JP6333875B2 - Negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents
Negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDFInfo
- Publication number
- JP6333875B2 JP6333875B2 JP2016043832A JP2016043832A JP6333875B2 JP 6333875 B2 JP6333875 B2 JP 6333875B2 JP 2016043832 A JP2016043832 A JP 2016043832A JP 2016043832 A JP2016043832 A JP 2016043832A JP 6333875 B2 JP6333875 B2 JP 6333875B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- ion secondary
- lithium ion
- secondary battery
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 87
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 87
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 66
- 239000003795 chemical substances by application Substances 0.000 claims description 41
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 36
- 229910003002 lithium salt Inorganic materials 0.000 claims description 25
- 239000007772 electrode material Substances 0.000 claims description 24
- 159000000002 lithium salts Chemical class 0.000 claims description 23
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 16
- 150000001639 boron compounds Chemical class 0.000 claims description 12
- 229910044991 metal oxide Inorganic materials 0.000 claims description 12
- 150000004706 metal oxides Chemical class 0.000 claims description 12
- 150000007524 organic acids Chemical class 0.000 claims description 11
- 239000002482 conductive additive Substances 0.000 claims description 10
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 10
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 10
- 239000008151 electrolyte solution Substances 0.000 claims description 9
- 239000012752 auxiliary agent Substances 0.000 claims description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 4
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 2
- IUYLTEAJCNAMJK-UHFFFAOYSA-N cobalt(2+);oxygen(2-) Chemical compound [O-2].[Co+2] IUYLTEAJCNAMJK-UHFFFAOYSA-N 0.000 claims description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 2
- 235000010215 titanium dioxide Nutrition 0.000 claims description 2
- 239000011230 binding agent Substances 0.000 description 45
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 28
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 24
- -1 etc.) Substances 0.000 description 24
- 239000007773 negative electrode material Substances 0.000 description 23
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 22
- 239000011267 electrode slurry Substances 0.000 description 21
- 239000003273 ketjen black Substances 0.000 description 21
- 239000007787 solid Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000002904 solvent Substances 0.000 description 16
- 239000002033 PVDF binder Substances 0.000 description 15
- 229920002125 Sokalan® Polymers 0.000 description 15
- 239000007864 aqueous solution Substances 0.000 description 15
- 239000003960 organic solvent Substances 0.000 description 15
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 15
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 14
- 239000004584 polyacrylic acid Substances 0.000 description 13
- 239000003792 electrolyte Substances 0.000 description 12
- 239000011255 nonaqueous electrolyte Substances 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 229910052796 boron Inorganic materials 0.000 description 9
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 8
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 8
- 235000006408 oxalic acid Nutrition 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229910013870 LiPF 6 Inorganic materials 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000001384 succinic acid Substances 0.000 description 5
- WXUAQHNMJWJLTG-UHFFFAOYSA-N 2-methylbutanedioic acid Chemical compound OC(=O)C(C)CC(O)=O WXUAQHNMJWJLTG-UHFFFAOYSA-N 0.000 description 4
- 229910015900 BF3 Inorganic materials 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- UJMDYLWCYJJYMO-UHFFFAOYSA-N benzene-1,2,3-tricarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1C(O)=O UJMDYLWCYJJYMO-UHFFFAOYSA-N 0.000 description 4
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 4
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 2
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical compound COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 2
- VHKFFPOTSWQHPK-UHFFFAOYSA-N C(C)O.C1(=CC(=CC(=C1)C(=O)O)C(=O)O)C(=O)O Chemical compound C(C)O.C1(=CC(=CC(=C1)C(=O)O)C(=O)O)C(=O)O VHKFFPOTSWQHPK-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 2
- 150000007824 aliphatic compounds Chemical class 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- PPTSBERGOGHCHC-UHFFFAOYSA-N boron lithium Chemical compound [Li].[B] PPTSBERGOGHCHC-UHFFFAOYSA-N 0.000 description 2
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229940093499 ethyl acetate Drugs 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 229940017219 methyl propionate Drugs 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 2
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229940090181 propyl acetate Drugs 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- ZFMOJHVRFMOIGF-UHFFFAOYSA-N 2,4,6-trimethoxy-1,3,5,2,4,6-trioxatriborinane Chemical compound COB1OB(OC)OB(OC)O1 ZFMOJHVRFMOIGF-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 1
- PMZBHPUNQNKBOA-UHFFFAOYSA-N 5-methylbenzene-1,3-dicarboxylic acid Chemical compound CC1=CC(C(O)=O)=CC(C(O)=O)=C1 PMZBHPUNQNKBOA-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920006369 KF polymer Polymers 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910002992 LiNi0.33Mn0.33Co0.33O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HGKNMDILPXRDRK-UHFFFAOYSA-M [Li+].[OH-].F.F.F.F.F.F Chemical compound [Li+].[OH-].F.F.F.F.F.F HGKNMDILPXRDRK-UHFFFAOYSA-M 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- BRTALTYTFFNPAC-UHFFFAOYSA-N boroxin Chemical compound B1OBOBO1 BRTALTYTFFNPAC-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- AQEFLFZSWDEAIP-UHFFFAOYSA-N di-tert-butyl ether Chemical compound CC(C)(C)OC(C)(C)C AQEFLFZSWDEAIP-UHFFFAOYSA-N 0.000 description 1
- PMUKAEUGVCXPDF-SEPHDYHBSA-L dilithium;(e)-but-2-enedioate Chemical compound [Li+].[Li+].[O-]C(=O)\C=C\C([O-])=O PMUKAEUGVCXPDF-SEPHDYHBSA-L 0.000 description 1
- PMUKAEUGVCXPDF-UAIGNFCESA-L dilithium;(z)-but-2-enedioate Chemical compound [Li+].[Li+].[O-]C(=O)\C=C/C([O-])=O PMUKAEUGVCXPDF-UAIGNFCESA-L 0.000 description 1
- JHFZWTMEVGPUTE-UHFFFAOYSA-L dilithium;2-hydroxybutanedioate Chemical compound [Li+].[Li+].[O-]C(=O)C(O)CC([O-])=O JHFZWTMEVGPUTE-UHFFFAOYSA-L 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- ZPJGNHUPXGDASP-UHFFFAOYSA-L dilithium;hexanedioate Chemical compound [Li+].[Li+].[O-]C(=O)CCCCC([O-])=O ZPJGNHUPXGDASP-UHFFFAOYSA-L 0.000 description 1
- PLYZFCVUMQOYCR-UHFFFAOYSA-L dilithium;pentanedioate Chemical compound [Li+].[Li+].[O-]C(=O)CCCC([O-])=O PLYZFCVUMQOYCR-UHFFFAOYSA-L 0.000 description 1
- VNSVQJIXVXZDJF-UHFFFAOYSA-L dilithium;phthalate Chemical compound [Li+].[Li+].[O-]C(=O)C1=CC=CC=C1C([O-])=O VNSVQJIXVXZDJF-UHFFFAOYSA-L 0.000 description 1
- QTTDHHKBHTUYCK-UHFFFAOYSA-L dilithium;propanedioate Chemical compound [Li+].[Li+].[O-]C(=O)CC([O-])=O QTTDHHKBHTUYCK-UHFFFAOYSA-L 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- UKCYJOBRBSUYGG-UHFFFAOYSA-N ethyl formate;propyl formate Chemical compound CCOC=O.CCCOC=O UKCYJOBRBSUYGG-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000002641 lithium Chemical group 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 229940031993 lithium benzoate Drugs 0.000 description 1
- 229940071264 lithium citrate Drugs 0.000 description 1
- WJSIUCDMWSDDCE-UHFFFAOYSA-K lithium citrate (anhydrous) Chemical compound [Li+].[Li+].[Li+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WJSIUCDMWSDDCE-UHFFFAOYSA-K 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- WAHQBNXSPALNEA-UHFFFAOYSA-L lithium succinate Chemical compound [Li+].[Li+].[O-]C(=O)CCC([O-])=O WAHQBNXSPALNEA-UHFFFAOYSA-L 0.000 description 1
- 229960004254 lithium succinate Drugs 0.000 description 1
- ZPPPLBXXTCVBNC-ZVGUSBNCSA-M lithium;(2r,3r)-2,3,4-trihydroxy-4-oxobutanoate Chemical compound [Li+].OC(=O)[C@H](O)[C@@H](O)C([O-])=O ZPPPLBXXTCVBNC-ZVGUSBNCSA-M 0.000 description 1
- OLMNIZJJAAWPAB-NBTZWHCOSA-M lithium;(9z,12z)-octadeca-9,12-dienoate Chemical compound [Li+].CCCCC\C=C/C\C=C/CCCCCCCC([O-])=O OLMNIZJJAAWPAB-NBTZWHCOSA-M 0.000 description 1
- AVOVSJYQRZMDQJ-KVVVOXFISA-M lithium;(z)-octadec-9-enoate Chemical compound [Li+].CCCCCCCC\C=C/CCCCCCCC([O-])=O AVOVSJYQRZMDQJ-KVVVOXFISA-M 0.000 description 1
- GKQWYZBANWAFMQ-UHFFFAOYSA-M lithium;2-hydroxypropanoate Chemical compound [Li+].CC(O)C([O-])=O GKQWYZBANWAFMQ-UHFFFAOYSA-M 0.000 description 1
- IIDVGIFOWJJSIJ-UHFFFAOYSA-M lithium;2-methylpropanoate Chemical compound [Li+].CC(C)C([O-])=O IIDVGIFOWJJSIJ-UHFFFAOYSA-M 0.000 description 1
- LDJNSLOKTFFLSL-UHFFFAOYSA-M lithium;benzoate Chemical compound [Li+].[O-]C(=O)C1=CC=CC=C1 LDJNSLOKTFFLSL-UHFFFAOYSA-M 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- WIAVVDGWLCNNGT-UHFFFAOYSA-M lithium;butanoate Chemical compound [Li+].CCCC([O-])=O WIAVVDGWLCNNGT-UHFFFAOYSA-M 0.000 description 1
- POYDCAKGHSRECA-UHFFFAOYSA-M lithium;decanoate Chemical compound [Li+].CCCCCCCCCC([O-])=O POYDCAKGHSRECA-UHFFFAOYSA-M 0.000 description 1
- AZEPWULHRMVZQR-UHFFFAOYSA-M lithium;dodecanoate Chemical compound [Li+].CCCCCCCCCCCC([O-])=O AZEPWULHRMVZQR-UHFFFAOYSA-M 0.000 description 1
- XKPJKVVZOOEMPK-UHFFFAOYSA-M lithium;formate Chemical compound [Li+].[O-]C=O XKPJKVVZOOEMPK-UHFFFAOYSA-M 0.000 description 1
- RQZHWDLISAJCLK-UHFFFAOYSA-M lithium;heptanoate Chemical compound [Li+].CCCCCCC([O-])=O RQZHWDLISAJCLK-UHFFFAOYSA-M 0.000 description 1
- BZMIKKVSCNHEFL-UHFFFAOYSA-M lithium;hexadecanoate Chemical compound [Li+].CCCCCCCCCCCCCCCC([O-])=O BZMIKKVSCNHEFL-UHFFFAOYSA-M 0.000 description 1
- PNDUWCHQCLZPAH-UHFFFAOYSA-M lithium;hexanoate Chemical compound [Li+].CCCCCC([O-])=O PNDUWCHQCLZPAH-UHFFFAOYSA-M 0.000 description 1
- BTAUEIDLAAYHSL-UHFFFAOYSA-M lithium;octanoate Chemical compound [Li+].CCCCCCCC([O-])=O BTAUEIDLAAYHSL-UHFFFAOYSA-M 0.000 description 1
- PCNUMQYMOJIMKN-UHFFFAOYSA-M lithium;pentadecanoate Chemical compound [Li+].CCCCCCCCCCCCCCC([O-])=O PCNUMQYMOJIMKN-UHFFFAOYSA-M 0.000 description 1
- KDDRURKXNGXKGE-UHFFFAOYSA-M lithium;pentanoate Chemical compound [Li+].CCCCC([O-])=O KDDRURKXNGXKGE-UHFFFAOYSA-M 0.000 description 1
- AXMOZGKEVIBBCF-UHFFFAOYSA-M lithium;propanoate Chemical compound [Li+].CCC([O-])=O AXMOZGKEVIBBCF-UHFFFAOYSA-M 0.000 description 1
- KJSPVJJOPONRTK-UHFFFAOYSA-M lithium;tetradecanoate Chemical compound [Li+].CCCCCCCCCCCCCC([O-])=O KJSPVJJOPONRTK-UHFFFAOYSA-M 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- JBXYCUKPDAAYAS-UHFFFAOYSA-N methanol;trifluoroborane Chemical compound OC.FB(F)F JBXYCUKPDAAYAS-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- CHNLPLHJUPMEOI-UHFFFAOYSA-N oxolane;trifluoroborane Chemical class FB(F)F.C1CCOC1 CHNLPLHJUPMEOI-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- VENBJVSTINLYEU-UHFFFAOYSA-N phenol;trifluoroborane Chemical compound FB(F)F.OC1=CC=CC=C1 VENBJVSTINLYEU-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- DBIWHDFLQHGOCS-UHFFFAOYSA-N piperidine;trifluoroborane Chemical compound FB(F)F.C1CCNCC1 DBIWHDFLQHGOCS-UHFFFAOYSA-N 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- RQPQOULISUUGNY-UHFFFAOYSA-N propan-1-ol;trifluoroborane Chemical compound CCCO.FB(F)F RQPQOULISUUGNY-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- LGQXXHMEBUOXRP-UHFFFAOYSA-N tributyl borate Chemical compound CCCCOB(OCCCC)OCCCC LGQXXHMEBUOXRP-UHFFFAOYSA-N 0.000 description 1
- AJSTXXYNEIHPMD-UHFFFAOYSA-N triethyl borate Chemical compound CCOB(OCC)OCC AJSTXXYNEIHPMD-UHFFFAOYSA-N 0.000 description 1
- IRKHIJIMXUBALO-UHFFFAOYSA-N triheptyl borate Chemical compound CCCCCCCOB(OCCCCCCC)OCCCCCCC IRKHIJIMXUBALO-UHFFFAOYSA-N 0.000 description 1
- KDQYHGMMZKMQAA-UHFFFAOYSA-N trihexyl borate Chemical compound CCCCCCOB(OCCCCCC)OCCCCCC KDQYHGMMZKMQAA-UHFFFAOYSA-N 0.000 description 1
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 1
- GZKLCETYSGSMRA-UHFFFAOYSA-N trioctadecyl borate Chemical compound CCCCCCCCCCCCCCCCCCOB(OCCCCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCCCCC GZKLCETYSGSMRA-UHFFFAOYSA-N 0.000 description 1
- DTBRTYHFHGNZFX-UHFFFAOYSA-N trioctyl borate Chemical compound CCCCCCCCOB(OCCCCCCCC)OCCCCCCCC DTBRTYHFHGNZFX-UHFFFAOYSA-N 0.000 description 1
- JLPJTCGUKOBWRJ-UHFFFAOYSA-N tripentyl borate Chemical compound CCCCCOB(OCCCCC)OCCCCC JLPJTCGUKOBWRJ-UHFFFAOYSA-N 0.000 description 1
- MDCWDBMBZLORER-UHFFFAOYSA-N triphenyl borate Chemical compound C=1C=CC=CC=1OB(OC=1C=CC=CC=1)OC1=CC=CC=C1 MDCWDBMBZLORER-UHFFFAOYSA-N 0.000 description 1
- NHDIQVFFNDKAQU-UHFFFAOYSA-N tripropan-2-yl borate Chemical compound CC(C)OB(OC(C)C)OC(C)C NHDIQVFFNDKAQU-UHFFFAOYSA-N 0.000 description 1
- LTEHWCSSIHAVOQ-UHFFFAOYSA-N tripropyl borate Chemical compound CCCOB(OCCC)OCCC LTEHWCSSIHAVOQ-UHFFFAOYSA-N 0.000 description 1
- YZYKZHPNRDIPFA-UHFFFAOYSA-N tris(trimethylsilyl) borate Chemical compound C[Si](C)(C)OB(O[Si](C)(C)C)O[Si](C)(C)C YZYKZHPNRDIPFA-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウムイオン二次電池用負極剤、リチウムイオン二次電池用負極、およびリチウムイオン二次電池に関する。 The present invention relates to a negative electrode agent for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
リチウムイオン二次電池は、鉛蓄電池、ニッケル水素電池に比べて、エネルギー密度および起電力が高いという特徴を有するため、小型、軽量化が要求される携帯電話やノートパソコン等の電源として広く使用されている。近年では自動車にも適応され、更なる高エネルギー密度化が求められている。 Lithium-ion secondary batteries are characterized by higher energy density and electromotive force than lead-acid batteries and nickel-metal hydride batteries, so they are widely used as power sources for mobile phones and laptop computers that require small size and light weight. ing. In recent years, it has been applied to automobiles, and further higher energy density has been demanded.
リチウムイオン二次電池用負極は、通常、バインダー(結着剤)、負極活物質、導電助剤を含有する負極剤に溶媒を混ぜて塗布液(負極用スラリー)とし、これを集電体上に塗布・乾燥して電極活物質層を形成することで得られる。
バインダーとしては、ポリフッ化ビニリデン(PVDF)や、ポリアクリル酸(PAA)などの重合体が用いられている(例えば特許文献1、非特許文献1参照)。
一方、溶媒としては、水やN−メチル−2−ピロリドン(NMP)等の有機溶媒が用いられている。
A negative electrode for a lithium ion secondary battery is usually a coating liquid (slurry for negative electrode) mixed with a negative electrode agent containing a binder (binder), a negative electrode active material, and a conductive additive, and this is applied to the current collector. It is obtained by applying and drying to form an electrode active material layer.
As the binder, a polymer such as polyvinylidene fluoride (PVDF) or polyacrylic acid (PAA) is used (see, for example, Patent Document 1 and Non-Patent Document 1).
On the other hand, organic solvents such as water and N-methyl-2-pyrrolidone (NMP) are used as the solvent.
ところで、リチウムイオン二次電池用負極には、負極活物質として黒鉛等の炭素材料が用いられていた。しかし、黒鉛は理論的なリチウムイオンの吸蔵放出容量が372mAh/gに限られているため、高エネルギー密度化を達成するには、リチウムイオンの吸蔵放出容量がより大きい負極活物質が求められている。
そこで、充放電容量の低い炭素材料に代えて、ケイ素材料を用いる方法が検討されている。しかし、ケイ素材料は充放電による体積変化が大きく、連続充放電を行うことにより電極活物質層が破損し、リチウムイオン二次電池のサイクル特性が低下するという問題があった。
Incidentally, carbon materials such as graphite have been used as negative electrode active materials for negative electrodes for lithium ion secondary batteries. However, since graphite has a theoretical lithium ion storage / release capacity limited to 372 mAh / g, a negative electrode active material having a larger lithium ion storage / release capacity is required to achieve high energy density. Yes.
Therefore, a method using a silicon material instead of a carbon material having a low charge / discharge capacity has been studied. However, the silicon material has a large volume change due to charging / discharging, and there is a problem that the electrode active material layer is damaged by performing continuous charging / discharging, and the cycle characteristics of the lithium ion secondary battery are deteriorated.
このような問題に対し、近年では、炭素材料よりも充放電容量が高く、かつケイ素材料よりも体積変化が起こりにくい負極活物質として、酸化鉄(III)などの金属酸化物が用いられている。
しかし、酸化鉄(III)を用いた場合でも、充放電によってある程度の体積変化は起こる。特に、バインダーとしてPVDFを用いた場合は、リチウムイオン二次電池のサイクル特性が低下することがあった。
In recent years, metal oxides such as iron (III) oxide have been used as negative electrode active materials that have higher charge / discharge capacities than carbon materials and are less susceptible to volume changes than silicon materials. .
However, even when iron (III) oxide is used, a certain volume change occurs due to charge and discharge. In particular, when PVDF is used as the binder, the cycle characteristics of the lithium ion secondary battery may be deteriorated.
一方、特許文献1、非特許文献1に記載のように、バインダーとして分子量が5000以下程度である低分子量のPAAを用いた場合は十分なサイクル特性が得られにくいものの、分子量が10〜25万程度である高分子量のPAAを用いた場合はサイクル特性が向上することが知られている。
しかし、重合体であるPVDFやPAAは必ずしも溶媒に対する分散性や溶解性が十分ではない。そのため、負極剤に溶媒を混ぜて負極用スラリーを調製する際にバインダーが十分に溶解または分散せず、その結果、均一な電極活物質層が形成されにくくなることがあり、サイクル特性が低下することがあった。
On the other hand, as described in Patent Document 1 and Non-Patent Document 1, when a low molecular weight PAA having a molecular weight of about 5000 or less is used as a binder, sufficient cycle characteristics are difficult to obtain, but the molecular weight is 100,000 to 250,000. It is known that cycle characteristics are improved when high molecular weight PAA is used.
However, PVDF and PAA that are polymers are not necessarily sufficiently dispersible and soluble in solvents. Therefore, when preparing a slurry for a negative electrode by mixing a solvent with the negative electrode agent, the binder is not sufficiently dissolved or dispersed, and as a result, a uniform electrode active material layer may be difficult to be formed, resulting in a decrease in cycle characteristics. There was a thing.
本発明は、上記事情を鑑みてなされたもので、サイクル特性に優れたリチウムイオン二次電池が得られるリチウムイオン二次電池用負極剤とリチウムイオン二次電池用負極、およびサイクル特性に優れたリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has a lithium ion secondary battery negative electrode agent and a lithium ion secondary battery negative electrode from which a lithium ion secondary battery excellent in cycle characteristics can be obtained, and cycle characteristics excellent. An object is to provide a lithium ion secondary battery.
本発明のリチウムイオン二次電池用負極剤は、2つ以上のカルボキシル基を有するカルボン酸と、金属酸化物とを含有することを特徴とする。
ここで、前記カルボン酸が、クエン酸、シュウ酸、コハク酸、ラセミ酸、マロン酸、メチルコハク酸、リンゴ酸、ジグリコール酸、フラル酸およびその誘導体、ヘミメリット酸およびその誘導体、トリメリット酸、ナフタレンジカルボン酸、テレフタル酸およびその誘導体、トリメシン酸からなる群より選ばれる1種以上であり、前記カルボン酸の含有量が、リチウムイオン二次電池用負極剤100質量%中、0.5〜30質量%である。
前記カルボン酸のカルボキシル基の数が、2以上80以下であることが好ましい。
前記金属酸化物の含有量が、リチウムイオン二次電池用負極剤100質量%中、40〜98質量%であることが好ましい。
前記リチウムイオン二次電池用負極剤は、更に導電助剤を含有し、前記導電助剤の含有量が、リチウムイオン二次電池用負極剤100質量%中、1〜20質量%であることが好ましい。
また、本発明のリチウムイオン二次電池用負極は、集電体と、該集電体上に設けられた電極活物質層とを備え、前記電極活物質層は、前記リチウムイオン二次電池用負極剤を含有することを特徴とする。
また、本発明のリチウムイオン二次電池は、正極と、負極と、電解液とを備え、前記負極が前記リチウムイオン二次電池用負極であることを特徴とする。
ここで、前記電解液が、有機酸のリチウム塩およびホウ素化合物を含むことが好ましい。
The negative electrode agent for lithium ion secondary batteries of the present invention is characterized by containing a carboxylic acid having two or more carboxyl groups and a metal oxide.
Here, the carboxylic acid is citric acid, oxalic acid, succinic acid, racemic acid, malonic acid, methyl succinic acid, malic acid, diglycolic acid, fulleric acid and its derivatives, hemimellitic acid and its derivatives, trimellitic acid, It is 1 or more types chosen from the group which consists of naphthalene dicarboxylic acid, terephthalic acid and its derivative (s), and trimesic acid, and content of the said carboxylic acid is 0.5-30 in 100 mass% of negative electrode agents for lithium ion secondary batteries. % By mass.
The number of carboxyl groups of the carboxylic acid is preferably 2 or more and 80 or less.
It is preferable that content of the said metal oxide is 40-98 mass% in 100 mass% of negative electrode agents for lithium ion secondary batteries.
The negative electrode agent for lithium ion secondary batteries further contains a conductive additive, and the content of the conductive auxiliary agent is 1 to 20% by mass in 100% by mass of the negative electrode agent for lithium ion secondary batteries. preferable.
The negative electrode for a lithium ion secondary battery of the present invention includes a current collector and an electrode active material layer provided on the current collector, and the electrode active material layer is for the lithium ion secondary battery. It contains a negative electrode agent.
The lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrolytic solution, and the negative electrode is the negative electrode for a lithium ion secondary battery.
Here, it is preferable that the electrolytic solution contains a lithium salt of an organic acid and a boron compound.
本発明のリチウムイオン二次電池用負極剤とリチウムイオン二次電池用負極によれば、サイクル特性に優れたリチウムイオン二次電池が得られる。
また、本発明のリチウムイオン二次電池は、サイクル特性に優れる。
According to the negative electrode agent for lithium ion secondary batteries and the negative electrode for lithium ion secondary batteries of the present invention, a lithium ion secondary battery excellent in cycle characteristics can be obtained.
Moreover, the lithium ion secondary battery of this invention is excellent in cycling characteristics.
[リチウムイオン二次電池用負極剤]
本発明のリチウムイオン二次電池用負極剤(以下、単に「負極剤」という。)は、バインダーと負極活物質とを含有する。また、導電助剤を含有してもよい。
[Anode agent for lithium ion secondary battery]
The negative electrode agent for lithium ion secondary batteries of the present invention (hereinafter simply referred to as “negative electrode agent”) contains a binder and a negative electrode active material. Moreover, you may contain a conductive support agent.
<バインダー>
本発明の負極剤は、バインダーとして2つ以上のカルボキシル基を有するカルボン酸(以下、「2価以上のカルボン酸」という。)を含有する。
バインダーとして2価以上のカルボン酸を含有することで、均一な電極活物質層を形成できる。よって、充放電容量が比較的高い酸化鉄(III)などの金属酸化物を負極活物質として用いても、サイクル特性に優れたリチウムイオン二次電池が得られる。
なお、本発明に用いるカルボン酸は重合しない化合物であり、本発明に用いるカルボン酸には重合体は含まれない。
<Binder>
The negative electrode agent of the present invention contains a carboxylic acid having two or more carboxyl groups (hereinafter referred to as “divalent or higher carboxylic acid”) as a binder.
By containing a divalent or higher carboxylic acid as a binder, a uniform electrode active material layer can be formed. Therefore, even when a metal oxide such as iron (III) oxide having a relatively high charge / discharge capacity is used as the negative electrode active material, a lithium ion secondary battery having excellent cycle characteristics can be obtained.
The carboxylic acid used in the present invention is a compound that does not polymerize, and the carboxylic acid used in the present invention does not include a polymer.
2価以上のカルボン酸のカルボキシル基の数は80以下が好ましく、40以下がより好ましい。このような低分子量のカルボン酸を用いることで、詳しくは後述するが、リチウムイオン二次電池用負極の製造において、本発明の負極剤に溶媒を混ぜて負極用スラリーを調製する際に、水やNMPなどの溶媒に対する溶解性が高まる。よって、短時間で負極用スラリーを容易に調製できるので、リチウムイオン二次電池用負極やリチウムイオン二次電池の生産性が高まる。なお、カルボキシル基の数が1の場合、十分なバインダー機能が得られない。
また、2価以上のカルボン酸の分子量は5000以下が好ましく、1000以下がより好ましく、500以下がさらに好ましく、300以下が特に好ましい。分子量が小さくなるほど、溶媒に対する溶解性が高まる。
The number of carboxyl groups in the divalent or higher carboxylic acid is preferably 80 or less, and more preferably 40 or less. By using such a low molecular weight carboxylic acid, as will be described in detail later, in the production of a negative electrode for a lithium ion secondary battery, when preparing a negative electrode slurry by mixing a solvent with the negative electrode agent of the present invention, And solubility in solvents such as NMP are increased. Therefore, since the negative electrode slurry can be easily prepared in a short time, the productivity of the negative electrode for lithium ion secondary batteries and the lithium ion secondary battery is increased. When the number of carboxyl groups is 1, a sufficient binder function cannot be obtained.
The molecular weight of the divalent or higher carboxylic acid is preferably 5000 or less, more preferably 1000 or less, still more preferably 500 or less, and particularly preferably 300 or less. The smaller the molecular weight, the higher the solubility in the solvent.
2価以上のカルボン酸は、脂肪族化合物であってもよいし、芳香族化合物であってもよい。脂肪族化合物としては、例えばクエン酸、シュウ酸、コハク酸、ラセミ酸、マロン酸、メチルコハク酸、リンゴ酸、ジグリコール酸などが挙げられる。
一方、芳香族化合物としては、例えばフラル酸およびその誘導体(5−メチルイソフタル酸)、ヘミメリット酸およびその誘導体、トリメリット酸、ナフタレンジカルボン酸、テレフタル酸およびその誘導体、トリメシン酸などが挙げられる。
これらの中でも、バインダー機能に優れ、サイクル特性がより安定する点で、クエン酸、コハク酸、トリメシン酸が好ましい。
これらカルボン酸は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上併用する場合、その組み合わせや比率は目的に応じて適宜選択すればよい。
The divalent or higher carboxylic acid may be an aliphatic compound or an aromatic compound. Examples of the aliphatic compound include citric acid, oxalic acid, succinic acid, racemic acid, malonic acid, methyl succinic acid, malic acid, diglycolic acid and the like.
On the other hand, examples of the aromatic compound include fulleric acid and derivatives thereof (5-methylisophthalic acid), hemimellitic acid and derivatives thereof, trimellitic acid, naphthalenedicarboxylic acid, terephthalic acid and derivatives thereof, and trimesic acid.
Among these, citric acid, succinic acid, and trimesic acid are preferable from the viewpoint of excellent binder function and more stable cycle characteristics.
These carboxylic acids may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
(他のバインダー)
本発明の負極剤は、バインダーとして上述した2価以上のカルボン酸のみを含有してもよいし、2価以上のカルボン酸以外の他のバインダーを含有してもよい。
他のバインダーとしては、例えばポリフッ化ビニリデン(PVDF)、ポリアクリル酸(PAA)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、ポリアクリルニトリル(PAN)、ポリイミド(PI)などが挙げられる。
他のバインダーの含有量は、負極剤に含まれる全てのバインダー100質量%中、40質量%以下が好ましく、20質量%以下がより好ましい。他のバインダーの含有量が40質量%以下であれば、本発明の効果(すなわち、サイクル特性の向上効果)が十分に得られる。
(Other binders)
The negative electrode agent of the present invention may contain only the above-described divalent or higher carboxylic acid as the binder, or may contain other binders other than the divalent or higher carboxylic acid.
Other binders include, for example, polyvinylidene fluoride (PVDF), polyacrylic acid (PAA), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyethylene oxide (PEO), polyethylene glycol (PEG), polyacrylonitrile. (PAN), polyimide (PI) and the like.
The content of the other binder is preferably 40% by mass or less, and more preferably 20% by mass or less, in 100% by mass of all the binders contained in the negative electrode agent. When the content of the other binder is 40% by mass or less, the effect of the present invention (that is, the effect of improving cycle characteristics) can be sufficiently obtained.
<負極活物質>
本発明の負極剤は、負極活物質として金属酸化物を含有する。
金属酸化物としては、例えば酸化鉄(III)、酸化チタン(IV)、酸化コバルト(II)、酸化コバルト(III)、酸化マンガン(IV)などが挙げられる。これらの中でも、酸化鉄(III)が好ましい。
酸化鉄(III)は、理論的なリチウムイオンの吸蔵放出容量が1000mAh/gであり、黒鉛等の炭素材料に比べて充放電容量が高く、エネルギー密度の高いリチウムイオン二次電池が得られる。
また、酸化鉄(III)は、ケイ素材料に比べると充放電容量に劣るものの、充放電による体積変化が起こりにくい。よって、バインダーである2価以上のカルボン酸と併用することで、サイクル特性に優れたリチウムイオン二次電池が得られる。
<Negative electrode active material>
The negative electrode agent of the present invention contains a metal oxide as a negative electrode active material.
Examples of the metal oxide include iron (III) oxide, titanium (IV) oxide, cobalt (II) oxide, cobalt (III) oxide, and manganese (IV) oxide. Among these, iron (III) oxide is preferable.
Iron (III) oxide has a theoretical lithium ion storage / release capacity of 1000 mAh / g, and has a higher charge / discharge capacity and higher energy density than a carbon material such as graphite.
Moreover, although iron (III) oxide is inferior to charge / discharge capacity compared with a silicon material, the volume change by charge / discharge hardly occurs. Therefore, a lithium ion secondary battery excellent in cycle characteristics can be obtained by using in combination with a divalent or higher carboxylic acid as a binder.
<導電助剤>
負極剤は、導電助剤を含むことが好ましい。導電助剤を含むことにより、負極剤の導電性がより向上する。
導電助剤としては、黒鉛、カーボンブラック(例えばケッチェンブラック、アセチレンブラックなど)、カーボンナノチューブ、グラフェン、フラーレンなどが挙げられる。これら導電助剤は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上併用する場合、その組み合わせや比率は目的に応じて適宜選択すればよい。
<Conductive aid>
The negative electrode agent preferably contains a conductive aid. By including a conductive additive, the conductivity of the negative electrode agent is further improved.
Examples of the conductive assistant include graphite, carbon black (for example, ketjen black, acetylene black, etc.), carbon nanotube, graphene, fullerene and the like. These conductive assistants may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
<含有量>
バインダーの含有量は、負極剤100質量%中、0.5〜30質量%が好ましく、2〜15質量%がより好ましい。バインダーの含有量が0.5質量%以上であれば、バインダー機能を十分に発揮でき、詳しくは後述するが、本発明の負極剤より形成される電極活物質層の集電体に対する結着性を良好に維持できる。加えて、負極の劣化を抑制できる。一方、バインダーの含有量が30質量%以下であれば、サイクル寿命を維持しつつ、負極を薄型化できる。
<Content>
The content of the binder is preferably 0.5 to 30% by mass and more preferably 2 to 15% by mass in 100% by mass of the negative electrode agent. If the content of the binder is 0.5% by mass or more, the binder function can be sufficiently exerted, and as will be described in detail later, the binding property of the electrode active material layer formed from the negative electrode agent of the present invention to the current collector. Can be maintained well. In addition, deterioration of the negative electrode can be suppressed. On the other hand, when the binder content is 30% by mass or less, the negative electrode can be thinned while maintaining the cycle life.
負極活物質の含有量は、負極剤100質量%中、40〜98質量%が好ましく、60〜96質量%がより好ましい。負極活物質の含有量が40質量%以上であれば、リチウムイオン二次電池の高容量化に繋がる。特に、負極活物質の含有量が60質量%以上であれば、薄くて高容量のリチウムイオン二次電池が得られる。一方、負極活物質の含有量が98質量%以下であれば、バインダーや導電助剤の含有量を十分に確保できる。 40-98 mass% is preferable in 100 mass% of negative electrode agents, and, as for content of a negative electrode active material, 60-96 mass% is more preferable. If content of a negative electrode active material is 40 mass% or more, it will lead to high capacity | capacitance of a lithium ion secondary battery. In particular, when the content of the negative electrode active material is 60% by mass or more, a thin and high-capacity lithium ion secondary battery can be obtained. On the other hand, when the content of the negative electrode active material is 98% by mass or less, the content of the binder and the conductive auxiliary agent can be sufficiently ensured.
導電助剤の含有量は、負極剤100質量%中、1〜20質量%が好ましく、2〜15質量%がより好ましい。導電助剤の含有量が1質量%以上であれば、電気伝導性を良好に維持でき、負極の劣化や容量発現の低下を抑制できる。一方、導電助剤の含有量が20質量%以下であれば、クーロン効率を良好に維持できる。また、後述する負極スラリーを調製したときに、導電助剤の分散性が良好となる。 1-100 mass% is preferable in 100 mass% of negative electrode agents, and, as for content of a conductive support agent, 2-15 mass% is more preferable. If content of a conductive support agent is 1 mass% or more, electrical conductivity can be maintained favorable and it can suppress the deterioration of a negative electrode and the fall of capacity | capacitance expression. On the other hand, if the content of the conductive additive is 20% by mass or less, the Coulomb efficiency can be maintained well. Moreover, when the negative electrode slurry mentioned later is prepared, the dispersibility of a conductive support agent becomes favorable.
<作用効果>
上述したように、従来、バインダーとしてはPVDFやPAAなどの重合体を用いるのが一般的であった。しかし、これら重合体は溶媒に対する分散性や溶解性が必ずしも十分ではなく、均一な電極活物質層が形成されにくくなることがあり、リチウムイオン二次電池のサイクル特性が低下することがあった。
<Effect>
As described above, conventionally, polymers such as PVDF and PAA have been generally used as binders. However, these polymers are not always sufficiently dispersible and soluble in a solvent, and it may be difficult to form a uniform electrode active material layer, and the cycle characteristics of the lithium ion secondary battery may be deteriorated.
しかし、本発明者らは鋭意検討した結果、上述した2価以上のカルボン酸がバインダー機能を有し、かつ溶媒に分散性や溶解性にも優れることを見出した。そして、PVDFやPAAなどの重合体の代わりに2価以上のカルボン酸をバインダーとして用いることで、溶媒に混ぜたときにバインダーが十分に溶解または分散した負極用スラリーが得られる。よって、本発明の負極剤であれば、均一な電極活物質層を形成できるので、充放電容量が比較的高い酸化鉄(III)などの金属酸化物を負極活物質として用いても、サイクル特性に優れたリチウムイオン二次電池が得られる。
また、本発明の負極剤は、負極活物質として酸化鉄(III)などの金属酸化物を含有するので、エネルギー密度が高い。
特に、2価以上のカルボン酸として分子量が5000以下、好ましくは1000以下のカルボン酸を用いれば、水やNMPなどの有機溶媒に対する溶解性が高まるため、高い生産性を維持できる。
However, as a result of intensive studies, the present inventors have found that the above-described divalent or higher carboxylic acid has a binder function and is excellent in dispersibility and solubility in a solvent. Then, by using a divalent or higher carboxylic acid as a binder instead of a polymer such as PVDF or PAA, a negative electrode slurry in which the binder is sufficiently dissolved or dispersed when mixed in a solvent can be obtained. Therefore, since the negative electrode agent of the present invention can form a uniform electrode active material layer, even if a metal oxide such as iron (III) oxide having a relatively high charge / discharge capacity is used as the negative electrode active material, cycle characteristics Can be obtained.
Moreover, since the negative electrode agent of this invention contains metal oxides, such as iron (III) oxide, as a negative electrode active material, its energy density is high.
In particular, when a carboxylic acid having a molecular weight of 5000 or less, preferably 1000 or less, is used as a divalent or higher carboxylic acid, the solubility in water or an organic solvent such as NMP is increased, so that high productivity can be maintained.
[リチウムイオン二次電池用負極]
本発明のリチウムイオン二次電池用負極(以下、単に「負極」という。)は、集電体と、該集電体上に設けられた電極活物質層とを備える。
集電体の材料としては、導電性を有する材料であれば特に制限されないが、例えば銅、アルミニウム、ニッケルなどが挙げられる。
集電体の厚さは特に制限されないが、5〜20μmであることが好ましい。
[Anode for lithium ion secondary battery]
A negative electrode for a lithium ion secondary battery of the present invention (hereinafter simply referred to as “negative electrode”) includes a current collector and an electrode active material layer provided on the current collector.
The material for the current collector is not particularly limited as long as it is a conductive material, and examples thereof include copper, aluminum, and nickel.
The thickness of the current collector is not particularly limited, but is preferably 5 to 20 μm.
電極活物質層は、本発明の負極剤を含有する層である。
電極活物質層の厚さは特に制限されないが、5〜100μmが好ましい。
The electrode active material layer is a layer containing the negative electrode agent of the present invention.
The thickness of the electrode active material layer is not particularly limited, but is preferably 5 to 100 μm.
<リチウムイオン二次電池用負極の製造方法>
本発明の負極は、本発明の負極剤を溶媒に溶解して負極用スラリーを調製し、該負極用スラリーを集電体の片面または両面に塗布し、乾燥させて、集電体上に電極活物質層を形成させることで得られる。
<Method for producing negative electrode for lithium ion secondary battery>
The negative electrode of the present invention is prepared by dissolving the negative electrode agent of the present invention in a solvent to prepare a negative electrode slurry. The negative electrode slurry is applied to one or both sides of a current collector and dried to form an electrode on the current collector. It is obtained by forming an active material layer.
負極用スラリーに用いられる溶媒としては、バインダーを溶解可能なものが好ましく、水や、NMP、N,N−ジメチルホルムアミド、エタノール、メタノール、アセトンなどの有機溶媒が挙げられる。中でも、水、NMPが好適である。
これら溶媒は1種単独で用いてもよいし、2種以上を併用してもよい。2種以上併用する場合、その組み合わせや比率は目的に応じて適宜選択すればよい。
As the solvent used for the negative electrode slurry, those capable of dissolving the binder are preferable, and examples thereof include water and organic solvents such as NMP, N, N-dimethylformamide, ethanol, methanol, and acetone. Of these, water and NMP are preferred.
These solvents may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
負極用スラリーは、上述した2価以上のカルボン酸と金属酸化物と導電助剤と、必要に応じて他のバインダーとを溶媒の存在下で混合することで得られる。このとき、予め2価以上のカルボン酸を溶媒の一部に溶解させておき、これに、金属酸化物と導電助剤と残りの溶媒とを加えてもよい。 The negative electrode slurry can be obtained by mixing the above-described divalent or higher carboxylic acid, metal oxide, conductive additive, and, if necessary, another binder in the presence of a solvent. At this time, a divalent or higher carboxylic acid may be dissolved in a part of the solvent in advance, and a metal oxide, a conductive additive, and the remaining solvent may be added thereto.
負極用スラリーを集電体上に塗布する方法としては特に制限されず、公知の塗布方法を採用できる。 The method for applying the negative electrode slurry onto the current collector is not particularly limited, and a known application method can be employed.
集電体上の負極用スラリーを乾燥する方法としては、負極用スラリー中の溶媒を除去できれば、公知の乾燥方法を採用できる。
乾燥温度は40〜180℃が好ましい。乾燥温度が40℃以上であれば、短時間で電極活物質層を硬化できる。一方、乾燥温度が180℃以下であれば、集電体が酸化されるなどの影響を防ぐことができ、生産性を維持できる。さらに、乾燥温度を上げながら真空乾燥してもよく、より短時間での乾燥が可能となる。
As a method for drying the negative electrode slurry on the current collector, a known drying method can be adopted as long as the solvent in the negative electrode slurry can be removed.
The drying temperature is preferably 40 to 180 ° C. When the drying temperature is 40 ° C. or higher, the electrode active material layer can be cured in a short time. On the other hand, if the drying temperature is 180 ° C. or lower, it is possible to prevent the current collector from being oxidized and the like, and productivity can be maintained. Furthermore, vacuum drying may be performed while raising the drying temperature, and drying in a shorter time becomes possible.
集電体上の負極用スラリーを乾燥させた後、必要に応じて電極活物質層をプレスしてもよい。電極活物質層をプレスすることで、電極活物質層の厚さを容易に調節できる。プレス方法としては、ロールプレスや金型プレスなどが挙げられる。
さらに、必要に応じて、得られた負極を任意の寸法に切断してもよい。
After the negative electrode slurry on the current collector is dried, the electrode active material layer may be pressed as necessary. By pressing the electrode active material layer, the thickness of the electrode active material layer can be easily adjusted. Examples of the pressing method include a roll press and a die press.
Furthermore, you may cut | disconnect the obtained negative electrode in arbitrary dimensions as needed.
<作用効果>
以上説明した本発明の負極は、上述した本発明の負極剤を含有する電極活物質層を備えるので、エネルギー密度が高く、しかもサイクル特性に優れたリチウムイオン二次電池が得られる。
特に、2価以上のカルボン酸として分子量が5000以下、より好ましくは1000以下のカルボン酸を含有する負極剤を用いれば、水やNMPなどの有機溶媒に対する溶解性が高まるため、高い生産性を維持できる。
<Effect>
Since the negative electrode of the present invention described above includes the electrode active material layer containing the negative electrode agent of the present invention described above, a lithium ion secondary battery having high energy density and excellent cycle characteristics can be obtained.
In particular, if a negative electrode agent containing a carboxylic acid having a molecular weight of 5000 or less, more preferably 1000 or less as a divalent or higher carboxylic acid is used, the solubility in an organic solvent such as water or NMP is increased, so that high productivity is maintained. it can.
[リチウムイオン二次電池]
本発明のリチウムイオン二次電池は、正極と本発明の負極と電解液とを備える。また、必要に応じて、正極と負極との間にセパレータが設けられていてもよい。
[Lithium ion secondary battery]
The lithium ion secondary battery of this invention is equipped with a positive electrode, the negative electrode of this invention, and electrolyte solution. In addition, a separator may be provided between the positive electrode and the negative electrode as necessary.
<正極>
本発明のリチウムイオン二次電池に用いられる正極としては、例えば集電体上に正極活物質やバインダーを含む電極活物質層が形成された公知の正極を使用できる。
正極の集電体の材料としては、導電性を有する材料であれば特に制限されないが、例えばアルミニウム、ニッケル、銅などが挙げられる。
正極の集電体の厚さは特に制限されないが、5〜25μmが好ましい。
<Positive electrode>
As the positive electrode used in the lithium ion secondary battery of the present invention, for example, a known positive electrode in which an electrode active material layer containing a positive electrode active material or a binder is formed on a current collector can be used.
The material of the positive electrode current collector is not particularly limited as long as it is a conductive material, and examples thereof include aluminum, nickel, and copper.
The thickness of the positive electrode current collector is not particularly limited, but is preferably 5 to 25 μm.
正極活物質としては、例えば一般式LiMxOy(ただし、Mは金属であり、xおよびy、は金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物が用いられる。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)、オリビン型リン酸鉄リチウム(LiFePO4)などが挙げられる。なお、Mは複数の金属であってもよく、例えばLiM1 pM2 qM3 rOy(ただし、p+q+r=xである)で表される化合物、具体的にはLiNi0.33Mn0.33Co0.33O2などを正極活物質として用いることもできる。
正極に用いられるバインダーとしては、PVDF、SBRなどが挙げられる。
As the positive electrode active material, for example, a metal acid lithium compound represented by the general formula LiM x O y (where M is a metal and x and y are composition ratios of the metal M and oxygen O) is used. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), olivine type lithium iron phosphate (LiFePO 4 ), and the like can be given. M may be a plurality of metals, for example, a compound represented by LiM 1 p M 2 q M 3 r O y (where p + q + r = x), specifically, LiNi 0.33 Mn 0 .33 Co 0.33 O 2 or the like can also be used as the positive electrode active material.
Examples of the binder used for the positive electrode include PVDF and SBR.
正極の電極活物質層は、導電助剤を含んでいてもよい。導電助剤を含むことにより、正極の導電性がより向上し、電池性能をより高めることができる。
導電助剤としては、黒鉛、カーボンブラック、カーボンナノチューブ、グラフェン、フラーレンが挙げられる。これら導電助剤は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上併用する場合、その組み合わせや比率は目的に応じて適宜選択すればよい。
正極の電極活物質層の厚さは特に制限されないが、20〜60μmが好ましい。
The electrode active material layer of the positive electrode may contain a conductive additive. By including a conductive additive, the conductivity of the positive electrode is further improved, and the battery performance can be further improved.
Examples of the conductive aid include graphite, carbon black, carbon nanotube, graphene, and fullerene. These conductive assistants may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
The thickness of the electrode active material layer of the positive electrode is not particularly limited, but is preferably 20 to 60 μm.
<電解液>
本発明のリチウムイオン二次電池に用いられる電解液としては、電解質としてリチウム塩が有機溶媒に溶解した非水系電解液、電解質として有機酸のリチウム塩およびホウ素化合物が有機溶媒に溶解した非水系電解液などが挙げられる。
<Electrolyte>
The electrolyte used in the lithium ion secondary battery of the present invention includes a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent as an electrolyte, and a non-aqueous electrolyte in which a lithium salt of an organic acid and a boron compound are dissolved in an organic solvent as an electrolyte. Liquid and the like.
リチウム塩としては、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ素リチウム(LiBF4)、ビス(トリフルオロメチルスルホニル)イミドリチウム(LiN(SO2CF3)2)、六フッ化リン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)、四フッ化ホウ素リチウム(LiBF4)、三フッ化メタンスルホン酸リチウム(LiCF3SO3)、六フッ化アンチモン酸リチウム(LiSbF6)、六フッ化ヒ素酸リチウム(LiAsF6)、テトラフェニルホウ酸リチウム(LiB(C6H5)4)等が挙げられる。
リチウム塩は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上併用する場合、その組み合わせや比率は目的に応じて適宜選択すればよい。
Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium boron tetrafluoride (LiBF 4 ), lithium bis (trifluoromethylsulfonyl) imide (LiN (SO 2 CF 3 ) 2 ), phosphorus hexafluoride Lithium oxide (LiPF 6 ), Lithium perchlorate (LiClO 4 ), Lithium boron tetrafluoride (LiBF 4 ), Lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), Lithium hexafluoroantimonate (LiSbF 6 ) , Lithium hexafluoroarsenate (LiAsF 6 ), lithium tetraphenylborate (LiB (C 6 H 5 ) 4 ), and the like.
A lithium salt may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
有機酸のリチウム塩としては、カルボン酸リチウム塩、スルホン酸リチウム塩等が挙げられる。これらの中でも、有機酸のリチウム塩としては、カルボン酸のリチウム塩が好ましい。カルボン酸のリチウム塩が好ましい理由は、カルボン酸のリチウム塩は、カルボキシル基の電荷が比較的局在化しているため、後述するホウ素化合物と組み合わせた場合、ホウ素化合物と相互作用しやすく、有機酸のリチウム塩をより分散または溶解させることができるからであると推察される。
なお、有機酸のリチウム塩において、リチウム塩を構成する酸基の数は、特に限定されない。
Examples of lithium salts of organic acids include carboxylic acid lithium salts and sulfonic acid lithium salts. Among these, as lithium salt of organic acid, lithium salt of carboxylic acid is preferable. The lithium salt of the carboxylic acid is preferable because the lithium salt of the carboxylic acid has a relatively localized charge of the carboxyl group, and therefore, when combined with the boron compound described later, the lithium salt of the carboxylic acid easily interacts with the boron compound. This is presumably because the lithium salt can be more dispersed or dissolved.
In the lithium salt of organic acid, the number of acid groups constituting the lithium salt is not particularly limited.
カルボン酸のリチウム塩は、脂肪族カルボン酸、脂環式カルボン酸および芳香族カルボン酸のいずれのリチウム塩でもよく、1価カルボン酸および多価カルボン酸のいずれのリチウム塩でもよい。
カルボン酸のリチウム塩としては、具体的に、ギ酸リチウム、酢酸リチウム、プロピオン酸リチウム、酪酸リチウム、イソ酪酸リチウム、吉草酸リチウム、イソ吉草酸リチウム、カプロン酸リチウム、エナント酸リチウム、カプリル酸リチウム、ペラルゴン酸リチウム、カプリン酸リチウム、ラウリン酸リチウム、ミリスチン酸リチウム、ペンタデシル酸リチウム、パルミチン酸リチウム、オレイン酸リチウム、リノール酸リチウム、シュウ酸リチウム、乳酸リチウム、酒石酸リチウム、マレイン酸リチウム、フマル酸リチウム、マロン酸リチウム、コハク酸リチウム、リンゴ酸リチウム、クエン酸リチウム、グルタル酸リチウム、アジピン酸リチウム、フタル酸リチウム、安息香酸リチウム等が挙げられる。
有機酸のリチウム塩は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上併用する場合、その組み合わせや比率は目的に応じて適宜選択すればよい。
The lithium salt of carboxylic acid may be any lithium salt of aliphatic carboxylic acid, alicyclic carboxylic acid and aromatic carboxylic acid, and may be any lithium salt of monovalent carboxylic acid and polyvalent carboxylic acid.
Specific examples of the lithium salt of carboxylic acid include lithium formate, lithium acetate, lithium propionate, lithium butyrate, lithium isobutyrate, lithium valerate, lithium isovalerate, lithium caproate, lithium enanthate, lithium caprylate, Lithium perargonate, lithium caprate, lithium laurate, lithium myristate, lithium pentadecylate, lithium palmitate, lithium oleate, lithium linoleate, lithium oxalate, lithium lactate, lithium tartrate, lithium maleate, lithium fumarate, Examples include lithium malonate, lithium succinate, lithium malate, lithium citrate, lithium glutarate, lithium adipate, lithium phthalate, and lithium benzoate.
The lithium salt of organic acid may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
ホウ素化合物は、後述する電解液中の有機酸のリチウム塩において、リチウムイオンのアニオン部からの解離を促進し、有機溶媒への溶解性を向上させる機能を有していると推測される。
ホウ素化合物としては、三フッ化ホウ素等のハロゲン化ホウ素;三フッ化ホウ素ジメチルエーテル錯体(BF3O(CH3)2)、三フッ化ホウ素ジエチルエーテル錯体(BF3O(C2H5)2)、三フッ化ホウ素ジn−ブチルエーテル錯体(BF3O(C4H9)2)、三フッ化ホウ素ジtert−ブチルエーテル錯体(BF3O((CH3)3C)2)、三フッ化ホウ素tert−ブチルメチルエーテル錯体(BF3O((CH3)3C)(CH3))、三フッ化ホウ素テトラヒドロフラン錯体(BF3OC4H8)等のハロゲン化ホウ素アルキルエーテル錯体;三フッ化ホウ素メタノール錯体(BF3HOCH3)、三フッ化ホウ素プロパノール錯体(BF3HOC3H7)、三フッ化ホウ素フェノール錯体(BF3HOC6H5)等のハロゲン化ホウ素アルコール錯体;三フッ化ホウ素ピペリジニウム等のハロゲン化ホウ素塩;2,4,6−トリメトキシボロキシン等の2,4,6−トリアルコキシボロキシン;ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリ−n−プロピル、ホウ酸トリ−n−ブチル、ホウ酸トリ−n−ペンチル、ホウ酸トリ−n−ヘキシル、ホウ酸トリ−n−ヘプチル、ホウ酸トリ−n−オクチル、ホウ酸トリイソプロピル、ホウ酸トリオクタデシル等のホウ酸トリアルキル;ホウ酸トリフェニル等のホウ酸トリアリール;トリス(トリメチルシリル)ボラート等のトリス(トリアルキルシリル)ボラートなどが挙げられる。
ホウ素化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上併用する場合、その組み合わせや比率は目的に応じて適宜選択すればよい。
The boron compound is presumed to have a function of promoting the dissociation of lithium ions from the anion portion and improving the solubility in an organic solvent in a lithium salt of an organic acid in an electrolytic solution described later.
Examples of the boron compound include boron halides such as boron trifluoride; boron trifluoride dimethyl ether complex (BF 3 O (CH 3 ) 2 ), boron trifluoride diethyl ether complex (BF 3 O (C 2 H 5 ) 2 ), Boron trifluoride di n-butyl ether complex (BF 3 O (C 4 H 9 ) 2 ), boron trifluoride di tert-butyl ether complex (BF 3 O ((CH 3 ) 3 C) 2 ), Boron halide tert-butyl methyl ether complexes (BF 3 O ((CH 3 ) 3 C) (CH 3 )), boron trifluoride tetrahydrofuran complexes (BF 3 OC 4 H 8 ) and the like boron halide alkyl ether complexes; boron fluoride methanol complex (BF 3 HOCH 3), boron trifluoride-propanol complex (BF 3 HOC 3 H 7) , boron trifluoride Phenol complex (BF 3 HOC 6 H 5) boron halide alcohol complexes such as; boron halide salts such as boron trifluoride piperidinium; 2,4,6 trimethoxy boroxine like 2,4,6 trialkoxy Boroxine; trimethyl borate, triethyl borate, tri-n-propyl borate, tri-n-butyl borate, tri-n-pentyl borate, tri-n-hexyl borate, tri-n-heptyl borate Trialkyl borate such as tri-n-octyl borate, triisopropyl borate, trioctadecyl borate; triaryl borate such as triphenyl borate; tris (trialkylsilyl) borate such as tris (trimethylsilyl) borate Etc.
A boron compound may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
これらの中でも、ホウ素化合物としては、ハロゲン化ホウ素、ハロゲン化ホウ素アルキルエーテル錯体、およびハロゲン化ホウ素アルコール錯体からなる群から選択される1種以上であることが好ましい。
ホウ素化合物が、上記の物質からなる群から選択される1種以上であることが好ましい理由は、ハロゲン化ホウ素およびその錯体は、ハロゲン原子の電子吸引性により強いルイス酸として働き、有機酸のリチウム塩をより分散または溶解させることができるからである。
Among these, the boron compound is preferably at least one selected from the group consisting of boron halides, boron halide alkyl ether complexes, and boron halide alcohol complexes.
The reason why the boron compound is preferably one or more selected from the group consisting of the above-mentioned substances is that boron halide and its complex act as a Lewis acid that is stronger than the electron withdrawing property of the halogen atom, and the lithium of organic acid This is because the salt can be more dispersed or dissolved.
有機溶媒としては特に限定されないが、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、ビニレンカーボネート等の炭酸エステル化合物;γ−ブチロラクトン、γ−バレロラクトン等のラクトン化合物;ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル等のカルボン酸エステル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル等のニトリル化合物;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類;スルホラン、ジメチルスルホキシド等のスルホン化合物などが挙げられる。
有機溶媒は、1種単独で用いてもよいし、2種以上を併用してもよい。2種以上併用する場合、その組み合わせや比率は目的に応じて適宜選択すればよい。
Although it does not specifically limit as an organic solvent, For example, Carbonate ester compounds, such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, vinylene carbonate; Lactone compounds, such as (gamma) -butyrolactone and (gamma) -valerolactone; Carboxylic acid ester compounds such as methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and methyl butyrate; ether compounds such as tetrahydrofuran and dimethoxyethane; acetonitrile, glutaronitrile, Nitrile compounds such as adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile; N, N-dimethylformamide, N, N-dimethylacetate Amides such as amides; sulfone compounds such as sulfolane and dimethyl sulfoxide.
An organic solvent may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, the combination and ratio may be appropriately selected according to the purpose.
これらの中でも、有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、テトラヒドロフラン、ジメトキシエタン、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシドおよびスルホランからなる群から選択される1種以上であることが好ましい。
有機溶媒は、酸化還元電位、誘電率、粘度のバランスを考慮して、上記の物の中から適宜選択される。
Among these, as an organic solvent, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, vinylene carbonate, γ-butyrolactone, γ-valerolactone, tetrahydrofuran, dimethoxyethane, methyl formate, ethyl formate Propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, methyl butyrate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, N, N-dimethylformamide, N , N-dimethylacetamide, dimethyl sulfoxide and sulfolane are preferred.
The organic solvent is appropriately selected from the above materials in consideration of the balance of redox potential, dielectric constant, and viscosity.
電解液の濃度は特に制限されず、電解質の種類に応じて適宜調節すればよいが、通常は、配合されたリチウム原子(Li)の濃度が、好ましくは0.05〜10モル/L、より好ましくは0.1〜5モル/Lとなるように、電解質の配合量を調節するのが好ましい。 The concentration of the electrolytic solution is not particularly limited, and may be appropriately adjusted according to the type of the electrolyte. Usually, however, the concentration of the mixed lithium atom (Li) is preferably 0.05 to 10 mol / L. It is preferable to adjust the amount of the electrolyte so that the amount is preferably 0.1 to 5 mol / L.
電解液としては、電解質の溶解性が良好で、長期間に亘ってその析出が抑制され、リチウムイオン二次電池の容量維持率が向上する点で、有機酸のリチウム塩およびホウ素化合物が有機溶媒に溶解した非水系電解液が好ましい。 As the electrolyte, the lithium salt of the organic acid and the boron compound are organic solvents in that the solubility of the electrolyte is good, the precipitation is suppressed over a long period of time, and the capacity retention rate of the lithium ion secondary battery is improved. A non-aqueous electrolyte solution dissolved in is preferable.
<セパレータ>
セパレータの材質は特に限定されないが、微多孔性の高分子膜、不織布、ガラスファイバー等が挙げられる。
<Separator>
Although the material of a separator is not specifically limited, A microporous polymer film, a nonwoven fabric, glass fiber etc. are mentioned.
<リチウムイオン二次電池の製造方法>
本発明のリチウムイオン二次電池は、公知の方法に従って、例えば、グローブボックス内または乾燥空気雰囲気下で、本発明の負極、および前記正極および電解液を使用して製造すればよい。
<Method for producing lithium ion secondary battery>
What is necessary is just to manufacture the lithium ion secondary battery of this invention using the negative electrode of this invention, the said positive electrode, and electrolyte solution in a glove box or dry air atmosphere according to a well-known method.
このようにして得られる本発明のリチウムイオン二次電池の形状は特に限定されず、円筒型、角型、コイン型、シート型等、種々のものに調節できる。 The shape of the lithium ion secondary battery of the present invention thus obtained is not particularly limited, and can be adjusted to various types such as a cylindrical shape, a square shape, a coin shape, and a sheet shape.
<作用効果>
以上説明した本発明のリチウムイオン二次電池は、上述した本発明の負極剤を含有する電極活物質層が集電体上に形成された本発明の負極を備えているので、エネルギー密度が高く、しかも放電容量を高く維持でき、サイクル特性に優れる。
<Effect>
Since the lithium ion secondary battery of the present invention described above includes the negative electrode of the present invention in which the electrode active material layer containing the negative electrode agent of the present invention described above is formed on the current collector, the energy density is high. Moreover, the discharge capacity can be kept high and the cycle characteristics are excellent.
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
実施例および比較例において使用した化学物質を以下に示す。
・クエン酸:分子量192、和光純薬工業社製
・シュウ酸:分子量126、和光純薬工業社製
・コハク酸:分子量118、和光純薬工業社製
・ジグリコール酸:分子量134、和光純薬工業社製
・トリメシン酸:分子量210、和光純薬工業社製
・PVDF溶液:ポリフッ化ビニリデンがNMPに溶解した溶液(クレハ社製、「KFポリマー9130」、濃度13質量%)
・PAA:ポリアクリル酸(質量平均分子量250000、和光純薬工業社製)
・Fe2O3:酸化鉄(III)(アルドリッチ社製)
・ケッチェンブラック:ライオン社製
・NMP:N−メチル−2−ピロリドン(アルドリッチ社製)
・LiPF6:六フッ化リン酸リチウム(キシダ化学社製)
・シュウ酸リチウム:アルドリッチ社製
・BF3O(C2H5)2:三フッ化ホウ素ジエチルエーテル錯体(アルドリッチ社製)
・EC:エチレンカーボネート(キシダ化学社製)
・DMC:ジメチルカーボネート(キシダ化学社製)
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
The chemical substances used in Examples and Comparative Examples are shown below.
Citric acid: molecular weight 192, manufactured by Wako Pure Chemical Industries, Ltd.Oxalic acid: molecular weight 126, manufactured by Wako Pure Chemical Industries, Ltd.Succinic acid: molecular weight 118, manufactured by Wako Pure Chemical Industries, Ltd.Diglycolic acid: molecular weight 134, Wako Pure Chemical Industrial company, trimesic acid: molecular weight 210, Wako Pure Chemical Industries, Ltd., PVDF solution: solution of polyvinylidene fluoride dissolved in NMP (manufactured by Kureha, “KF polymer 9130”, concentration 13 mass%)
PAA: polyacrylic acid (mass average molecular weight 250,000, manufactured by Wako Pure Chemical Industries, Ltd.)
・ Fe 2 O 3 : Iron oxide (III) (manufactured by Aldrich)
・ Ketjen Black: manufactured by Lion ・ NMP: N-methyl-2-pyrrolidone (manufactured by Aldrich)
LiPF 6 : lithium hexafluorophosphate (manufactured by Kishida Chemical Co., Ltd.)
・ Lithium oxalate: manufactured by Aldrich ・ BF 3 O (C 2 H 5 ) 2 : boron trifluoride diethyl ether complex (manufactured by Aldrich)
・ EC: Ethylene carbonate (Kishida Chemical Co., Ltd.)
-DMC: Dimethyl carbonate (Kishida Chemical Co., Ltd.)
[実施例1]
<負極用スラリーの調製>
4gのクエン酸を濃度が40質量%になるように水に溶解し、クエン酸水溶液を得た。
得られたクエン酸水溶液0.125g(固形分換算で0.05g)と、1.87gのFe2O3と、0.08gのケッチェンブラックと、水5gとを容器に計り取り、自転・公転ミキサー(シンキー社製、「ARE−250」)を用いて3分間混合した。その後、ホモジナイザー(東京理化器械社製、「VCX−130PB」)を用いて5分間分散させた。ついで、自転・公転ミキサー(シンキー社製、「ARE−250」)を用いて1分間攪拌し、さらに1分間脱泡し、負極用スラリーを得た。
なお、クエン酸、Fe2O3、ケッチェンブラックの合計100質量%中の負極活物質(Fe2O3)の含有量は93.5質量%、バインダー(クエン酸)の含有量(固形分換算)は2.5質量%、導電助剤(ケッチェンブラック)の含有量は4.0質量%である。
負極用スラリーの配合組成を表1に示す。ただし、表1中、バインダーの配合量は固形分換算した値である。
[Example 1]
<Preparation of slurry for negative electrode>
4 g of citric acid was dissolved in water to a concentration of 40% by mass to obtain an aqueous citric acid solution.
The obtained citric acid aqueous solution 0.125 g (0.05 g in terms of solid content), 1.87 g of Fe 2 O 3 , 0.08 g of ketjen black, and 5 g of water are weighed in a container. The mixture was mixed for 3 minutes using an orbital mixer ("ARE-250", manufactured by Shinky Corporation). Then, it was made to disperse | distribute for 5 minutes using the homogenizer (The Tokyo Rika Kikai Co., Ltd. make, "VCX-130PB"). Subsequently, it stirred for 1 minute using the autorotation / revolution mixer (the product made by Shinkey, "ARE-250"), and also defoamed for 1 minute, and the slurry for negative electrodes was obtained.
The content of the negative electrode active material (Fe 2 O 3 ) in the total 100% by mass of citric acid, Fe 2 O 3 and ketjen black is 93.5% by mass, and the content of the binder (citric acid) (solid content) Conversion) is 2.5% by mass, and the content of the conductive additive (Ketjen Black) is 4.0% by mass.
The composition of the negative electrode slurry is shown in Table 1. However, in Table 1, the blending amount of the binder is a value in terms of solid content.
<負極の作製>
得られた負極用スラリーを乾燥後の厚さが125μmになるように、集電体(銅箔、厚さ18μm)上にミニコーター(宝仙社製、「MC20」)を用いて塗布し、50℃のオーブンで2時間乾燥させ、さらに真空乾燥機で24時間真空乾燥させた。ついで、ロールプレス機(テスター産業社製)にて、1500Nでプレスした後、グローブボックスの乾燥炉内で、100℃で6時間乾燥させ、集電体上に電極活物質層が形成された負極を得た。
<Production of negative electrode>
The obtained negative electrode slurry was applied onto a current collector (copper foil, thickness 18 μm) using a mini coater (manufactured by Hosensha, “MC20”) so that the thickness after drying was 125 μm. It was dried in an oven at 50 ° C. for 2 hours, and further dried in a vacuum dryer for 24 hours. Next, after being pressed at 1500 N by a roll press machine (manufactured by Tester Sangyo Co., Ltd.), the negative electrode was dried at 100 ° C. for 6 hours in a glove box drying furnace, and an electrode active material layer was formed on the current collector Got.
<リチウムイオン二次電池用の非水電解液の調製>
(非水電解液1の調製)
電解質としてシュウ酸リチウム(0.153g)およびBF3O(C2H5)2(0.426g)と、有機溶媒としてECおよびDMCの混合溶媒(EC:DMC=30:70(体積比))(2.42g)とをサンプル瓶に量り取り、シュウ酸リチウム中のリチウム原子の濃度が1.0mol/kgとなるように混合することにより非水電解液1を得た。
<Preparation of non-aqueous electrolyte for lithium ion secondary battery>
(Preparation of non-aqueous electrolyte 1)
Lithium oxalate (0.153 g) and BF 3 O (C 2 H 5 ) 2 (0.426 g) as an electrolyte, and a mixed solvent of EC and DMC as an organic solvent (EC: DMC = 30: 70 (volume ratio)) (2.42 g) was weighed into a sample bottle and mixed so that the concentration of lithium atoms in the lithium oxalate was 1.0 mol / kg to obtain a non-aqueous electrolyte solution 1.
(非水電解液2の調製)
電解質としてLiPF6(0.455g)と、有機溶媒としてECおよびDMCの混合溶媒(EC:DMC=30:70(体積比))(2.545g)とをサンプル瓶に量り取り、LiPF6中のリチウム原子の濃度が1.0mol/kgとなるように混合することにより非水電解液2を得た。
(Preparation of non-aqueous electrolyte 2)
And LiPF 6 (0.455 g) as an electrolyte, a mixed solvent of EC and DMC as an organic solvent (EC: DMC = 30: 70 ( volume ratio)) (2.545g) and were weighed in a sample bottle, in LiPF 6 in The nonaqueous electrolyte solution 2 was obtained by mixing so that the concentration of lithium atoms was 1.0 mol / kg.
<リチウムイオン二次電池の作製>
(リチウムイオン二次電池1の作製)
先に作製した負極、および市販の正極として3元系(NMC)正極(エナックス社製)を直径16mmの円盤状に打ち抜いた。
別途、セパレータとしてガラスファイバーを直径17mmの円盤状に打ち抜いた。
打ち抜いた正極、セパレータおよび負極をこの順にSUS製の電池容器(CR2032)内で積層し、電解液として先に調製した非水電解液1をセパレータ、負極および正極に含浸させ、さらに負極上に、SUS製の板(厚さ1.2mm、直径16mm)を載せ、蓋をすることによりコイン型のリチウムイオン二次電池1を作製した。
<Production of lithium ion secondary battery>
(Preparation of lithium ion secondary battery 1)
A ternary (NMC) positive electrode (manufactured by Enax Co., Ltd.) was punched into a disk shape having a diameter of 16 mm as the negative electrode prepared previously and a commercial positive electrode.
Separately, a glass fiber was punched into a disk shape having a diameter of 17 mm as a separator.
The punched positive electrode, separator and negative electrode are laminated in this order in a battery container made of SUS (CR2032), the separator, the negative electrode and the positive electrode are impregnated with the previously prepared non-aqueous electrolyte 1 as the electrolyte, and further on the negative electrode, A coin-type lithium ion secondary battery 1 was produced by placing a SUS plate (thickness 1.2 mm, diameter 16 mm) and covering the plate.
(リチウムイオン二次電池2の作製)
電解液として非水電解液1の代わりに非水電解液2を用いた以外は、リチウムイオン二次電池1と同様にしてリチウムイオン二次電池2を作製した。
(Preparation of lithium ion secondary battery 2)
A lithium ion secondary battery 2 was produced in the same manner as the lithium ion secondary battery 1 except that the nonaqueous electrolyte solution 2 was used instead of the nonaqueous electrolyte solution 1 as the electrolyte solution.
<サイクル特性の評価>
得られたリチウムイオン二次電池1、2について、25℃において0.2Cの定電流定電圧充電を、上限電圧4.2Vとして電流値が0.1Cに収束するまで行った後、0.2Cの定電流放電を1.5Vまで行った。その後、充放電電流を1Cとして同様の方法で、充放電サイクルを繰り返し行い、50サイクルでの容量維持率(50サイクル目の放電容量(mAh)/1サイクル目の放電容量(mAh)×100)を算出した。結果を表1に示す。
<Evaluation of cycle characteristics>
The obtained lithium ion secondary batteries 1 and 2 were charged at a constant current and a constant voltage of 0.2 C at 25 ° C. until the current value converged to 0.1 C with an upper limit voltage of 4.2 V, and then 0.2 C The constant current discharge was performed up to 1.5V. Thereafter, the charge / discharge cycle was repeated in the same manner with a charge / discharge current of 1 C, and the capacity retention rate at 50 cycles (discharge capacity (mAh) at the 50th cycle / discharge capacity (mAh) at the first cycle × 100) Was calculated. The results are shown in Table 1.
[実施例2]
クエン酸水溶液の配合量を0.25g(固形分換算で0.1g)、Fe2O3の配合量を1.82gに変更した以外は、実施例1と同様にして負極用スラリーを調製し、負極およびリチウムイオン二次電池1、2を作製し、サイクル特性の評価を行った。結果を表1に示す。
なお、クエン酸、Fe2O3、ケッチェンブラックの合計100質量%中の負極活物質(Fe2O3)の含有量は91.0質量%、バインダー(クエン酸)の含有量(固形分換算)は5.0質量%、導電助剤(ケッチェンブラック)の含有量は4.0質量%である。
[Example 2]
A slurry for negative electrode was prepared in the same manner as in Example 1 except that the amount of citric acid aqueous solution was changed to 0.25 g (0.1 g in terms of solid content) and the amount of Fe 2 O 3 was changed to 1.82 g. Then, negative electrodes and lithium ion secondary batteries 1 and 2 were produced, and the cycle characteristics were evaluated. The results are shown in Table 1.
The content of the negative electrode active material (Fe 2 O 3 ) in the total 100% by mass of citric acid, Fe 2 O 3 and ketjen black is 91.0% by mass, and the content of the binder (citric acid) (solid content) Conversion) is 5.0% by mass, and the content of the conductive auxiliary agent (Ketjen Black) is 4.0% by mass.
[実施例3]
クエン酸水溶液の配合量を0.375g(固形分換算で0.15g)、Fe2O3の配合量を1.77gに変更した以外は、実施例1と同様にして負極用スラリーを調製し、負極およびリチウムイオン二次電池1、2を作製し、サイクル特性の評価を行った。結果を表1に示す。
なお、クエン酸、Fe2O3、ケッチェンブラックの合計100質量%中の負極活物質(Fe2O3)の含有量は88.5質量%、バインダー(クエン酸)の含有量(固形分換算)は7.5質量%、導電助剤(ケッチェンブラック)の含有量は4.0質量%である。
[Example 3]
A slurry for negative electrode was prepared in the same manner as in Example 1 except that the amount of citric acid aqueous solution was changed to 0.375 g (0.15 g in terms of solid content) and the amount of Fe 2 O 3 was changed to 1.77 g. Then, negative electrodes and lithium ion secondary batteries 1 and 2 were produced, and the cycle characteristics were evaluated. The results are shown in Table 1.
The content of the negative electrode active material (Fe 2 O 3 ) in the total 100% by mass of citric acid, Fe 2 O 3 and ketjen black is 88.5% by mass, and the content of the binder (citric acid) (solid content) Conversion) is 7.5% by mass, and the content of the conductive auxiliary agent (Ketjen Black) is 4.0% by mass.
[実施例4]
2gのシュウ酸を濃度が5質量%になるように水に溶解し、シュウ酸水溶液を得た。
クエン酸水溶液0.125gの代わりにシュウ酸水溶液3g(固形分換算で0.15g)を用い、かつ、Fe2O3の配合量を1.77g、水の配合量を2gに変更した以外は、実施例1と同様にして負極用スラリーを調製し、負極およびリチウムイオン二次電池1、2を作製し、サイクル特性の評価を行った。結果を表1に示す。
なお、シュウ酸、Fe2O3、ケッチェンブラックの合計100質量%中の負極活物質(Fe2O3)の含有量は88.5質量%、バインダー(シュウ酸)の含有量(固形分換算)は7.5質量%、導電助剤(ケッチェンブラック)の含有量は4.0質量%である。
[Example 4]
2 g of oxalic acid was dissolved in water to a concentration of 5% by mass to obtain an aqueous oxalic acid solution.
Except that 3 g of oxalic acid aqueous solution (0.15 g in terms of solid content) was used instead of 0.125 g of citric acid aqueous solution, the amount of Fe 2 O 3 was changed to 1.77 g, and the amount of water was changed to 2 g. A negative electrode slurry was prepared in the same manner as in Example 1, negative electrodes and lithium ion secondary batteries 1 and 2 were prepared, and cycle characteristics were evaluated. The results are shown in Table 1.
In addition, the content of the negative electrode active material (Fe 2 O 3 ) in the total 100 mass% of oxalic acid, Fe 2 O 3 , and ketjen black is 88.5 mass%, and the binder (oxalic acid) content (solid content) Conversion) is 7.5% by mass, and the content of the conductive auxiliary agent (Ketjen Black) is 4.0% by mass.
[実施例5]
コハク酸を濃度が5質量%になるように水に溶解し、コハク酸水溶液を得た。
クエン酸水溶液0.125gの代わりにコハク酸水溶液3g(固形分換算で0.15g)を用い、かつ、Fe2O3の配合量を1.77g、水の配合量を2gに変更した以外は、実施例1と同様にして負極用スラリーを調製し、負極およびリチウムイオン二次電池1、2を作製し、サイクル特性の評価を行った。結果を表1に示す。
なお、コハク酸、Fe2O3、ケッチェンブラックの合計100質量%中の負極活物質(Fe2O3)の含有量は88.5質量%、バインダー(コハク酸)の含有量(固形分換算)は7.5質量%、導電助剤(ケッチェンブラック)の含有量は4.0質量%である。
[Example 5]
Succinic acid was dissolved in water to a concentration of 5% by mass to obtain an aqueous succinic acid solution.
Except that 3 g of succinic acid aqueous solution (0.15 g in terms of solid content) was used instead of 0.125 g of citric acid aqueous solution, the amount of Fe 2 O 3 was changed to 1.77 g, and the amount of water was changed to 2 g. A negative electrode slurry was prepared in the same manner as in Example 1, negative electrodes and lithium ion secondary batteries 1 and 2 were prepared, and cycle characteristics were evaluated. The results are shown in Table 1.
The content of the negative electrode active material (Fe 2 O 3 ) in the total 100% by mass of succinic acid, Fe 2 O 3 , and ketjen black is 88.5% by mass, and the content of the binder (succinic acid) (solid content) Conversion) is 7.5% by mass, and the content of the conductive auxiliary agent (Ketjen Black) is 4.0% by mass.
[実施例6]
ジグリコール酸を濃度が10質量%になるように水に溶解し、ジグリコール酸水溶液を得た。
クエン酸水溶液0.125gの代わりにジグリコール酸水溶液1.5g(固形分換算で0.15g)を用い、かつ、Fe2O3の配合量を1.77g、水の配合量を3gに変更した以外は、実施例1と同様にして負極用スラリーを調製し、負極およびリチウムイオン二次電池1、2を作製し、サイクル特性の評価を行った。結果を表1に示す。
なお、ジグリコール酸、Fe2O3、ケッチェンブラックの合計100質量%中の負極活物質(Fe2O3)の含有量は88.5質量%、バインダー(ジグリコール酸)の含有量(固形分換算)は7.5質量%、導電助剤(ケッチェンブラック)の含有量は4.0質量%である。
[Example 6]
Diglycolic acid was dissolved in water to a concentration of 10% by mass to obtain a diglycolic acid aqueous solution.
Using diglycolic acid aqueous solution instead of citric acid aqueous solution 0.125 g 1.5 g (0.15 g in terms of solid content), and changing the amount of Fe 2 O 3 1.77 g, the amount of water to 3g Except that, a negative electrode slurry was prepared in the same manner as in Example 1, negative electrodes and lithium ion secondary batteries 1 and 2 were prepared, and cycle characteristics were evaluated. The results are shown in Table 1.
The content of the negative electrode active material (Fe 2 O 3 ) in the total 100% by mass of diglycolic acid, Fe 2 O 3 , and ketjen black was 88.5% by mass, and the content of the binder (diglycolic acid) ( The solid content is 7.5% by mass, and the content of the conductive assistant (Ketjen Black) is 4.0% by mass.
[実施例7]
トリメシン酸を濃度が10質量%になるようにエタノールに溶解し、トリメシン酸エタノール溶液を得た。
クエン酸水溶液0.125gの代わりにトリメシン酸エタノール溶液1.5g(固形分換算で0.15g)を用い、水5gの代わりにエタノールを3g用い、かつ、Fe2O3の配合量を1.77gに変更した以外は、実施例1と同様にして負極用スラリーを調製し、負極およびリチウムイオン二次電池1、2を作製し、サイクル特性の評価を行った。結果を表1に示す。
なお、トリメシン酸、Fe2O3、ケッチェンブラックの合計100質量%中の負極活物質(Fe2O3)の含有量は88.5質量%、バインダー(トリメシン酸)の含有量(固形分換算)は7.5質量%、導電助剤(ケッチェンブラック)の含有量は4.0質量%である。
[Example 7]
Trimesic acid was dissolved in ethanol to a concentration of 10% by mass to obtain a trimesic acid ethanol solution.
Instead of 0.125 g of citric acid aqueous solution, 1.5 g of trimesic acid ethanol solution (0.15 g in terms of solid content) was used, 3 g of ethanol was used instead of 5 g of water, and the blending amount of Fe 2 O 3 was 1. Except for changing to 77 g, a negative electrode slurry was prepared in the same manner as in Example 1, negative electrodes and lithium ion secondary batteries 1 and 2 were prepared, and cycle characteristics were evaluated. The results are shown in Table 1.
The content of the negative electrode active material (Fe 2 O 3 ) in the total 100% by mass of trimesic acid, Fe 2 O 3 , and ketjen black is 88.5% by mass, and the binder (trimesic acid) content (solid content) Conversion) is 7.5% by mass, and the content of the conductive auxiliary agent (Ketjen Black) is 4.0% by mass.
[比較例1]
クエン酸水溶液0.125gの代わりにPVDF溶液1.15g(固形分換算で0.15g)を用い、水5gの代わりにNMPを4g用い、かつ、Fe2O3の配合量を1.77gに変更した以外は、実施例1と同様にして負極用スラリーを調製し、負極およびリチウムイオン二次電池1、2を作製し、サイクル特性の評価を行った。結果を表1に示す。
なお、PVDF、Fe2O3、ケッチェンブラックの合計100質量%中の負極活物質(Fe2O3)の含有量は88.5質量%、バインダー(PVDF)の含有量(固形分換算)は7.5質量%、導電助剤(ケッチェンブラック)の含有量は4.0質量%である。
[Comparative Example 1]
1.15 g of PVDF solution (0.15 g in terms of solid content) was used instead of 0.125 g of citric acid aqueous solution, 4 g of NMP was used instead of 5 g of water, and the blending amount of Fe 2 O 3 was 1.77 g Except for the changes, a negative electrode slurry was prepared in the same manner as in Example 1, negative electrodes and lithium ion secondary batteries 1 and 2 were prepared, and cycle characteristics were evaluated. The results are shown in Table 1.
The content of the negative electrode active material (Fe 2 O 3 ) in PVDF, Fe 2 O 3 and ketjen black in a total of 100% by mass is 88.5% by mass, and the content of binder (PVDF) (in terms of solid content) Is 7.5% by mass, and the content of the conductive assistant (Ketjen Black) is 4.0% by mass.
[比較例2]
分子量が250000のPAAを濃度が5質量%になるように水に溶解し、PAA水溶液を得た。
クエン酸水溶液0.125gの代わりにPAA水溶液3g(固形分換算で0.15g)を用い、かつ、Fe2O3の配合量を1.77g、水の配合量を2gに変更した以外は、実施例1と同様にして負極用スラリーを調製し、負極およびリチウムイオン二次電池1、2を作製し、サイクル特性の評価を行った。結果を表1に示す。
なお、PAA、Fe2O3、ケッチェンブラックの合計100質量%中の負極活物質(Fe2O3)の含有量は88.5質量%、バインダー(PAA)の含有量(固形分換算)は7.5質量%、導電助剤(ケッチェンブラック)の含有量は4.0質量%である。
[Comparative Example 2]
PAA having a molecular weight of 250,000 was dissolved in water to a concentration of 5% by mass to obtain a PAA aqueous solution.
Aside from using 3 g of PAA aqueous solution (0.15 g in terms of solid content) instead of 0.125 g of citric acid aqueous solution, and changing the amount of Fe 2 O 3 to 1.77 g and the amount of water to 2 g, A negative electrode slurry was prepared in the same manner as in Example 1, negative electrodes and lithium ion secondary batteries 1 and 2 were prepared, and cycle characteristics were evaluated. The results are shown in Table 1.
The content of the negative electrode active material (Fe 2 O 3 ) in the total 100% by mass of PAA, Fe 2 O 3 and Ketjen Black is 88.5% by mass, and the content of the binder (PAA) (in terms of solid content) Is 7.5% by mass, and the content of the conductive assistant (Ketjen Black) is 4.0% by mass.
表1から明らかなように、バインダーとして2価以上のカルボン酸を含有する負極用スラリーを用いて得られた実施例1〜7のリチウムイオン二次電池1、2は、いずれも容量維持率が高く、優れたサイクル特性を有していた。
特に、電解質として有機酸のリチウム塩とホウ素化合物が有機溶媒に溶解した非水電解液1を用いて作製したリチウムイオン二次電池1は、リチウムイオン二次電池2よりも高い容量維持率を示した。
As is clear from Table 1, the lithium ion secondary batteries 1 and 2 of Examples 1 to 7 obtained using a slurry for negative electrode containing a divalent or higher carboxylic acid as a binder have a capacity retention rate. It was high and had excellent cycle characteristics.
In particular, a lithium ion secondary battery 1 produced using a non-aqueous electrolyte 1 in which a lithium salt of an organic acid and a boron compound are dissolved in an organic solvent as an electrolyte exhibits a higher capacity retention rate than the lithium ion secondary battery 2. It was.
一方、バインダーとしてPVDFまたはPAAを含有する負極用スラリーを用いて得られた比較例1、2のリチウムイオン二次電池1、2は、実施例1〜7に比べて容量維持率が低かった。 On the other hand, the lithium ion secondary batteries 1 and 2 of Comparative Examples 1 and 2 obtained using the negative electrode slurry containing PVDF or PAA as the binder had a lower capacity retention rate than Examples 1 to 7.
Claims (5)
前記カルボン酸が、クエン酸、及びトリメシン酸からなる群より選ばれる1種以上であり、
前記カルボン酸の含有量が、リチウムイオン二次電池用負極剤100質量%中、0.5〜30質量%であり、
前記金属酸化物が、酸化鉄(III)、酸化チタン(IV)、酸化コバルト(II)、酸化コバルト(III)、及び酸化マンガン(IV)からなる群から選択される少なくとも1種であり、
前記金属酸化物の含有量が、リチウムイオン二次電池用負極剤100質量%中、40〜98質量%であることを特徴とするリチウムイオン二次電池用負極剤。 A negative electrode agent for a lithium ion secondary battery containing a carboxylic acid having two or more carboxyl groups and a metal oxide,
The carboxylic acid is at least one selected from the group consisting of citric acid and trimesic acid;
The content of the carboxylic acid, in the negative Kyokuzai 100 wt% for a lithium ion secondary battery, Ri 0.5 to 30% by mass,
The metal oxide is at least one selected from the group consisting of iron (III) oxide, titanium (IV) oxide, cobalt (II) oxide, cobalt (III) oxide, and manganese (IV) oxide;
The metal content of the oxide is in the negative Kyokuzai 100 wt% for a lithium ion secondary battery, negative for a lithium ion secondary battery, characterized 40 to 98% by mass Rukoto Kyokuzai.
前記導電助剤の含有量が、リチウムイオン二次電池用負極剤100質量%中、1〜20質量%であることを特徴とする請求項1に記載のリチウムイオン二次電池用負極剤。 The negative electrode agent for lithium ion secondary batteries further contains a conductive additive,
2. The negative electrode agent for a lithium ion secondary battery according to claim 1 , wherein the content of the conductive auxiliary agent is 1 to 20% by mass in 100% by mass of the negative electrode agent for a lithium ion secondary battery.
前記電極活物質層は、請求項1又は2に記載のリチウムイオン二次電池用負極剤を含有することを特徴とするリチウムイオン二次電池用負極。 A current collector, and an electrode active material layer provided on the current collector,
The said electrode active material layer contains the negative electrode agent for lithium ion secondary batteries of Claim 1 or 2 , The negative electrode for lithium ion secondary batteries characterized by the above-mentioned.
前記負極が請求項3に記載のリチウムイオン二次電池用負極であることを特徴とするリチウムイオン二次電池。 A positive electrode, a negative electrode, and an electrolytic solution;
The said negative electrode is a negative electrode for lithium ion secondary batteries of Claim 3 , The lithium ion secondary battery characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016043832A JP6333875B2 (en) | 2016-03-07 | 2016-03-07 | Negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016043832A JP6333875B2 (en) | 2016-03-07 | 2016-03-07 | Negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012043574A Division JP6200129B2 (en) | 2012-02-29 | 2012-02-29 | Negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016131157A JP2016131157A (en) | 2016-07-21 |
JP6333875B2 true JP6333875B2 (en) | 2018-05-30 |
Family
ID=56414825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016043832A Active JP6333875B2 (en) | 2016-03-07 | 2016-03-07 | Negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6333875B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108630898A (en) * | 2017-03-20 | 2018-10-09 | 索尼公司 | The preparation method of lithium ion battery negative electrode, thus obtained cathode pole piece and the lithium ion battery comprising it |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100433002B1 (en) * | 2001-12-07 | 2004-05-24 | 삼성에스디아이 주식회사 | Electrode, lithium battery adopting the same, and method for manufacturing the same |
JP5038751B2 (en) * | 2006-08-04 | 2012-10-03 | 協立化学産業株式会社 | Coating liquid for electrode plate production, undercoat agent and use thereof |
JP5949547B2 (en) * | 2010-06-29 | 2016-07-06 | 日本ゼオン株式会社 | Aqueous binder composition for secondary battery negative electrode |
-
2016
- 2016-03-07 JP JP2016043832A patent/JP6333875B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016131157A (en) | 2016-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5429631B2 (en) | Non-aqueous electrolyte battery | |
JP6496921B2 (en) | High voltage lithium ion battery | |
JP6429172B2 (en) | Positive electrode active material having excellent electrochemical performance and lithium secondary battery including the same | |
JP5601740B2 (en) | Cathode active material and lithium secondary battery including the same | |
JP6018820B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same | |
JP2016541092A (en) | Flame retardant for electrolyte for battery | |
JP2019079710A (en) | Method for manufacturing positive electrode | |
JP5445683B2 (en) | Negative electrode material, lithium secondary battery, and method of manufacturing negative electrode material | |
JP2016004708A (en) | Cathode active material for lithium ion secondary battery and manufacturing method for the same, and lithium ion secondary battery using the same | |
US20230197959A1 (en) | Positive electrode composite material for lithium-ion secondary battery and lithium-ion secondary battery | |
JP6010309B2 (en) | Lithium ion secondary battery | |
TW201725778A (en) | Lithium ion secondary battery | |
JP2013145732A (en) | Lithium secondary battery | |
JP5592836B2 (en) | Electrolyte, gel electrolyte and lithium ion secondary battery | |
JP2012248519A (en) | Electrolytic solution, gel electrolyte and lithium ion secondary battery | |
JP2016219204A (en) | Nonaqueous secondary battery | |
JP6200129B2 (en) | Negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
CN114026724B (en) | Lithium battery and use of electrolyte additives based on organogermanium as electrolyte additives therein | |
JP6333875B2 (en) | Negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6034094B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
US20220311008A1 (en) | Lithium ion secondary battery | |
WO2019065288A1 (en) | Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same | |
JP2019164986A (en) | Positive electrode, nonaqueous power storage element and coating liquid for positive electrode mixture material | |
KR20120096251A (en) | Method for preparing cathode active material for lithium ion secondary battery | |
JP6222389B1 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180425 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6333875 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |