Nothing Special   »   [go: up one dir, main page]

JP6393170B2 - Design method for prestressed concrete beams. - Google Patents

Design method for prestressed concrete beams. Download PDF

Info

Publication number
JP6393170B2
JP6393170B2 JP2014240886A JP2014240886A JP6393170B2 JP 6393170 B2 JP6393170 B2 JP 6393170B2 JP 2014240886 A JP2014240886 A JP 2014240886A JP 2014240886 A JP2014240886 A JP 2014240886A JP 6393170 B2 JP6393170 B2 JP 6393170B2
Authority
JP
Japan
Prior art keywords
stress
prestressed concrete
cross
fixing length
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014240886A
Other languages
Japanese (ja)
Other versions
JP2016102323A (en
Inventor
真一 竹崎
真一 竹崎
努 小室
努 小室
慎一郎 河本
慎一郎 河本
祐一 渡邉
祐一 渡邉
健好 是永
健好 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2014240886A priority Critical patent/JP6393170B2/en
Publication of JP2016102323A publication Critical patent/JP2016102323A/en
Application granted granted Critical
Publication of JP6393170B2 publication Critical patent/JP6393170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Description

本発明は、プレストレストコンクリート大梁の設計方法に関する。   The present invention relates to a method for designing a prestressed concrete girder.

プレストレストコンクリート梁(以下、PC梁を記す)は、PCケーブルやPC鋼材等の緊張材を介してコンクリートに圧縮力を与えておくことで、梁に荷重が作用した際に断面に生じる引張力を抑制する構造を備えたものである。
このようなPC梁を大スパン架構に適用することを目的として、梁断面の下部に緊張材を配置する場合がある(例えば、特許文献1参照)。
この場合には、梁断面の中央から離れた位置に、より多くの緊張材を配置することが効果的であるため、緊張材を横方向に配置するのが望ましい。
このPC梁によれば、緊張材の圧縮応力により、梁軸方向の中央付近において偏心モーメントによる大きな吊り上げ効果を期待することができる。
Prestressed concrete beams (hereinafter referred to as PC beams) give compressive force to the concrete via tension materials such as PC cables and PC steel, so that the tensile force generated in the cross section when a load is applied to the beams is applied. It has a structure to suppress.
In order to apply such a PC beam to a large span frame, there is a case where a tension material is disposed at the lower part of the beam cross section (see, for example, Patent Document 1).
In this case, since it is effective to arrange more tension members at positions away from the center of the beam cross section, it is desirable to arrange the tension members in the lateral direction.
According to this PC beam, a large lifting effect due to the eccentric moment can be expected near the center in the beam axis direction due to the compressive stress of the tendon.

特許第5325313号公報Japanese Patent No. 5325313

従来、大スパンの大梁を対象とした構造形式は、コンクリート系構造物ではポストテンション方式のPC梁が主流であり、施工時にプレキャスト工法を採用する場合は、ポストテンション方式のプレキャスト製プレストレストコンクリート梁(以下、「PCaPC梁」と記す)が適用されてきた。該PCaPC梁の設計では、地震荷重が作用した際の応答性状や、梁端部側での緊張力の減退量などを必ずしも考慮していなかった。
よって、PC梁は、梁全長に亘って、PC梁として断面設計が実施されており、梁端部であっても、断面内に相当量の圧縮応力が作用するPC梁として断面設計が実施されていた。
その結果、ポストテンション方式のPC梁端部では、常時圧縮応力が作用している状態に加えて、大地震時には大きな地震荷重が作用するために、PC梁端部に大きな損傷が生じるおそれがあった。
そこで、梁端面で緊張力が導入されないプレテンション方式のPCaPC梁を使用すれば、前記の問題点を解消できるが、地震時におけるPC梁端部側の損傷範囲等について未解明な点があり、かつ現行の建築基準法においても適用範囲外であるために、PCaPC梁は地震荷重に抵抗させる主要構造部材である大梁には採用されてこなかった。
このような観点から、本発明は、プレテンション方式のPCaPC梁を、大梁として設計する方法を提案することを課題とする。
Conventionally, post-tension type PC beams are the mainstream for large-span girder beams, and post-tensioned precast prestressed concrete beams (when using precast construction methods during construction) (Hereinafter referred to as “PCaPC beam”) has been applied. In the design of the PCaPC beam, the response characteristics when an earthquake load is applied and the amount of decrease in tension on the beam end side are not necessarily considered.
Therefore, the cross section of the PC beam is designed as a PC beam over the entire length of the beam, and the cross section is designed as a PC beam where a considerable amount of compressive stress acts on the cross section even at the end of the beam. It was.
As a result, in the post-tension type PC beam end, in addition to the state in which compressive stress is always acting, a large earthquake load acts in the event of a large earthquake, and there is a possibility that the PC beam end will be damaged greatly. It was.
Therefore, if the pre-tension type PCaPC beam that does not introduce tension at the beam end face can be used, the above-mentioned problems can be solved, but there is an unclear point about the damage range on the PC beam end side during an earthquake, Moreover, because it is out of the scope of application in the current Building Standard Law, PCaPC beams have not been adopted for large beams, which are main structural members that resist seismic loads.
From such a viewpoint, an object of the present invention is to propose a method for designing a pretension type PCaPC beam as a large beam.

このような課題を解決するために、本発明では、プレテンション方式のプレキャスト製プレストレストコンクリート大梁について、有効な緊張力が導入されていない梁端部を鉄筋コンクリート構造とし、前記梁端部以外の梁中央部をプレストレストコンクリート構造とするプレストレストコンクリート大梁の設計方法として、プレキャスト製プレストレストコンクリート大梁の断面形状、緊張力および緊張力導入位置の偏心距離を仮定する断面仮定ステップと、主筋および緊張材の配置を仮定する鋼材配置ステップと、前記プレキャスト製プレストレストコンクリート大梁を備える梁柱架構を骨組モデル化し、長期荷重作用時および短期荷重作用時のせん断力、曲げモーメントおよび軸力を算定する骨組モデル応力算定ステップと、緊張力導入時の緊張材の定着長さである第一定着長と、長期設計荷重作用時の緊張材の定着長さまたは設計地震荷重作用後の緊張材の定着長さである第二定着長とを設定し、前記第一定着長において緊張力導入時における緊張材の付着割裂検定を行う付着割裂検定ステップと、記第二定着長を緊張力をゼロとみなして梁端部を鉄筋コンクリート構造とするとともに、それ以外の梁中央部をプレストレストコンクリート構造として、前記断面形状と前記主筋の配筋仕様とから算定される前記プレキャスト製プレストレストコンクリート大梁の弾性変形量に変形増大率を乗じて変形量を算出して応力・たわみ検定を行う応力・たわみ検定ステップとを備えるものとした。なお、前記応力・たわみ検定ステップにおいて算出した梁の弾性変形量が許容値を超えている場合は、断面仮定ステップ、鋼材配置ステップを再度行い、前記プレキャスト製プレストレストコンクリート大梁の設計条件を変化させて再度骨組モデル応力算定ステップ、付着割裂検定ステップおよび応力・たわみ検定ステップを実施する。このような設計段階での2つの検定を行うことは、小梁を対象として建築基準法で認められているプレテンション方式のPCaPC梁の現状の設計では、現行の規準や指針等に何ら規定されておらず、大梁使用を目指して着眼した新たな設計方法である。
本発明では、緊張力導入時の設計に必要な梁端部に設ける定着長さである第一定着長を利用して付着割裂検定を行う。
次に、緊張力が有効に導入された梁中央部をプレストレストコンクリート構造(以下、「PC構造」と記す)とし、梁中央部以外の梁端部を鉄筋コンクリート構造(以下、「RC構造」と記す)として応力・たわみ検定を行う。応力・たわみ検定では、地震荷重等を受けて梁端部のひび割れ等によって長くなる定着長さを第二定着長と定義する。また、PCaPC梁の梁端部側の第一定着長、及び第二定着長は、数多く実施された部材実験と理論的な検討に基づいて評価可能となった。
以上のように、本発明は、第一定着長を利用して緊張力導入時の付着割裂検定を行うことと、第二定着長となる梁両端部をRC構造とし、それ以外の中央部をPC構造として大梁の応力・たわみ検定を行うこととを特徴とする複合プレストレストコンクリート大梁(以下、「複合PC大梁」と記す)の設計方法である。
かかる複合PC大梁の設計方法によれば、長期設計荷重作用後における緊張材の定着長さと設計地震荷重作用後における緊張材の定着長さのうちの長い方の定着長さである第二定着長を緊張力をゼロとみなした梁端部の範囲(RC構造)を設定し、梁端部と梁中央部を区間分けしてコンクリート梁の応力・たわみ検定を行うため、長期設計荷重作用後または設計地震荷重作用後の応答性状に応じた設計(たわみ障害を生じさせない設計)が可能となる。
なお、定着領域の付着応力が最も大きくなるのは緊張力導入時であるから、付着割裂検定については、3つの定着長さ(緊張力導入時、長期設計荷重作用後および設計地震荷重作用後における緊張材の定着長さ)のうち、緊張力導入時の定着長さ(第一定着長)を用いて検証する。すなわち、コンクリートと補強筋との付着効果を考慮した付着強度が、第一定着長内の緊張材とコンクリートとの平均付着応力度を上回れば、長期設計荷重時や設計地震荷重作用後においてもコンクリートに付着割裂が生じない。
また、前記応力・たわみ検定を行うステップにおいて、例えば、断面形状と梁主筋の配筋仕様とから算定される複合PC大梁のRC構造区間とPC構造区間に関して、それぞれ弾性変形量に変形増大率を乗じて前記梁中央部および前記梁端部の断面設計を行えば、複合PC大梁の部位毎の断面設計をより高精度に行うことができる。
In order to solve such a problem, in the present invention, a pre-tensioned precast prestressed concrete girder is constructed with a reinforced concrete structure at the end of the beam where no effective tension is introduced, and the center of the beam other than the end of the beam. As a design method for prestressed concrete girder with prestressed concrete structure as a prestressed concrete structure, presumed cross-sectional shape of precast prestressed concrete girder, tension assumption and eccentricity distance of tension introduction position, and assumption of arrangement of main reinforcement and tension material A steel material placement step, a beam column structure including the precast prestressed concrete beam, and a frame model stress calculation step for calculating a shear force, a bending moment and an axial force at the time of long-term load action and short-term load action, Tension The first fixing length, which is the fixing length of the tendon at the time, and the second fixing length, which is the fixing length of the tendon after the long-term design load action or the tension length of the tension material after the design seismic load action set, and Bond Splitting test step for Bond Splitting test tendon during tensioning force introduced at the first fixing length, the pre-Symbol beam end is regarded as zero tension the second fixing length and reinforced concrete structures In addition, the other central part of the beam is a prestressed concrete structure, and the amount of deformation is calculated by multiplying the elastic deformation amount of the precast prestressed concrete beam calculated from the cross-sectional shape and the bar arrangement specification of the main reinforcement by the deformation increase rate. A stress / deflection test step for calculating and performing a stress / deflection test is provided . If the amount of elastic deformation of the beam calculated in the stress / deflection test step exceeds the allowable value, the cross-section assumption step and the steel material placement step are performed again, and the design conditions of the precast prestressed concrete beam are changed. The frame model stress calculation step, the bond split test step, and the stress / deflection test step are performed again. The two verifications at the design stage are not stipulated in the current standards and guidelines in the current design of pre-tensioned PCaPC beams approved by the Building Standards Act for small beams. This is a new design method focused on the use of large beams.
In the present invention, the bond splitting test is performed using the first fixing length, which is the fixing length provided at the beam end necessary for the design when the tension force is introduced.
Next, the central part of the beam where the tensile force is effectively introduced is a prestressed concrete structure (hereinafter referred to as “PC structure”), and the end of the beam other than the central part of the beam is referred to as a reinforced concrete structure (hereinafter referred to as “RC structure”). ) Stress / deflection test. In the stress / deflection test, the anchorage length that becomes longer due to cracks at the end of the beam due to seismic load is defined as the second anchorage length. In addition, the first fixing length and the second fixing length on the beam end side of the PCaPC beam can be evaluated based on many member experiments and theoretical studies.
As described above, the present invention uses the first anchoring length to perform the bond splitting test at the time of introduction of tension, and has both ends of the beam serving as the second anchoring length as RC structures, and the other central part. This is a design method of a composite prestressed concrete beam (hereinafter referred to as “composite PC beam”) characterized by performing a stress / deflection test on the beam as a PC structure.
According to this composite PC girder design method, the second fixing length which is the longer fixing length of the tension material fixing length after the long-term design load action and the tension material fixing length after the design seismic load action. The range of the beam end (RC structure) where the tension force is considered to be zero is set, and the beam end and the beam center are divided into sections to perform stress / deflection test of the concrete beam. Design according to the response characteristics after the seismic load action (design that does not cause a deflection failure) becomes possible.
Since the adhesion stress in the anchoring area is greatest when tension is introduced, the bond splitting test is performed for three anchoring lengths (when tension is introduced, after long-term design load action and after design earthquake load action). It is verified by using the fixing length (first fixing length) at the time of introducing the tension force among the fixing length of the tension material). In other words, if the bond strength considering the bond effect between concrete and reinforcing bars exceeds the average bond stress between the tension material in the first anchorage length and the concrete, even during long-term design loads and after design earthquake load effects Bond splitting does not occur in concrete.
Further, in the step of performing the stress / deflection test, for example, for the RC structure section and the PC structure section of the composite PC girder calculated from the cross-sectional shape and the reinforcement specification of the beam main reinforcement, the deformation increase rate is set to the elastic deformation amount, respectively. If the cross section design of the beam central portion and the beam end portion is performed by multiplying, the cross section design of each part of the composite PC large beam can be performed with higher accuracy.

本発明のPC大梁の設計方法によれば、緊張力導入時、長期荷重作用時および設計地震荷重作用時におけるプレテンション方式のPCaPC大梁の応答性状に基づいた設計が可能となる。その結果、PC大梁を、PC構造区間とRC構造区間に分離して断面設計することで、合理的にPC大梁を設計できる。なお、応力・たわみ検定において第二定着長以上の値を採用しても何らも問題はない。   According to the design method of the PC girder of the present invention, it is possible to design based on the response characteristics of the pretension type PCaPC girder at the time of introduction of tension, long-term load action, and design earthquake load action. As a result, the PC girder can be rationally designed by designing the cross section of the PC girder separately into the PC structure section and the RC structure section. It should be noted that there is no problem even if a value longer than the second fixing length is adopted in the stress / deflection test.

(a)は本発明の実施形態に係る複合PC大梁を模式的に示す立面図、(b)は同断面図である。(A) is an elevation view schematically showing a composite PC girder according to an embodiment of the present invention, and (b) is a sectional view of the same. (a)はプレキャスト梁のプレストレス導入時の緊張材の定着長を示す模式図、(b)は同断面図である。(A) is a schematic diagram which shows the fixing length of the tension material at the time of the prestress introduction of a precast beam, (b) is the same sectional drawing. (a)は複合PC大梁の長期荷重作用時および設計地震荷重作用後の緊張材の定着長さを示す模式図、(b)は同断面図である。(A) is a schematic diagram which shows the fixation length of the tension material at the time of the long-term load effect | action of a composite PC girder and a design earthquake load effect | action, (b) is the same sectional drawing. (a)は、緊張力導入時のプレキャスト梁定着長内の付着応力度と付着耐力との関係を模式的に示した拡大断面図、(b)は柱を含む骨組架構に関する長期荷重作用時の曲げモーメント図、(c)は同骨組架構に関する長期荷重作用時の曲率分布図である。(A) is an enlarged cross-sectional view schematically showing the relationship between the adhesion stress level and the adhesion strength within the precast beam anchoring length at the time of introduction of tension, and (b) is the result of long-term load action on the frame structure including columns. Bending moment diagram, (c) is a curvature distribution diagram when a long-term load is applied to the frame structure.

本発明の実施形態の複合PC大梁1は、図1に示すように、左右の柱3,3の間(柱3,3の内側)に横架される大梁である。複合PC大梁1と柱3,3との接合部(柱3,3の上部)では、複合PC大梁1の両端から突出した梁主筋4,5を巻き込むように現場打ちコンクリートを打設する。なお、複合PC大梁1は、フルプレキャスト部材として、左右の柱3,3の上に載置してもよい。
本実施形態の複合PC大梁の設計方法では、同梁1の梁中央部11をPC構造区間とし、それ以外の梁端部12,12をRC構造区間として設計する。なお、梁中央部11のPC構造区間は、プレテンション方式による緊張力が有効に作用する部分である。
図1の(b)に示すように、複合PC大梁1は、断面視矩形状であって、プレキャスト部分13と現場打ち部分14とを備えるいわゆるハーフプレキャスト部材により構成されている。なお、複合PC大梁1はフルプレキャスト部材であってもよい。
プレキャスト部分13は、断面矩形状に形成されコンクリート部材であって、複合PC大梁1の断面底部において軸方向に沿って配筋された複数本の下主筋4,4,…と、所定の間隔毎に下主筋4,4,4に巻き付けられたスターラップ6と、下主筋4の上方に配筋された複数本の緊張材2,2,…とを備えている。
現場打ち部分14は、プレキャスト部分13を覆うように形成されていて、スラブ7の厚さと同等の高さを有している。なお、現場打ち部分14の厚さは限定されるものではない。
現場打ち部分14は、プレキャスト部分13の上面にコンクリートを打設することにより形成されており、複合PC大梁1の軸方向に沿って上主筋5,5,…が配筋されているとともに、プレキャスト部分13の上面から突出したスターラップ6,6を巻き込んだ状態で形成される。本実施形態では、現場打ち部分14のコンクリートをスラブ7と同時に打設する。この現場打ち部分14はスラブ7のコンクリートとは個別に打設してもよい。
As shown in FIG. 1, the composite PC girder 1 according to the embodiment of the present invention is a girder laid across between the left and right columns 3 and 3 (inside the columns 3 and 3). At the joint portion between the composite PC large beam 1 and the columns 3 and 3 (upper portions of the columns 3 and 3), the cast-in-place concrete is placed so that the main beam bars 4 and 5 protruding from both ends of the composite PC large beam 1 are wound. The composite PC girder 1 may be placed on the left and right columns 3 and 3 as a full precast member.
In the design method of the composite PC girder of this embodiment, the beam center portion 11 of the beam 1 is designed as a PC structure section, and the other beam end portions 12 and 12 are designed as an RC structure section. In addition, the PC structure section of the beam central portion 11 is a portion where the tension force by the pretension method is effectively applied.
As shown in FIG. 1 (b), the composite PC girder 1 is rectangular in cross-sectional view, and is composed of a so-called half precast member that includes a precast portion 13 and a spot casting portion 14. The composite PC girder 1 may be a full precast member.
The precast portion 13 is a concrete member having a rectangular cross section, and a plurality of lower main bars 4, 4,... Arranged at the bottom of the cross section of the composite PC large beam 1 along the axial direction, and at predetermined intervals. Are provided with a stirrup 6 wound around the lower main muscles 4, 4, 4, and a plurality of tendon members 2, 2,.
The cast-in-place portion 14 is formed so as to cover the precast portion 13 and has a height equivalent to the thickness of the slab 7. In addition, the thickness of the spot striking part 14 is not limited.
The cast-in-place portion 14 is formed by placing concrete on the upper surface of the precast portion 13, and upper main bars 5, 5... Are arranged along the axial direction of the composite PC large beam 1. It is formed with the stirrups 6 and 6 protruding from the upper surface of the portion 13 being wound. In the present embodiment, the concrete of the spot casting portion 14 is placed simultaneously with the slab 7. The spot casting portion 14 may be placed separately from the concrete of the slab 7.

本実施形態の複合PC大梁の設計方法は、断面仮定ステップ、鋼材配置ステップ、骨組モデル応力算定ステップ、第一定着長を用いた付着割裂検定ステップおよび第二定着長を用いた応力・たわみ検定ステップを備えている。
断面仮定ステップでは、複合PC大梁1の断面形状、緊張力および緊張力導入位置(緊張材)の偏心距離を仮定する。
複合PC大梁1の断面寸法、導入緊張力および偏心距離は、緊張力導入時および長期荷重作用時のコンクリート断面上下縁応力度が許容応力度を超えないように設定する。
断面設計は、長期荷重作用時の曲げモーメントに対して十分な耐力を有した断面になるように行う。このとき、コンクリートの許容応力度は、例えば、PC規準(「プレストレストコンクリート設計施工規準・同解説(1998年版)」日本建築学会)に準拠して計算する。また、主筋4,5およびスターラップ6の許容応力度は、例えば、RC規準(「鉄筋コンクリート構造計算規準・同解説(2010年版)」日本建築学会)に準拠して計算する。
設計に用いるプレストレス力は、上記PC規準に示されるプレテンション方式におけるプレストレス有効率η=0.80を用いて算出する。
なお、必要に応じて、製作段階で生じる緊張力の減退および経時的な緊張力の減退を考慮する。また、その減退量を考慮した有効緊張力は、前記のPC規準に示された有効率を用いる方法により算出してもよい。
The composite PC girder design method of this embodiment includes a cross-section assumption step, a steel material placement step, a frame model stress calculation step, an adhesion split verification step using the first fixing length, and a stress / deflection test using the second fixing length. Has steps.
In the cross-section assumption step, the cross-sectional shape of the composite PC girder 1, the tension force, and the eccentric distance of the tension force introduction position (tension material) are assumed.
The cross-sectional dimensions, the introduction tension and the eccentric distance of the composite PC girder 1 are set so that the stress at the upper and lower edges of the concrete section when the tension is introduced and when a long-term load is applied does not exceed the allowable stress.
The cross-sectional design is performed so that the cross-section has sufficient strength against the bending moment when a long-term load is applied. At this time, the allowable stress level of the concrete is calculated in accordance with, for example, PC standards ("Prestressed Concrete Design and Construction Standards / Explanation (1998)", Architectural Institute of Japan). The allowable stress levels of the main bars 4 and 5 and the stirrup 6 are calculated in accordance with, for example, the RC standard (“Reinforced Concrete Structure Calculation Standards / Description (2010)”, Architectural Institute of Japan).
The prestressing force used for the design is calculated using the prestress effective rate η = 0.80 in the pretension method shown in the PC standard.
It should be noted that, as necessary, the decrease in tension generated in the production stage and the decrease in tension over time are taken into consideration. Moreover, you may calculate the effective tension | tensile_strength which considered the decline amount by the method of using the effective rate shown by the said PC standard.

鋼材配置ステップでは、主筋4,5および緊張材2の配置を仮定する。
本実施形態では、地震荷重を対象として梁端部ではRC構造として設計する。4本の下主筋4,4,…を複合PC大梁1の底面と平行になるように、並設(配筋)する。なお、下主筋4の本数および配置は限定されない。例えば2段配筋してもよい。また、本実施形態では異形鉄筋を使用するが、下主筋4は異形鉄筋に限定されるものではなく、例えば、ネジ鉄筋や鋼棒であってもよい。
緊張材2は、断面仮定ステップにおいて仮定した偏心距離を確保した位置に配置する。本実施形態では、7本の緊張材2,2,…を、複合PC大梁1の底面と平行になるように並設する。なお、緊張材2の本数は限定されるものではない。緊張材2を構成する材料は限定されないが、本実施形態ではPC鋼より線を使用する。緊張材2の端部には、必要に応じて定着部材を形成してもよい。
緊張材2同士のあき間隔は、公称直径の1.5倍以上、かつ、粗骨材の最大寸法以上とする。また、緊張材2と下主筋4とのあきは、下主筋4の公称直径の1.5倍以上とする。
In the steel material placement step, it is assumed that the main bars 4 and 5 and the tension material 2 are placed.
In this embodiment, an RC structure is designed at the beam end for the seismic load. Four lower main bars 4, 4,... Are arranged (arranged) so as to be parallel to the bottom surface of the composite PC large beam 1. In addition, the number and arrangement | positioning of the lower main muscle 4 are not limited. For example, two-stage bar arrangement may be used. Moreover, although a deformed reinforcing bar is used in this embodiment, the lower main reinforcing bar 4 is not limited to a deformed reinforcing bar, and may be a screw reinforcing bar or a steel bar, for example.
The tendon 2 is disposed at a position where the eccentric distance assumed in the cross-section assumption step is secured. In the present embodiment, the seven tendon members 2, 2,... Are juxtaposed so as to be parallel to the bottom surface of the composite PC large beam 1. The number of tendons 2 is not limited. Although the material which comprises the tendon 2 is not limited, PC steel strand is used in this embodiment. A fixing member may be formed at the end of the tendon 2 as necessary.
The space between the tendons 2 is 1.5 times the nominal diameter or more than the maximum dimension of the coarse aggregate. Further, the clearance between the tendon 2 and the lower main muscle 4 is 1.5 times or more the nominal diameter of the lower main muscle 4.

骨組モデル応力算定ステップでは、複合PC大梁1を備える梁柱架構を骨組モデル化し、長期(鉛直)荷重作用時および短期荷重(地震力)作用時の各応力(せん断力、曲げモーメント、軸力)を算定する(図4の(b)参照)。   In the frame model stress calculation step, the beam column frame with the composite PC girder 1 is converted into a frame model, and each stress (shearing force, bending moment, axial force) at the time of long-term (vertical) load action and short-term load (earthquake force) action Is calculated (see FIG. 4B).

第一定着長を用いた付着割裂検定ステップでは、緊張力導入時の緊張材2の定着長さである第一定着長ld1を設定する(図2参照)。
本実施形態では、実大断面試験による緊張力導入実験により得られた結果(表1参照)に基づいて、第一定着長ld1を設定する。なお、設計条件が異なる場合には、第一定着長ld1の設定値はこれに限定されるものではない。
実大断面試験による緊張力導入試験は、例えば、「太径ストランドを用いたプレテンション方式PCaPC大梁の構造実験」(日本建築学会構造系論文集、第77巻 第672号、265−272頁、2012年2月)に示す方法により行えばよい。
付着割裂の検定では、例えば、式1に示すように、付着耐力τbuと第一定着長内の平均付着応力度τの比が1.0以上を確保できるか否かを確認する。すなわち、付着応力度τに対して付着耐力τbuが大きければ付着割裂破壊しないことになる。本実施形態では、付着耐力τbuに安全率が含まれている算定式(例えば、RC規準の付着強度式)を用いることを想定しているため、この例では1.0以上としたが、これに限定されるものでなく、例えば1.2以上と大きな安全率を見込んでも良い。
こうすることで、コンクリート引張抵抗力およびスターラップ引張抵抗力により付着割裂を防止することができる(図4の(a)参照)。
また、一列に配置された緊張材について、必要なあき寸法が確保されていることが確認できる。
なお、前記の付着割裂検定で、付着耐力τbuと付着応力度τの比が1.0以上を確保できず、付着割裂破壊が想定される場合には、再度設計条件を変化させて、断面仮定ステップ、鋼材配置ステップ、骨組応力算定ステップと順次計算を行い、付着割裂破壊しないような設計を行う。
なお、緊張材のあき間隔が、現行の規準や指針で小梁用として認められている緊張材公称直径の3倍以上で、かつコンクリートの設計基準強度が30N/mm以上であれば、付着割裂検定を行わなくても良い。
In the bond splitting test step using the first fixing length, the first fixing length l d1 that is the fixing length of the tendon material 2 when the tension force is introduced is set (see FIG. 2).
In the present embodiment, the first fixing length l d1 is set based on the result (see Table 1) obtained by the tension introduction experiment by the full-scale cross section test. When the design conditions are different, the set value of the first fixing length l d1 is not limited to this.
Tensile force introduction test by full-scale cross section test is, for example, “Structural experiment of pretension type PCaPC large beam using large diameter strand” (The Architectural Institute of Japan, Vol. 77, No. 672, pages 265-272, (February 2012).
In the bond splitting test, for example, as shown in Equation 1, it is confirmed whether or not the ratio of the bond strength τ bu and the average bond stress τ b within the first fixing length can be 1.0 or more. That is, if the adhesion strength τ bu is greater than the adhesion stress τ b , the adhesion splitting failure will not occur. In this embodiment, since it is assumed that a calculation formula (for example, an RC strength bond strength formula) including a safety factor is used for the bond strength τ bu , in this example, it is 1.0 or more. However, the present invention is not limited to this. For example, a large safety factor of 1.2 or more may be expected.
By doing so, adhesion splitting can be prevented by the concrete tensile resistance and the stirrup tensile resistance (see FIG. 4A).
Moreover, it can confirm that the necessary perforation dimension is ensured about the tension material arrange | positioned in a line.
In the above bond splitting test, when the ratio of the bond strength τ bu and the bond stress degree τ b cannot be ensured to be 1.0 or more and bond split fracture is assumed, the design condition is changed again, A cross-section assumption step, a steel material placement step, and a frame stress calculation step are sequentially calculated, and a design is made so as not to cause bond splitting fracture.
If the gap between the tension members is more than three times the nominal diameter of the tension member, which is accepted for small beams in the current standards and guidelines, and the concrete design standard strength is 30 N / mm 2 or more, adhesion It is not necessary to perform the split test.

Figure 0006393170
Figure 0006393170

Figure 0006393170
Figure 0006393170

Figure 0006393170
Figure 0006393170

第二定着長を用いた応力・たわみ検定ステップでは、設計地震荷重作用後の緊張材の定着長さ(地震荷重作用後の定着長さld3)を第二定着長に設定する(図3参照)。
本実施形態では、地震荷重作用後の定着長さld3を実大断面試験体に対して実施した実験結果に基づいて設定する(表2参照)。なお、設計条件が異なる場合には、地震荷重作用後の定着長さld3はこの設定値に限定されない。表2に示す定着長は、実大断面による地震を対象とした正負交番繰返し実験によって得られた定着長さに安全率を見込んだ値である。
なお、実大断面試験による正負交番繰り返し実験は、例えば、「太径ストランドを用いたプレテンション方式PCaPC大梁の構造実験」(日本建築学会構造系論文集、第77巻 第672号、265−272頁、2012年2月)に示す方法により行えばよい。
In the stress / deflection test step using the second anchorage length, the anchorage length of the tendon after the design seismic load action (the anchorage length l d3 after the seismic load action) is set as the second anchorage length (see FIG. 3). ).
In the present embodiment, the fixing length l d3 after the seismic load action is set based on the results of experiments performed on the full-scale test specimen (see Table 2). When the design conditions are different, the fixing length l d3 after the seismic load is not limited to this set value. The fixing lengths shown in Table 2 are values that allow for a safety factor in the fixing lengths obtained by alternating positive and negative alternating experiments for earthquakes with full-scale sections.
In addition, the positive / negative alternating repetition experiment by a full-scale cross section test is, for example, “Structural experiment of pretension type PCaPC large beam using large-diameter strand” (The Architectural Institute of Japan, Vol. 77, No. 672, 265-272). Page, February 2012).

応力・たわみ検定ステップでは、複合PC大梁1の応力とたわみの検定を行う。
応力検定は、緊張力が有効に導入された梁中央部11をPC構造区間とするとともに梁中央部11以外の梁端部12をRC構造区間として行う。
なお、梁端部12は、第二定着長以上の長さを有する範囲とする(表2)。
本実施形態では、地震荷重作用後定着長さld3を梁端部12の範囲とするが、長期荷重作用時の緊張材の定着長さ(長期荷重時定着長ld2)を梁端部12の範囲としてもよい。多くの場合、地震荷重作用後定着長さld3>長期荷重時定着長さld2であるが、高度な免震装置を備えた建物等においては、長期荷重時定着長さld2>地震荷重作用後定着長さld3となる場合があり、その場合には応力・たわみ検定ステップにおいて長期荷重時定着長さld2を第二定着長(梁端部12の範囲)とする。
応力・たわみ検定ステップでは、例えば断面形状と梁主筋の配筋仕様とから算定される梁端部12のRC構造区間の弾性変形量M/EI(図4の(b)参照)にRC構造用の変形増大率φRCを乗じて変形量(図4の(c)参照)を算出し、断面設計を行う。
同様に、梁中央部11のPC構造区間では、弾性変形量M/EIにPC構造用の変形増大率φPCを乗じて変形量(図4の(c)参照)を算出し、断面設計を行う。
ここで、変形増大率φPC,φRCとは、長期間荷重が作用することにより変形が増大することを調整する係数である。
算出した梁の変形量が許容値を超えている(構造物の使用に支障をきたす)場合は、断面仮定ステップと鋼材配置ステップの設計を再度行い、複合PC大梁の設計条件を変化させて、再度、骨組モデル応力算定ステップ、付着割裂検定ステップおよび応力・たわみ検定ステップを実施する。
In the stress / deflection verification step, the stress and deflection of the composite PC girder 1 are verified.
In the stress test, the beam center portion 11 into which the tension force is effectively introduced is used as the PC structure section, and the beam end portions 12 other than the beam center section 11 are used as the RC structure section.
Note that the beam end 12 is in a range having a length equal to or longer than the second fixing length (Table 2).
In the present embodiment, the anchoring length l d3 after the seismic load action is in the range of the beam end 12, but the tensioning anchor anchoring length (long-term anchoring length l d2 ) at the long-term load action is the beam end 12. It is good also as the range. In many cases, the anchoring length l d3 after the seismic load action is greater than the anchoring length l d2 during long-term loading. However, in buildings equipped with advanced seismic isolation devices, the anchoring length during long-term loading l d2 > seismic loading In some cases, the fixing length l d3 after the action is used, and in this case, the fixing length l d2 under long-term loading is set as the second fixing length (range of the beam end portion 12) in the stress / deflection test step.
In the stress / deflection test step, for example, the elastic deformation amount M / EI (see FIG. 4B) of the RC structure section of the beam end portion 12 calculated from the cross-sectional shape and the reinforcement arrangement of the beam main reinforcement is used for the RC structure. deformation amount by multiplying the deformation increase rate phi RC of calculated (shown in FIG. 4 (c) refer) to conduct a cross-sectional design.
Similarly, the PC structure section of the beam center part 11 calculates the deformation amount by multiplying the deformation increase rate phi PC for PC structure elastic deformation M / EI (shown in FIG. 4 (c) refer) and the cross-sectional design Do.
Here, the deformation increase rates φ PC and φ RC are coefficients for adjusting an increase in deformation caused by a long-time load.
If the calculated deformation amount of the beam exceeds the allowable value (impeding the use of the structure), design the cross section assumption step and the steel material placement step again, and change the design conditions of the composite PC girder, Again, a frame model stress calculation step, an adhesion split verification step, and a stress / deflection verification step are performed.

本実施形態の複合PC大梁の設計方法によれば、プレストレス導入時、長期荷重時および地震荷重設計時での複合PC大梁1の応答性状について、実験的研究等に基づいた設計方法として評価が可能となり、複合PC大梁と柱を組み合わせた柱梁架構の実現が可能である。
また、長期荷重時または設計地震荷重作用後における緊張材の定着長さに基づいて梁端部12のRC構造区間を設定し、梁端部12をRC構造としてコンクリート梁の応力検定を行うため、長期荷重時および設計地震荷重作用後の応答性状に応じた設計が可能となる。
また、断面形状と梁主筋の配筋仕様とから算定される複合PC大梁の弾性変形量に、梁中央部11および梁端部12の各区間の変形増大率を乗じてたわみ検定を行うため、複合PC大梁の区間毎の断面設計をより高精度に行うことができる。
複合PC大梁本体を、PC構造区間とRC構造区間とに分離して断面設計することで、複合PC大梁本体について小断面化をはかることができる。
According to the design method of the composite PC girder of this embodiment, the response characteristics of the composite PC girder 1 at the time of pre-stress introduction, long-term load and seismic load design are evaluated as a design method based on experimental research and the like. It becomes possible, and it is possible to realize a column beam structure combining a composite PC girder and a column.
Moreover, in order to set the RC structure section of the beam end 12 based on the anchoring length of the tension material at the time of long-term load or after the design seismic load action, and to perform the stress test of the concrete beam with the beam end 12 as the RC structure, It is possible to design according to the response characteristics at the time of long-term load and after design seismic load action.
In addition, in order to perform a deflection test by multiplying the elastic deformation amount of the composite PC large beam calculated from the cross-sectional shape and the bar reinforcement specification by the deformation increase rate of each section of the beam central portion 11 and the beam end portion 12, The cross-section design for each section of the composite PC girder can be performed with higher accuracy.
By dividing the composite PC large beam body into a PC structure section and an RC structure section and designing a cross section, the composite PC large beam body can be reduced in cross section.

以上、本発明の実施形態について説明したが、本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
本発明は、プレテンション方式のPCaPC梁に関して、現行の規準や指針等で設計時に規定されていない「付着割裂検定」と「応力・たわみ検定」を行うことによって、緊張力導入時における緊張材の付着破壊を回避するとともに、長期的に緊張材の付着性能が低下した場合や大地震経験後においても建物の機能維持を確保でき、プレテンション方式のPCaPC梁の大梁適用を可能する設計方法である。
また、本明細書では、PC鋼より線を緊張材とするPCaPC部材として説明したが、緊張材はこれに限定されるものでなく、PC鋼棒や高強度鉄筋を緊張材とするPC構造部材においても、同様な設計思想、すなわち第一定着長と第二定着長を利用して行う2つの設計検定で、該部材および該部材が取りつく骨組架構を設計できる。
Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and the above-described components can be appropriately changed without departing from the spirit of the present invention.
The present invention relates to pre-tensioned PCaPC beams by performing “adhesion split test” and “stress / deflection test” which are not defined at the time of design by current standards and guidelines, etc. It is a design method that avoids adhesion failure and can maintain the function of the building even when the adhesion performance of the tendon material has deteriorated over the long term or after experiencing a large earthquake, and enables the application of large beams of pre-tensioned PCaPC beams. .
Moreover, although this specification demonstrated as a PCaPC member which uses a strand from PC steel as a tension material, a tension material is not limited to this, PC structure member which uses a PC steel rod and a high-strength reinforcing bar as a tension material In this case, the member and the frame structure to which the member is attached can be designed by two design tests performed using the same design concept, that is, the first fixing length and the second fixing length.

1 複合プレストレストコンクリート大梁
11 梁中央部
12 梁端部
13 プレキャスト部分
14 現場打ち部分
2 緊張材
3 柱
4,5 主筋
6 スターラップ
7 スラブ
DESCRIPTION OF SYMBOLS 1 Composite prestressed concrete beam 11 Beam center part 12 Beam end part 13 Precast part 14 Site cast part 2 Tensile material 3 Column 4,5 Main reinforcement 6 Star wrap 7 Slab

Claims (1)

プレテンション方式のプレキャスト製プレストレストコンクリート大梁の設計方法であって、
プレキャスト製プレストレストコンクリート大梁の断面形状、緊張力および緊張力導入位置の偏心距離を仮定する断面仮定ステップと、
主筋および緊張材の配置を仮定する鋼材配置ステップと、
前記プレキャスト製プレストレストコンクリート大梁を備える梁柱架構を骨組モデル化し、長期荷重作用時および短期荷重作用時のせん断力、曲げモーメントおよび軸力を算定する骨組モデル応力算定ステップと、
緊張力導入時の緊張材の定着長さである第一定着長と、長期荷重時の緊張材の定着長さまたは地震荷重作用後の緊張材の定着長さである第二定着長とを設定し、前記第一定着長において緊張力導入時における緊張材の付着割裂検定を行う付着割裂検定ステップと、
前記第二定着長を緊張力をゼロとみなして梁端部を鉄筋コンクリート構造とするとともに、それ以外の梁中央部をプレストレストコンクリート構造として、前記断面形状と前記主筋の配筋仕様とから算定される前記プレキャスト製プレストレストコンクリート大梁の弾性変形量に変形増大率を乗じて変形量を算出して応力・たわみ検定を行う応力・たわみ検定ステップと、を備えており、
前記応力・たわみ検定ステップにおいて算出した梁の弾性変形量が許容値を超えている場合は、断面仮定ステップ、鋼材配置ステップを再度行い、前記プレキャスト製プレストレストコンクリート大梁の設計条件を変化させて再度骨組モデル応力算定ステップ、付着割裂検定ステップおよび応力・たわみ検定ステップを実施することを特徴とする、プレストレストコンクリート大梁の設計方法。
A pretension type precast prestressed concrete beam design method,
A cross-section assumption step that assumes the cross-sectional shape of the precast prestressed concrete beam, the tension force, and the eccentric distance of the tension force introduction position;
A steel placement step that assumes the placement of main bars and tendons;
A frame model stress calculation step for calculating a shear force, a bending moment and an axial force at the time of a long-term load action and a short-term load action by modeling the beam column frame including the precast prestressed concrete girder,
The first fixing length, which is the fixing length of the tendon when the tension force is introduced, and the second fixing length, which is the fixing length of the tendon after long-term loading or after the action of the seismic load An adhesion split test step for performing an adhesion split test of a tendon material at the time of introduction of the tension force in the first fixing length ;
Wherein with the second fixing length tension was zero and all the beam end and reinforced concrete structures, as prestressed concrete structures the beam center portion of the otherwise be calculated from the reinforcement specification of the said cross-sectional shape main reinforcement And a stress / deflection test step of calculating a deformation amount by multiplying the elastic deformation amount of the precast prestressed concrete girder by a deformation increase rate and performing a stress / deflection test,
If the elastic deformation amount of the beam calculated in the stress / deflection test step exceeds an allowable value, the cross-section assumption step and the steel material placement step are performed again, and the design conditions of the precast prestressed concrete girder are changed to re-frame the frame. A method for designing a prestressed concrete girder, comprising performing a model stress calculation step, an adhesion split verification step, and a stress / deflection verification step .
JP2014240886A 2014-11-28 2014-11-28 Design method for prestressed concrete beams. Active JP6393170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014240886A JP6393170B2 (en) 2014-11-28 2014-11-28 Design method for prestressed concrete beams.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014240886A JP6393170B2 (en) 2014-11-28 2014-11-28 Design method for prestressed concrete beams.

Publications (2)

Publication Number Publication Date
JP2016102323A JP2016102323A (en) 2016-06-02
JP6393170B2 true JP6393170B2 (en) 2018-09-19

Family

ID=56088449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240886A Active JP6393170B2 (en) 2014-11-28 2014-11-28 Design method for prestressed concrete beams.

Country Status (1)

Country Link
JP (1) JP6393170B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109868937B (en) * 2017-12-05 2021-11-05 上海同吉建筑工程设计有限公司 Post-tensioned unbonded prestressed concrete composite beam and design and construction method thereof
CN109281436A (en) * 2018-11-29 2019-01-29 三筑工科技有限公司 Pretensioned prestressing laminated frame is set a roof beam in place and its construction method
CN109374452B (en) * 2018-11-29 2023-11-10 中南大学 Fatigue damage state characterization method and test device for prestressed concrete beam
CN111005587B (en) * 2019-12-16 2024-10-11 沈阳大学 Self-locking prestress CFRP strip tensioning and anchoring system
CN113089495B (en) * 2021-04-30 2022-06-28 太原科技大学 Method for detecting effective prestress under prestressed concrete simply supported bridge anchor
CN113882274B (en) * 2021-11-12 2023-10-24 王壹帆 Construction method for paving longitudinal prestressed concrete bridge deck
CN113882273B (en) * 2021-11-12 2023-06-16 王壹帆 Prestressed concrete bridge wet joint concrete and bridge deck pavement concrete prestress method
JP7349180B1 (en) 2022-04-01 2023-09-22 旭コンクリート工業株式会社 Slab construction method and slab
CN115026944A (en) * 2022-06-27 2022-09-09 中交(南京)建设有限公司 Method for pre-stressed construction of highway municipal prestressed concrete precast box girder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920728B2 (en) * 2002-09-25 2005-07-26 James M. Powers Column and beam construction and method
JP2005016076A (en) * 2003-06-24 2005-01-20 Shimizu Corp Beam structure, structure and its construction method
JP5602455B2 (en) * 2009-12-24 2014-10-08 大成建設株式会社 Beam members and building structures
JP2012162927A (en) * 2011-02-08 2012-08-30 Kyokuto Kogen Concrete Shinko Kk Prestressed concrete skeleton inducing no secondary stress

Also Published As

Publication number Publication date
JP2016102323A (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6393170B2 (en) Design method for prestressed concrete beams.
US9765521B1 (en) Precast reinforced concrete construction elements with pre-stressing connectors
Kim et al. Monotonic loading tests of RC beam-column subassemblage strengthened to prevent progressive collapse
US11352790B2 (en) Method of introducing prestress to beam-column joint of PC structure in triaxial compression
JP6644324B1 (en) Prestressing method for 3-axis compression beam-column joint
Ahmed et al. Steel fiber as replacement of minimum shear reinforcement for one-way thick bridge slab
WO2022013587A1 (en) V-connectors for concrete crossing-joints and as shear key
El Shenawy Form finding for cable-stayed and extradosed bridges
JP6139120B2 (en) Pressure bonding structure of prestressed reinforced concrete column members and pressure bonding structure between prestressed reinforced concrete beam members and column members
JP2021107619A (en) Building structure and method for forming building structure
Rackham et al. Design of asymmetric slimflor beams with precast concrete slabs
CN104863045A (en) Steel tube confinement reinforced concrete bridge pier system
KR101413974B1 (en) Fabrication Method for Prestressed Concrete Beam
Lárusson et al. Prefabricated floor panels composed of fiber reinforced concrete and a steel substructure
JP6182387B2 (en) Building structure with frame consisting of small RC pillars
Liang Confined concrete behavior in hollow columns
JP5411375B1 (en) Buildings using seismic control columns
Tran et al. Structural behaviour of 2D post-tensioned precast beam-column sub-assemblages subjected to column loss scenario
JP6352092B2 (en) Junction structure
JP7397752B2 (en) concrete member structure
Palmisano A preliminary study on shear capacity of historical reinforced concrete beams
Buratti et al. Experimental tests on post-tensioned rocking concrete walls with end columns and steel dissipative devices
Astawa et al. Partial Prestress Concrete Beams Reinforced Concrete Column Joint Earthquake Resistant On Frame Structure Building
JP2007120002A (en) Pretension member
JP2022120282A (en) Reinforced concrete structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180824

R150 Certificate of patent or registration of utility model

Ref document number: 6393170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250