Nothing Special   »   [go: up one dir, main page]

JP6358589B2 - How to apply low viscosity paint - Google Patents

How to apply low viscosity paint Download PDF

Info

Publication number
JP6358589B2
JP6358589B2 JP2013105038A JP2013105038A JP6358589B2 JP 6358589 B2 JP6358589 B2 JP 6358589B2 JP 2013105038 A JP2013105038 A JP 2013105038A JP 2013105038 A JP2013105038 A JP 2013105038A JP 6358589 B2 JP6358589 B2 JP 6358589B2
Authority
JP
Japan
Prior art keywords
paint
coating
carbon dioxide
pressure
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013105038A
Other languages
Japanese (ja)
Other versions
JP2014223599A (en
Inventor
英和 宮野
英和 宮野
知宏 木村
知宏 木村
雄一 里川
雄一 里川
鈴木 明
明 鈴木
川崎 慎一朗
慎一朗 川崎
宜晃 早坂
宜晃 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMI ELECTRONIC INDUSTRY CO., LTD.
DIC Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
KAMI ELECTRONIC INDUSTRY CO., LTD.
DIC Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMI ELECTRONIC INDUSTRY CO., LTD., DIC Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical KAMI ELECTRONIC INDUSTRY CO., LTD.
Priority to JP2013105038A priority Critical patent/JP6358589B2/en
Publication of JP2014223599A publication Critical patent/JP2014223599A/en
Application granted granted Critical
Publication of JP6358589B2 publication Critical patent/JP6358589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、二酸化炭素が溶解し粘度が低下した塗料の塗装方法に関する。   The present invention relates to a coating method for a paint in which carbon dioxide is dissolved and its viscosity is lowered.

従来、多孔質構造の素材に対しては、表面での意匠性、機能性を出す為に素材表面に様々な機能性を持つ塗料が塗装されてきたが、一般的に多孔質素材では、基材表面での浸透性が高く、塗装による付加価値向上が困難であった。   Conventionally, for porous materials, paints with various functionalities have been applied to the surface of the material in order to provide design and functionality on the surface. The permeability on the surface of the material was high, and it was difficult to improve the added value by painting.

例えば、意匠性、生産性を重視する塗装の場合、塗料組成で浸透力を調整することを目的に、多量の界面活性剤成分や、希釈剤を多用して、表面からの樹脂浸透性を上げる事による塗装−含芯による目止めや基材強化方法も行われているが、塗料を数回重ね塗りした後の脱溶剤性や使用する界面活性剤の硬化障害や、表面ブリードと言った悪影響が発生し易く、又使用した大量のシンナーを乾燥させる為の熱乾燥工程に、多量のエネルギーが必要であった。   For example, in the case of painting that places emphasis on designability and productivity, the use of a large amount of surfactant components and diluents is used to increase the resin permeability from the surface in order to adjust the penetrating power with the paint composition. There are also methods for coating by core-sealing with cores and strengthening the base material, but there are adverse effects such as solvent removal after repeated coating of the paint several times, surface hardening of the surfactant used, and surface bleeding. In addition, a large amount of energy is required in the heat drying process for drying a large amount of thinner used.

また、多孔質建材に塗装を行う場合には、表面に凹凸模様が形成されるとともに、多孔質であるため表面にも気孔による微細な凹凸が多数発生している場合がある。
このような大小の凹凸があると、塗膜にむらや欠損を生じることになり、塗膜形成性や防水性あるいは凍結融解抵抗性など、十分に満足できる塗膜が得られにくくなる。
In addition, when a porous building material is coated, a concavo-convex pattern is formed on the surface, and since it is porous, a large number of fine irregularities due to pores may be generated on the surface.
When there are such large and small irregularities, unevenness and defects are caused in the coating film, and it is difficult to obtain a sufficiently satisfactory coating film such as coating film forming property, waterproof property or freeze-thaw resistance.

例えば、JIS A 5908−1994で規定されているパーティクルボードや、火山性ガラス質複層板(例えば、大建工業(株)社製:商品名ダイライト)等の基材表面に塗装強化を行う場合、その表面は塗料の浸透性が著しく高い為、塗料を数回重ね塗りが必要で、大量に使用したシンナー等を乾燥させる為に、60℃〜150℃以上の高温乾燥機で数十秒から数十分熱風乾燥させる必要があった。その為、従来の塗装方法では、地球温暖化防止、有害化学物質の規制、VOC(Volatile Organic Compounds:揮発性有機化合物)低減などの対応はとり難かった。   For example, when strengthening the coating on the surface of a substrate such as a particle board defined in JIS A 5908-1994 or a volcanic glassy multilayer board (for example, Daiken Kogyo Co., Ltd .: trade name Dylite) The surface has remarkably high permeability of the paint, so it is necessary to apply the paint several times, and in order to dry the thinner used in large quantities, it can be done at a high temperature dryer of 60 ° C to 150 ° C for several tens of seconds. It was necessary to dry several tens of minutes with hot air. For this reason, it has been difficult to take measures such as prevention of global warming, regulation of harmful chemical substances, and reduction of VOC (Volatile Organic Compounds) with conventional coating methods.

また、針葉樹合板や、ラワン材等の木材多孔質構造表面の機能性の特性強化を図ろうとした場合、減圧-加圧等の手段による含浸装置を利用し、基材内部まで樹脂を注入、浸透させ、固さや耐腐食性、耐候性といった基材表面の改質が従来から行われているが、注入圧力を維持したり、コントロールする為の大掛りな装置が必要であり、又バッチ処理になる為に、生産性が限られ、しいては高コストになる問題がある。   In addition, when trying to enhance the functional characteristics of the surface of a porous wood structure such as softwood plywood or lauan wood, the resin is injected into the base material using an impregnation device such as reduced pressure-pressurization. In the past, surface modification of the substrate such as hardness, corrosion resistance, and weather resistance has been performed, but a large-scale device for maintaining and controlling the injection pressure is required, and batch processing is also required. Therefore, there is a problem that the productivity is limited and the cost is increased.

一方、多孔質弾性舗装道路の表面に耐候性等の機能性を付与する為に、アクリル等の塗料をローラ刷毛塗布またはスプレー吹き付けにより塗布することが行われるが、多孔質弾性舗装道路の耐久性を向上させる為には、十分な浸透性を有するアクリル系の塗料を塗布する事により、トラック等の負荷の高い移動体による磨耗に対して、長期間の耐候性や、ゴム弾性体、骨材等の保持が可能になる。   On the other hand, in order to impart functionality such as weather resistance to the surface of the porous elastic paved road, paint such as acrylic is applied by roller brush application or spraying, but the durability of the porous elastic paved road is In order to improve the durability, long-term weather resistance, rubber elastic body, and aggregate against wear caused by heavy loads such as trucks are applied by applying acrylic paint with sufficient permeability. Etc. can be retained.

例えば、特許文献1には、二酸化炭素塗装方法及びその装置として、有機溶剤系の噴霧塗装において用いられる希釈溶剤を二酸化炭素で一部又は全部を代替する二酸化炭素塗装法が記載されている。当該法によれば、従来使用されていた希釈溶剤を極少量の二酸化炭素で代替できることから、VOC発生を大幅に低減することが可能であり、低環境負荷型の新しい塗装装置及び塗装方法を提供できると記載されている。
また、一般的には、塗膜物性を低下させる要因となり易い有機溶剤や、反応性希釈モノマーを使用せず、二酸化炭素により希釈する事により、オリゴマー成分割合を増やす事が可能となり、成膜される皮膜物性を向上させる事が容易になる。
For example, Patent Document 1 describes a carbon dioxide coating method and an apparatus thereof, in which a part or all of a diluent solvent used in organic solvent-based spray coating is replaced with carbon dioxide. According to this method, since a diluting solvent that has been used in the past can be replaced with an extremely small amount of carbon dioxide, it is possible to greatly reduce the occurrence of VOCs, and a new low-environmental load type coating apparatus and coating method are provided. It is stated that it can be done.
Also, in general, it is possible to increase the ratio of oligomer components by diluting with carbon dioxide without using organic solvents or reactive diluent monomers that are likely to reduce the physical properties of the coating film. It is easy to improve the film properties.

特許文献2には、高分子化合物の前駆体又は高分子化合物の少なくともいずれかを、少なくとも1種の亜臨界又は超臨界流体に溶解した被膜形成能を有する混合物を、ノズル又はオリフィスから噴霧させて、平面又は立体形状を有する対象物の表面に塗布して被膜を形成する工程、及び、自然放置、加熱又は活性エネルギー線照射の少なくともいずれかの手段により、前記被膜を硬化させて、厚さが20μm以下の薄膜でかつ接触式表面粗さ計で測定される表面形状曲線に対して、カットオフ値8mmでうねり除去した表面粗さRzが、0.8μm以下である高品質被膜を形成する工程、を有することを特徴とする高圧二酸化炭素塗装による被膜形成方法が記載されている。当該法によれば、極めて良好な表面外観[表面粗さRz値が0.8μm以下]を確保しつつ、かつ薄い膜厚[20μm以下]で塗装することが可能であると記載されている。   In Patent Document 2, a mixture having at least one of a precursor of a polymer compound or a polymer compound dissolved in at least one subcritical or supercritical fluid is sprayed from a nozzle or an orifice. The film is applied to the surface of a planar or three-dimensional object to form a film, and the film is cured by at least one of natural standing, heating, or active energy ray irradiation to obtain a thickness. A step of forming a high-quality film having a surface roughness Rz of 0.8 μm or less, which is a thin film of 20 μm or less and the surface shape curve measured with a contact-type surface roughness meter, with swell removal at a cutoff value of 8 mm. The method for forming a film by high-pressure carbon dioxide coating is described. According to this method, it is described that it is possible to coat with a thin film thickness [20 μm or less] while ensuring a very good surface appearance [surface roughness Rz value is 0.8 μm or less].

一般的に活性エネルギー線硬化型塗料は、塗工対象基材の浸透性が高ければ高い程、基材内部でのUVの到達エネルギーの減少が顕著であり、浸透した部分を硬化させることが困難となる。その為、硬化後の残存臭気や硬化不良に起因する硬度低下等の弊害が発生しやすく、高価な反応性の高い開始剤や、イソシアネートを併用した2液混合タイプのハイブリッド硬化型の塗料を使用する必要があり、硬化後の臭気や塗工後の基材同士が貼り付いてしまうブロッキングといった現象が起こりやすかった。   In general, the higher the penetrability of the base material to be coated with the active energy ray-curable coating material, the more remarkable is the decrease in the energy reached by UV inside the base material, making it difficult to cure the penetrated portion. It becomes. For this reason, harmful effects such as residual odor after curing and hardness reduction due to poor curing are likely to occur, and expensive, highly reactive initiators and two-component mixed type hybrid curing type paints combined with isocyanate are used. Therefore, phenomena such as odor after curing and blocking such that substrates after coating stick to each other are likely to occur.

特開2010−234348号公報JP 2010-234348 A 特開2012−086175号公報JP 2012-086175 A

従来の技術においては、有機溶剤系希釈剤を用いずに二酸化炭素で代替した場合、低環境負荷塗装法が提供できること、また、薄膜被膜が可能であることが知られているが、低環境負荷塗装法であると共に、建材、紙、繊維強化板、又は布等の表面の粗い被塗装物の塗装膜の強度を強化した塗装方法は知られていないのが現状である。
そこで、本発明では、低環境負荷塗装法であると共に、建材、紙、繊維強化板、又は布等の表面の粗い被塗装物の塗装膜の強度を強化した塗装方法を提供することを課題とする。
In the prior art, it is known that a low environmental impact coating method can be provided and a thin film coating is possible when carbon dioxide is replaced without using an organic solvent diluent. At present, there is no known coating method that enhances the strength of the coating film of an object to be coated having a rough surface such as a building material, paper, fiber reinforced board, or cloth.
Therefore, in the present invention, it is an object to provide a coating method that is a low environmental load coating method and that enhances the strength of a coating film of a rough surface to be coated such as building materials, paper, fiber reinforced boards, or cloth. To do.

本発明では、二酸化炭素が溶解し粘度が低下した塗料を噴射することにより表面粗さRzが0.8μm以上である被塗装物の表面を塗装する工程、及び塗装された塗料を硬化せしめる工程を有する塗装方法であって、
被塗装物が、建材、紙、繊維強化板、又は布から選ばれる何れかであり、
且つ、下記の算出法において規定する塗装後の被塗装物の表面の押し込み強度が、塗装前の被塗装物の表面の押し込み強度に比べて40%以上向上したことを特徴とする塗装方法を提供することにより、上記課題を解決する。
In the present invention, a step of coating the surface of an object having a surface roughness Rz of 0.8 μm or more by spraying a paint in which carbon dioxide is dissolved and a viscosity is lowered, and a step of curing the coated paint A coating method comprising:
The object to be coated is any one selected from building materials, paper, fiber reinforced boards, or cloth,
Also provided is a coating method characterized in that the indentation strength of the surface of the object to be coated after coating specified in the following calculation method is improved by 40% or more compared to the indentation strength of the surface of the object to be coated before painting. This solves the above problem.

本発明によれば、低環境負荷塗装法であると共に、建材、紙、繊維強化板、又は布等の表面の粗い被塗装物の塗装膜の強度を強化した塗装方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being a low environmental impact coating method, the coating method which reinforce | strengthened the intensity | strength of the coating film | membrane of rough coated objects, such as building materials, paper, a fiber reinforced board, or cloth, can be provided.

実施例1の力と押し込み深さの関係を示す図面である。It is drawing which shows the relationship between the force of Example 1 and an indentation depth. 実施例1、及び比較例1〜4の結果を示す図面である。It is drawing which shows the result of Example 1 and Comparative Examples 1-4.

本発明について、更に詳細に説明する。
即ち、本発明は以下の各項目から構成される。
1.二酸化炭素が溶解し粘度が低下した塗料を噴射することにより表面粗さRzが0.8μm以上である被塗装物の表面を塗装する工程、及び塗装された塗料を硬化せしめる工程を有する塗装方法であって、
被塗装物が、建材、紙、繊維強化板、又は布から選ばれる何れかであり、
且つ、以下の算出法において規定する塗装後の被塗装物の表面の押し込み強度が、塗装前の被塗装物の表面の押し込み強度に比べて40%以上向上したことを特徴とする塗装方法、
(1)ステンレス製の直径1/4インチの球形冶具を備えた引張試験機を用いて、25℃において0.1mm/秒の速さで前記冶具を塗装前の被塗装物の表面、及び塗装後の被塗装物の表面に、押し込み深さが塗装前の被塗装物及び塗装後の被塗装物の初期厚みの85%から80%まで押し込んだ時の押し込み深さ(mm)と力(kg)を各々評価する。
(2)前記押しこみ深さと力との関係をプロットしたグラフを作成し、グラフを直線とみなした際の傾き(kg/mm)を、塗装前の被塗装物の表面、及び塗装後の被塗装物の表面について算出する。
(3)上記算出した傾きの各々を塗装前の被塗装物の表面の押し込み強度、塗装後の被塗装物の表面の押し込み強度とする、
2.塗料が、活性エネルギー線硬化性塗料である1.に記載の塗装方法、
3.活性エネルギー線硬化性塗料が、アクリル樹脂を含むものである1.又は2.に記載の塗装方法。
The present invention will be described in more detail.
That is, the present invention includes the following items.
1. A coating method having a step of coating the surface of an object to be coated having a surface roughness Rz of 0.8 μm or more by spraying a coating material in which carbon dioxide is dissolved and a viscosity is lowered, and a step of curing the coated coating material. There,
The object to be coated is any one selected from building materials, paper, fiber reinforced boards, or cloth,
And, the coating method characterized in that the indentation strength of the surface of the coated object after painting specified in the following calculation method is improved by 40% or more compared to the indentation strength of the surface of the painted object before coating,
(1) Using a tensile tester equipped with a stainless steel spherical jig having a diameter of 1/4 inch, the surface of an object to be coated before painting the jig at a speed of 0.1 mm / second at 25 ° C., and painting Indentation depth (mm) and force (kg) when the depth of indentation is pushed from 85% to 80% of the initial thickness of the object to be painted before and after painting. ).
(2) Create a graph plotting the relationship between the indentation depth and force, and determine the slope (kg / mm) when the graph is regarded as a straight line as the surface of the object to be coated before coating and the coating after coating. Calculate the surface of the paint.
(3) Each of the calculated inclinations is defined as the indentation strength of the surface of the object to be coated before painting, and the indentation strength of the surface of the object to be painted after painting.
2. 1. The paint is an active energy ray curable paint The painting method described in
3. The active energy ray-curable coating material contains an acrylic resin. Or 2. The coating method as described in 4.

(塗料)
一般に、有機溶剤系塗装では、希釈による塗料の低粘度化を目的とした真溶剤を使用し、表面の平滑性や浸透性、脱溶剤性等の塗装後の挙動をコントロールする貧溶剤、例えば、トルエン、キシレンや遅乾性溶剤であるセロソルブ系溶剤などを加えて、噴霧が可能な粘度まで低下させることが必要とされる。そして、その低粘度化された塗料/希釈溶剤の混合物は、空気を霧化媒体としたエアースプレー方式や、霧化エアーを使用しない高圧噴霧方式により、微細液滴として噴霧され、塗装対象物に塗布される。
(paint)
In general, in organic solvent-based coating, a true solvent is used for the purpose of reducing the viscosity of the paint by dilution, and a poor solvent that controls the behavior after coating such as surface smoothness, permeability, and solvent removal, for example, Toluene, xylene, cellosolve solvent which is a slow-drying solvent, etc. are added to reduce the viscosity to enable spraying. The low-viscosity paint / dilution solvent mixture is sprayed as fine droplets by an air spray method using air as an atomizing medium or a high-pressure spray method that does not use atomized air. Applied.

本発明は、上記の有機溶剤系塗装で使用される希釈溶剤を、二酸化炭素で一部又は全部を代替する塗装方式を提供するものである。本発明で対象とされる好ましい塗料は、活性エネルギー線硬化型塗料である。活性エネルギー線硬化型塗料とは、紫外線や電子線で硬化し、造膜する塗料であり、高硬度、耐摩耗性、耐擦傷性、耐化学薬品性、耐溶剤性などに優れ、例えば、携帯電話などのハードコートとして用いられる。
上記塗料は、紫外線(UV)や電子線(EB)をエネルギーとして、アクリル系オリゴマー、モノマー配合品が、ラジカル重合して、塗膜を形成する塗料である。また、一液硬化型塗料とは、無希釈で、あるいはシンナーなどの希釈剤(粘度調整剤)だけを調合して用いる塗料である。
The present invention provides a coating method in which the diluent solvent used in the organic solvent-based coating is partially or entirely replaced with carbon dioxide. A preferable coating material used in the present invention is an active energy ray-curable coating material. An active energy ray-curable coating is a coating that is cured by UV or electron beam to form a film, and is excellent in high hardness, abrasion resistance, scratch resistance, chemical resistance, solvent resistance, etc. Used as a hard coat for telephones.
The coating material is a coating material that forms a coating film by radical polymerization of an acrylic oligomer or monomer compound using ultraviolet rays (UV) or electron beams (EB) as energy. The one-component curable paint is a paint that is used undiluted or by blending only a diluent (viscosity modifier) such as thinner.

上記塗料は、アクリル樹脂を主成分とし、イソシアネート等の反応型硬化剤を使用しなくても、塗膜形成される塗料である。繊維素系樹脂がブレンドされていることで、速乾性で、平滑性が高く、造膜性を高める事が可能である。   The above-mentioned paint is a paint that has an acrylic resin as a main component and can form a coating film without using a reactive curing agent such as isocyanate. By blending the fiber-based resin, quick drying, high smoothness, and film-forming property can be improved.

本発明では、塗料に、二酸化炭素を混合、溶解させるが、その条件は、温度は30〜70℃、好ましくは35〜45℃、圧力は5〜20MPa、好ましくは7〜10MPaである。   In the present invention, carbon dioxide is mixed and dissolved in the paint. The conditions are a temperature of 30 to 70 ° C., preferably 35 to 45 ° C., and a pressure of 5 to 20 MPa, preferably 7 to 10 MPa.

(被塗装物)
本発明で用いられる被塗装物は、その表面粗さRzが0.8μm以上であることに特徴を有し、本発明では、表面が粗い被塗装物に塗装を施し塗装前に比べて表面強度が向上させることに特徴を有する。
このような被塗装物は、表面粗さRzが0.8μm以上であれば特に制限はないが、例えば、建材、紙、繊維強化板、又は布等を挙げることができる。本発明においては、被塗装物の表面は粗い方が本発明の効果である表面強度の強化を発揮できることに特徴を有するが例えば、Rzが5μm以上であると上記本発明の効果を発揮しやすい。但し、本発明の被塗装物として、家具用木材は除く。
(Coating object)
The object to be coated used in the present invention is characterized in that the surface roughness Rz is 0.8 μm or more. In the present invention, the surface of the object to be coated is coated with a surface having a surface strength higher than that before coating. Is characterized by improvement.
Such an object to be coated is not particularly limited as long as the surface roughness Rz is 0.8 μm or more, and examples thereof include building materials, paper, fiber reinforced boards, and cloth. In the present invention, the surface of the object to be coated is characterized in that the rougher one can exhibit the surface strength enhancement that is the effect of the present invention. For example, when Rz is 5 μm or more, the effect of the present invention is easily exhibited. . However, furniture wood is excluded as the object to be coated of the present invention.

(装置及び塗装方法)
本発明で用いられる塗装の装置は、二酸化炭素が溶解し粘度が低下した塗料を噴射できるものであれば特に制限はないが、例えば、特許文献1に記載の装置を挙げることができる。
(Apparatus and painting method)
The coating apparatus used in the present invention is not particularly limited as long as it can inject a paint in which carbon dioxide is dissolved and its viscosity is lowered. For example, an apparatus described in Patent Document 1 can be given.

即ち、本発明は、有機溶剤系の噴霧塗装において用いられる希釈溶剤(シンナー)を、二酸化炭素で一部又は全部を代替する二酸化炭素塗装において、塗料供給ラインとして、塗料を貯蔵するタンク、該タンクから供給される塗料を所定の圧力まで加圧する塗料高圧ポンプ、該塗料高圧ポンプの吐出圧を調整し、余剰分を塗料タンクへ返送させる塗料1次圧調整弁を有し、二酸化炭素供給ラインとして、液体二酸化炭素を貯蔵するタンク、該液体二酸化炭素を所定温度まで冷却する冷却器、該冷却器から供給される液体二酸化炭素を所定の圧力まで加圧する液体二酸化炭素高圧ポンプ、該液体二酸化炭素高圧ポンプの吐出圧を調整し、余剰分を同ポンプのサクションに返送させる液体二酸化炭素1次圧調整弁を有し、塗料/二酸化炭素混合物ラインとして、上記塗料供給ラインから供給される加圧された塗料、上記二酸化炭素供給ラインから供給される加圧された二酸化炭素とを混合する混合器、及び該混合器から供給される混合後の塗料/二酸化炭素加圧混合物を大気圧下の塗装対象物へ噴霧する噴霧ガンを有することからなる二酸化炭素を用いた塗装装置を用いることができる。   That is, the present invention relates to a tank for storing paint as a paint supply line in carbon dioxide painting in which a diluent solvent (thinner) used in organic solvent-based spray painting is partially or entirely replaced with carbon dioxide, and the tank A high-pressure paint pump that pressurizes the paint supplied to a predetermined pressure, a paint primary pressure adjusting valve that adjusts the discharge pressure of the paint high-pressure pump and returns the excess to the paint tank, and serves as a carbon dioxide supply line A tank that stores liquid carbon dioxide, a cooler that cools the liquid carbon dioxide to a predetermined temperature, a liquid carbon dioxide high-pressure pump that pressurizes liquid carbon dioxide supplied from the cooler to a predetermined pressure, and the liquid carbon dioxide high pressure It has a liquid carbon dioxide primary pressure regulating valve that adjusts the pump discharge pressure and returns the surplus to the suction of the pump. In, a pressurized paint supplied from the paint supply line, a mixer for mixing the pressurized carbon dioxide supplied from the carbon dioxide supply line, and a mixed material supplied from the mixer A coating apparatus using carbon dioxide consisting of having a spray gun for spraying a paint / carbon dioxide pressurized mixture onto a coating object under atmospheric pressure can be used.

本発明における塗装方法は、噴霧制御を行う塗料高圧ポンプあるいはCO高圧ポンプの吐出側の1次圧調整弁を噴霧圧に設定し、噴霧圧制御を行わない塗料高圧ポンプあるいはCO高圧ポンプの吐出側の1次圧調整弁を噴霧圧より高い圧力に設定して運転することにより、噴霧圧制御を行わない流体の流量を一定とし、噴霧圧制御を行う流体の流量を、噴霧ノズルのオリフィスの流量特性に応じて可変として、余剰分をポンプサクションに戻すことからなる方法を用いることができる。 In the coating method of the present invention, the primary pressure regulating valve on the discharge side of the paint high pressure pump or CO 2 high pressure pump that performs spray control is set to the spray pressure, and the paint high pressure pump or CO 2 high pressure pump that does not perform spray pressure control. By operating the discharge side primary pressure regulating valve at a pressure higher than the spray pressure, the flow rate of the fluid for which the spray pressure control is not performed is made constant, and the flow rate of the fluid for which the spray pressure control is performed is set to the orifice of the spray nozzle. It is possible to use a method comprising returning the surplus to the pump suction as being variable according to the flow rate characteristics.

また、本発明における塗装方法は、上記の塗装装置を使用して二酸化炭素を用いた塗装を行う方法であって、塗料高圧ポンプ、及び二酸化炭素高圧ポンプの吐出側の1次圧調整弁を噴霧圧力より高く設定して、両ポンプから吐出された流体全量を噴霧させ、噴霧圧力を噴霧ガンのノズルオリフィスの流量特性に依存して調整することからなる二酸化炭素を用いた方法を用いることができる。   Further, the coating method in the present invention is a method of performing coating using carbon dioxide using the above-described coating apparatus, and sprays the primary pressure regulating valve on the discharge side of the paint high-pressure pump and the carbon dioxide high-pressure pump. It is possible to use a method using carbon dioxide consisting of setting the pressure higher than the pressure, spraying the whole amount of fluid discharged from both pumps, and adjusting the spray pressure depending on the flow rate characteristics of the nozzle orifice of the spray gun .

本発明では、加圧された塗料を所定温度まで加熱する塗料加熱器を有すること、液体二酸化炭素高圧ポンプのサクションに返送される余剰二酸化炭素を所定温度まで冷却する冷却器を有すること、加圧された液体二酸化炭素を所定温度まで加熱する二酸化炭素加熱器を有すること、混合後の塗料/二酸化炭素加圧混合物を所定温度まで加熱する混合物加熱器を有すること、混合器が、塗料と二酸化炭素とを急速混合し得るマイクロ混合器であることを好ましい実施の態様としている。   In the present invention, having a paint heater for heating the pressurized paint to a predetermined temperature, having a cooler for cooling the surplus carbon dioxide returned to the suction of the liquid carbon dioxide high-pressure pump to a predetermined temperature, A carbon dioxide heater that heats the liquid carbon dioxide that has been mixed to a predetermined temperature, a mixture heater that heats the mixed paint / carbon dioxide pressurized mixture to a predetermined temperature, and the mixer includes a paint and carbon dioxide It is a preferred embodiment that it is a micromixer capable of rapidly mixing the above.

また、本発明では、噴霧圧制御を行う流体が、塗料であること、塗料高圧ポンプ、及び二酸化炭素高圧ポンプの吐出側の1次圧調整弁を噴霧圧力より高く設定して、両ポンプから吐出された流体全量を噴霧させ、噴霧圧力を、噴霧ガンのノズルオリフィスの流量特性に依存して調整すること、混合器後から噴霧ガンまでの滞留時間を、少なくとも15秒とすることにより、安定した1相混合物とすることを好ましい実施の態様としている。   In the present invention, the fluid for controlling the spray pressure is paint, and the primary pressure regulating valve on the discharge side of the paint high-pressure pump and the carbon dioxide high-pressure pump is set higher than the spray pressure and discharged from both pumps. By spraying the entire amount of fluid, adjusting the spray pressure depending on the flow characteristics of the nozzle orifice of the spray gun, and setting the residence time from the mixer to the spray gun to at least 15 seconds. A preferred embodiment is a one-phase mixture.

一般的に、活性エネルギー線硬化型塗料はメカニカルストレスによるラジカル発生が嫌われる為、ギヤーポンプの使用は避けられるが、塗料粘度が充分に高い場合、モノーポンプや、口径の大きなダイやフラムポンプが良く使用される。   In general, active energy ray curable paints dislike the generation of radicals due to mechanical stress, so the use of gear pumps can be avoided, but if the paint viscosity is sufficiently high, mono pumps, large-diameter dies and fram pumps are often used. Is done.

一方、二酸化炭素高圧ポンプとしては、ピストンポンプ、ダイヤフラムポンプに加え、プランジャーポンプの採用も可能である。ただし、二酸化炭素の加圧に際しては、液体二酸化炭素での加圧が有利であり、この場合、ポンプの前段での冷却が必要とされる。   On the other hand, as a high-pressure carbon dioxide pump, a plunger pump can be adopted in addition to a piston pump and a diaphragm pump. However, in pressurization of carbon dioxide, pressurization with liquid carbon dioxide is advantageous, and in this case, cooling at the front stage of the pump is required.

本発明では、加熱器の型式は、特に限定されないが、装置の運転開始時や、流量を変えたときなどに、温度をなるべく早く一定に制御することや、塗装面の切り替えなどで噴霧を一時的に停止し、再度噴霧を開始するときなどに、それぞれの流体の温度が大きく変化しないことが求められる。そのため、一般的に使用される電気加熱式加熱器よりは、加熱媒体(通常は、水)の満たされたタンクに、流体の通過する高圧配管をコイル状に浸漬したタンク/コイル式の熱交換器が好適に用いられる。   In the present invention, the type of the heater is not particularly limited. However, when the apparatus is started or when the flow rate is changed, the temperature is controlled to be constant as soon as possible, or the spray is temporarily changed by switching the painted surface. When the operation is stopped and spraying is started again, it is required that the temperature of each fluid does not change greatly. Therefore, a tank / coil type heat exchange in which a high-pressure pipe through which a fluid passes is immersed in a tank filled with a heating medium (usually water) rather than a commonly used electric heater. A vessel is preferably used.

本発明では、上記塗料と、二酸化炭素を効率的に混合し、塗料中に、二酸化炭素を溶解していくことが必要である。従来、この目的のためには、インラインミキサである流体多段分割原理を応用したスタティックミキサ(静的混合器)が用いられてきたが、必ずしも充分な混合、溶解が実現できていない。本発明では、マイクロ混合の原理を利用した高圧マイクロ混合器が使用される。   In the present invention, it is necessary to efficiently mix the paint and carbon dioxide and dissolve the carbon dioxide in the paint. Conventionally, static mixers (static mixers) applying the fluid multistage division principle, which is an inline mixer, have been used for this purpose, but sufficient mixing and dissolution cannot always be realized. In the present invention, a high-pressure micromixer using the principle of micromixing is used.

高圧マイクロ混合器の型式は、特に限定されないが、塗料の粘性が高いことや、閉塞性があることなどを勘案すると、拡散距離を極めて短くして、2流体を混合するインターディジタルチャネル構造、例えば、ドイツ、IMM社が提供する層流型マイクロキミサよりは、流体の乱流混合効果を利用したマイクロ混合器の方が望ましい。   The type of the high-pressure micromixer is not particularly limited. However, in consideration of the high viscosity of the paint and the blocking property, an interdigital channel structure that mixes two fluids with an extremely short diffusion distance, for example, A micro mixer utilizing the turbulent mixing effect of a fluid is preferable to a laminar flow type micro Kimisa provided by IMM, Germany.

これらの混合器としては、例えば、流路径が0.5mm以下のT字型混合器、旋回流を利用したスワール型マイクロ混合器、流体を微小な空間の中心で衝突させる中心衝突型マイクロ混合器及び内管の内径が0.5mm以下の二重管式マイクロ混合器などが挙げられる。   As these mixers, for example, a T-shaped mixer having a flow path diameter of 0.5 mm or less, a swirl type micro mixer using a swirling flow, and a center collision type micro mixer that causes a fluid to collide at the center of a minute space And a double-tube micromixer having an inner diameter of 0.5 mm or less.

また、これらのマイクロ混合器の後段に、従来から用いられてきたスタティックミキサを連結することで、塗料への二酸化炭素の充分な溶解が実現でき、安定した一相混合物を形成することが可能となる。条件によっては、混合器以降、噴霧ガンまでの間で、塗料と二酸化炭素の二相形となることもあり、その場合、両流体の粘性が大きく異なるため、噴霧が安定せず、きれいな塗布が実現できない危険性がある。塗料への二酸化炭素の溶解度は、塗料の種類、温度・圧力により大きく変動するが、混合器の構成によっても、大きな影響を受けることになる。   In addition, by connecting a conventionally used static mixer to the subsequent stage of these micromixers, it is possible to achieve sufficient dissolution of carbon dioxide in the paint and to form a stable one-phase mixture. Become. Depending on the conditions, between the mixer and the spray gun, there may be a two-phase form of paint and carbon dioxide. In that case, the viscosity of the two fluids differ greatly, so the spray is not stable and a clean application is realized. There is a danger that cannot be done. The solubility of carbon dioxide in paint greatly varies depending on the kind of paint, temperature, and pressure, but is greatly influenced by the configuration of the mixer.

本発明で用いる噴霧ガンは、エアレスタイプの高圧噴霧ガンであれば良いが、噴霧流量、噴霧圧力、及び噴霧パターンの最終的な制御は、この噴霧ガンに装着されている高圧ノズルオリフィスの開口径(相当径)とその形状に依存するため、極めて重要である。噴霧流量は、単位時間当たりの塗装量をどのくらいに設定するかで、大きく異なるが、塗料の流量として、一般的に、50〜500g/minの範囲が選択される。   The spray gun used in the present invention may be an airless high-pressure spray gun, but the final control of the spray flow rate, spray pressure, and spray pattern is controlled by the opening diameter of the high-pressure nozzle orifice mounted on the spray gun. Since it depends on (equivalent diameter) and its shape, it is extremely important. The spray flow rate differs greatly depending on how much the coating amount per unit time is set, but generally, a range of 50 to 500 g / min is selected as the flow rate of the paint.

(強度の評価)
本発明においては、下記の算出法によって規定される強度が、塗装後において塗装前より40%以上向上することに特徴を有する。
即ち、本発明では、下記算出法により評価される。
(1)ステンレス製の直径1/4インチの球形冶具を備えた引張試験機を用いて、25℃において0.1mm/秒の速さで前記冶具を塗装前の被塗装物の表面、及び塗装後の被塗装物の表面に、押し込み深さが塗装前の被塗装物及び塗装後の被塗装物の初期厚みの85%から80%まで押し込んだ時の押し込み深さ(mm)と力(kg)を各々評価する。
(2)前記押しこみ深さと力との関係をプロットしたグラフを作成し、グラフを直線とみなした際の傾き(kg/mm)を、塗装前の被塗装物の表面、及び塗装後の被塗装物の表面について算出する。
(3)上記算出した傾きの各々を塗装前の被塗装物の表面の押し込み強度、塗装後の被塗装物の表面の押し込み強度とする。
また、本発明の塗装方法によれば、塗装後の臭気が低下された塗装物を得ることができる。
より具体的な評価法は実施例に記載する。
(Strength evaluation)
The present invention is characterized in that the strength defined by the following calculation method is improved by 40% or more after coating than before coating.
That is, in this invention, it evaluates with the following calculation method.
(1) Using a tensile tester equipped with a stainless steel spherical jig having a diameter of 1/4 inch, the surface of an object to be coated before painting the jig at a speed of 0.1 mm / second at 25 ° C., and painting Indentation depth (mm) and force (kg) when the depth of indentation is pushed from 85% to 80% of the initial thickness of the object to be painted before and after painting. ).
(2) Create a graph plotting the relationship between the indentation depth and force, and determine the slope (kg / mm) when the graph is regarded as a straight line as the surface of the object to be coated before coating and the coating after coating. Calculate the surface of the paint.
(3) Each of the calculated inclinations is defined as the indentation strength of the surface of the object to be coated before painting and the indentation strength of the surface of the object to be coated after painting.
Moreover, according to the coating method of the present invention, a coated product with reduced odor after coating can be obtained.
More specific evaluation methods are described in the examples.

実施例で本発明をさらに詳細に説明する。
(実施例1)
合板製造用椴松の原木をロータリースライサーにより、厚み3mm程度よりやや厚めで、3尺×6尺の大きさに切り出した板から、乾燥単板に内在するヒビや割れ、孔、節、ヤニなどが無く、均一な性状を持つ様に、一片が20cm角四方になる板を切り出した。
厚みや木材表面繊維の暴れをなくす為に、耐水性サンディングペーパ(#240や#320)を使用して表面を研磨し均一な表面となる木材板を5枚用意し、各試験用の塗装基材とした。
The examples illustrate the invention in more detail.
Example 1
Cracks, cracks, holes, joints, spears, etc. inherent in dry veneer from a board cut from 3mm x 6mm thick with a rotary slicer that is slightly thicker than 3mm thick with a rotary slicer. A plate having a 20 cm square was cut out so as to have uniform properties.
In order to eliminate irregularities in thickness and fiber on the surface of the wood, prepare 5 pieces of wood boards that have a uniform surface by polishing the surface using water-resistant sanding paper (# 240 and # 320). A material was used.

次に、UV硬化型塗料よりなる超臨界塗料として、表1に示す塗料を主剤とする超臨界用「調合塗料A」と粘度調整に使用する「調合塗料B」を作製した。   Next, as a supercritical paint composed of a UV curable paint, superpreparation “preparation paint A” mainly containing the paint shown in Table 1 and “preparation paint B” used for viscosity adjustment were prepared.

Figure 0006358589
Figure 0006358589

ユニディックV4007S:UV硬化型樹脂(DIC(株)製)
ACMO:アクリロイルモルホリン((興人(株)製)
イルガーキュアー184:UV開始剤(1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(BASF社製)、
ダイノール604:湿潤剤(日信化学工業(株)製)
BYK−A501:消泡剤(ビックケミー・ジャパン社製)
Unidic V4007S: UV curable resin (manufactured by DIC Corporation)
ACMO: acryloylmorpholine (manufactured by Kojin Co., Ltd.)
Ilgar Cure 184: UV initiator (1-hydroxy-cyclohexyl-phenyl-ketone (manufactured by BASF),
DYNOL 604: Wetting agent (manufactured by Nissin Chemical Industry Co., Ltd.)
BYK-A501: Antifoaming agent (by Big Chemie Japan)

予め、塗装基材表面からエアーブローで細かい塵、埃を除去した後、超臨界塗装装置により、超臨界COの塗料流量を55g/min、添加量を20%に調整して自動スプレーガンによりスプレー塗装を実施した。
Wet膜厚35μmで、一度縦方向にスプレー塗装をした後、30秒常温でセッティングし、基材内部への湿潤、及び残存COの脱泡をした後、基材を90度回転させて、さらに横方向にWet膜厚35μmスプレー塗装を実施した。
同様に基材湿潤、脱泡を目的に2分間常温空間でセッティングを行った後に、UV照射装置により、積算光量300mJ/cm(ピーク強度100mW/cm、高圧Hgランプ)の紫外線で塗料を硬化させ目的とする表面強度測定用サンプル(サンプルA)を得た。
After removing fine dust and dust from the surface of the coating substrate in advance by air blow, adjust the paint flow rate of supercritical CO 2 to 55 g / min and the addition amount to 20% using an automatic spray gun. Spray painting was performed.
After wet spraying once in the vertical direction with a wet film thickness of 35 μm, setting at room temperature for 30 seconds, wetting the inside of the base material and defoaming residual CO 2 , rotate the base material 90 degrees, Further, spray coating with a wet film thickness of 35 μm was performed in the lateral direction.
Similarly, after setting in a room temperature space for 2 minutes for the purpose of wetting and defoaming the substrate, the paint is applied with ultraviolet light with an integrated light quantity of 300 mJ / cm 2 (peak intensity 100 mW / cm 2 , high pressure Hg lamp) by a UV irradiation device. A target sample for surface strength measurement (sample A) was obtained by curing.

(比較例1);未塗装の場合(サンプルB)
実施例1で示したように表面をサンディングし調整した基材を、塗装を行わずに塗装前基材(サンプルB)として使用した。
(比較例2);溶剤無添加の場合(サンプルC)
「調合塗料A」をワイダーW−101(アネスト岩田株式会社製)のエアースプレーガンを用いて、塗装する場合、適性粘度の上限を超える為霧化状態が悪くなる為、そのままではスプレーが難しい。そのため、塗料粘度を下げる為に塗料とスプレーガンを予め40℃に加熱して、スプレーを実施した。条件は実施例1と同様に、縦方向、横方向に同塗布量をエアースプレー塗装により実施した後、UV照射装置により、積算光量300mJ/cm(ピーク強度100mW/cm、高圧Hgランプ)の紫外線で塗料を硬化させて目的とする塗剤を得た。
(Comparative Example 1); unpainted (Sample B)
The base material whose surface was sanded and adjusted as shown in Example 1 was used as a base material before coating (sample B) without coating.
(Comparative Example 2); When no solvent is added (Sample C)
When “Formulated paint A” is applied using an air spray gun of Wider W-101 (manufactured by Anest Iwata Co., Ltd.), the upper limit of the appropriate viscosity is exceeded, and the atomization state becomes worse. Therefore, in order to lower the viscosity of the paint, the paint and the spray gun were previously heated to 40 ° C. and sprayed. The conditions were the same as in Example 1, after applying the same coating amount in the vertical direction and the horizontal direction by air spray coating, and then using a UV irradiation device, integrated light quantity 300 mJ / cm 2 (peak intensity 100 mW / cm 2 , high pressure Hg lamp) The desired coating agent was obtained by curing the paint with ultraviolet rays.

(比較例3);モノマー希釈の場合(サンプルD)
「調合塗料A」に対し「調合塗料B」を100:30部の割合で混合した塗料を使用した。
実施例1で示す基材に対し実施例1と同様に、Wet膜厚35μmで、一度縦方向にスプレー塗装をし、30秒常温でセッティングした後、基材を90度回転させて、横方向にさらにWet膜厚35μm、ワイダーW−101(アネスト岩田株式会社製)を使用して、通常のエアースプレー塗装を実施した。
(Comparative Example 3); In case of monomer dilution (Sample D)
A paint prepared by mixing “preparation paint B” at a ratio of 100: 30 parts to “preparation paint A” was used.
As in Example 1, the substrate shown in Example 1 was wet sprayed in the vertical direction once with a wet film thickness of 35 μm, set at room temperature for 30 seconds, and then rotated by 90 degrees in the horizontal direction. Further, ordinary air spray coating was performed using a Wet film thickness of 35 μm and Weider W-101 (manufactured by Anest Iwata Co., Ltd.).

同様に基材湿潤、脱泡を目的に2分間常温空間でセッティングを行った後に、UV照射装置により、積算光量300mJ/cm(ピーク強度100mW/cm、高圧Hgランプ)の紫外線で塗料を硬化させ、目的とする無溶剤スプレー塗装のサンプルを得た。 Similarly, after setting in a room temperature space for 2 minutes for the purpose of wetting and defoaming the substrate, the paint is applied with ultraviolet light with an integrated light quantity of 300 mJ / cm 2 (peak intensity 100 mW / cm 2 , high pressure Hg lamp) by a UV irradiation device. Cured to obtain the target solvent-free spray coating sample.

(比較例4);溶剤で希釈した場合(サンプルE)
「調合塗料A」に対し「酢酸エチル」を100:30部の割合で混合した塗料を使用し、実施例1で示す基材に対し実施例1と同様に、Wet膜厚35μmで、一度縦方向にスプレー塗装をし、30秒常温でセッティングした後、基材を90度回転させて、横方向にさらにWet膜厚35μm、ワイダーW−101(アネスト岩田株式会社)を使用して、通常のエアースプレー塗装を実施した。
同様に基材湿潤、脱泡を目的に2分間常温空間でセッティングを行った後に、UV照射装置により、積算光量300mJ/cm(ピーク強度100mW/cm、高圧Hgランプ)の紫外線で塗料を硬化させ、目的とする無溶剤スプレー塗装のサンプルを得た。
実施例1、及び比較例1〜4の結果を図2に示す。
(Comparative Example 4); When diluted with a solvent (Sample E)
Using a paint in which “ethyl acetate” is mixed at a ratio of 100: 30 parts to “preparation paint A”, the base material shown in Example 1 has a wet film thickness of 35 μm once in the same manner as in Example 1. After spray coating in the direction and setting at room temperature for 30 seconds, rotate the substrate 90 degrees, and further use a Wet film thickness of 35 μm and Weider W-101 (Anest Iwata Co., Ltd.) Air spray painting was performed.
Similarly, after setting in a room temperature space for 2 minutes for the purpose of wetting and defoaming the substrate, the paint is applied with ultraviolet light with an integrated light quantity of 300 mJ / cm 2 (peak intensity 100 mW / cm 2 , high pressure Hg lamp) by a UV irradiation device. Cured to obtain the target solvent-free spray coating sample.
The results of Example 1 and Comparative Examples 1 to 4 are shown in FIG.

(評価法)
実施例及び比較例における塗装前後の被塗装物の表面の強度の評価は以下のように行った。
・塗料浸透性
塗装直後のWetな状態での塗料の染み込み易さを目視により、5段階官能評価(○、○△、△、△×、×)を行った。
・塗装直後残臭
UV照射直後の、塗膜が硬化した状態で、表面の臭気を嗅ぎ、同様に5段階官能評価により判定した。結果を表2に示す。
(Evaluation method)
In the examples and comparative examples, the strength of the surface of the object to be coated before and after coating was evaluated as follows.
-Paint penetration The five-step sensory evaluation ((circle), (circle) (triangle | delta), (triangle | delta), (triangle | delta) *, *) was performed visually about the ease of the penetration of the paint in the wet state immediately after coating.
-Residual odor immediately after coating In the state where the coating film was cured immediately after UV irradiation, the odor on the surface was sniffed, and similarly judged by 5-step sensory evaluation. The results are shown in Table 2.

Figure 0006358589
Figure 0006358589

・物理特性
塗装、硬化後の表面強度を、小型引張/圧縮試験機「テクスチャーアナライザーTA.XT plus」(Stable Micro Systems製)を用いて、1/4インチのステンレス球を0.1mm/secの速さで、押し込み深さが試験前の基材厚みの80%にいたるまで押し込んだ。得られた変位と力の関係のうち、押し込み深さが試験前の基材厚みの85%から80%にいたるまでの部分を直線で近似した時の傾き(kg/mm−1)を、試験基材の押し込み強度として評価した。結果を図1に示す。
・ Physical properties The surface strength after coating and curing was measured using a small tensile / compression tester "Texture Analyzer TA.XT plus" (manufactured by Stable Micro Systems) with a 1/4 inch stainless steel sphere of 0.1 mm / sec. It was pushed in at a speed until the indentation depth reached 80% of the substrate thickness before the test. Of the relationship between the obtained displacement and force, the inclination (kg / mm −1 ) when a portion where the indentation depth is from 85% to 80% of the base material thickness before the test is approximated by a straight line is tested The indentation strength of the substrate was evaluated. The results are shown in FIG.

(結果のまとめ)
実施例・比較例により、テクスチャーアナライザーによる表面硬度特性を測った結果、高い表面硬度を得られることが確認された。
また、未塗装の基材を基準として、塗装後の表面状態、臭気、物理特性を評価した結果、本願発明の塗装方法では、表面がポーラスな木質基材に対して、超臨界によるCO特性に起因する塗料の浸透性が確認された。
さらに、COが塗料中に残存するため、酸素によるラジカル失活防止効果による平滑性の維持が図れ、UV硬化直後の残臭が激減したことが確認された。
(Summary of results)
As a result of measuring the surface hardness characteristics using a texture analyzer, it was confirmed that a high surface hardness can be obtained.
With reference to the base material of the uncoated, surface condition after coating, odor, results of evaluating the physical properties, in the coating method of the present invention, with respect to the surface of a porous wood substrate, CO 2 characteristics with supercritical The permeability of the paint due to the above was confirmed.
Furthermore, since CO 2 remains in the paint, it was confirmed that the smoothness was maintained by the effect of preventing radical deactivation by oxygen, and the residual odor immediately after UV curing was drastically reduced.

本発明による塗装方法は、建材、紙、繊維強化板、又は布から選ばれる被塗装物への表面強度が強化された塗装方法として利用が可能である。   The coating method according to the present invention can be used as a coating method in which the surface strength of an object to be coated selected from building materials, paper, fiber reinforced boards, or cloth is enhanced.

A:力と押し込み深さの関係を示す線
B:初期厚みからの割合と押し込み深さの関係を示す線
C:初期厚みからの割合85〜80%のときの力と押し込み深さの関係を示す直線
A: Line showing relationship between force and indentation depth B: Line showing relationship between ratio from initial thickness and indentation depth C: Relationship between force and indentation depth when ratio from initial thickness is 85 to 80% Straight line

Claims (3)

超臨界二酸化炭素が溶解し粘度が低下した塗料を噴射することにより表面粗さRzが0.8μm以上である被塗装物の表面を塗装する工程、及び塗装された塗料を硬化せしめる工程を有する塗装方法であって、
該塗料が、活性エネルギー線硬化性塗料であって、
該塗料の希釈溶剤がすべて超臨界二酸化炭素であって、被塗装物が、建材、紙、繊維強化板、又は布から選ばれる何れかであることを特徴とする、塗装方法。
Coating having a process of coating the surface of an object having a surface roughness Rz of 0.8 μm or more by spraying a paint in which supercritical carbon dioxide is dissolved and its viscosity is lowered, and a process of curing the coated paint A method,
The paint is an active energy ray curable paint,
A coating method characterized in that all of the dilution solvents of the paint are supercritical carbon dioxide, and the object to be coated is any one selected from building materials, paper, fiber reinforced boards, and cloth.
活性エネルギー線硬化性塗料が、アクリル系オリゴマー及びまたはモノマーを含有するものである、請求項1に記載の塗装方法。 The coating method according to claim 1, wherein the active energy ray-curable coating material contains an acrylic oligomer and / or a monomer. 活性エネルギー線硬化性塗料が、アクリル樹脂を含むものである請求項1又は2に記載の塗装方法。 The coating method according to claim 1 or 2, wherein the active energy ray-curable coating material contains an acrylic resin.
JP2013105038A 2013-05-17 2013-05-17 How to apply low viscosity paint Active JP6358589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013105038A JP6358589B2 (en) 2013-05-17 2013-05-17 How to apply low viscosity paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013105038A JP6358589B2 (en) 2013-05-17 2013-05-17 How to apply low viscosity paint

Publications (2)

Publication Number Publication Date
JP2014223599A JP2014223599A (en) 2014-12-04
JP6358589B2 true JP6358589B2 (en) 2018-07-18

Family

ID=52122742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013105038A Active JP6358589B2 (en) 2013-05-17 2013-05-17 How to apply low viscosity paint

Country Status (1)

Country Link
JP (1) JP6358589B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6755525B2 (en) * 2016-02-19 2020-09-16 東洋紡株式会社 UV curable paint coating method and UV curable film manufacturing method
JP6842067B2 (en) * 2017-08-10 2021-03-17 東洋紡株式会社 UV curable paint coating method, UV curable film manufacturing method and laminated film manufacturing method
JP6374594B1 (en) * 2017-12-18 2018-08-15 長瀬産業株式会社 Coating method and coating composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69002263T2 (en) * 1989-03-22 1993-12-02 Union Carbide Chem Plastic Precursor coating compositions.
JPH07121987B2 (en) * 1990-12-21 1995-12-25 ユニオン カーバイド ケミカルズ アンド プラスティックス カンパニー インコーポレイテッド Method for lowering viscosity of liquid polymer compound-containing composition and liquid spray coating method
US5212229A (en) * 1991-03-28 1993-05-18 Union Carbide Chemicals & Plastics Technology Corporation Monodispersed acrylic polymers in supercritical, near supercritical and subcritical fluids
JP2001200024A (en) * 2000-01-14 2001-07-24 Hitachi Kasei Polymer Co Ltd Photocurable resin composition
JP2004148236A (en) * 2002-10-31 2004-05-27 Dainippon Ink & Chem Inc Method for forming cured coating film of active energy ray-curing coating material
AU2005206522B2 (en) * 2004-01-12 2010-03-11 James Hardie Technology Limited Composite fiber cement article with radiation curable component
US8864044B2 (en) * 2009-03-31 2014-10-21 National Institute Of Advanced Industrial Science And Technology Carbon dioxide coating method and device therefor
JP5699307B2 (en) * 2010-10-20 2015-04-08 宮城県 Film formation method

Also Published As

Publication number Publication date
JP2014223599A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
JP5429928B2 (en) Carbon dioxide coating method and apparatus
JP5699307B2 (en) Film formation method
TWI531412B (en) Carbon dioxide coating method and device
JP5608864B2 (en) Carbon dioxide coating method and apparatus
CA1271671A (en) Supercritical fluids as diluents in liquid spray application of coatings
JP5568801B2 (en) Carbon dioxide coating method and apparatus
JP6358589B2 (en) How to apply low viscosity paint
CN105199515B (en) A kind of imitation porcelain coating and its spraying method
CA2514765A1 (en) Process for applying a thin-film radiation-cured coating on a three-dimensional substrate
KR20180105684A (en) Method for applying ultraviolet curable coating material and method for producing ultraviolet cured film
CN102553792B (en) Wooden article shading process
RU2708852C1 (en) Method of producing a multilayer paint system
CA2169476C (en) Process for the production of a multicoat refinish
US5160766A (en) Process for applying a high solid coating composition using a high pressure airless spray
JP2008073588A (en) Photocatalyst coating formation method
CA2514763A1 (en) Product comprising a thin-film radiation-cured coating on a three-dimensional substrate
CA2264696C (en) Spraying can
JP6374594B1 (en) Coating method and coating composition
JP6130016B1 (en) Coating apparatus, coating method and method for producing mixture
JP6496443B1 (en) Water-based paint for carbon dioxide painting, coating composition, and painting method
US11505704B2 (en) Aerosol primer composition and method of use
JP7483259B2 (en) Coating composition for liquid film ejection coating, liquid column ejection coating, or liquid droplet ejection coating
Ratnasingam Furniture Finishing
CN107177227A (en) UV putty and preparation method thereof and the application in wood powder powder paint spraying
CN108368356B (en) Foamed coating composition and method with this coating composition coated substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180612

R150 Certificate of patent or registration of utility model

Ref document number: 6358589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180719

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250