Nothing Special   »   [go: up one dir, main page]

JP6201834B2 - Heat storage device - Google Patents

Heat storage device Download PDF

Info

Publication number
JP6201834B2
JP6201834B2 JP2014051410A JP2014051410A JP6201834B2 JP 6201834 B2 JP6201834 B2 JP 6201834B2 JP 2014051410 A JP2014051410 A JP 2014051410A JP 2014051410 A JP2014051410 A JP 2014051410A JP 6201834 B2 JP6201834 B2 JP 6201834B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
temperature
fluid
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014051410A
Other languages
Japanese (ja)
Other versions
JP2015175538A (en
Inventor
徹 岡村
徹 岡村
今村 朋範
朋範 今村
友宏 早瀬
友宏 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014051410A priority Critical patent/JP6201834B2/en
Publication of JP2015175538A publication Critical patent/JP2015175538A/en
Application granted granted Critical
Publication of JP6201834B2 publication Critical patent/JP6201834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

本発明は、蓄熱および放熱可能な蓄熱材を備える蓄熱装置に関するものである。   The present invention relates to a heat storage device including a heat storage material capable of storing and radiating heat.

従来、車両の排気管内に蓄熱材を設けることで、走行時の排熱を蓄熱し、次回始動時に蓄熱しておいた熱を放熱して触媒を加熱する蓄熱装置が開示されている(例えば、特許文献1参照)。この蓄熱装置では、単一種類の蓄熱材が採用されており、排気管の上流の高温排気または排気管の下流の低温排気を用いて、放熱時に均一な温度の熱を発生させている。   Conventionally, a heat storage device has been disclosed in which a heat storage material is provided in an exhaust pipe of a vehicle to store exhaust heat during traveling, and heat that is stored at the next start is released to heat the catalyst (for example, Patent Document 1). In this heat storage device, a single type of heat storage material is employed, and heat at a uniform temperature is generated during heat dissipation using high-temperature exhaust upstream of the exhaust pipe or low-temperature exhaust downstream of the exhaust pipe.

特開2011−106355号公報JP 2011-106355 A

上記特許文献1に記載のような蓄熱装置では、蓄熱装置のうち排気流れの最下流側、すなわち排気温度が最も低くなる部位に合わせて蓄熱温度が設定されている。このため、排気流れの上流側では、排気が有する高温の質の高いエネルギを用いて低温の質の低いエネルギを蓄えることになり、結果的に有効利用できる熱エネルギの質を下げているという問題がある。   In the heat storage device described in Patent Document 1, the heat storage temperature is set in accordance with the most downstream side of the exhaust flow in the heat storage device, that is, the portion where the exhaust temperature is lowest. For this reason, on the upstream side of the exhaust flow, the high-temperature and high-quality energy of the exhaust gas is used to store low-temperature and low-quality energy, and as a result, the quality of the heat energy that can be effectively used is lowered. There is.

本発明は上記点に鑑みて、蓄熱時における熱エネルギの質の低下を抑制できる蓄熱装置を提供することを目的とする。   An object of this invention is to provide the thermal storage apparatus which can suppress the fall of the quality of the thermal energy at the time of thermal storage in view of the said point.

上記目的を達成するため、請求項1に記載の発明では、温熱を蓄える蓄熱材(1)を収容する蓄熱部(2)を有する蓄熱器(10)を備え、蓄熱部(2)の外部を流れる流体と蓄熱材(1)との間で熱の授受が行われるように構成されているとともに、蓄熱材(1)に蓄えられた温熱を流体に与える放熱モードと、流体の有する温熱を蓄熱材(1)に蓄熱する蓄熱モードとを切替可能に構成された蓄熱装置において、蓄熱部(2)のうち、蓄熱モード時に流体の温度が予め定めた第1基準温度となる部位を第1部位(21)とするとともに、蓄熱モード時に流体の温度が第1基準温度よりも低い第2基準温度となる部位を第2部位(22)としたとき、蓄熱部(2)には、蓄熱モード時に第1部位(21)の蓄熱温度が第2部位(22)の蓄熱温度よりも高くなるように、複数種類の蓄熱材(1)が設けられており、蓄熱部(2)は、放熱モード時に蓄熱材(1)のエクセルギが低い部位ほど、流体との伝熱面積が大きくなるように構成されていることを特徴としている。 In order to achieve the above object, the invention according to claim 1 includes a heat storage unit (10) having a heat storage unit (2) for storing a heat storage material (1) for storing warm heat, and the outside of the heat storage unit (2) is provided. heat storage fluid and the heat storage material with are configured to exchange heat is performed between the (1), and radiating modes providing a heat stored in the heat storage material (1) to the fluid, the heat possessed by the fluid flowing In the heat storage device configured to be able to switch between the heat storage modes for storing heat in the material (1), a portion of the heat storage section (2) where the temperature of the fluid becomes the first reference temperature determined in the heat storage mode is the first portion. (21), and when the part where the temperature of the fluid becomes the second reference temperature lower than the first reference temperature in the heat storage mode is the second part (22), the heat storage unit (2) The heat storage temperature of the first part (21) is stored in the second part (22). To be higher than the temperature, a plurality kinds of heat storage material (1) is provided, heat storage unit (2), the more sites Exergy lower heat storage material (1) to the heat radiation mode, heat transfer area of the fluid It is characterized by being configured to be large .

これによれば、蓄熱部(2)に、蓄熱モード時の流体温度が高い第1部位(21)の蓄熱温度が、蓄熱モード時の流体温度が低い第2部位(22)の蓄熱温度よりも高くなるように、複数種類の蓄熱材(1)を設けることで、熱源である流体の温度に対応した蓄熱温度の蓄熱材(1)に蓄熱することができる。このため、蓄熱材(1)にエクセルギの高い状態で蓄熱することができるので、蓄熱時における熱エネルギの質の低下を抑制することが可能となる。 According to this, in the heat storage part (2), the heat storage temperature of the first part (21) having a high fluid temperature in the heat storage mode is higher than the heat storage temperature of the second part (22) having a low fluid temperature in the heat storage mode. By providing a plurality of types of heat storage material (1) so as to be high, heat can be stored in the heat storage material (1) having a heat storage temperature corresponding to the temperature of the fluid as the heat source . For this reason, since heat can be stored in the heat storage material (1) in a state of high exergy, it is possible to suppress deterioration in the quality of thermal energy during heat storage.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態に係る蓄熱装置を示す概略斜視図である。It is a schematic perspective view which shows the thermal storage apparatus which concerns on 1st Embodiment. 第1実施形態に係る蓄熱装置を示す概略断面図である。It is a schematic sectional drawing which shows the thermal storage apparatus which concerns on 1st Embodiment. 蓄熱部における排気流れ方向の位置に対する、蓄熱モード時の排気温度および蓄熱材の蓄熱温度の関係を示す特性図である。It is a characteristic view which shows the relationship between the exhaust temperature in the thermal storage mode and the thermal storage temperature of a thermal storage material with respect to the position of the exhaust flow direction in a thermal storage part. 蓄熱材の蓄熱温度と蓄熱密度との関係を示す特性図である。It is a characteristic view which shows the relationship between the thermal storage temperature and thermal storage density of a thermal storage material. 蓄熱部における排気流れ方向の位置に対する、蓄熱材の蓄熱温度、第1実施形態に係る蓄熱装置における放熱モード時の排気温度、および比較例に係る蓄熱装置おける放熱モード時の排気温度の関係を示す特性図である。The relationship between the heat storage temperature of the heat storage material, the exhaust temperature in the heat dissipation mode in the heat storage device according to the first embodiment, and the exhaust temperature in the heat dissipation mode in the heat storage device according to the comparative example with respect to the position in the exhaust flow direction in the heat storage unit is shown. FIG. 第2実施形態に係る蓄熱装置を示す概略断面図である。It is a schematic sectional drawing which shows the heat storage apparatus which concerns on 2nd Embodiment.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
第1実施形態の蓄熱装置は、車両走行時に内燃機関(エンジン)の排気が有する熱を蓄熱して、次回始動時に蓄熱された熱を排気に与えることで暖機促進に利用するものである。本実施形態の蓄熱装置は、後述する蓄熱材に蓄えられた温熱を排気(加熱対象)に与える放熱モードと、排気(熱源)の有する温熱を蓄熱材に蓄熱する蓄熱モードとを切替可能に構成されている。
(First embodiment)
The heat storage device of the first embodiment stores heat stored in the exhaust of the internal combustion engine (engine) when the vehicle is traveling, and uses the stored heat at the next start for exhaust warming. The heat storage device of the present embodiment is configured to be switchable between a heat release mode in which heat stored in a heat storage material described later is supplied to exhaust (heating target) and a heat storage mode in which the heat (heat source) is stored in the heat storage material Has been.

図1および図2に示すように、蓄熱装置は、温熱を蓄える蓄熱材1を収容する蓄熱部2を有する蓄熱器10を備えている。蓄熱器10は、エンジンの排気が流通する排気管20に接続されている。具体器には、蓄熱器10は、円筒状に形成されている。蓄熱器10と排気管20とは、同一軸線上に配置されている。すなわち、蓄熱器10の筒軸と排気管20の管軸とが一致している。   As shown in FIGS. 1 and 2, the heat storage device includes a heat storage unit 10 having a heat storage unit 2 that houses a heat storage material 1 that stores warm heat. The heat accumulator 10 is connected to an exhaust pipe 20 through which engine exhaust flows. Specifically, the heat accumulator 10 is formed in a cylindrical shape. The heat accumulator 10 and the exhaust pipe 20 are disposed on the same axis. That is, the tube axis of the heat accumulator 10 and the tube axis of the exhaust pipe 20 coincide.

図2に示すように、蓄熱器10の内部には、排気が流通する排気通路4が形成されている。排気通路4は、蓄熱器10の筒軸方向に延びているとともに、蓄熱器10の略中央部に配置されている。排気通路4は、蓄熱器10の筒軸方向両端部のそれぞれにおいて、排気管20と接続されている。これにより、排気通路4は、排気管20と連通している。   As shown in FIG. 2, an exhaust passage 4 through which exhaust flows is formed inside the regenerator 10. The exhaust passage 4 extends in the cylinder axis direction of the regenerator 10 and is disposed at a substantially central portion of the regenerator 10. The exhaust passage 4 is connected to the exhaust pipe 20 at each end of the heat accumulator 10 in the cylinder axis direction. Thereby, the exhaust passage 4 communicates with the exhaust pipe 20.

蓄熱部2は、蓄熱器10のうち排気通路4の外周側に設けられている。具体的には、蓄熱部2は、排気通路4の外周を一周するように輪状(環状)に形成されている。また、蓄熱部2は、排気通路4を形成(区画)する区画壁5と蓄熱材1とが熱的に接触するように構成されている。これにより、蓄熱部2の外部を流れる排気と蓄熱材1との間で熱の授受が行われるようになっている。   The heat storage unit 2 is provided on the outer peripheral side of the exhaust passage 4 in the heat storage unit 10. Specifically, the heat storage unit 2 is formed in a ring shape (annular shape) so as to go around the outer periphery of the exhaust passage 4. Moreover, the heat storage part 2 is comprised so that the partition wall 5 and the thermal storage material 1 which form (compartment) the exhaust passage 4 may contact thermally. Thus, heat is exchanged between the exhaust gas flowing outside the heat storage unit 2 and the heat storage material 1.

以下、本実施形態における蓄熱部2の詳細な構成について説明する。   Hereinafter, the detailed structure of the heat storage part 2 in this embodiment is demonstrated.

ここで、蓄熱部2における排気流れ方向の位置に対する蓄熱モード時の排気温度および蓄熱材1の蓄熱温度(蓄熱から所定時間経過後に蓄熱材1から取り出せる温度)の関係を図3に示す。なお、図3において、実線は蓄熱材1の蓄熱温度を示しており、破線は排気温度を示している。図3の破線に示すように、蓄熱モード時において、蓄熱部2では、排気の入口部21から出口部22に向かうにつれて排気温度が低くなっている。   Here, FIG. 3 shows the relationship between the exhaust temperature in the heat storage mode and the heat storage temperature of the heat storage material 1 (temperature that can be taken out from the heat storage material 1 after a predetermined time has elapsed since the heat storage) with respect to the position in the exhaust flow direction in the heat storage unit 2. In FIG. 3, the solid line indicates the heat storage temperature of the heat storage material 1, and the broken line indicates the exhaust temperature. As shown by a broken line in FIG. 3, in the heat storage mode, in the heat storage unit 2, the exhaust gas temperature becomes lower from the exhaust inlet 21 to the outlet 22.

ここで、蓄熱部2のうち、蓄熱モード時に排気温度が予め定めた第1基準温度となる部位を第1部位とするとともに、蓄熱モード時に排気温度が第1基準温度よりも低い第2基準温度となる部位を第2部位とする。図2に示すように、蓄熱部2には、蓄熱モードにおいて第1部位の蓄熱温度が第2部位の蓄熱温度よりも高くなるように、互いに蓄熱温度の異なる複数種類(本例では5種類)の蓄熱材1が設けられている。蓄熱部2において、第1部位は、第2部位よりも排気流れ上流側に位置している。本実施形態では、入口部21が第1部位を構成しており、出口部22が第2部位を構成している。   Here, in the heat storage unit 2, a portion where the exhaust temperature becomes a first reference temperature determined in the heat storage mode is set as a first portion, and the exhaust gas temperature is lower than the first reference temperature in the heat storage mode. The part which becomes becomes the second part. As shown in FIG. 2, the heat storage unit 2 has a plurality of types (five types in this example) having different heat storage temperatures so that the heat storage temperature of the first part is higher than the heat storage temperature of the second part in the heat storage mode. The heat storage material 1 is provided. In the heat storage part 2, the 1st site | part is located in an exhaust flow upstream rather than the 2nd site | part. In this embodiment, the inlet part 21 comprises the 1st site | part, and the exit part 22 comprises the 2nd site | part.

より詳細には、蓄熱部2内には、蓄熱モードにおいて、排気温度が低くなるにつれて蓄熱温度が低くなるように、複数種類の蓄熱材1が設けられている。本実施形態では、図3の実線に示すように、蓄熱モードにおいて、排気温度が低くなるにつれて、蓄熱材1の蓄熱温度が階段状に段階的に低くなっている。   More specifically, a plurality of types of heat storage materials 1 are provided in the heat storage unit 2 so that the heat storage temperature decreases as the exhaust gas temperature decreases in the heat storage mode. In the present embodiment, as shown by the solid line in FIG. 3, in the heat storage mode, the heat storage temperature of the heat storage material 1 gradually decreases stepwise as the exhaust gas temperature decreases.

図2に戻り、蓄熱部2には、板状に形成された複数の仕切部材6が互いに間隔を開けて配置されている。複数の仕切部材6は、それぞれ、筒軸方向に直交する方向に延びており、蓄熱部2を複数の空間に区画している。そして、この仕切部材6により区画された空間のそれぞれに、種類の異なる蓄熱材1を充填することで、複数種類の蓄熱材1のそれぞれを予め定めた基準位置に固定することができる。したがって、仕切部材6が、本発明の固定手段に相当している。本例では、仕切部材6は、金属または樹脂により構成されている。   Returning to FIG. 2, a plurality of partition members 6 formed in a plate shape are disposed in the heat storage unit 2 at intervals. Each of the plurality of partition members 6 extends in a direction orthogonal to the cylinder axis direction, and partitions the heat storage unit 2 into a plurality of spaces. And each of the multiple types of heat storage materials 1 can be fixed at a predetermined reference position by filling the spaces partitioned by the partition members 6 with different types of heat storage materials 1. Therefore, the partition member 6 corresponds to the fixing means of the present invention. In this example, the partition member 6 is made of metal or resin.

蓄熱部2は、放熱モード時に蓄熱材1のエクセルギが低い部位ほど、排気との伝熱面積が大きくなるように構成されている。すなわち、蓄熱部2は、蓄熱材1の蓄熱温度が低い部位ほど、排気との伝熱面積が大きくなるように構成されている。本実施形態では、蓄熱材1の蓄熱温度が低い部位ほど、隣り合う仕切部材6同士の間隔が大きくなっている。   The heat storage unit 2 is configured such that the heat transfer area with the exhaust becomes larger as the portion of the heat storage material 1 having lower exergy in the heat release mode is lower. That is, the heat storage unit 2 is configured such that the heat transfer area with the exhaust becomes larger as the heat storage temperature of the heat storage material 1 is lower. In this embodiment, the space | interval of the adjacent partition members 6 is large, so that the heat storage temperature of the heat storage material 1 is low.

蓄熱器10は、放熱モード時に蓄熱材1のエクセルギが高い部位から低い部位に向かって排気が流れるように構成されている。すなわち、蓄熱器10は、放熱モード時に、蓄熱材1の蓄熱温度が高い部位から低い部位に向かって排気が流れるよう構成されている。本実施形態では、蓄熱モードおよび放熱モードにおいて、排気の流れ方向が等しくなっている。   The heat accumulator 10 is configured such that the exhaust gas flows from a portion where the exergy of the heat storage material 1 is high to a portion where the exergy is low in the heat dissipation mode. That is, the heat accumulator 10 is configured such that the exhaust gas flows from a portion where the heat storage temperature of the heat storage material 1 is high toward a low portion during the heat dissipation mode. In the present embodiment, the exhaust flow directions are equal in the heat storage mode and the heat dissipation mode.

ところで、蓄熱材1としては、反応媒体と可逆的な熱化学反応を生じさせる物質である吸着剤や化学蓄熱材を採用してもよいし、相変化により発熱または吸熱する物質である潜熱蓄熱材を採用してもよい。   By the way, as the heat storage material 1, an adsorbent or a chemical heat storage material that is a substance that causes a reversible thermochemical reaction with the reaction medium may be employed, or a latent heat storage material that is a substance that generates heat or absorbs heat by phase change. May be adopted.

吸着剤の具体例としては、ゼオライト、シリカゲル、活性炭を挙げることができる。この場合の反応媒体としては、水、エタノールを挙げることができる。   Specific examples of the adsorbent include zeolite, silica gel, and activated carbon. In this case, examples of the reaction medium include water and ethanol.

化学蓄熱材の具体例としては、無機金属塩を挙げることができる。この場合の反応媒体としては、水、アンモニアを挙げることができる。より詳細には、無機金属塩として、例えば酸化カルシウム(CaO)、酸化マグネシウム(MgO)、塩化カルシウム(CaCl2)を用いるとともに、反応媒体として水(水蒸気)を用いてもよい。また、無機金属塩として、例えば塩化カルシウム、塩化ストロンチウム(SrCl2)を用いるとともに、反応媒体としてアンモニアを用いてもよい。 Specific examples of the chemical heat storage material include inorganic metal salts. In this case, examples of the reaction medium include water and ammonia. More specifically, for example, calcium oxide (CaO), magnesium oxide (MgO), calcium chloride (CaCl 2 ) may be used as the inorganic metal salt, and water (water vapor) may be used as the reaction medium. Further, for example, calcium chloride or strontium chloride (SrCl 2 ) may be used as the inorganic metal salt, and ammonia may be used as the reaction medium.

潜熱蓄熱材の具体例としては、塩化アルミニウム(AlCl3)、硝酸リチウム(LiNO3)、硝酸ナトリウム(NaNO3)等の無機金属塩、エリスリトール、スレイトール等の糖類、水酸化バリウム8水和物(Ba(OH)2・8H2O)等の無機金属塩の水和物を挙げることができる。 Specific examples of the latent heat storage material include inorganic metal salts such as aluminum chloride (AlCl 3 ), lithium nitrate (LiNO 3 ), and sodium nitrate (NaNO 3 ), sugars such as erythritol and threitol, barium hydroxide octahydrate ( Examples thereof include hydrates of inorganic metal salts such as Ba (OH) 2 .8H 2 O).

ここで、蓄熱材1として吸着剤や化学蓄熱材を用いる場合、蓄熱部2は、流体状態の反応媒体が流入および流出可能に構成されている。具体的には、蓄熱部2には、蓄熱部2に充填された蓄熱材1に対し、放熱モード時に反応媒体を供給する供給通路(図示せず)と、蓄熱モード時に反応媒体を排出させる排出通路(図示せず)とが接続されている。   Here, when an adsorbent or a chemical heat storage material is used as the heat storage material 1, the heat storage unit 2 is configured so that a reaction medium in a fluid state can flow in and out. Specifically, the heat storage unit 2 includes a supply passage (not shown) for supplying a reaction medium to the heat storage material 1 filled in the heat storage unit 2 in the heat release mode, and a discharge for discharging the reaction medium in the heat storage mode. A passage (not shown) is connected.

一方、蓄熱材1として潜熱蓄熱材を用いることで、蓄熱・放熱時に反応媒体の流出入を行う必要がないので、上述した供給通路や排出通路を設ける必要がない。したがって、蓄熱装置を簡素化することができる。   On the other hand, by using a latent heat storage material as the heat storage material 1, it is not necessary to flow in and out of the reaction medium at the time of heat storage and heat dissipation, and therefore it is not necessary to provide the above-described supply passage and discharge passage. Therefore, the heat storage device can be simplified.

以上説明したように、本実施形態では、蓄熱部2に、蓄熱モード時の排気温度が高い第1部位の蓄熱温度が、蓄熱モード時の流体温度が低い第2部位の蓄熱温度よりも高くなるように、複数種類の蓄熱材1を設けている。これによれば、熱源である排気の温度に対応した蓄熱温度の蓄熱材1に蓄熱することができるので、蓄熱材1にエクセルギの高い状態で蓄熱することができる。したがって、蓄熱時における熱エネルギの質の低下を抑制することが可能となる。   As described above, in the present embodiment, in the heat storage unit 2, the heat storage temperature of the first part where the exhaust temperature is high in the heat storage mode is higher than the heat storage temperature of the second part where the fluid temperature is low in the heat storage mode. As described above, a plurality of types of heat storage materials 1 are provided. According to this, since heat can be stored in the heat storage material 1 having a heat storage temperature corresponding to the temperature of the exhaust gas, which is a heat source, heat can be stored in the heat storage material 1 in a state of high exergy. Therefore, it is possible to suppress a decrease in the quality of heat energy during heat storage.

そして、蓄熱材1にエクセルギの高い状態で蓄熱することで、放熱モードにおいて、蓄熱材1と加熱対象である排気との温度差が大きくなり、放熱出力を増大させることができる。   Then, by storing heat in the heat storage material 1 in a state of high exergy, in the heat dissipation mode, the temperature difference between the heat storage material 1 and the exhaust to be heated increases, and the heat dissipation output can be increased.

ここで、種々の蓄熱材の蓄熱温度と蓄熱密度との関係を図4に示す。図4において、黒丸プロットが潜熱蓄熱材を示しており、それ以外のプロットが化学蓄熱材を示している。図4に示すように、蓄熱材は、蓄熱温度が高い程、蓄熱密度が大きくなる。   Here, the relationship between the heat storage temperature and heat storage density of various heat storage materials is shown in FIG. In FIG. 4, the black circle plot indicates the latent heat storage material, and the other plots indicate the chemical heat storage material. As shown in FIG. 4, the heat storage material has a higher heat storage density as the heat storage temperature is higher.

従来の蓄熱装置では、蓄熱部のうち排気温度が最も低くなる部位に合わせて蓄熱温度が設定されているため、蓄熱密度の低い蓄熱材を用いる必要があり、蓄熱装置の体格が大型化するという問題があった。   In the conventional heat storage device, since the heat storage temperature is set according to the part where the exhaust gas temperature becomes the lowest in the heat storage unit, it is necessary to use a heat storage material having a low heat storage density, and the size of the heat storage device is increased. There was a problem.

これに対し、本実施形態では、上述したように、熱源である排気の温度が高い部位には、蓄熱温度が高い蓄熱材1を配置しているので、蓄熱密度を大きくすることができる。これにより、蓄熱装置の小型化が可能となる、
なお、蓄熱材1として化学蓄熱材を用いることで、図4に示すように、潜熱蓄熱材より蓄熱密度を大きくすることができる。このため、蓄熱装置をより小型化することが可能となる。
On the other hand, in the present embodiment, as described above, the heat storage material 1 having a high heat storage temperature is disposed in a portion where the temperature of the exhaust gas, which is a heat source, is high, so that the heat storage density can be increased. As a result, the heat storage device can be downsized.
In addition, by using a chemical heat storage material as the heat storage material 1, as shown in FIG. 4, a heat storage density can be made larger than a latent heat storage material. For this reason, it is possible to further reduce the size of the heat storage device.

ここで、蓄熱部2における排気流れ方向の位置に対する、蓄熱材1の蓄熱温度、本実施形態に係る蓄熱装置における放熱モード時の排気温度、および後述する比較例に係る蓄熱装置おける放熱モード時の排気温度の関係を図5に示す。図5において、実線は蓄熱材1の蓄熱温度を示しており、破線は本実施形態に係る蓄熱装置おける放熱モード時の排気温度を示しており、一点鎖線は比較例に係る蓄熱装置における放熱モード時の排気温度を示している。   Here, the heat storage temperature of the heat storage material 1 with respect to the position in the exhaust flow direction in the heat storage unit 2, the exhaust temperature in the heat dissipation mode in the heat storage device according to the present embodiment, and the heat dissipation mode in the heat storage device according to the comparative example described later. The relationship of the exhaust temperature is shown in FIG. In FIG. 5, the solid line indicates the heat storage temperature of the heat storage material 1, the broken line indicates the exhaust temperature during the heat dissipation mode in the heat storage device according to the present embodiment, and the alternate long and short dash line indicates the heat dissipation mode in the heat storage device according to the comparative example. The exhaust temperature is shown.

比較例に係る蓄熱装置は、放熱モードにおける排気の流れ方向が、本実施形態に係る蓄熱装置に対して逆になっている。すなわち、比較例に係る蓄熱装置は、放熱モード時に出口部22側から入口部21側に向かって排気が流れるように構成されている。したがって、比較例に係る蓄熱装置は、放熱モード時に蓄熱材1のエクセルギが低い部位から高い部位に向かって排気が流れるように構成されている。このため、比較例に係る蓄熱装置では、図5の一点鎖線に示すように、放熱モードにおいて蓄熱材1と排気との温度差が小さくなる。   In the heat storage device according to the comparative example, the flow direction of the exhaust gas in the heat dissipation mode is reversed with respect to the heat storage device according to the present embodiment. That is, the heat storage device according to the comparative example is configured such that exhaust flows from the outlet portion 22 side toward the inlet portion 21 side in the heat dissipation mode. Therefore, the heat storage device according to the comparative example is configured such that the exhaust gas flows from a portion where the exergy of the heat storage material 1 is low to a high portion in the heat dissipation mode. For this reason, in the heat storage device according to the comparative example, the temperature difference between the heat storage material 1 and the exhaust gas is reduced in the heat dissipation mode, as indicated by the one-dot chain line in FIG.

これに対し、本実施形態では、放熱モード時に蓄熱材1のエクセルギが高い部位から低い部位に向かって排気が流れるように構成されている。このため、図5の破線に示すように、放熱モードにおいて蓄熱材1と排気との温度差を最大限大きくすることができる。これにより、放熱モードにおける熱出力を増大させることが可能となる。   On the other hand, in this embodiment, it is comprised so that exhaust_gas | exhaustion may flow toward the low site | part from the site | part with high exergy of the thermal storage material 1 at the time of heat dissipation mode. For this reason, as shown by the broken line in FIG. 5, the temperature difference between the heat storage material 1 and the exhaust gas can be maximized in the heat dissipation mode. As a result, the heat output in the heat dissipation mode can be increased.

また、本実施形態では、蓄熱部2を、放熱モード時に蓄熱材1のエクセルギが低い部位ほど、排気との伝熱面積が大きくなるように構成している。これによれば、放熱モード時に排気との温度差が小さくなる部位の伝熱面積を大きくし、当該部位に配置された蓄熱材1に蓄熱されている熱を有効に取り出すことができる。   Moreover, in this embodiment, the heat storage part 2 is comprised so that the heat transfer area with exhaust_gas | exhaustion may become large, so that the site | part where the exergy of the heat storage material 1 is low at the time of heat dissipation mode. According to this, the heat transfer area of the site | part with which temperature difference with exhaust_gas | exhaustion becomes small at the time of thermal radiation mode can be enlarged, and the heat stored in the heat storage material 1 arrange | positioned at the said site | part can be taken out effectively.

(第2実施形態)
次に、本発明の第2実施形態について図6に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、固定手段として接着剤7を採用した点が異なるものである。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment is different from the first embodiment in that an adhesive 7 is used as a fixing means.

図7に示すように、本実施形態では、複数種類の蓄熱材1は、接着剤7によって、排気管20の外表面に接着されている。すなわち、接着剤7により、複数種類の蓄熱材1のそれぞれを予め定めた基準位置に固定している。したがって、本実施形態の接着剤7が本発明の固定手段に相当している。接着剤7としては、例えば、エポキシ樹脂系、アクリル樹脂系、酢酸ビニル系等を挙げることができる。本実施形態によれば、上記第1実施形態と同様の効果を得ることができる。   As shown in FIG. 7, in the present embodiment, the plural types of heat storage materials 1 are bonded to the outer surface of the exhaust pipe 20 by the adhesive 7. That is, each of the plural types of heat storage materials 1 is fixed to a predetermined reference position by the adhesive 7. Therefore, the adhesive 7 of the present embodiment corresponds to the fixing means of the present invention. Examples of the adhesive 7 include an epoxy resin type, an acrylic resin type, and a vinyl acetate type. According to this embodiment, the same effect as the first embodiment can be obtained.

(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present invention. Further, the means disclosed in each of the above embodiments may be appropriately combined within a practicable range.

(1)上述した実施形態では、蓄熱部2内に、蓄熱モード時に排気温度が低くなるにつれて蓄熱材1の蓄熱温度が階段状に段階的に低くなるように、蓄熱材1を配置した例について説明したが、蓄熱材1の配置はこれに限定されない。例えば、蓄熱部2内に、蓄熱モード時に排気温度が低くなるにつれて蓄熱材1の蓄熱温度が連続的に(より詳細には、直線的に、または、二次曲線的に)低くなるように、蓄熱材1を配置してもよい。   (1) In embodiment mentioned above, about the example which has arrange | positioned the thermal storage material 1 in the thermal storage part 2 so that the thermal storage temperature of the thermal storage material 1 may become low step by step as the exhaust gas temperature becomes low at the time of thermal storage mode. Although demonstrated, arrangement | positioning of the thermal storage material 1 is not limited to this. For example, in the heat storage unit 2, as the exhaust gas temperature decreases in the heat storage mode, the heat storage temperature of the heat storage material 1 continuously decreases (more specifically, linearly or quadratic), The heat storage material 1 may be disposed.

(2)上述した実施形態では、蓄熱材1と熱の授受を行う流体として、内燃機関の排気を採用した例について説明したが、これに限らず、例えば内燃機関の冷却水を採用してもよい。   (2) In the above-described embodiment, the example in which the exhaust gas of the internal combustion engine is employed as the fluid that exchanges heat with the heat storage material 1 is described. However, the present invention is not limited to this example. Good.

(3)上述した実施形態では、温熱を蓄える蓄熱材1を用いるとともに、蓄熱材1に蓄えられた温熱を排気(加熱対象)に与える放熱モードと、排気(熱源)の有する温熱を蓄熱材に蓄熱する蓄熱モードとを切替可能に構成した例について説明したが、これに限定されない。例えば、冷熱を蓄える蓄熱材1を用いるとともに、蓄熱材1に蓄えられた冷熱を冷却対象流体に与える放冷モードと、冷熱源である流体の有する冷熱を蓄熱材に蓄冷する蓄冷モードとを切替可能に構成してもよい。   (3) In embodiment mentioned above, while using the thermal storage material 1 which stores warm heat, the thermal storage mode which gives the thermal energy stored in the thermal storage material 1 to exhaust_gas | exhaustion (heating object), and the thermal energy which exhaust_gas | exhaustion (heat source) has to thermal storage material. Although the example which comprised the heat storage mode which stores heat so that switching was possible was demonstrated, it is not limited to this. For example, while using the heat storage material 1 that stores cold energy, switching between a cooling mode in which the cold energy stored in the heat storage material 1 is given to the fluid to be cooled and a cold storage mode in which cold heat of the fluid that is the cold heat source is stored in the heat storage material is switched. You may comprise.

(4)上述した第1実施形態では、仕切部材6として、金属製または樹脂製の板状部材を用いた例について説明したが、仕切部材6の材質はこれに限定されない。例えば、仕切部材6として、蓄熱材1が通り抜けないように構成された不織布を用いてもよい。   (4) In 1st Embodiment mentioned above, although the example using the metal or resin plate-shaped member was demonstrated as the partition member 6, the material of the partition member 6 is not limited to this. For example, the partition member 6 may be a non-woven fabric configured so that the heat storage material 1 does not pass through.

1 蓄熱材
2 蓄熱部
10 蓄熱器
1 heat storage material 2 heat storage section 10 heat storage

Claims (7)

温熱を蓄える蓄熱材(1)を収容する蓄熱部(2)を有する蓄熱器(10)を備え、
前記蓄熱部(2)の外部を流れる流体と前記蓄熱材(1)との間で熱の授受が行われるように構成されているとともに、
前記蓄熱材(1)に蓄えられた温熱を前記流体に与える放熱モードと、前記流体の有する温熱を前記蓄熱材(1)に蓄熱する蓄熱モードとを切替可能に構成された蓄熱装置であって、
前記蓄熱部(2)のうち、前記蓄熱モード時に前記流体の温度が予め定めた第1基準温度となる部位を第1部位(21)とするとともに、前記蓄熱モード時に前記流体の温度が前記第1基準温度よりも低い第2基準温度となる部位を第2部位(22)としたとき、
前記蓄熱部(2)には、前記蓄熱モード時に前記第1部位(21)の蓄熱温度が前記第2部位(22)の蓄熱温度よりも高くなるように、複数種類の前記蓄熱材(1)が設けられており、
前記蓄熱部(2)は、前記放熱モード時に前記蓄熱材(1)のエクセルギが低い部位ほど、前記流体との伝熱面積が大きくなるように構成されていることを特徴とする蓄熱装置。
A heat accumulator (10) having a heat accumulator (2) for accommodating a heat accumulator (1) for storing warm heat;
While being configured to exchange heat between the fluid flowing outside the heat storage section (2) and the heat storage material (1),
And radiating modes providing a heat stored in the heat storage material (1) to the fluid, and a heat storage mode in which heat storage the heat possessed by the fluid to the heat storage material (1) a switchable-configured heat storage device ,
Of the heat storage unit (2), a portion where the temperature of the fluid becomes a first reference temperature determined in the heat storage mode is defined as a first portion (21), and the temperature of the fluid in the heat storage mode is the first temperature. When the part that becomes the second reference temperature lower than the one reference temperature is the second part (22),
The heat storage section (2) includes a plurality of types of the heat storage materials (1) such that the heat storage temperature of the first part (21) is higher than the heat storage temperature of the second part (22) in the heat storage mode. Is provided ,
The said heat storage part (2) is comprised so that the heat transfer area with the said fluid may become large, so that the part where the exergy of the said heat storage material (1) is low at the time of the said heat radiation mode is comprised .
前記第1部位(21)は、前記第2部位(22)に対して、前記蓄熱モードにおける前記流体の流れ方向の上流側に設けられていることを特徴とする請求項1に記載の蓄熱装置。   The said 1st site | part (21) is provided in the upstream of the flow direction of the said fluid in the said thermal storage mode with respect to the said 2nd site | part (22), The thermal storage apparatus of Claim 1 characterized by the above-mentioned. . 前記蓄熱部(2)には、前記蓄熱モードにおいて、前記流体の温度が低くなるにつれて蓄熱温度が低くなるように前記複数種類の蓄熱材(1)が設けられていることを特徴とする請求項1または2に記載の蓄熱装置。   The heat storage section (2) is provided with the plurality of types of heat storage materials (1) so that the heat storage temperature decreases as the temperature of the fluid decreases in the heat storage mode. The heat storage device according to 1 or 2. 前記蓄熱器(10)は、前記放熱モード時に前記蓄熱材(1)のエクセルギが高い部位から低い部位に向かって前記流体が流れるように構成されていることを特徴とする請求項1ないし3のいずれか1つに記載の蓄熱装置。   The said thermal storage (10) is comprised so that the said fluid may flow toward the low site | part from the site | part with a high exergy of the said thermal storage material (1) at the time of the said thermal radiation mode. The heat storage apparatus as described in any one. 前記蓄熱部(2)は、前記複数種類の蓄熱材(1)のそれぞれを予め定めた基準位置に固定する固定手段(6、7)を有していることを特徴とする請求項1ないし4のいずれか1つに記載の蓄熱装置。   The said heat storage part (2) has a fixing means (6, 7) which fixes each of the said multiple types of heat storage material (1) to the predetermined reference | standard position, The Claim 1 thru | or 4 characterized by the above-mentioned. The thermal storage apparatus as described in any one of these. 前記蓄熱部(2)は、流体状態の反応媒体が流入および流出可能に構成されており、
前記蓄熱材(1)は、前記反応媒体と可逆的な熱化学反応を生じさせる物質であることを特徴とする請求項1ないしのいずれか1つに記載の蓄熱装置。
The heat storage section (2) is configured such that a reaction medium in a fluid state can flow in and out,
The heat storage device according to any one of claims 1 to 5 , wherein the heat storage material (1) is a substance that causes a reversible thermochemical reaction with the reaction medium.
前記蓄熱材(1)は、相変化により発熱または吸熱する物質であることを特徴とする請求項1ないしのいずれか1つに記載の蓄熱装置。 The heat storage device according to any one of claims 1 to 5 , wherein the heat storage material (1) is a substance that generates heat or absorbs heat by phase change.
JP2014051410A 2014-03-14 2014-03-14 Heat storage device Expired - Fee Related JP6201834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014051410A JP6201834B2 (en) 2014-03-14 2014-03-14 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051410A JP6201834B2 (en) 2014-03-14 2014-03-14 Heat storage device

Publications (2)

Publication Number Publication Date
JP2015175538A JP2015175538A (en) 2015-10-05
JP6201834B2 true JP6201834B2 (en) 2017-09-27

Family

ID=54254889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051410A Expired - Fee Related JP6201834B2 (en) 2014-03-14 2014-03-14 Heat storage device

Country Status (1)

Country Link
JP (1) JP6201834B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003939B2 (en) 2017-01-31 2022-01-21 三菱ケミカル株式会社 Gadolinium sulfide sulfide sintered body, and scintillator, scintillator array, radiation detector, and radiation inspection device containing gadolinium sulfide sulfide sintered body.
JP6988264B2 (en) * 2017-08-24 2022-01-05 富士通株式会社 Thermoelectric conversion module, sensor module and information processing system
CN110986646A (en) * 2019-12-06 2020-04-10 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Novel flow guide partition plate phase change heat storage unit structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610697A (en) * 1979-07-07 1981-02-03 Agency Of Ind Science & Technol Composite heat accumulator
JPS56155389A (en) * 1980-05-02 1981-12-01 Nissan Motor Co Ltd Heat accumulator utilizing exhaust heat
JPS61265492A (en) * 1985-05-20 1986-11-25 Chubu Electric Power Co Inc Latent heat accumulating device for cooling
JPS6298151A (en) * 1985-10-22 1987-05-07 Agency Of Ind Science & Technol Heat storage apparatus
JPS63238396A (en) * 1987-03-27 1988-10-04 Toshiba Corp Heat transfer element with heat accumulating material
JP2005016766A (en) * 2003-06-24 2005-01-20 Rinnai Corp Heat accumulating device
JP2005241092A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2010196974A (en) * 2009-02-25 2010-09-09 Toyota Motor Corp Heat storage device

Also Published As

Publication number Publication date
JP2015175538A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6201834B2 (en) Heat storage device
JP2596169B2 (en) Cooler
JP2020509328A (en) Intelligent cooling system
JP5949318B2 (en) Catalytic reaction apparatus and vehicle
JP2010223537A (en) Heat pump hot water supply system
JP2015017780A5 (en)
JP2010053830A (en) Vehicle warming-up system
JP2008190738A (en) Heat storage device
JP6372126B2 (en) Heat transport equipment
JP2015052423A (en) Heat storage device
JP6044236B2 (en) Water heater
JP2019095126A (en) Heat storage system
JP2013181748A (en) Heat exchanger
KR101165304B1 (en) Heat-Exchange Apparatus with Micro-channels
JP2020509327A (en) Burst mode cooling system
JP2012050928A (en) Heat exchanger for desiccant rotor
EP2937659B1 (en) Heat transport apparatus
JP2022003304A (en) Chemical heat storage device
RU128292U1 (en) BOILER WITH HEAT BATTERY
JP2004271119A (en) Heat accumulator
KR20160013821A (en) Thermal store comprising a component suited to storing and releasing a determined quantity of heat
JP4001025B2 (en) Water heater
JP2013164244A (en) Heat storage device
JP2013181747A (en) Heat exchanger
JP7539894B2 (en) Heat Distribution Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6201834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees