として、吸気通路30は、エアクリーナ31よりも下流側に配設され、エアクリーナ31によって浄化された吸気を過給機34へ導く第1通路33と、過給機34によって圧縮された吸気をインタークーラ36へ導く第2通路35と、インタークーラ36によって冷却されたガスをサージタンク38へ導く第3通路37とを有している。尚、サージタンク38から各吸気ポート17、18にかけての流路長を短くするべく、サージタンク38は、吸気ポート17、18の入口(上流端部)近傍に配設されている。第2通路35及び第3通路37は、過給機34やインタークーラ36と共に、「第1上流側通路」及び「過給通路」を構成している。
また、吸気通路30には、過給機34及びインタークーラ36を迂回するバイパス通路40が設けられている。バイパス通路40は、吸気通路30のうちスロットルバルブ32の下流部から過給機34の上流部にかけての部分と、サージタンク38とを互いに接続する。バイパス通路40には、該バイパス通路40を流れるガスの流量を調整するように構成されたバイパスバルブ41が配設されている。このバイパス通路40は「第2上流側通路」の例示である。
過給機34をオフにしたとき(つまり、電磁クラッチ34aを遮断したとき)には、バイパスバルブ41を全開にする。これにより、吸気通路30を流れるガスは、過給機34をバイパスしてサージタンク38に流入し、独立通路39を介して燃焼室16に導入される。エンジン1は、非過給、つまり自然吸気によって運転する。
過給機34をオンにしたとき(つまり、電磁クラッチ34aを接続したとき)には、バイパスバルブ41の開度を適宜調整する。これにより、吸気通路30において過給機34を通過したガスの一部は、バイパス通路40を通って過給機34の上流に逆流する。バイパスバルブ41の開度を調整することによって、逆流量を調整することができるから、燃焼室16に導入するガスの過給圧を調整することができる。この構成例においては、過給機34とバイパス通路40とバイパスバルブ41とによって、過給システムが構成されている。
排気通路50は、エンジン本体10における後側の側面に接続されており、各シリンダ11の排気ポート19に連通している。排気通路50は、燃焼室16から排出された排気ガスが流れる通路である。排気通路50の上流部分は、詳細な図示は省略するが、シリンダ11毎に分岐する独立通路を構成している。それら独立通路の上流端が、各シリンダ11の排気ポート19に接続されている。排気通路50には、1つ以上の触媒コンバータ51を有する排気ガス浄化システムが配設されている。触媒コンバータ51は、三元触媒を含んで構成されている。尚、排気ガス浄化システムは、三元触媒のみを含むものに限らない。
吸気通路30と排気通路50との間には、外部EGRシステムを構成するEGR通路52が接続されている。EGR通路52は、既燃ガスの一部を吸気通路30に還流させるための通路である。EGR通路52の上流端は、排気通路50における触媒コンバータ51の下流に接続されている。EGR通路52の下流端は、吸気通路30における過給機34の上流且つ、バイパス通路40の上流端よりも上流に接続されている。
EGR通路52には、水冷式のEGRクーラ53が配設されている。EGRクーラ53は、既燃ガスを冷却するよう構成されている。EGR通路52にはまた、EGRバルブ54が配設されている。EGRバルブ54は、EGR通路52を流れる既燃ガスの流量を調整するよう構成されている。EGRバルブ54の開度を調整することによって、冷却した既燃ガス、つまり外部EGRガスの還流量を調整することができる。
この構成例において、EGRシステム55は、EGR通路52及びEGRバルブ54を含んで構成されている外部EGRシステムと、前述した吸気電動VVT23及び排気電動VVT24を含んで構成されている内部EGRシステムとによって構成されている。
(吸気通路の構成)
以下、吸気通路30の構成について詳細に説明する。
最初に、吸気通路30を構成する各部の配置について概略的に説明する。
吸気通路30を構成する各部は、図3〜図5に示すように、いずれもエンジン本体10の前側に配置されている。例えば、過給機34、インタークーラ36及びサージタンク38は、エンジン本体10の前面に対し、車両搭載状態において下方から順に取り付けられている。つまり、過給機34、インタークーラ36及びサージタンク38は、上下方向に沿って並んでいる。第1通路33は、過給機34の左端に接続されており、第2通路35は、過給機34の上面とインタークーラ36の下面とを接続するように設けられている(第2通路35については、図1にのみ図示)。そして、第3通路37は、インタークーラ36の上面から延びた後、サージタンク38の底部に接続されている。一方、バイパス通路40は、第1通路33の途中から分岐して略上方に向かって延びた後、サージタンク38の前部に接続されている。複数の独立通路39は、エンジン本体10とサージタンク38との間に配置されており、吸気ポート17、18の反気筒側端部(入口)に接続されている。
続いて、吸気通路30を構成する各部の構造について、スロットルバルブ32付近の通路構造、過給機34側の通路構造、バイパス側の通路構造、及びサージタンク38付近の通路構造の順で説明する。
−スロットルバルブ付近の通路構造−
第1通路33は、略管状に形成されており、その上流側部分は、スロットルバルブ32が内蔵されたスロットルボディ33aによって構成されている。スロットルボディ33aは、金属製の短筒状に形成されており、両端の開口を略前後に向けた姿勢で、シリンダブロック12左端の前方に配置されている。スロットルボディ33aの高さ位置は、サージタンク38よりも過給機34に近接している。スロットルボディ33aの上流端(前端)には、不図示のダクトを介してエアクリーナ31が接続されている一方、スロットルボディ33aの下流端(後端)には、第1通路33の下流側部分を成す第1通路本体33bが接続されている。
第1通路本体33bは、図3〜図5に示すように、スロットルボディ33aを過給機34に接続するように構成されている。詳しくは、第1通路本体33bは、長筒状に構成されており、シリンダブロック12左端の前方且つ、スロットルボディ33aの後方に配置されている。第1通路本体33bの上流端(前端)には、前述のようにスロットルボディ33aの下流端が接続されている一方、その下流端(後端)には、過給機34の吸入口が接続されている。
また、第1通路本体33bには、EGR通路52が合流する合流部が開口している。図4に示すように、合流部には、EGR通路52の下流端が接続されている。合流部は、少なくともスロットルバルブ32よりも下流側に形成されるようになっている。
また、第1通路本体33bには、バイパス通路40へ分岐する分岐部(不図示)も開口している。この分岐部は、第1通路本体33bにおいて、合流部近傍(ガスの流れ方向に関しては実質的に同じ位置)に形成されており、バイパス通路40の上流端が接続されている。
よって、エアクリーナ31で浄化されて第1通路33へ流入した新気は、スロットルバルブ32を通過した後、合流部から流入した外部EGRガスと合流する。そして、新気と外部EGRガスとが合流したガスは、自然吸気時には、前述の分岐部を介してバイパス通路40へ流入する一方、過給時には、バイパス通路40を逆流したガスと合流しつつ、第1通路本体33bの下流端から過給機34に吸い込まれるようになっている。
−過給機側の通路構造−
前述の如く、本実施形態に係る過給機34は、ルーツ式のスーパーチャージャとして構成されている。詳しくは、過給機34は、気筒列方向に沿って延びる回転軸を有する一対のロータ(不図示)と、ロータを収容しているケーシング34bと、ロータを回転駆動する駆動プーリ(不図示)とを備え、駆動プーリに巻き掛けられた駆動ベルト(不図示)を介してクランクシャフト15に連結されている。駆動プーリと、ロータとの間には、前述の電磁クラッチ34aが介設されており、電磁クラッチ34aの遮断及び接続を切り替えることによって、クランクシャフト15を介して過給機34へ駆動力を伝達したり、駆動力の伝達を遮断したりする。
ケーシング34bは、気筒列方向に延びる筒状に形成されており、ロータの収容空間と、過給機34を通過するガスの流路とを区画している。詳しくは、ケーシング34bの長手方向左端部には、ロータによって圧縮するガスを吸い込む吸入口が開口しており、第1通路33の下流端が接続されている。その一方で、ケーシング34bの上部には、ロータによって圧縮されたガスを吐き出す吐出口が開口しており、第2通路35の上流端が接続されている。
駆動プーリは、ケーシング34bに収容されたロータを回転駆動するように構成されている。詳しくは、駆動プーリは、ケーシング34bの右端から突出し且つ、ケーシング34bに対して略同軸に延びる軸状に形成されている。駆動プーリの先端には、前述の駆動ベルトが巻き掛けられている。
第2通路35は、上下方向に短く延びる略角筒状に形成されており、過給機34をインタークーラ36に接続するように構成されている。第2通路35の上流端には、前述のように過給機34の吐出口が接続されている一方、その下流端には、インタークーラ36の導入口が接続されている。
前述の如く、本実施形態に係るインタークーラ36は、水冷式に構成されており、ガスの冷却機能を有するコア(不図示)と、コアを収容するクーラハウジング36cとを備えている。
クーラハウジング36cは、過給機34のケーシング34b上方に配置されており、コアの収容空間を区画していると共に、吸気通路30のうち第2通路35と第3通路37との間に介設された流路を構成している。
具体的に、クーラハウジング36cは、下面と上面とが開口した矩形薄箱状に形成されており、下面側の開口部(ガスの導入口)には、前述のように第2通路35の下流端が接続されている。対して、クーラハウジング36c上面側の開口部(ガスの導出口)には、第3通路37の上流端が接続されている。
第3通路37は、インタークーラ36のクーラハウジング36c上方且つ、サージタンク38の下方に配置されており、インタークーラ36をサージタンク38に接続するように構成されている。詳しくは、第3通路37は、上下方向に延びる短筒状に形成されており、その上流端(下端)には、前述のようにクーラハウジング36c上面側の開口部が接続されている一方、その下流端(上端)には、サージタンク38の底部に設けられた第1開口部38aが接続されている。
第1通路33から過給機34に吸い込まれたガスは、このようにして構成された過給通路を介してサージタンク38へ至る。
つまり、過給時においては、エンジン1が運転している最中、クランクシャフト15からの出力が、駆動ベルト及び駆動プーリを介して伝達されて、ロータを回転させる。ロータが回転することにより、過給機34は、第1通路33から吸い込んだガスを、圧縮した上で吐出口から吐き出す。吐き出されたガスは、第2通路35を介してインタークーラ36に向かって上方へ流れる。
インタークーラ36に流入したガスは、コアを通過する際に冷却される。冷却されたガスは、インタークーラ36から流出した後、第3通路37を介してサージタンク38に流入する。
−バイパス側の通路構造−
バイパス通路40は、第1通路33の分岐部から略右方へ向かって延びた後に、上方に向かって延びるように方向転換をする。バイパス通路40は、上方に向かって延びた後、後方に向かうように再び方向転換をして、サージタンク38の前部に接続されるようになっている。
バイパス通路40には、バイパスバルブ41が内蔵されたバルブボディ41aが介設されている。バルブボディ41aは、短筒状に形成されており、第3通路37の前方において、両端の開口を上下に向けた姿勢で配置されている。
バイパス通路40のうちバルブボディ41aよりも下流側部分は、図5等に示すように、エルボ状の管継手として構成されており、バルブボディ41aの上方且つ、サージタンク38の前方において、下方と後方とに開口を向けた姿勢で配置されている。この管継手の上流端(下端)には、バルブボディ41aの上端が接続されている一方、その下流端(後端)には、サージタンク38の前部に設けられた第2開口部38bが接続されている。
自然吸気時において、バイパス通路40に流入したガスは、該バイパス通路40を成す各部を通過してサージタンク38へ至る。
つまり、スロットルバルブ32を通過したガスは、バイパスバルブ41の開閉状況に応じて、第1通路33の途中からバイパス通路40に流入する。バイパス通路40に流入したガスは、バルブボディ41a等を介してサージタンク38に流入する。
対して、過給時においては、サージタンク38からバイパス通路40に逆流したガスは、バイパス通路40の各部を逆向きに通過して、第1通路33に流出する。
−サージタンク付近の通路構造−
図6はサージタンク38を示す斜視図であり、図7はサージタンク38の概略的な形状を説明するための図であり、図8はサージタンク38の側面図である。
また、図9はサージタンク38のA矢視図(図8の矢印Aを参照)であり、図10はサージタンク38のB矢視図(図8の矢印Bを参照)であり、図11はサージタンク38のC矢視図(図8の矢印Cを参照)であり、図12はサージタンク38のD矢視図(図8の矢印Dを参照)である。
また、図13はサージタンク38のa−a断面図(図8のa−a断面を参照)であり、図14はサージタンク38のb−b断面図(図8のb−b断面を参照)であり、図15はサージタンク38のc−c断面図(図9のc−c断面を参照)である。
図6〜図8に示すように、吸気通路30の下流端においては、各々の下流端部が4組の吸気ポート17、18の各々に接続された4組の独立通路391、392と、4組の独立通路391、392の各々の上流端部が、対応するシリンダ11の並ぶ順に従って列状に並んで接続されたサージタンク38とが一体的に形成されている。このサージタンク38は、前述のように、吸気ポート17、18の反気筒側端部に対し、4組の独立通路391、392を挟んで反対側に対向して配置されている。後述のように、各独立通路391、392をそれぞれ短筒状に形成すると、このような配置と相俟って、サージタンク38は、吸気ポート17、18の入口(上流端部)近傍に位置することになる。このことは、サージタンク38から吸気ポート17、18にかけての流路長を短くする上で有効である。
そして、図9に示すように、サージタンク38は、一稜線を気筒列方向に沿わせた三角錐状に構成されている。具体的に、このサージタンク38は、気筒列方向に沿って配置された第1頂点V1及び第2頂点V2と、第1頂点V1及び第2頂点V2を結んだ線分を挟んで4組の独立通路391、392の反対側に位置し、且つ気筒列方向に直交する方向(具体的には、上下ないし前後方向)に沿って配置される第3頂点V3及び第4頂点V4と、を結んだ三角錐状のスペースを区画するよう構成されている。
本実施形態では、図13〜図15等に示すように、第1頂点V1は、気筒列方向においては右側且つ、上下方向においては各吸気ポート17、18の入口付近(具体的には、1番気筒11Aに係る第2ポート18A付近)に配置されている。また、第2頂点V2は、気筒列方向においては左側且つ、上下方向においては第1頂点V1と略同じ高さ(具体的には、4番気筒11Dに係る第1ポート17D付近)に配置されている。
すなわち、サージタンク38は、第1頂点V1と第2頂点V1を結んだ線分に対応する稜線を、気筒列方向に沿わせるように且つ吸気ポート17、18の入口に対向させるような姿勢となっている。そのような姿勢とすることで、第1頂点V1に対応する頂部は右方に向かって突出し、第2頂点V2に対応する頂部は方に向かって突出するようになる。
対して、図13〜図15等に示すように、第3頂点V3は、気筒列方向においては第1頂点V1と第2頂点V2の中間(すなわち、2番気筒11Bと3番気筒11Cの中間)且つ、上下ないし前後方向においては第1頂点V1と第2頂点V2の斜め下前方に配置されている。また、第4頂点V4は、気筒列方向においては第3頂点V3と同じ位置に配置されており、上下ないし前後方向においては第1頂点V1と第2頂点V2の斜め上前方に配置されている。
すなわち、サージタンク38は、第3頂点V3と第4頂点V4を結んだ線分に対応する稜線を上下ないし前後方向に沿わせると共に、第3頂点V3に対応する頂部を斜め下前方に向かって突出させる一方で、第4頂点V4に対応する頂部を斜め上前方に向かって突出させるような姿勢となっている。尚、第3頂点V3と第4頂点V4との相対位置関係については、ここに開示するものに限られない。例えば、第3頂点V3と第4頂点V4を前後方向において同じ位置としてもよいし、いずれか一方を前方に突出させてもよい。
前述の如く、第3頂点V3及び第4頂点V4は、気筒列方向においては、双方とも、第1頂点V1と第2頂点V2の中間に配置されている。このような配置とすることは、サージタンク38内に区画されるスペースが、第3頂点V3と第4頂点V4を含んだ平面に関して鏡映対称とすることに等しい。これにより、サージタンク38内に区画されるスペースは、気筒列方向において左右対称となる。
また、図6〜図15に示すように、サージタンク38の底部、詳しくは、サージタンク38における第3頂点V3付近の部位には、第1開口部38aが開口しており、前述のように第3通路37の下流端部が接続されている。
第1開口部38aの中心軸は、図13〜図15に示すように、第3頂点V3と第4頂点V4とを含んだ平面に沿って直上方に向かって延びた後、下側から上方に向かうにつれて、前側から後方へ向かうように曲げられている。このような構成とすることで、第1開口部38aを介してサージタンク38に流入したガスを、斜め上後方に指向させ、ひいては気筒列方向の右側と左側とに均等に分配する上で有利になる。
対して、図6〜図15に示すように、サージタンク38の前部、詳しくは、サージタンク38における第4頂点V4付近の部位には、第2開口部38bが開口しており、前述のようにバイパス通路40の下流端部が接続されている。
第2開口部38bの中心軸は、図13〜図15に示すように、サージタンク38の上部内壁面(具体的には、第1頂点V1と、第2頂点V2と、第4頂点V4とを結んだ平面に対応する内壁面)に沿うように前方に向かって延びている。このような構成とすることで、第2開口部38bを介してサージタンク38に流入したガスを、その上部内壁面に沿わせて導くことが可能となる。
前述のように、複数の独立通路39は、各シリンダ11につき、第1ポート17に接続される独立通路391と、第2ポート18に接続される独立通路392と、有している。これらの独立通路391、392の各々の上流端部は、サージタンク38に対し、対応するシリンダ11の並ぶ順に従って列状に並んで接続されている。
具体的に、サージタンク38の後部には、図9〜図12に示すように、2本で1組を成す独立通路391、392が気筒列方向に沿って並んだ状態で4組(つまり、計8本)形成されている。これらの独立通路391、392は、それぞれ、車両搭載状態において後方に向かって略ストレートに延びる短筒状の通路として形成されており、その一端側(上流側)はサージタンク38内の空間に連通している一方、他端側(下流側)はエンジン本体10側(後側)に開口している。
また、図13〜図15に示すように、4組の独立通路391、392の各々の上流端部は、サージタンク38において、第1頂点V1と第2頂点V2とを結ぶ稜線に沿って並んで接続されている。これにより、各独立通路391、392の上流端部は、図15に示すように、第1頂点V1と、第2頂点V2と、第4頂点V4とを結んだ平面と、第1頂点V1と、第2頂点V2と、第3頂点V3とを結んだ平面とが交わる角部に配置されることになる。
4組の独立通路391、392は、それぞれ、4組の吸気ポート17、18の各々に対応するように配設されている。既に説明したように、4組の独立通路391、392は、それぞれ、第1ポート17に対応する独立通路391と、第2ポート18に対応する独立通路392とから構成されており、吸気通路30をエンジン本体10に組み付けると、第1ポート17と、それに対応する独立通路391とが独立した1本の通路を構成する一方、第2ポート18と、それに対応する独立通路392とが、独立した1本の通路を構成する。このようにして、8本の独立した通路が構成されるようになっている。
また、図13及び図14から見て取れるように、サージタンク38内に区画されるスペースは、4つの頂点V1〜V4を結んだ三角錐に対し、左右の両端が膨出している。
詳しくは、図14に示すように、サージタンク38において、1番気筒11Aに係る独立通路391、392の下流端部に対向する内壁面38dは、斜め右前方に凸を成すように湾曲しており、第1頂点V1と第4頂点V4とを結んだ線分に対して斜め右前方に膨出している。このような傾向は、気筒列方向の左側においても同様である。すなわち、サージタンク38において、4番気筒11Dに係る独立通路391、392の下流端部に対向する内壁面38dは、第1頂点V1と第4頂点V4とを結んだ線分に対して斜め左前方に膨出している。
また、1番気筒11Aの第1ポート17Aに係る独立通路391と、2番気筒11Bの第2ポート18Bに係る独立通路392とは、気筒列方向の右側部分において隣接しており、図14に示すように、前方に向かって凸を成すような断面円弧状の内壁面38eを介して繋がっている。また、2番気筒11Bの第1ポート17Bに係る独立通路391と、3番気筒11Cの第2ポート18Cに係る独立通路392とは、気筒方向の中央付近において隣接しており、前方に向かって凸を成すような断面円弧状の内壁面38eを介して繋がっている。3番気筒11Cの第1ポート17Cに係る独立通路391と、4番気筒11Dの第2ポート18Dに係る独立通路392に関しても同様である。
また、前述のように、点火プラグ25は、タンク上面38cに沿って配設されている。図6〜図15に示すように、このタンク上面38cは、第1頂点V1と、第2頂点V2と、第4頂点V4とを結んだ平面に対応している。
(サージタンクに流入するガスの圧損について)
図16〜図17は、サージタンク38周辺の構成を従来構成と比較して示す図である。
エンジン1は、該エンジン1を運転するためのECUを備えている。ECUは、各種のセンサより出力された検知信号に基づいて、エンジン1の運転状態を判断すると共に、種々のアクチュエータの制御量を計算する。そして、ECUは、計算した制御量に対応する制御信号を、インジェクタ6、点火プラグ25、吸気電動VVT23、排気電動VVT24、燃料供給システム61、スロットルバルブ32、EGRバルブ54、過給機34の電磁クラッチ34a、及びバイパスバルブ41等に出力し、エンジン1を運転する。
エンジン1の運転領域は、例えばエンジン回転数と負荷とによって区分されるようになっており、ECUは、各領域に対応した運転状態を実現するように、各アクチュエータを制御する。
例えば、所定負荷よりも低負荷側の運転領域(以下、「燃費領域」という)では、自然吸気によってエンジン1を運転する(つまり、電磁クラッチ34aを遮断してバイパスバルブ41を全開にする)一方、その所定負荷よりも高負荷側の運転領域(以下、「過給域」という)では、過給機34を駆動することにより、各シリンダ11に導入されるガスを過給する(つまり、電磁クラッチ34aを接続してバイパスバルブ41の開度を調整する)ようになっている。
よって、過給域においては、第1上流側通路を構成する第3通路37を介してサージタンク38にガスが流入する一方、燃費領域においては、第2上流側通路としてのバイパス通路40を介してサージタンク38にガスが流入するようになる。
近年、このような構成としたエンジンにおいて、その熱効率を改善するべく、燃焼安定性の確保、及びポンプ損失の低減等が設けられている。そうした要求を満足するための方策として、サージタンク周辺の構成に工夫を凝らすことにより、吸気系におけるガスの圧力損失、及び圧力損失の気筒間差を低減することが検討されている。
まず、図16〜図17に示した従来構成を適用した場合について説明する。ここで、図16〜図17の上段に示したサージタンク1038は、従来構成に係るものであり、気筒列方向に延びる略管状に形成されている。その気筒列方向中央部には、過給機を介設させた第1上流側通路1037が接続されているのに対し、その気筒列方向一端部には、過給機上流側の通路から過給機を迂回して延びる第2上流側通路1040が接続されている。本実施形態と同様に、エンジンの運転領域に応じて、第1上流側通路1037および第2上流側通路1040の一方からガスが流入するようになっている。その他の構成に関しては、本実施形態に係るサージタンク38と同様である。
このような構成とした場合、例えば過給域においては、図16の上段に示すように、サージタンク1038に流入したガスは、気筒列方向端側に配置されたシリンダに至る際、気筒列方向中央部において方向転換し、その中央部から端側に向かって流れることになる(矢印fcを参照)。そうすると、気筒列方向端側のシリンダに関しては、その中央側に配置されたシリンダと比較して流路長が相対的に長くなることと、方向転換する際の流れの剥離の影響(例えば、方向転換するときの曲がり角に渦が生じてしまいガスが流れ難くなる)とが相俟って、圧力損失が相対的に大きくなる。その結果、圧力損失に気筒間差が生じてしまう。また、サージタンク1038を略管状に形成したことに起因して、その流路径に応じた圧力損失も生じ得る。
そこで、例えばサージタンク1038周辺の構成を変更することにより、第1上流側通路1037からサージタンク1038を介して各シリンダへ至る流路の形態を改良し、そのことで、圧力損失の気筒間差等を低減することが考えられる。
しかしながら、このエンジンにおいては、既に説明したように、第1上流側通路1037ばかりでなく、第2上流側通路1040からもガスが流入する場合がある。この場合、各通路1037、1040とサージタンク1038との接続構造に応じて、前述の第1上流側通路1037に係る流路と、第2上流側通路1040からサージタンク1038を介して各シリンダへ至る流路との間で、気筒間差の傾向が相違することになる。例えば、従来構成の場合、過給域においては、気筒列方向の両端に位置するシリンダにおいて、それぞれ圧力損失の増大が懸念される。しかし、燃費領域においては、図17の上段に示すように、気筒列方向の一端と他端とで流路長が相違してしまい、一端側では圧力損失が十分に抑制される一方、他端側では圧力損失の増大が懸念されることになる(矢印fnを参照)。よって、仮に、第1上流側通路1037から流入するガスに関して気筒間差が低減されたとしても、第2上流側通路1040から流入するガスに関しては、気筒間差が十分に低減されない可能性がある。
一方、本実施形態によれば、図16の下段に示すように、サージタンク38内には三角錐状のスペースが区画されている。詳しくは、第1上流側通路を成す第3通路37からサージタンク38に流入したガスは、図16の下段に示す断面視において、第1開口部38a付近に位置する第3頂点V3と、気筒列方向の右側に位置する第1頂点V1と、気筒列方向の左側に位置する第2頂点V2とを結ぶ三角形に対応するスペースを介して各シリンダ11へ至るようになる(矢印Fcを参照)。
ここで、図16の下段から見て取れるように、第3頂点V3は、第1頂点V1と第2頂点V2を結んだ線分を挟んで複数の独立通路39の反対側に位置している。このことは、第3頂点V3付近の部位からサージタンク38に流入したガスは、第1頂点V1と第2頂点V2を結んだ線分に向かってテーパ状に拡径した流路を介することにより、各独立通路39に至ることを意味している。また、三角錐状のスペースとすることで、図16の下段に示した一平面においてのみ拡径するのではなく、例えば図14に示すように、高さ方向など、複数の方向において立体的に拡径するようになる。
そのようにして流路を拡径させると、図16の上段に示すサージタンク1038とは異なり、気筒列方向中央部において方向転換をせずとも、気筒列方向端側に位置するシリンダ11に向かって斜めにガスを流すことが可能になる。そのことで、方向転換を伴う従来構成と比較して、流路長の気筒間差を低減することが可能になる。さらに、方向転換を伴わない分、流れの剥離を抑制することも可能になる。
加えて、テーパ状に流路を拡径させた分、各シリンダ11へ至る流路の横断面を広くすることも可能となる。このことは、流路径に応じた圧力損失を低減する上で有効となる。
このように、流路長の気筒間差の低減と、流れの剥離の抑制と、流路径に応じた圧力損失の低減とが相俟って、第3通路37から第1開口部38aを介して流入するガスの圧力損失、及び圧力損失の気筒間差を低減することができる。
しかも、本実施形態によれば、図17の下段から見て取れるように、第2上流側通路としてのバイパス通路40からサージタンク38に流入するガスもまた、バイパス通路40が接続される第2開口部38b付近に位置する第4頂点V4と、前述の第1頂点V1及び第2頂点V2とを結んだ三角形に対応するスペースを介して各シリンダ11へ至るようになる(矢印Fnを参照)。
ここで、第4頂点V4は、第3頂点V3と同様に、第1頂点V1と第2頂点V2を結んだ線分を挟んで複数の独立通路39の反対側に位置している。そうすると、バイパス通路40から第2開口部38bを介して流入するガスは、第3通路37から流入するガスと同様の形状を有する流路を介して各独立通路39に至るようになる。
したがって、第3通路37に係る流路と、バイパス通路40に係る流路との間で、気筒間差の傾向を同様にすることが可能となる。そのことで、バイパス通路40から流入するガスに関しても、第3通路37から流入するガスと同様に、その圧力損失、及び圧力損失の気筒間差を低減することができる。
かくして、本実施形態によれば、第3通路37とバイパス通路40との間で気筒間差の傾向を同様とし、ひいては各通路から流入するガスの圧力損失、及び圧力損失の気筒間差を同時に低減することができる。
また、本実施形態によれば、各独立通路391、392の上流端部は、図13〜図15等に示すように、サージタンク38において、第1頂点V1と第2頂点V2とを結ぶ稜線に沿って並んで接続されている。このような構成とすることで、第3通路37及びバイパス通路40の各々から各独立通路391、392に向かってガスをスムースに流すことができる。
また、本実施形態によれば、図4等に示すように、タンク上面38cを利用して点火プラグ25を配設することができる。すなわち、例えば図6に示すように、タンク上面38cは、少なくとも気筒列方向に関しては平坦となる。そのため、点火プラグ25を気筒列方向に並べる際に、サージタンク38との干渉を防止して、設置性を確保することが可能となる。
また、本実施形態によれば、第3通路37は、吸気通路30において、過給機34が介設された過給通路を構成している。一方、前述のように、バイパス通路40は過給機34を迂回してサージタンク38に接続されている。このような構成は、過給域と燃費領域とを併用する上で有効である。
また、本実施形態によれば、サージタンク38に対して過給機34を下方に配置すると共に、過給機34からサージタンク38へ向かって延びる通路(具体的に、クーラハウジング36cや第3通路37から成る通路)を、第3頂点V3と第4頂点V4とのうち、下方に位置する第3頂点V3付近に接続することで、過給機34や各部を結ぶ通路をコンパクトにレイアウトしつつ、ガスの圧力損失、及び圧力損失の気筒間差を低減することができる。
また、図14に示すように、サージタンク38内に区画されるスペースにおいて、4つの頂点V1〜V4を結んだ三角錐に対し、左右両端の内壁面38d、38dが膨出している。このように構成すると、各内壁面38d、38dを膨出させた分、左右両端の容量(サージタンク38の容積)を大きくすることが可能となる。そのことで、気筒列方向の端側における圧力損失を抑制する上で有利になる。
また、図14に示すように、1番気筒11Aの第1ポート17Aに係る独立通路391と、2番気筒11Bの第2ポート18Bに係る独立通路392とは、前方に向かって凸を成すような断面円弧状の内壁面38eを介して繋がっている。
本実施形態に係るサージタンク38を適用した場合、例えばバイパス通路40からサージタンク38に流入したガスは、概ね、後方に向かって流れるようになる。そうしたガスには、前述の内壁面38eに向かって流れるガスも含まれることになる。前記の構成によれば、内壁面38eに衝突したガスを、1番気筒11Aに係る独立通路39に流入するガスと、2番気筒11Bに係る独立通路39に流入するガスとにスムースに分配することが可能となる。そのことで、圧力損失の気筒間差を低減する上で有利になる。このことは、他の内壁面38eに関しても同様である。
また、図3〜図5に示すように、スロットルバルブ32が内蔵されたスロットルボディ33aの高さ位置は、サージタンク38よりも過給機34に近接している。このような構成とすると、スロットルバルブ32から過給機34に至る流路の容積を小さくすることができる。このことは、過給機34、インタークーラ36、及びサージタンク38を上下方向において一列に並べたことと相俟って、過給機34のレスポンスを確保する上で有利になる。
また、スロットルバルブ32と過給機34との間にはEGR通路52の合流部が配設されているから、EGR通路52から過給機34に至る流路の容積も小さくすることができる。このような構成とすると、外部EGRのレスポンスという観点からも有利になる。
《他の実施形態》
前記実施形態では、サージタンク38のタンク上面38cに沿って点火プラグ25を配設する構成について説明したが、この構成には限られない。例えば、点火プラグ25ではなく、インジェクタ6をタンク上面38cに沿わせて配設したり、点火プラグ25とインジェクタ6の両方をタンク上面38cに沿わせて配設したりしてもよい。
また、前記実施形態では、サージタンク38の下方に過給機34を配置する構成について説明したが、この構成には限られない。例えば、サージタンク38の上方に過給機34を配置してもよい。また、サージタンク38と過給機34との相対位置関係に拘わらず、第3頂点V3及び第4頂点V4の位置関係を変更してもよい。例えば、サージタンク38を上下逆さまにしてもよい。
また、前記実施形態では、直列4気筒エンジンについて例示したが、この構成には限られない。例えば、直列3気筒エンジンや直列6気筒エンジンなど、少なくとも3以上の気筒を有するエンジンであればよい。