JP6339253B1 - Rotating body damping mechanism, damping flange, and damping method - Google Patents
Rotating body damping mechanism, damping flange, and damping method Download PDFInfo
- Publication number
- JP6339253B1 JP6339253B1 JP2017027752A JP2017027752A JP6339253B1 JP 6339253 B1 JP6339253 B1 JP 6339253B1 JP 2017027752 A JP2017027752 A JP 2017027752A JP 2017027752 A JP2017027752 A JP 2017027752A JP 6339253 B1 JP6339253 B1 JP 6339253B1
- Authority
- JP
- Japan
- Prior art keywords
- rotation axis
- rotation
- rotating body
- rotating
- rotating shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013016 damping Methods 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims description 9
- 238000007667 floating Methods 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 description 82
- 238000006243 chemical reaction Methods 0.000 description 26
- 238000005520 cutting process Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000005489 elastic deformation Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000008602 contraction Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
Landscapes
- Auxiliary Devices For Machine Tools (AREA)
Abstract
【課題】 回転軸のビビリ振動を低減することが可能な制振機構を提供する。【解決手段】 回転軸を有する回転体に組み込まれる制振機構であって、回転体は、回転軸を中心とした所定の円周上に回転対称に配置された複数の空間部を含む空間群を1周以上有し、1以上の空間群の複数の空間部の各々の内部に、回転軸に平行な回転軸方向、回転軸に垂直な半径方向、及び、回転体の回転方向に所定のギャップを有して収容され、回転体に対して遊動可能な複数の錘部を含む錘群を有する。【選択図】 図1PROBLEM TO BE SOLVED: To provide a damping mechanism capable of reducing chatter vibration of a rotating shaft. A vibration control mechanism incorporated in a rotating body having a rotating shaft, wherein the rotating body includes a plurality of space portions arranged rotationally symmetrically on a predetermined circumference around the rotating shaft. In each of the plurality of space portions of the one or more space groups, the rotation axis direction parallel to the rotation axis, the radial direction perpendicular to the rotation axis, and the rotation direction of the rotating body It has a weight group that includes a plurality of weight parts that are accommodated with a gap and are movable with respect to the rotating body. [Selection] Figure 1
Description
本発明は、回転体のビビリ振動を抑えることが可能な制振機構、制振フランジ、及び、制振方法に関する。 The present invention relates to a vibration damping mechanism, a vibration damping flange, and a vibration damping method capable of suppressing chatter vibration of a rotating body.
面粗度で評価する研磨品質は、回転する砥石と、砥石と一体になって回転する回転軸の振動の影響を受ける。砥粒はピッチの短い切刃と考えられ、加工表面の凹凸の山を削る時高周波の衝撃力を受け回転軸の振れを起こす。この振動は回転トルクの強制力ではなく回転抵抗反力が加振力であり、回転体の材料と構造で決まる自励振動を引き起こしビビリ振動の元であると考えられる。 The polishing quality evaluated by the surface roughness is affected by the vibration of the rotating grindstone and the rotating shaft that rotates integrally with the grindstone. Abrasive grains are considered to be cutting blades with a short pitch, and when the uneven surface of the processed surface is cut, the rotating shaft is shaken due to a high-frequency impact force. This vibration is considered to be the source of chatter vibration, which is not a forced force of rotational torque but a rotational resistance reaction force, which causes self-excited vibration determined by the material and structure of the rotating body.
回転体は駆動トルクに対して加工表面や路面からの衝撃反力で回転中心線と重心線(回転面の慣性モーメントが最小の線)が離れる偏心を起こし、偏心によって回転中心に作用する遠心力が不釣り合いとなり遠心力が発生し、さらなる偏心が増大する。この偏心遠心力が回転体の共振現象でビビリ振動を引き起こす。共振する前の加振力を抑える必要がある。 The rotating body causes an eccentricity in which the rotation center line and the center of gravity line (the line with the smallest moment of inertia of the rotating surface) are separated from the driving torque by the impact reaction force from the machining surface or road surface, and the centrifugal force acting on the rotation center due to the eccentricity Becomes unbalanced, centrifugal force is generated, and further eccentricity increases. This eccentric centrifugal force causes chatter vibration due to the resonance phenomenon of the rotating body. It is necessary to suppress the excitation force before resonance.
このような、回転軸の振動を抑える装置としては、例えば、同質量・同形状である複数個のウェイトと、該複数のウェイトをそれぞれ任意方向に揺動自在に収納しうる複数の収納室が穿設されたウェイトホルダーとを含んで構成されたバランサ―がある(例えば、特許文献1参照)。 As such an apparatus for suppressing vibration of the rotating shaft, for example, there are a plurality of weights having the same mass and shape, and a plurality of storage chambers capable of swinging the plurality of weights in an arbitrary direction. There is a balancer that includes a weight holder that is drilled (see, for example, Patent Document 1).
しかしながら、重心位置の調整であるバランス取りだけではなく回転体のビビリ振動の原因となる加工表面や路面から受ける衝撃反力を如何に緩和するか考慮する必要がある。 However, it is necessary to consider how to mitigate the impact reaction force received from the processing surface and road surface that causes chatter vibration of the rotating body as well as balancing the center of gravity position.
また、回転軸のビビリ振動の原因となる衝撃反力は回転砥石に対して、円周方向、それに垂直な半径方向、そして回転軸方向の3つの方向の動的に変動するベクトル合力を想定する必要がある。 Further, the impact reaction force that causes chatter vibration of the rotating shaft is assumed to be a vector resultant force that dynamically fluctuates in three directions of the circumferential direction, the radial direction perpendicular to the rotating grindstone, and the rotating shaft direction. There is a need.
本発明は、このような従来の問題を解決するためになされたもので、回転軸のたわみの原因となる半径方向、回転軸のねじれの原因となる円周方向、そして、回転軸の伸縮の原因となる回転軸方向の衝撃力を緩和し回転軸ビビリ振動を抑制することが可能な制振フランジを提供することである。 The present invention has been made to solve such a conventional problem. The radial direction causes the deflection of the rotating shaft, the circumferential direction causes the twist of the rotating shaft, and the expansion and contraction of the rotating shaft. It is an object of the present invention to provide a damping flange capable of relieving the impact force in the direction of the rotating shaft and suppressing the rotating shaft chatter vibration.
本発明は、回転軸を有する回転体に組み込まれる制振機構であって、回転体は、回転軸を中心とした所定の円周上に回転対称に配置された複数の球状空間部を含む空間群を1周以上有し、1以上の空間群の複数の球状空間部の各々の内部に、回転軸に平行な回転軸方向、回転軸に垂直な半径方向、及び、回転体の回転方向に、回転体への衝突のための所定のギャップを有して収容され、回転体に対して、回転軸に平行な回転軸方向、回転軸に垂直な半径方向、及び、回転体の回転方向の、全方向に衝突する遊動可能な、形状が球のそれぞれ1つの錘部を含む錘群を有し、回転軸に平行な回転軸方向、回転軸に垂直な半径方向、及び、回転体の回転方向の所定のギャップは、錘部が回転体と一体化しないため、かつ、回転体への錘部の衝突による衝撃力を伝えるためのギャップ、すなわち、前記球状空間部の内径と、前記形状が球の錘部の外径との差が、0.1mmから0.5mmである。
The present invention is a vibration damping mechanism incorporated in a rotating body having a rotating shaft, and the rotating body includes a plurality of spherical space portions arranged rotationally symmetrically on a predetermined circumference around the rotating shaft. In each of the plurality of spherical space portions of the one or more space groups, the rotation axis direction parallel to the rotation axis, the radial direction perpendicular to the rotation axis, and the rotation direction of the rotating body are provided. , With a predetermined gap for collision with the rotating body, with respect to the rotating body, in the direction of the rotation axis parallel to the rotation axis, the radial direction perpendicular to the rotation axis, and the rotation direction of the rotation body , possible floating of collision in all directions, the shape will have a weight groups each containing one weight part of the sphere, parallel to the rotation axis direction to the rotation axis, perpendicular radial to the rotation axis, and the rotation of the The predetermined gap in the rotation direction is due to the fact that the weight part is not integrated with the rotating body and the weight part collides with the rotating body. Gap for transmitting the impact force, i.e., the inner diameter of the spherical space, the difference between the outer diameter of the weight of the shaped sphere is 0.5mm from 0.1 mm.
また、本発明は、回転軸を有する回転体に取り付けられる制振フランジであって、回転体への固定部と、所定の円周上に回転対称に配置された複数の球状空間部を含む空間群を1周以上有するフランジ本体部と、1以上の空間群の複数の球状空間部の各々の内部に、回転軸に平行な回転軸方向、回転軸に垂直な半径方向、及び、回転体の回転方向に、フランジ本体部への衝突のための所定のギャップを有して収容され、フランジ本体部に対して、回転軸に平行な回転軸方向、回転軸に垂直な半径方向、及び、回転体の回転方向の、全方向に衝突する遊動可能な、形状が球のそれぞれ1つの錘部を含む錘群を有し、回転軸に平行な回転軸方向、回転軸に垂直な半径方向、及び、回転体の回転方向の所定のギャップは、錘部が回転体と一体化しないため、かつ、回転体への錘部の衝突による衝撃力を伝えるための所定のギャップ、すなわち、球状空間部の内径と、形状が球の錘部の外径との差が、0.1mmから0.5mmである。 Further, the present invention is a vibration damping flange attached to a rotating body having a rotating shaft, and includes a fixed portion to the rotating body and a plurality of spherical space portions arranged rotationally symmetrically on a predetermined circumference. In each of the flange main body having one or more groups and a plurality of spherical spaces in the one or more space groups, a rotation axis direction parallel to the rotation axis, a radial direction perpendicular to the rotation axis, and a rotation body Rotation direction is accommodated with a predetermined gap for collision with the flange main body, and with respect to the flange main body, a rotation axis direction parallel to the rotation axis, a radial direction perpendicular to the rotation axis, and rotation the rotational direction of the body, which can be floating impinging in all directions, the shape will have a weight groups each containing one weight part of the sphere, parallel to the rotation axis direction to the rotation axis, perpendicular radial to the rotation axis, In addition, the predetermined gap in the rotation direction of the rotating body is such that the weight portion is not integrated with the rotating body. Therefore, a predetermined gap for transmitting impact force due to the collision of the weight portion with the rotating body, that is, the difference between the inner diameter of the spherical space portion and the outer diameter of the weight portion of the spherical shape is 0.1 mm to 0.5 mm.
また、本発明の制振方法は、回転体の回転軸に沿って離れた複数個所に、制振フランジを各々取り付ける。 In the vibration damping method of the present invention, vibration damping flanges are respectively attached to a plurality of locations separated along the rotation axis of the rotating body.
本発明の制振機構によれば、回転軸のねじれの原因となる円周方向、回転軸のたわみの原因となるそれに垂直な半径方向、そして、回転軸の伸縮の原因となる回転軸方向の衝撃力を、回転フランジ内に自由に遊動する空間に設けた錘が慣性力によってフランジと衝突することで方向と大きさの任意な動的衝撃力を緩和し回転軸振動を低減する。これによりビビリ振動の元を断ち、研磨品質を向上することや、路面から受ける転がり抵抗削減で燃費改善が可能となる。 According to the vibration damping mechanism of the present invention, the circumferential direction that causes twisting of the rotating shaft, the radial direction that causes deflection of the rotating shaft, and the direction of the rotating shaft that causes expansion and contraction of the rotating shaft. A weight provided in a space in which the impact force freely floats in the rotary flange collides with the flange by the inertial force, so that the dynamic impact force of any direction and size is relieved and the rotation shaft vibration is reduced. Thereby, the origin of chatter vibration can be cut off to improve the polishing quality, and the fuel consumption can be improved by reducing the rolling resistance received from the road surface.
以下、本発明の実施形態である制振フランジについて、図を参照して詳細に説明をする。 Hereinafter, the damping flange which is an embodiment of the present invention will be described in detail with reference to the drawings.
図1は、本実施形態の制振フランジの構成を示す図である。図1に示すように、本実施形態の制振フランジ1は、フランジ本体部100と複数の各々同一形状の内周錘部201a〜201h(第1の錘部)からなる内周部錘群201(第1の錘群)と複数の各々同一形状の外周錘部202a〜202l(第2の錘部)からなる外周部錘群202(第2の錘群)との1以上の錘群を有する。 FIG. 1 is a diagram illustrating a configuration of a vibration damping flange according to the present embodiment. As shown in FIG. 1, the damping flange 1 of the present embodiment includes an inner peripheral weight group 201 including a plurality of inner peripheral weight parts 201 a to 201 h (first weight parts) having the same shape as the flange main body part 100. (A first weight group) and one or more weight groups including a plurality of outer peripheral weight portions 202a to 202l (second weight portions) each having the same shape and a peripheral weight group 202 (second weight group). .
本実施形態のフランジ本体部100は円盤状の形状を有する。フランジ本体部100は、この本体部の中心に、回転体Xが挿入されて、回転体Xへの固定部となる貫通穴103を有する。なお、フランジ本体部100の回転体Xへの固定は公知の方法を使用すればよい。このように、制振フランジ1が回転体Xに固定されることにより、制振フランジ1と回転体Xとは同一の回転軸lで回転する。 The flange main body 100 of the present embodiment has a disk shape. The flange main body 100 has a through-hole 103 at the center of the main body, into which the rotating body X is inserted and which serves as a fixing portion to the rotating body X. In addition, what is necessary is just to use the well-known method for fixation to the rotary body X of the flange main-body part 100. FIG. In this way, when the damping flange 1 is fixed to the rotating body X, the damping flange 1 and the rotating body X rotate on the same rotation axis l.
なお、工作機械であれば、この回転体Xには、砥石や切り刃が取り付けられ、これらを回転させる。回転体Xには、加工物表面の凹凸による、砥石や切り刃からの衝撃力が伝達する。また、自動車であれば、この回転体Xには、タイヤが取り付けられ、タイヤを回転させる。回転体Xには、路面の凹凸による、転がり抵抗と一般に言われている、路面からの衝撃力が伝達する。この衝撃力と偏芯により遠心力のベクトル合力が回転軸のビビリ振動の原因となる。 In the case of a machine tool, a grindstone and a cutting blade are attached to the rotating body X, and these are rotated. An impact force from a grindstone or a cutting blade due to the unevenness of the workpiece surface is transmitted to the rotating body X. In the case of an automobile, a tire is attached to the rotating body X, and the tire is rotated. An impact force from the road surface, commonly referred to as rolling resistance, due to road surface irregularities is transmitted to the rotator X. Due to this impact force and eccentricity, the resultant vector force of centrifugal force causes chatter vibration of the rotating shaft.
図2は、本実施形態の制振フランジの断面図である。図2(a)は、図1(b)のB-B断面図であり、図2(b)は、図1(a)のA-A断面図である。 FIG. 2 is a cross-sectional view of the vibration damping flange of the present embodiment. 2A is a cross-sectional view taken along the line BB in FIG. 1B, and FIG. 2B is a cross-sectional view taken along the line AA in FIG.
図1、2に示すように、フランジ本体部100は、この本体部の中心(回転軸l)を中心とした半径r1の円周上(第1の円周上)に回転対称に配置された複数の各々同一形状の内周空間部101a〜101h(第1の空間部)からなる内周空間群101(第1の空間群)と、回転軸lを中心とした半径r2の円周上(第2の円周上)に回転対称で配置された複数の各々同一形状の外周空間部102a〜102l(第2の空間部)からなる外周空間群102(第2の空間群)との1周以上の空間群を有する。 As shown in FIGS. 1 and 2, the flange main body 100 is arranged rotationally symmetrically on the circumference (on the first circumference) having a radius r1 centered on the center (rotation axis l) of the main body. An inner circumferential space group 101 (first space group) composed of a plurality of inner circumferential space portions 101a to 101h (first space portions) each having the same shape, and a circumference having a radius r2 centered on the rotation axis l ( One round with the outer peripheral space group 102 (second space group) composed of a plurality of outer peripheral space portions 102a to 102l (second space portions) having the same shape and arranged rotationally symmetrically on the second circumference) It has the above space group.
本実施形態の内周空間部101a〜101hと外周空間部102a〜102lとは、回転軸lと平行な中心軸を有する円筒状空間である。内周空間部101a〜101hと外周空間部102a〜102lの内部には、対応する内周錘部201a〜201hと外周錘部202a〜202lが各々収納される。なお、本実施形態の内周空間部101a〜101hと外周空間部102a〜102lの形状はこれに限られず、対応する内周錘部201a〜201hと外周錘部202a〜202lが内部に収納された場合に、錘全周に隙間が生じる形状であればよい。 The inner circumferential space portions 101a to 101h and the outer circumferential space portions 102a to 102l of the present embodiment are cylindrical spaces having a central axis parallel to the rotation axis l. Corresponding inner peripheral weight portions 201a to 201h and outer peripheral weight portions 202a to 202l are accommodated in the inner peripheral space portions 101a to 101h and the outer peripheral space portions 102a to 102l, respectively. Note that the shapes of the inner peripheral space portions 101a to 101h and the outer peripheral space portions 102a to 102l of the present embodiment are not limited to this, and the corresponding inner peripheral weight portions 201a to 201h and outer peripheral weight portions 202a to 202l are housed inside. In such a case, the shape may be a shape in which a gap is generated around the entire weight.
衝撃力に抗するフランジ自身の慣性力も効果があるので、フランジ本体部100は、ある程度の質量を有することが好ましい。又、錘の質量は、フランジを含む回転体全部の質量より少ないことが好ましい。 Since the inertia force of the flange itself that resists the impact force is also effective, the flange body 100 preferably has a certain amount of mass. Moreover, it is preferable that the mass of the weight is less than the mass of the entire rotating body including the flange.
内周錘部201a〜201hと外周錘部202a〜202lは、球、又は、円柱状の形状を有する。なお、内周錘部201a〜201hと外周錘部202a〜202lの形状は、これに限られず、対応する内周空間部101a〜101hと外周空間部102a〜102lの内部に収納された場合に、錘全周に隙間が生じる形状であればよい。 The inner peripheral weight parts 201a to 201h and the outer peripheral weight parts 202a to 202l have a sphere or columnar shape. Note that the shapes of the inner peripheral weight portions 201a to 201h and the outer peripheral weight portions 202a to 202l are not limited to this, and when the inner peripheral weight portions 201a to 201l are accommodated in the corresponding inner peripheral space portions 101a to 101h and outer peripheral space portions 102a to 102l, Any shape that creates a gap around the entire circumference of the weight may be used.
図2に示すように、外周空間部102の内部に外周錘部202が収容された場合に、外周空間部102の内面と外周錘部202の表面との間に、軸方向lについては、ギャップg1とg2があり、フランジ本体部100の半径方向(及び円周方向)には、ギャップg3とg4がある。 As shown in FIG. 2, when the outer peripheral weight portion 202 is accommodated in the outer peripheral space portion 102, there is a gap between the inner surface of the outer peripheral space portion 102 and the surface of the outer peripheral weight portion 202 in the axial direction l. There are g1 and g2, and there are gaps g3 and g4 in the radial direction (and circumferential direction) of the flange main body 100.
また、図2に示すように、内周空間部101の内部に内周錘部201が収容された場合に、内周空間部101の内面と内周錘部201の表面との間に、軸方向lについては、ギャップg5とg6があり、フランジ本体部100の半径方向(及び円周方向)には、ギャップg7とg8がある。 In addition, as shown in FIG. 2, when the inner peripheral weight portion 201 is accommodated in the inner peripheral space portion 101, a shaft is provided between the inner surface of the inner peripheral space portion 101 and the surface of the inner peripheral weight portion 201. In the direction l, there are gaps g5 and g6, and there are gaps g7 and g8 in the radial direction (and circumferential direction) of the flange main body 100.
なお、ギャップg1、g2、g3、g4は、外周空間部102の内部を外周錘部202が遊動するに十分だが衝突時間が瞬時となる寸法とするのがよい。また、ギャップg1、g2、g3、g4は、瞬時に変化するがg1とg2の和、g3とg4の和は一定である。 The gaps g1, g2, g3, and g4 should have dimensions that are sufficient for the outer peripheral weight portion 202 to move freely inside the outer peripheral space portion 102 but have an instantaneous collision time. The gaps g1, g2, g3, and g4 change instantaneously, but the sum of g1 and g2 and the sum of g3 and g4 are constant.
同様に、ギャップg5、g6、g7、g8は、内周空間部101の内部を内周錘部201が遊動するに十分だが衝突時間が瞬時となる寸法とするのがよい。またギャップg5、g6、g7、g8は、瞬時に変化するがg5とg6の和、g7とg8の和は一定である。 Similarly, the gaps g5, g6, g7, and g8 should have dimensions that are sufficient for the inner circumferential weight 201 to move freely inside the inner circumferential space 101 but have an instantaneous collision time. The gaps g5, g6, g7, and g8 change instantaneously, but the sum of g5 and g6 and the sum of g7 and g8 are constant.
加えて、衝突による衝撃力が伝わるには、フランジ本体部100と内周錘部201及び外周錘部202が接していても一体化しないことが必要である。衝突時間が瞬時となり、かつ、熱膨張や錆でフランジ本体部100と内周錘部201及び外周錘部202とが一体化することが無いように、ギャップg1とg2の和、ギャップg3とg4の和、ギャップg5とg6の和、及び、ギャップg7とg8の和(所定のギャップ)は、0.1mm以上0.5mm以下とすることが好ましい。0.1mmより小さいと膨張や錆で一体化するリスクがあり、0.5mmより大きいと衝撃力が瞬時に伝わりにくくなる。ただし、フランジ径の大小によって、ギャップの好適な値は、上記範囲外となる場合もある。 In addition, in order for the impact force due to the collision to be transmitted, it is necessary that the flange main body portion 100, the inner peripheral weight portion 201, and the outer peripheral weight portion 202 are not integrated with each other. The sum of the gaps g1 and g2, the gaps g3 and g4, so that the collision time is instantaneous and the flange main body 100 and the inner peripheral weight part 201 and the outer peripheral weight part 202 are not integrated due to thermal expansion or rust. , The sum of gaps g5 and g6, and the sum of gaps g7 and g8 (predetermined gap) are preferably 0.1 mm or more and 0.5 mm or less. If it is smaller than 0.1 mm, there is a risk of integration due to expansion or rust, and if it is larger than 0.5 mm, the impact force is difficult to be transmitted instantly. However, depending on the size of the flange diameter, a suitable value for the gap may be outside the above range.
次に、本実施形態の制振フランジ1の作用について説明する。回転体Xに加わる衝撃力は円周方向D3、それに垂直な半径方向D1、そして回転軸方向D2の3つの方向の力がある。本実施形態の制振フランジ1は、円周方向D3、半径方向D1、そして回転軸方向D2の動的合成ベクトルの衝撃力を緩和するものである。 Next, the operation of the vibration damping flange 1 of this embodiment will be described. The impact force applied to the rotating body X includes forces in three directions: a circumferential direction D3, a radial direction D1 perpendicular to the circumferential direction D3, and a rotational axis direction D2. The vibration damping flange 1 of the present embodiment reduces the impact force of the dynamic composite vector in the circumferential direction D3, the radial direction D1, and the rotation axis direction D2.
図3は、回転体Xに、回転軸lに垂直な半径方向D1の衝撃力が加わった場合の本実施形態の制振フランジ1の作用を示す図である。なお、図3〜7では、代表例として外周空間部102b及び外周錘部202bのみ記載し、他の内周空間部101と内周錘部201との間の組み合わせ、及び、他の外周空間部102と外周錘部202との間の組み合わせは省略しているが、他の内周空間部101と内周錘部201との間の組み合わせ、及び、他の外周空間部102と外周錘部202との間の組み合わせでも同様の動作・作用が生ずる。また、図3〜7では、説明のため、外周空間部102b及び外周錘部202bの大きさと隙間を図1、2より誇張して記載している。 FIG. 3 is a diagram showing the action of the vibration damping flange 1 of the present embodiment when an impact force in the radial direction D1 perpendicular to the rotation axis l is applied to the rotating body X. 3 to 7, only the outer peripheral space portion 102b and the outer peripheral weight portion 202b are described as representative examples, and combinations between the other inner peripheral space portion 101 and the inner peripheral weight portion 201, and other outer peripheral space portions. The combination between the outer peripheral weight portion 202 and the outer peripheral weight portion 202 is omitted, but the combination between the other inner peripheral space portion 101 and the inner peripheral weight portion 201, and the other outer peripheral space portion 102 and the outer peripheral weight portion 202. The same operation / action occurs in the combination of the two. Moreover, in FIG. 3-7, the magnitude | size and clearance gap of the outer periphery space part 102b and the outer periphery weight part 202b are exaggerated and described from FIG.
図に示すように、回転体Xに回転軸lに垂直な半径方向(図中のD1の方向)の衝撃力が加わった場合には、回転軸lが軸受で支持されていても回転体XがD1の方向に微小距離弾性変形し、回転体Xに固定されたフランジ本体部100は、D1方向に瞬間的に微小距離弾性変形する。この場合、外周錘部202bはフランジ本体部100に固定されていないため、外周錘部202bは外周空間部102b内を微小距離弾性変形分移動し、外周錘部202bとフランジ本体部100とが図中のA部で衝突する。 As shown in the drawing, when an impact force in a radial direction (direction D1 in the figure) perpendicular to the rotating shaft 1 is applied to the rotating member X, the rotating member X is supported even if the rotating shaft 1 is supported by a bearing. Is elastically deformed by a short distance in the direction of D1, and the flange main body 100 fixed to the rotating body X is momentarily elastically deformed by a short distance in the direction of D1. In this case, since the outer peripheral weight portion 202b is not fixed to the flange main body portion 100, the outer peripheral weight portion 202b moves within the outer peripheral space portion 102b by a minute distance elastic deformation, and the outer peripheral weight portion 202b and the flange main body portion 100 are illustrated. It collides with A part inside.
これにより、フランジ本体部100は、D1方向と反対の図中のD1´方向に反力を受ける。D1方向の衝撃力とD1´方向の反力とが、ある程度相殺し、D1方向の衝撃力を緩和する。なお、D1´方向の反力は、衝撃力の加速度に内周錘部201及び外周錘部202の質量を乗じた慣性力と、それによって内周錘部201及び外周錘部202の微小な弾性変形による弾性力の一瞬の合力である。 Thereby, the flange main-body part 100 receives reaction force in the D1 'direction in a figure opposite to D1 direction. The impact force in the D1 direction and the reaction force in the D1 ′ direction cancel each other to some extent, and the impact force in the D1 direction is relaxed. Note that the reaction force in the D1 ′ direction is an inertial force obtained by multiplying the acceleration of the impact force by the mass of the inner peripheral weight part 201 and the outer peripheral weight part 202, and thereby the minute elasticity of the inner peripheral weight part 201 and the outer peripheral weight part 202. This is the instantaneous resultant force of the elastic force due to deformation.
さらに、フランジ本体部100の有する質量が慣性力となって、D1方向の衝撃力を抑制する。微小な隙間での衝撃力抑制の原理は、複数の連続して接している球の一方の端に衝撃力を加えると他方の端の球だけ動き中間の球は殆ど動かない現象と同じである。中間の球は受けた衝撃が反対側からの慣性力反力と相殺する。 Further, the mass of the flange main body 100 becomes an inertial force, and the impact force in the D1 direction is suppressed. The principle of impact force suppression in a minute gap is the same as the phenomenon that when an impact force is applied to one end of a plurality of continuously contacting spheres, the other sphere moves and the middle sphere hardly moves. . In the middle ball, the received impact cancels out the inertial reaction force from the opposite side.
図4は、回転体Xの回転軸lに平行な方向D2の衝撃力が加わった場合の、本実施形態の制振フランジ1の作用を示す図である。 FIG. 4 is a diagram showing the action of the vibration damping flange 1 of the present embodiment when an impact force in the direction D2 parallel to the rotation axis 1 of the rotating body X is applied.
図に示すように、回転体Xに回転軸lに平行な方向(図中のD2方向)の衝撃力が加わった場合には、回転軸lが軸受で支持されていても回転体Xに固定されたフランジ本体部100は、D2方向に瞬間的に微小距離弾性変形する。この場合、外周錘部202bはフランジ本体部100に固定されていないため、外周錘部202bは外周空間部102b内を微小距離弾性変形分移動し、外周錘部202bとフランジ本体部100とが図中のA部で衝突する。 As shown in the figure, when an impact force in a direction parallel to the rotating shaft l (direction D2 in the figure) is applied to the rotating body X, the rotating body X is fixed to the rotating body X even if it is supported by a bearing. The flange body 100 thus made is elastically deformed by a short distance in the direction D2. In this case, since the outer peripheral weight portion 202b is not fixed to the flange main body portion 100, the outer peripheral weight portion 202b moves within the outer peripheral space portion 102b by a minute distance elastic deformation, and the outer peripheral weight portion 202b and the flange main body portion 100 are illustrated. It collides with A part inside.
これにより、フランジ本体部100は、D2方向と反対の図中のD2´方向に反力を受ける。D2方向の衝撃力とD2´方向の反力とが、ある程度相殺し、D2方向の衝撃力を緩和する。なお、D2´方向の反力は、衝撃力の加速度に内周錘部201及び外周錘部202の質量を乗じた慣性力と、それによって内周錘部201及び外周錘部202の微小な弾性変形による弾性力の一瞬の合力である。 As a result, the flange main body 100 receives a reaction force in the direction D2 'in the drawing opposite to the direction D2. The impact force in the D2 direction and the reaction force in the D2 'direction cancel each other to some extent, and the impact force in the D2 direction is relaxed. Note that the reaction force in the D2 ′ direction is the inertial force obtained by multiplying the acceleration of the impact force by the mass of the inner peripheral weight part 201 and the outer peripheral weight part 202, and thereby the minute elasticity of the inner peripheral weight part 201 and the outer peripheral weight part 202. This is the instantaneous resultant force of the elastic force due to deformation.
さらに、フランジ本体部100の有する質量が慣性力となって、D2方向の衝撃力を抑制する。微小な隙間での衝撃力抑制の原理は、複数の連続して接している球の一方の端に衝撃力を加えると他方の端の球だけ動き中間の球は殆ど動かない現象と同じである。中間の球は受けた衝撃が反対側からの慣性力反力と相殺する。 Further, the mass of the flange main body 100 becomes an inertial force, and the impact force in the D2 direction is suppressed. The principle of impact force suppression in a minute gap is the same as the phenomenon that when an impact force is applied to one end of a plurality of continuously contacting spheres, the other sphere moves and the middle sphere hardly moves. . In the middle ball, the received impact cancels out the inertial reaction force from the opposite side.
図5は、回転体Xの円周方向(回転方向)D3の衝撃力が加わった場合の、本実施形態の制振フランジの作用を示す図である。 FIG. 5 is a diagram showing the action of the vibration damping flange of the present embodiment when an impact force in the circumferential direction (rotation direction) D3 of the rotating body X is applied.
図に示すように、回転体Xの円周(回転)方向(図中のD3方向)の衝撃力が加わった場合には、回転軸lが軸受で支持されていても回転体XがD3の方向にねじれ、回転体Xに固定されたフランジ本体部100は、D3方向に瞬間的に微小距離弾性変形する。この場合、外周錘部202bはフランジ本体部100に固定されていないため、外周錘部202bは外周空間部102b内を微小距離弾性変形分移動し、外周錘部202bとフランジ本体部100とが図中のA部で衝突する。D3方向の衝撃力とD3´方向のこの反力とが、ある程度相殺し、D3方向の衝撃力を緩和する。 As shown in the figure, when an impact force is applied in the circumferential (rotation) direction (D3 direction in the figure) of the rotary body X, the rotary body X is D3 even if the rotary shaft l is supported by the bearing. The flange main body 100 twisted in the direction and fixed to the rotating body X is elastically deformed by a short distance in the D3 direction. In this case, since the outer peripheral weight portion 202b is not fixed to the flange main body portion 100, the outer peripheral weight portion 202b moves within the outer peripheral space portion 102b by a minute distance elastic deformation, and the outer peripheral weight portion 202b and the flange main body portion 100 are illustrated. It collides with A part inside. The impact force in the D3 direction and the reaction force in the D3 ′ direction cancel each other to some extent, and the impact force in the D3 direction is relaxed.
さらに、フランジ本体部100の有する質量が回転慣性モーメントとなって、いわゆるフライホイール効果により、D3方向の衝撃力を抑制する。 Further, the mass of the flange main body 100 becomes a rotational moment of inertia, and the impact force in the D3 direction is suppressed by the so-called flywheel effect.
上記実施形態では、3方向の衝撃力を個別に述べたが、実際には、3次元の任意な方向の衝撃を受けるため、衝撃緩和の反力も合成される。なお、衝撃力を受けた錘は空間部の隙間を移動し、空間部周辺の壁にランダムに弾性衝突を繰り返すことで衝突エネルギーと運動エネルギー、又それに伴う熱エネルギーに変換され吸収される。偏芯が増大して遠心力による回転体のビビリ振動によるエネルギー損失に比べれば元の衝撃力によるエネルギーは比較的小さいと考えられる。 In the above-described embodiment, the impact force in the three directions is individually described. However, since the impact is actually received in any three-dimensional direction, the reaction force for the impact relaxation is also synthesized. In addition, the weight which received the impact force moves through the gaps in the space portion, and is repeatedly converted into impact energy and kinetic energy and accompanying heat energy and absorbed by repeating elastic collisions randomly on the walls around the space portion. It is considered that the energy due to the original impact force is relatively small as compared with the energy loss due to the chatter vibration of the rotating body due to the centrifugal force due to the increased eccentricity.
上記実施形態では、外周錘群202に含まれる錘の数を12、内周錘群201に含まれる錘の数を8としたが、これに限られず、各々2以上の数とすればよい。また、内周空間群101と外周空間群102に含まれる空間部の数については、内周錘群201と外周錘群202に含まれる錘の数に応じて、空間群のそれぞれの中心が回転中心に対して回転対称、言い換えれば全ての錘の相対的重心が制振フランジ100の回転中心と一致するように配置すればよい。慣性力を分散する錘の数、材質、配置は回転機械個々の設計仕様である回転体(スピンドル、車軸、砥石、エンドミルの刃など)の質量や配置スペースによっても、又加工のしやすさ、コストなど総合的に考慮して最適設計できる自由度を持たせる。 In the above embodiment, the number of weights included in the outer periphery weight group 202 is 12 and the number of weights included in the inner periphery weight group 201 is eight. However, the number is not limited to this, and may be two or more. As for the number of spaces included in the inner space group 101 and the outer space group 102, the centers of the space groups rotate according to the number of weights included in the inner weight group 201 and the outer weight group 202. It may be arranged so that it is rotationally symmetric with respect to the center, in other words, the relative center of gravity of all the weights coincides with the center of rotation of the damping flange 100. The number, material, and arrangement of weights that distribute the inertial force are the design specifications of each rotating machine, depending on the mass and arrangement space of the rotating body (spindle, axle, grindstone, end mill blade, etc.), and ease of processing. Gives freedom to optimize design with comprehensive consideration of cost and other factors.
また、上記実施形態では、内周空間群101と外周空間群102との2周に渡り、内周錘群201と外周錘群202を配置したが、これに限られず、周状の空間群は1周でもよく、また3周、4周、それ以上としてもよい。また、本実施形態では、内周空間群101の半径r1と外周空間群102の半径r2とは、r1<r2の関係となっているが、r1とr2とが同一である場合もありうる。この場合、内周空間部101a〜hと外周空間部102a〜lとが、重複しないように(例えば、互い違いに)配置されればよい。回転軸配置スペースの制約によって制振フランジの取り付け条件が決まり、第3、第4・・・の円周に同様の区間部、睡を分散配置することもできる。錘の総質量が慣性力を生むことになり、錘の数と配置(周の数)は慣性力による反力を錘の数だけ分散することになり衝突による弾性変形量に影響するので錘の材質選定の自由度を与える。 Moreover, in the said embodiment, although the inner periphery weight group 201 and the outer periphery weight group 202 were arrange | positioned over 2 circumference | surroundings of the inner periphery space group 101 and the outer periphery space group 102, it is not restricted to this, A circumferential space group is It may be 1 round, 3 rounds, 4 rounds or more. In the present embodiment, the radius r1 of the inner space group 101 and the radius r2 of the outer space group 102 have a relationship of r1 <r2, but r1 and r2 may be the same. In this case, the inner circumferential space portions 101a to 101h and the outer circumferential space portions 102a to 102l may be arranged so as not to overlap (for example, alternately). The mounting condition of the damping flange is determined by the restriction of the rotation shaft arrangement space, and the same section portion and sleep can be dispersedly arranged on the third, fourth,. The total mass of the weight will generate inertial force, and the number and arrangement of the weights (number of circumferences) will disperse the reaction force due to the inertial force by the number of weights, which will affect the amount of elastic deformation due to collision. Gives freedom of material selection.
また、上記実施形態では、内周空間部101a〜hと外周空間部102a〜lの形状を円筒状としたが、これに限られず、球状、楕円断面状、矩形断面状、多角形断面状、及び、それらの組み合わせとしてもよい。また、内周空間部101a〜hと外周空間部102a〜lの形状は同一でもよいし、相異なっていてもよい。衝突時の慣性力は衝突力の逆位相の反力を生むとともに錘の移動によって反対側の壁に再衝突し衝突緩和反力を回復させないように空間部と錘の形状を考慮が必要である。通常回転による位相のズレが再衝突する時の衝突緩和反力の回復を防止するための設計自由度を与える。 Moreover, in the said embodiment, although the shape of inner peripheral space part 101a-h and outer peripheral space part 102a-l was made into cylindrical shape, it is not restricted to this, Spherical shape, elliptical cross-sectional shape, rectangular cross-sectional shape, polygonal cross-sectional shape, And it is good also as those combination. Further, the shapes of the inner peripheral space portions 101a to 101h and the outer peripheral space portions 102a to 102l may be the same or different. It is necessary to consider the shape of the space and the weight so that the inertial force at the time of collision generates a reaction force in the opposite phase of the collision force and does not recover the collision relaxation reaction force by re-collision with the opposite wall due to the movement of the weight. . It gives design flexibility to prevent recovery of collision relaxation reaction force when phase shift due to normal rotation re-collises.
また、上記実施形態では、内周錘部201a〜hと外周錘部202a〜lの形状を球状としたが、これに限られず、球状、円筒状、楕円断面状、矩形断面状、多角形断面状、及び、それらの組み合わせとしてもよい。また、内周錘部201a〜hと外周錘部202a〜lの形状は同一でもよいし、相異なっていてもよい。衝突時の慣性力は衝突力の逆位相の反力を生むとともに錘の移動によって反対側の壁に再衝突し衝突緩和反力を回復させないように空間部と錘の形状を考慮が必要である。通常回転による位相のズレが再衝突する時の衝突緩和反力の回復を防止するための設計自由度を与える。 Moreover, in the said embodiment, although the shape of inner peripheral weight part 201a-h and outer peripheral weight part 202a-l was made into the spherical shape, it is not restricted to this, A spherical shape, cylindrical shape, elliptical cross-sectional shape, rectangular cross-sectional shape, polygonal cross-section Or a combination thereof. Further, the shapes of the inner peripheral weight portions 201a to 201h and the outer peripheral weight portions 202a to 202l may be the same or different. It is necessary to consider the shape of the space and the weight so that the inertial force at the time of collision generates a reaction force in the opposite phase of the collision force and does not recover the collision relaxation reaction force by re-collision with the opposite wall due to the movement of the weight. . It gives design flexibility to prevent recovery of collision relaxation reaction force when phase shift due to normal rotation re-collises.
以上説明したように、本実施形態の制振フランジによれば、回転軸のたわみの原因となる半径方向、ねじりの原因となる円周方向、そして、軸の伸縮の原因となる回転軸方向の衝撃力を緩和し回転軸振動を低減することが可能となる。また、本実施形態の制振フランジは以下の点で大きな特徴を有する。 As described above, according to the vibration damping flange of this embodiment, the radial direction causing the deflection of the rotating shaft, the circumferential direction causing the torsion, and the rotating shaft direction causing the expansion and contraction of the shaft. It becomes possible to relieve the impact force and reduce the rotation shaft vibration. Further, the vibration damping flange of the present embodiment has significant features in the following points.
1.現状の回転軸のビビリ振動対策は切削時加工反力を外乱としてNC目標値に対して振動値をフィードバックするか外乱を予測しながらフィードフォワードで切削軌道や角度を微調整制御するのに対して、本願発明は加工反力を大元で抑制することでセンサーや制御装置なしで振動を抑える。 1. Current countermeasures against chatter vibration of the rotating shaft are to feed back the vibration value to the NC target value with the machining reaction force during cutting as a disturbance, or to finely control the cutting trajectory and angle by feedforward while predicting the disturbance. The invention of the present application suppresses vibration without a sensor or a control device by suppressing the processing reaction force at the origin.
2.従来は軌道や角度の位置制御でありフィードバックによる対象療法であるのに対して、本願発明は、加工反力という芯ブレ振動を起こす原因となる外力を抑制する根本療法である。 2. Conventionally, it is a target therapy based on feedback by controlling the position of the trajectory and angle, while the present invention is a fundamental therapy that suppresses external force that causes a core shake vibration called a processing reaction force.
3.本願発明は回転中心と重心のずれ(芯ブレ)の振動の加振力を切削抵抗とする振動制御であり、芯ブレの振動特性から見ると軸受の剛性や粘性だけではなく、慣性抵抗や回転軸と一体化したフランジとその内部で摺動する錘の慣性力衝突が切削抵抗を緩和するという技術である。 3. The present invention is a vibration control in which the excitation force of the vibration between the center of rotation and the center of gravity (core vibration) is a cutting resistance. From the viewpoint of the vibration characteristics of the core vibration, not only the rigidity and viscosity of the bearing but also the inertia resistance and rotation This is a technology in which cutting force is reduced by inertial force collision between a flange integrated with a shaft and a weight sliding inside the flange.
4.本願発明によれば、エンドミルの切り刃や砥石の砥粒が破砕力の高い材質でも主軸の振れに影響しないので高精度の加工ができる。 4). According to the present invention, even if the end mill cutting blade or the grindstone of the grindstone is a material having a high crushing force, it does not affect the vibration of the spindle, so that high-precision machining can be performed.
5.従来は、NC工作機械で目標値通りに精度高く加工できず、オフセット後処理で仕上げする必要があるのが通常であるが、本願発明によれば後処理を必要としなく目標値通りに高精度で加工できる。 5. Conventionally, NC machine tools are usually unable to process with high accuracy as the target value, and it is usually necessary to finish by offset post-processing. However, according to the present invention, post-processing is not required and high accuracy is achieved according to the target value. Can be processed.
次に、本実施形態の制振フランジを回転体に取り付けた制振方法について説明する。 Next, a vibration damping method in which the vibration damping flange of this embodiment is attached to a rotating body will be described.
図6は、回転体Xの回転軸lに沿って離れた両端に本実施形態の制振フランジ1、2を各々取り付けた状態を示す図である。図に示すように、同じ構造を有する制振フランジ1、2を回転軸lに沿って駆動側と反力側に2つ設置することで、たわみ振動の原因となる半径方向と軸方向の衝撃力とねじり振動の原因となる円周方向の衝撃力を緩和する。 FIG. 6 is a view showing a state in which the damping flanges 1 and 2 of the present embodiment are respectively attached to both ends of the rotating body X separated along the rotation axis l. As shown in the drawing, by installing two damping flanges 1 and 2 having the same structure on the driving side and the reaction force side along the rotation axis l, the radial and axial impacts causing the flexural vibration are shown. Mitigates circumferential impact forces that cause force and torsional vibrations.
図7は、回転体Xの回転軸lに沿って離れた両端に本実施形態の制振フランジ1、2を各々取り付けた場合の作用を示す図である。 FIG. 7 is a diagram showing an operation when the damping flanges 1 and 2 of the present embodiment are respectively attached to both ends separated along the rotation axis l of the rotating body X.
図に示すように、回転軸方向D4、D5の衝撃力と、半径方向D6、D7の衝撃力の相対差は回転体Xをたわませるが、制振フランジ1、2内の外周錘部202及び内周錘部201(不図示)、外周錘部222及び内周錘部221(不図示)が、その衝撃力の相対差を緩和する。また、円周方向D8、D9の衝撃力の相対差は回転体Xのねじり振動の原因となるが、制振フランジ1、2内の外周錘部202、222及び、内周錘部201、221(不図示)が、その衝撃力の相対差を緩和する。 As shown in the figure, the relative difference between the impact force in the rotational axis directions D4 and D5 and the impact force in the radial directions D6 and D7 causes the rotating body X to bend. The inner peripheral weight part 201 (not shown), the outer peripheral weight part 222, and the inner peripheral weight part 221 (not shown) alleviate the relative difference in the impact force. The relative difference between the impact forces in the circumferential directions D8 and D9 causes torsional vibration of the rotating body X, but the outer peripheral weights 202 and 222 and the inner peripheral weights 201 and 221 in the damping flanges 1 and 2 are used. (Not shown) alleviates the relative difference in impact force.
なお、本実施形態の制振フランジ1、2を取り付ける箇所は回転体Xの両端に限られず、回転体Xの回転軸lに沿って離れた複数個所に各々取り付けてもよい。 In addition, the location which attaches the damping flanges 1 and 2 of this embodiment is not restricted to the both ends of the rotary body X, You may each attach to the several place distant along the rotating shaft 1 of the rotary body X.
以上説明したように、本実施形態の制振フランジを用いた制振方法によれば、制振フランジを回転軸に沿って駆動側と反力側に設置することで、たわみ振動の原因となる衝撃力とねじり振動の原因となる円周方向の衝撃力を緩和できるという更なる効果がある。 As described above, according to the vibration damping method using the vibration damping flange of the present embodiment, the vibration damping flange is installed on the driving side and the reaction force side along the rotation axis, which causes flexural vibration. There is a further effect that the impact force in the circumferential direction that causes the impact force and torsional vibration can be reduced.
なお、上記実施形態では、回転体とは別体の制振フランジとして構成する例を説明したが、この制振フランジ中の制振機構の各要素を直接回転体に組み込んでよい。ここでいう回転体とは、例えば、工作機械や研磨盤のドリルやスピンドル、抑えフランジ、タイヤのホイールや、鉄道の車輪や、電動機・発電機や内燃機関の動力を伝達するシャフトの軸、それらに取り付けられたフライホイール等である。 In the above-described embodiment, an example in which the vibration damping flange is configured separately from the rotating body has been described. However, each element of the vibration damping mechanism in the vibration damping flange may be directly incorporated into the rotating body. The term "rotary body" as used herein refers to, for example, drills and spindles of machine tools and polishing machines, holding flanges, tire wheels, railway wheels, shafts of shafts that transmit power from electric motors / generators and internal combustion engines, etc. A flywheel attached to the
本実施形態の制振機構は、回転軸を有する回転体に組み込まれる制振機構であって、回転体は、回転軸を中心とした所定の円周上に回転対称に配置された複数の空間部を含む空間群を1周以上有し、1以上の空間群の複数の空間部の各々の内部に、回転軸に平行な回転軸方向、回転軸に垂直な半径方向、及び、回転体の回転方向に所定のギャップを有して収容され、回転体に対して遊動可能な複数の錘部を含む錘群を有する。 The vibration damping mechanism of the present embodiment is a vibration damping mechanism incorporated in a rotating body having a rotating shaft, and the rotating body is a plurality of spaces arranged rotationally symmetrically on a predetermined circumference around the rotating shaft. The space group including the portion has one or more rounds, and each of the plurality of space portions of the one or more space groups includes a rotation axis direction parallel to the rotation axis, a radial direction perpendicular to the rotation axis, and a rotation body It has a weight group including a plurality of weight parts that are accommodated with a predetermined gap in the rotation direction and that can move freely with respect to the rotating body.
また、本実施形態の制振機構において、回転体は、空間群を2周以上有してよい。 In the vibration damping mechanism of the present embodiment, the rotating body may have two or more space groups.
また、本実施形態の制振機構において、空間部は、円筒形状であってよい。 Further, in the vibration damping mechanism of the present embodiment, the space portion may have a cylindrical shape.
また、本実施形態の制振機構において、錘部の形状は、球または円柱状であってよい。 Further, in the vibration damping mechanism of the present embodiment, the shape of the weight portion may be a sphere or a columnar shape.
また、本実施形態の制振機構において、回転軸に平行な回転軸方向、回転軸に垂直な半径方向、又は、回転体の回転方向の所定のギャップは、0.1mm以上0.5mm以下であってよい。 In the vibration damping mechanism of the present embodiment, the predetermined gap in the rotation axis direction parallel to the rotation axis, the radial direction perpendicular to the rotation axis, or the rotation direction of the rotating body is 0.1 mm or more and 0.5 mm or less. Good.
また、回転体の回転軸に沿って離れた複数個所に本実施形態の制振機構を各々設けてもよい。 Moreover, you may each provide the damping mechanism of this embodiment in the several place distant along the rotating shaft of the rotary body.
1:制振フランジ
100:フランジ本体部
101:内周空間群
101a〜101h:内周空間部
102:外周空間群
102a〜102l:外周空間部
103:貫通穴
201:内周錘群
201a〜201h:内周錘部
202:外周錘群
202a〜202l:外周錘部
1: Damping flange 100: Flange main body 101: Inner circumferential space group 101a to 101h: Inner circumferential space portion 102: Outer circumferential space group 102a to 102l: Outer circumferential space portion 103: Through hole 201: Inner circumferential weight group 201a to 201h: Inner peripheral weight portion 202: Outer peripheral weight group 202a to 202l: Outer peripheral weight portion
Claims (6)
前記回転体は、前記回転軸を中心とした所定の円周上に回転対称に配置された複数の球状空間部を含む空間群を1周以上有し、
前記1以上の空間群の複数の球状空間部の各々の内部に、前記回転軸に平行な回転軸方向、前記回転軸に垂直な半径方向、及び、前記回転体の回転方向に、前記回転体への衝突のための所定のギャップを有して収容され、前記回転体に対して、前記回転軸に平行な回転軸方向、前記回転軸に垂直な半径方向、及び、前記回転体の回転方向の、全方向に衝突する遊動可能な、形状が球のそれぞれ1つの錘部を含む錘群を有し、
前記回転軸に平行な回転軸方向、前記回転軸に垂直な半径方向、及び、前記回転体の回転方向の所定のギャップは、前記錘部が前記回転体と一体化しないため、かつ、前記回転体への前記錘部の衝突による衝撃力を伝えるための前記所定のギャップ、すなわち、前記球状空間部の内径と、前記形状が球の錘部の外径との差が、0.1mmから0.5mmであることを特徴とする制振機構。 A vibration damping mechanism incorporated in a rotating body having a rotating shaft,
The rotating body has one or more space groups including a plurality of spherical space portions arranged rotationally symmetrically on a predetermined circumference around the rotation axis,
In each of the plurality of spherical space portions of the one or more space groups, the rotating body is arranged in a rotating shaft direction parallel to the rotating shaft, in a radial direction perpendicular to the rotating shaft, and in a rotating direction of the rotating body. The rotating body is accommodated with a predetermined gap for collision with the rotating body, the rotating shaft direction parallel to the rotating shaft, the radial direction perpendicular to the rotating shaft, and the rotating direction of the rotating body of possible floating of collision in all directions, the shape will have a weight groups each containing one weight part of the sphere,
The predetermined gap in the rotation axis direction parallel to the rotation axis, the radial direction perpendicular to the rotation axis, and the rotation direction of the rotation body is because the weight portion is not integrated with the rotation body and the rotation The predetermined gap for transmitting an impact force caused by the collision of the weight portion with the body, that is, the difference between the inner diameter of the spherical space portion and the outer diameter of the weight portion of the spherical shape is 0.1 mm to 0.5 mm. The vibration control mechanism characterized by being.
前記回転体への固定部と、所定の円周上に回転対称に配置された複数の球状空間部を含む空間群を1周以上有するフランジ本体部と、
前記1以上の空間群の複数の球状空間部の各々の内部に、前記回転軸に平行な回転軸方向、前記回転軸に垂直な半径方向、及び、前記回転体の回転方向に、前記フランジ本体部への衝突のための所定のギャップを有して収容され、前記フランジ本体部に対して、前記回転軸に平行な回転軸方向、前記回転軸に垂直な半径方向、及び、前記回転体の回転方向の、全方向に衝突する遊動可能な、形状が球のそれぞれ1つの錘部を含む錘群を有し、
前記回転軸に平行な回転軸方向、前記回転軸に垂直な半径方向、及び、前記回転体の回転方向の所定のギャップは、前記錘部が前記回転体と一体化しないため、かつ、前記回転体への前記錘部の衝突による衝撃力を伝えるための前記所定のギャップ、すなわち、前記球状空間部の内径と、前記形状が球の錘部の外径との差が、0.1mmから0.5mmであることを特徴とする制振フランジ。 A damping flange attached to a rotating body having a rotating shaft,
A flange main body having at least one space group including a fixed portion to the rotating body and a plurality of spherical space portions arranged in a rotationally symmetrical manner on a predetermined circumference;
In each of the plurality of spherical space portions of the one or more space groups, the flange main body has a rotation axis direction parallel to the rotation axis, a radial direction perpendicular to the rotation axis, and a rotation direction of the rotation body. A rotation direction parallel to the rotation axis, a radial direction perpendicular to the rotation axis, and a direction of the rotating body. direction of rotation, which can be floating impinging in all directions, the shape will have a weight groups each containing one weight part of the sphere,
The predetermined gap in the rotation axis direction parallel to the rotation axis, the radial direction perpendicular to the rotation axis, and the rotation direction of the rotation body is because the weight portion is not integrated with the rotation body and the rotation The predetermined gap for transmitting an impact force caused by the collision of the weight portion with the body, that is, the difference between the inner diameter of the spherical space portion and the outer diameter of the weight portion of the spherical shape is 0.1 mm to 0.5 mm. damping flange, characterized in that it.
6. A vibration damping method, wherein the vibration damping flanges according to claim 4 or 5 are respectively attached to a plurality of locations separated along the rotation axis of the rotating body.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016240847 | 2016-12-13 | ||
JP2016240847 | 2016-12-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6339253B1 true JP6339253B1 (en) | 2018-06-06 |
JP2018096533A JP2018096533A (en) | 2018-06-21 |
Family
ID=62487383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017027752A Active JP6339253B1 (en) | 2016-12-13 | 2017-02-17 | Rotating body damping mechanism, damping flange, and damping method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6339253B1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097444U (en) * | 1983-12-12 | 1985-07-03 | トヨタ自動車株式会社 | Low vibration flywheel |
JPH06288463A (en) * | 1993-03-31 | 1994-10-11 | Brother Ind Ltd | Timing pulley |
JPH08200449A (en) * | 1995-01-30 | 1996-08-06 | Toyota Central Res & Dev Lab Inc | Torsional vibration damping viscous damper |
JP4049992B2 (en) * | 2000-12-27 | 2008-02-20 | 株式会社リコー | Rotation drive device and image forming apparatus |
JP2002250400A (en) * | 2001-02-26 | 2002-09-06 | Ricoh Co Ltd | Belt rotation drive device and imaging device |
JP2007182986A (en) * | 2005-12-05 | 2007-07-19 | Mitsubishi Heavy Ind Ltd | Vibration reducing damper |
-
2017
- 2017-02-17 JP JP2017027752A patent/JP6339253B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018096533A (en) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9739335B2 (en) | Apparatus for mounting an object to a structure in a vibration-free manner | |
US20080060472A1 (en) | Balancer | |
CN109386572B (en) | Centrifugal pendulum type vibration damper | |
JP2004510111A (en) | Torsion spring set | |
JP5445423B2 (en) | Dynamic damper | |
JP2000314451A (en) | Number-of-revolutions adaptable type damper | |
EP3153744B1 (en) | Damper with integrated centrifugal pendulum-type vibration absorbing device and assembling method | |
EP3575623A1 (en) | Shaft coupling | |
US2272189A (en) | Dynamic damper for engines | |
US8281686B2 (en) | Eddy-current actuated balancer for rotating machinery | |
JP6617739B2 (en) | Centrifugal pendulum damper device | |
JP6339253B1 (en) | Rotating body damping mechanism, damping flange, and damping method | |
KR20170107914A (en) | Torsion filtration mechanism with cam track | |
JP2013148211A (en) | Pendulum damper | |
JP4084824B2 (en) | Balancer | |
JP3944321B2 (en) | Dynamic vibration absorber and machine tool | |
CN115949689B (en) | Multi-degree-of-freedom damper for rod-shaped structure | |
CN218063234U (en) | Machine tool spindle vibration damper | |
JP7162913B2 (en) | shaft coupling | |
EP2765328B1 (en) | Dynamic damper | |
JP7383181B2 (en) | wheel device | |
JP7103266B2 (en) | Rotational force transmission mechanism | |
JP2018204621A (en) | Centrifugal pendulum type vibration controller | |
JP2019019918A (en) | Attenuation mechanism | |
JPH09144769A (en) | Torque clutch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170307 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20170307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170307 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20170417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170425 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170822 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171110 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20171110 |
|
C876 | Explanation why request for accelerated appeal examination is justified |
Free format text: JAPANESE INTERMEDIATE CODE: C876 Effective date: 20171110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171117 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20171120 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20171121 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20171215 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20171220 |
|
C305 | Report on accelerated appeal examination |
Free format text: JAPANESE INTERMEDIATE CODE: C305 Effective date: 20171220 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20180109 |
|
C302 | Record of communication |
Free format text: JAPANESE INTERMEDIATE CODE: C302 Effective date: 20180109 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20180116 |
|
C30 | Protocol of an oral hearing |
Free format text: JAPANESE INTERMEDIATE CODE: C30 Effective date: 20180221 |
|
C302 | Record of communication |
Free format text: JAPANESE INTERMEDIATE CODE: C302 Effective date: 20180221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180307 |
|
C302 | Record of communication |
Free format text: JAPANESE INTERMEDIATE CODE: C302 Effective date: 20180319 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20180320 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180322 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20180410 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20180508 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20180508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6339253 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20210217 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D03 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |