Nothing Special   »   [go: up one dir, main page]

JP6274407B2 - 横電界駆動用液晶表示素子の製造方法 - Google Patents

横電界駆動用液晶表示素子の製造方法 Download PDF

Info

Publication number
JP6274407B2
JP6274407B2 JP2013550354A JP2013550354A JP6274407B2 JP 6274407 B2 JP6274407 B2 JP 6274407B2 JP 2013550354 A JP2013550354 A JP 2013550354A JP 2013550354 A JP2013550354 A JP 2013550354A JP 6274407 B2 JP6274407 B2 JP 6274407B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
aligning agent
display element
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013550354A
Other languages
English (en)
Other versions
JPWO2013094734A1 (ja
Inventor
淳彦 萬代
淳彦 萬代
亮一 芦澤
亮一 芦澤
洋一 山之内
洋一 山之内
悟志 南
悟志 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2013094734A1 publication Critical patent/JPWO2013094734A1/ja
Application granted granted Critical
Publication of JP6274407B2 publication Critical patent/JP6274407B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、横電界駆動用液晶表示素子の製造方法に関する。
液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。
現在、工業的に最も普及している方法によれば、この液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。
液晶配向膜の配向過程において膜面をラビング処理する方法は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化への要求は益々高まり、ラビング処理によって発生する液晶配向膜の表面の傷、発塵、機械的な力や静電気による影響、さらには、配向処理面内の不均一性など種々の問題が明らかとなってきている。
ラビング処理に代わる方法としては、偏光された紫外線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法による液晶配向処理は、メカニズム的に、光異性化反応を利用したもの、光二量化を利用したもの、光分解反応を利用したものなどが提案されている(非特許文献1参照)。
例えば、特許文献1では、主鎖にシクロブタン環などの脂環構造を有するポリイミド膜を光配向法に用いることが提案されている。この光配向法を用いたポリイミド膜を液晶配向膜に用いた場合、他に比べて高い耐熱性を有することからその有用性が期待されている。
このようなシクロブタン環などの脂環構造を有するポリイミド膜は、短波長の紫外線、特に254nm付近の偏光紫外線を照射することにより、高い異方性を発現し、液晶配向性に優れた液晶配向膜が得られる。しかし、254nm付近の紫外線は、エネルギーが高く、照射には多くの電力を必要するため、光配向処理するためのコストが大きいことだけでなく、環境への負荷が大きい。また、よりエネルギーの強い短波長の紫外線を使用するため、基板に形成された電極や薄膜トランジスタ(以下、TFTとも記載する)にダメージを与える可能性も考えられる。
一方、光異性化や光二量化を利用した光配向法は、波長300nm以上の偏光紫外線を照射することにより、異方性を付与できる。しかし、光異性化や光二量化を利用した光配向法で得られた液晶配向膜は、配向規制力が弱く、液晶表示素子に用いた場合に、残像が発生してしまうという問題があった。
ここで、基板に対して水平方向(横方向)に電界を印加し液晶分子をスイッチングする横電界駆動方式(IPS:In-Plane Switching)の液晶表示素子が知られている。この横電界駆動方式の液晶表示素子は、視野角が広いため有用であるが、液晶の配向状態の影響を受け易いため、上述したような残像が特に生じ易いことが問題である。
特開平9−297313号公報
「液晶光配向膜」木戸脇、市村 機能材料 1997年11月号 Vol.17 No.11 13−22ページ
本発明は、液晶の配向規制力を強化し残像の発生を抑制することができる横電界駆動用液晶表示素子の製造方法を提供することを目的とする。
本発明者は、上記の目的を達成するため、鋭意研究を進めたところ、光重合性基を有する重合性化合物を添加した液晶を用いる、又は、光重合性基を有する液晶配向剤から得られた液晶配向膜を用い、ラビング又は光配向法による配向処理を施し、液晶セルを作成した後、光を照射することによって液晶配向膜と液晶が接する部分に存在する光重合性基を反応させ、それによって液晶配向膜と接する部分の液晶を固定化させる方法によって得られた、横電界駆動用の液晶表示素子が上記目的を達成し得ることを見出し、本発明を完成させた。かくして、本発明は、下記を要旨とするものである。
1.液晶配向剤を基板に塗布して液晶配向膜を形成し配向処理を施した後に、この液晶配向膜を形成した一対の基板を、液晶を介して前記液晶配向膜が相対するように対向配置して液晶セルを作成後、該液晶セルに光照射し、液晶中及び/又は液晶配向膜中の光重合性基を反応させる工程を経ることを特徴とする横電界駆動用液晶表示素子の製造方法。
2.前記液晶が、前記光重合性基を有する重合性化合物を含有することを特徴とする1に記載の横電界駆動用液晶表示素子の製造方法。
3.前記液晶配向剤が、前記光重合性基を含有することを特徴とする1または2に記載の横電界駆動用液晶表示素子の製造方法。
4.前記液晶配向剤が、前記光重合性基を側鎖に有する重合体を含有することを特徴とする1から3のいずれか1つに記載の横電界駆動用液晶表示素子の製造方法。
5.前記液晶配向剤が、前記光重合性基を有する重合性化合物を含有することを特徴とする1から4のいずれか一つに記載の横電界駆動用液晶表示素子の製造方法。
6.前記光重合性基が、下記に示す光重合性基から選ばれる基であることを特徴とする3から5のいずれか一つに記載の横電界駆動用液晶表示素子の製造方法。
Figure 0006274407
(式中、Meはメチル基を表す。)
7.前記配向処理が、偏光紫外線の照射によって行われることを特徴とする1から6のいずれか一つに記載の横電界駆動用液晶表示素子の製造方法。
8.前記配向処理において、下記式(A−1)〜(A−7)から選ばれる構造を有する光反応性基が反応することを特徴とする1から7のいずれか一つに記載の横電界駆動用液晶表示素子の製造方法。
Figure 0006274407
9.前記液晶配向剤が含有する重合体が、ポリイミド前駆体及びそれをイミド化して得られるポリイミドから選ばれる少なくとも1つを含むことを特徴とする1から8のいずれか一つに記載の横電界駆動用液晶表示素子の製造方法。
10.前記液晶配向剤が含有する重合体が、ポリシロキサンを含むことを特徴とする1から9のいずれか一つに記載の横電界駆動用液晶表示素子の製造方法。
11.前記液晶配向剤が含有する重合体が、ポリ(メタ)アクリレートを含むことを特徴とする請求項1から10のいずれか一つに記載の横電界駆動用液晶表示素子の製造方法。
本発明によれば、ラビングまたは光配向法による配向処理、とりわけ光配向による配向処理を施した液晶配向膜を具備し、液晶の配向規制力を強化し残像の発生を抑制することができる横電界駆動用の液晶表示素子を得ることが出来る。
本発明は、横電界駆動用液晶表示素子の製造方法であり、液晶配向剤を基板に塗布して液晶配向膜を形成し配向処理を施した後に、この液晶配向膜を形成した一対の基板を、液晶を介して前記液晶配向膜が相対するように対向配置して液晶セルを作成後、該液晶セルに光照射し、液晶中及び/又は液晶配向膜中の光重合性基を反応させる工程を経ることを特徴とするものである。以下、それぞれの構成要件について詳述する。
<光重合性基>
本発明の製造方法に用いられる液晶配向剤及び/又は液晶は、光重合性基を含有する。光重合性基を含有する液晶は、光重合性基を含有する化合物(以下、重合性化合物とも言う)を液晶に添加することにより得られる。また、光重合性基を含有する液晶配向剤を得るには、液晶配向剤中に重合性化合物を添加しても良いし、液晶配向剤が含有する重合体の側鎖に光重合性基を導入しても良いし、その両方でも良い。そのような液晶配向剤を用いて得られる液晶配向膜は、光重合性基を含有する。液晶に重合性化合物を添加する場合、その添加割合は例えば、液晶に対して重合性化合物が0.1〜30(質量)%となるようにすればよい。また、液晶配向剤に重合性化合物を添加する場合、その添加割合は例えば、液晶配向剤に対して重合性化合物が0.1〜30(質量)%となるようにすればよい。
液晶配向膜中及び/又は液晶中に光重合性基を含有する液晶表示素子に紫外線等の光を照射すると、液晶配向膜と液晶とが接する面に位置する光重合性基が反応を起こし、液晶配向膜の表面に位置する液晶の配向が固定化される。これにより、後述する実施例に示すように、良好な液晶配向性が得られるとともに、液晶の配向規制力が強化され、その結果、液晶の配向乱れが原因となって起こる残像現象などの電気特性が改善される。
光重合性基は、紫外線等の光によって重合反応を起こす基、例えば、紫外線等の光によって重合する基(以下、光重合する基とも言う)や光架橋する基(以下、光架橋する基とも言う)であれば特に限定はされないが、下記に示す構造が好ましく用いられる。
Figure 0006274407
(式中、Meはメチル基を表す。)
重合性化合物の具体例としては、下記式(I)で表されるような2つの末端のそれぞれに光重合する基を有する化合物、下記式(II)で表されるような光重合する基を有する末端と光架橋する基を有する末端を持つ化合物や、下記式(III)で表されるような2つの末端のそれぞれに光架橋する基を有する化合物が挙げられる。なお、下記式(I)〜(III)において、R12はHまたは炭素数1〜4のアルキル基であり、Zは炭素数1〜12のアルキル基または炭素数1〜12のアルコキシル基によって置換されていてもよい二価の芳香環もしくは複素環であり、Zは炭素数1〜12のアルキル基または炭素数1〜12のアルコキシル基によって置換されていてもよい一価の芳香環もしくは複素環であり、Qは二価の有機基である。Qは、フェニレン基(−C−)、ビフェニレン基(−C−C−)やシクロヘキシレン基(−C10−)等の環構造を有していることが好ましい。液晶との相互作用が大きくなりやすいためである。
Figure 0006274407
Figure 0006274407
Figure 0006274407
式(I)で表される重合性化合物の具体例としては、下記式(I−1)〜(I−5)で表される重合性化合物が挙げられる。下記式において、Vは、単結合又は−RO−で表され、Rは直鎖もしくは分岐の炭素数1〜10のアルキレン基であり、好ましくは、−RO−で表されRは直鎖もしくは分岐の炭素数2〜6のアルキレン基である。また、Wは、単結合又は−OR−で表されRは直鎖もしくは分岐の炭素数1〜10のアルキレン基であり、好ましくは、−OR−で表され、Rは直鎖もしくは分岐の炭素数2〜6のアルキレン基である。なお、V及びWは同一の構造でも異なっていてもよいが、同一であると合成が容易である。
Figure 0006274407
なお、光重合する基または光架橋する基として、α−メチレン−γ−ブチロラクトン基ではなく、アクリレート基やメタクリレート基を有する重合性化合物であっても、このアクリレート基やメタクリレート基がオキシアルキレン基等のスペーサーを介してフェニレン基と結合している構造を有する重合性化合物であれば、上記両末端にα−メチレン−γ−ブチロラクトン基をそれぞれ有する重合性化合物と同様に、ACストレスによる残像特性を大幅に向上させることができる、すなわち、交流電流(AC)の印加により発生する残像を大幅に抑制することができる。また、アクリレート基やメタクリレート基がオキシアルキレン基等のスペーサーを介してフェニレン基と結合している構造を有する重合性化合物であれば、熱に対する安定性が向上するためか、高温、例えば200℃以上の焼成温度に十分耐えることができる。
また、式(I)で表される重合性化合物の具体例としては、下記式の重合性化合物も挙げられる。
Figure 0006274407
(式中、R12、V、Wの定義は上記と同様である。)
このような重合性化合物の製造方法は特に限定されず、例えば後述する合成例に従って製造することができる。例えば、上記式(I−1)で表される重合性化合物は、有機合成化学における手法を組み合わせることによって合成することができる。例えば、下記反応式で表されるタラガ等がP.Talaga,M.Schaeffer,C.Benezra and J.L.Stampf,Synthesis,530(1990)で提案する方法により、SnCl2を用いて2−(ブロモメチル)アクリル酸(2-(bromomethyl)propenoic acid)と、アルデヒドまたはケトンとを反応させて、合成することができる。なお、Amberlyst 15は、ロームアンドハース社製の強酸性イオン交換樹脂であり、THFはテトラヒドロフランである。
Figure 0006274407
(式中、R´は一価の有機基を表す。)
また、2−(ブロモメチル)アクリル酸は、下記反応式で表されるラマラーン等がK.Ramarajan,K.Kamalingam,D.J.O' Donnell and K.D.Berlin, Organic Synthesis,vol.61,56-59(1983)で提案する方法で合成することができる。
Figure 0006274407
具体的な合成例としては、Vが−RO−、Wが−OR−でRとRが同一である上記式(I−1)で表される重合性化合物を合成する場合は、下記反応式で示される2つの方法が挙げられる。
Figure 0006274407
Figure 0006274407
また、RとRが異なる上記式(1)で表される重合性化合物を合成する場合は、下記反応式で示される方法が挙げられる。
Figure 0006274407
そして、V及びWが単結合である上記式(I−1)で表される重合性化合物を合成する場合は、下記反応式で示される方法が挙げられる。
Figure 0006274407
液晶配向剤が含有する重合体の側鎖に光重合性基を導入する場合、液晶中や液晶配向剤中に重合性化合物が少ない、若しくは無い場合においても、本発明の効果を得ることが可能である。もちろん、液晶中や液晶配向剤中に重合性化合物が存在していても良く、その場合は、更なる効果が期待出来る。光重合性基を導入した側鎖(以下、光重合性の側鎖とも言う)とは、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む側鎖である。このように、液晶配向剤に含有させるポリイミド前駆体及びこのポリイミド前駆体をイミド化して得られるポリイミドの少なくとも一種等の重合体を、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するものとし、上記重合性化合物と共に液晶配向剤に用いることにより、後述する実施例に示すように、ACストレス等による残像特性を顕著に向上させることができる。
光重合性の側鎖は、ポリイミド前駆体又はポリイミド等の重合体の主鎖に直接結合していてもよく、また、適当な結合基を介して結合していてもよい。光重合性の側鎖としては、例えば下記式(b)で表されるものが挙げられる。
Figure 0006274407
(式(b)中、Rは単結合又は−CH−、−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CHO−、−N(CH)−、−CON(CH)−、−N(CH)CO−、のいずれかを表し、Rは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表し、アルキレン基の−CH−は−CF−又は−CH=CH−で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、二価の炭素環、二価の複素環。R10は、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基を表す。)
なお、上記式(b)中のRは、通常の有機合成的手法で形成させることができるが、合成の容易性の観点から、−CH−、−O−、−COO−、−NHCO−、−NH−、−CHO−が好ましい。
また、Rの任意の−CH−を置き換える二価の炭素環や二価の複素環の炭素環や複素環としては、具体的には以下のような構造が挙げられるが、これに限定されるものではない。
Figure 0006274407
10は、光重合性の観点から、メタクリル基、アクリル基、ビニル基またはα−メチレン−γ−ブチロラクトン基であることが好ましい。
光重合性の側鎖の存在量は、紫外線等の光の照射によって反応し共有結合を形成することにより配向を固定化できる範囲であることが好ましく、AC残像特性をより向上させるためには、他の特性に影響が出ない範囲で、可能な限り多いほうが好ましい。
このような、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するポリイミド前駆体、及び、このポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一種の重合体を製造する方法は特に限定されないが、例えば、ジアミンとテトラカルボン酸二無水物との反応によってポリアミック酸を得る方法において、メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミン又はメタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するテトラカルボン酸二無水物を共重合させればよい。
<重合体>
本発明で用いる液晶配向剤が含有する重合体は、ポリイミド前駆体、それをイミド化して得られるポリイミドの他、ポリシロキサンやポリ(メタ)アクリレートが好ましく用いられる。ここで、ポリイミド前駆体とは、ポリアミック酸(ポリアミド酸とも言う)や、ポリアミック酸エステルを指す。また、液晶配向剤中に、これらの異なる重合体が同時に含有されていても良く、それらの含有比率は、液晶表示素子の特性に応じ、種々選択される。液晶配向剤が含有する重合体の総量は、0.1〜20(質量)%であることが好ましい。なお、本発明の液晶配向剤が含有するポリイミド前駆体、ポリイミド、ポリシロキサンやポリ(メタ)アクリレート等の重合体は、液晶配向剤に含有される溶媒に溶解可能である必要がある。
<光反応性基>
本発明の製造方法における配向処理の工程に、偏光紫外線を用いる場合、液晶配向剤が含有する重合体中には、偏光紫外線の利用によって液晶配向能を発現する光反応性基が導入されている必要がある。このような光反応性基は、重合体の主鎖に導入されていても、側鎖に導入されていても良い。
光反応性基が導入された重合体を含有する液晶配向剤から得られる液晶配向膜に、偏光紫外線を照射することで、光反応が進行し、偏光方向と同一方向、又は偏光方向に対して垂直方向に異方性が付与され、液晶が配向する。光反応には、光分解、光二量化、光異性化がある。具体例を挙げるならば、光二量化反応が進行する構造としては、下記式(A−3)、(A−4)、(A−5)で表される構造が挙げられる。光異性化反応が進行する構造としては下記式(A−6)、(A−7)で表される構造が挙げられる。光分解反応が進行する構造としては、下記式(A−1)、(A−2)で表される構造が挙げられる。なお、下記式(A−1)〜(A−7)から選ばれる構造を有する光反応性基とは、これら式(A−1)〜(A−7)の構造から任意の数のHが取れた基、式(A−1)〜(A−2)でNが結合手である基、式(A−3)でOが結合手である基や、これらの構造がその他の構造(例えばアルキレン基等)と結合した基である。
Figure 0006274407
<ポリイミド前駆体およびそれをイミド化して得られるポリイミド>
本発明で用いる液晶配向剤が含有するポリイミド前駆体は、例えば下記式(1)で表される繰り返し単位(構造単位)を有する。
Figure 0006274407
式(1)において、Rは水素原子、又は炭素数1〜4のアルキル基である。加熱によるイミド化のしやすさの観点から、水素原子、又はメチル基が特に好ましい。Xは4価の有機基であり、その構造は特に限定されない。具体例を挙げるならば、下記式(X−1)〜(X−43)が挙げられる。液晶配向性の観点から、Xは、(X−1)〜(X−10)、(X−26)〜(X−28)、(X−31)〜(X−37)が好ましい。また、直流電圧により蓄積した残留電荷の緩和がより早い液晶配向膜を得られるという観点から芳香族環構造を有するテトラカルボン酸二無水物を原料とすることが好ましく、式(1)のXの構造としては、(X−26)、(X−27)、(X−28)、(X−32)、(X−35)又は(X−37)がより好ましい。
Figure 0006274407
(式(X−1)において、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、アルケニル基、又はフェニル基である。液晶配向性の観点から、R、R、R、及びRは、水素原子、ハロゲン原子、メチル基又はエチル基が好ましく、水素原子又はメチル基がより好ましく、さらに好ましくは、下記式(X1−1)〜(X1−2)で表される構造からなる群から選ばれる少なくとも1種である。)
Figure 0006274407
Figure 0006274407
Figure 0006274407
Figure 0006274407
本発明の製造方法における配向処理の工程に、偏光紫外線を用いる場合、Xの好ましい構造としては、(X1−1)、(X1−2)、(X−2)、(X−3)、(X−5)、(X−7)、(X−8)、(X−9)、(X−10)が挙げられ、(X1−1)、(X1−2)および(X−6)が特に好ましい。
上記式(1)において、Yは2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記式(Y−1)〜(Y−73)が挙げられる。
Figure 0006274407
Figure 0006274407
Figure 0006274407
Figure 0006274407
Figure 0006274407
Figure 0006274407
Figure 0006274407
Figure 0006274407
ポリイミド前駆体やポリイミド等の有機溶剤に対する溶解性の向上が期待できるため、(Y−8)、(Y−20)、(Y−21)、(Y−22)、(Y−28)、(Y−29)又は(Y−30)の構造を有する構造単位を有することが好ましい。
本発明で用いる液晶配向剤が含有するポリイミド前駆体は、ジアミン成分(例えば、後述する光重合性の側鎖を有するジアミンや、光反応性基を持つジアミン等のジアミン)とテトラカルボン酸二無水物成分(例えば、後述するテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリドやテトラカルボン酸ジエステル等)との反応によって得られる。具体的には、ポリアミック酸は、ジアミン成分とテトラカルボン酸二無水物との反応によって得られる。ポリアミック酸エステルは、ジアミン成分とテトラカルボン酸ジエステルジクロリドを塩基存在下で反応させる、またはテトラカルボン酸ジエステルとジアミン成分を適当な縮合剤、塩基の存在下にて反応させることによって得られる。また、ポリイミドはこのポリアミック酸を脱水閉環させる、あるいはポリアミック酸エステルを加熱閉環させることにより得られる。かかるポリアミック酸、ポリアミック酸エステル及びポリイミドのいずれも液晶配向膜を得るための重合体として有用である。
<光重合性の側鎖を有するジアミン>
メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミンとしては、例えば、上記式(b)で表される側鎖を有するジアミンを挙げることができる。より具体的には例えば下記の一般式(2)で表されるジアミンを挙げることができるが、これに限定されるものではない。
Figure 0006274407
(式(2)中のR、R及びR10の定義は、上記式(b)と同じである。)
式(2)における二つのアミノ基(−NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミンとしては、具体的には以下のような化合物が挙げられるが、これに限定されるものではない。
Figure 0006274407
(式中、Xは単結合、又は、−O−、−COO−、−NHCO−、−NH−より選ばれる結合基、Yは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表す。)
上記メタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類または2種類以上を混合して使用することもできる。
また、このようなメタクリル基、アクリル基、ビニル基、アリル基、スチリル基およびα−メチレン−γ−ブチロラクトン基から選択される少なくとも一種を含む光重合性の側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の総量の10〜70モル%となる量を用いることが好ましく、より好ましく20〜60モル%、特に好ましくは30〜50モル%である。
<光反応性基を持つジアミン>
本発明の製造方法における配向処理の工程に、偏光紫外線を用いる場合、液晶配向剤中に含有する重合体中には、光反応性基が導入されている必要がある。
偏光紫外線の照射により、光分解反応が進行し、異方性を生じさせる配向処理方法を用いる場合、上記式(A−1)、(A−2)の構造を、ポリイミド前駆体及びポリイミドの主鎖に導入すれば良い。
偏光紫外線の照射により、光二量化反応や光異性化反応が進行し、異方性を生じさせる配向処理方法を用いる場合、上記式(A−3)〜(A−7)の構造を、重合体の主鎖もしくは側鎖に導入すれば良い。
液晶配向剤に含有させる重合体として、ポリイミド前駆体及びそれをイミド化して得られるポリイミドを用いる場合、上記式(A−3)〜(A−7)の構造を主鎖もしくは側鎖に含有するテトラカルボン酸二無水物又はジアミンを用いる方法があるが、合成の容易性の観点から、上記式(A−3)〜(A−7)の構造を側鎖に含有するジアミンを用いることが好ましい。なお、ジアミンの側鎖とは、ジアミンの2つのアミノ基を結ぶ構造から枝分かれした構造である。そのようなジアミンの具体例としては、下記式に表す化合物が挙げられるが、これに限定されるものではない。
Figure 0006274407
(式中、Xは単結合、又は、−O−、−COO−、−NHCO−、−NH−より選ばれる結合基、Yは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表す。Rは水素原子、又は、非置換またはフッ素原子によって置換されている炭素数1〜5のアルキル基、もしくはアルキルエーテル基を表す。)
<テトラカルボン酸二無水物成分>
本発明で用いる液晶配向剤中に含有されるポリアミック酸を得るためにジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。その具体例を以下に挙げる。
脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,4−ジカルボキシ−1−シクロヘキシルコハク酸二無水物、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸二無水物、3,3’,4,4’−ジシクロヘキシルテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、シス−3,7−ジブチルシクロオクタ−1,5−ジエン−1,2,5,6−テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン−3,4,7,8−テトラカルボン酸−3,4:7,8−二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン−4,5,11,12−テトラカルボン酸−4,5:11,12−二無水物、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレンー1,2−ジカルボン酸無水物などが挙げられる。
更には、上記脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を使用すると、液晶配向性が向上し、かつ液晶セルの蓄積電荷を低減させることができるので好ましい。芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物などが挙げられる。
テトラカルボン酸二無水物は、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上併用することができる。
本発明で用いる液晶配向剤中に含有されるポリアミック酸エステルを得るためにジアミン成分と反応させるテトラカルボン酸ジアルキルエステルは特に限定されない。その具体例を以下に挙げる。
脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4−シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5−テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4−ジカルボキシ−1−シクロヘキシルコハク酸ジアルキルエステル、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸ジアルキルエステル、1,2,3,4−ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸ジアルキルエステル、3,3’,4,4’−ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5−トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス−3,7−ジブチルシクロオクタ−1,5−ジエン−1,2,5,6−テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.02,5]ノナン−3,4,7,8−テトラカルボン酸−3,4:7,8−ジアルキルエステル、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン−4,5,11,12−テトラカルボン酸−4,5:11,12−ジアルキルエステル、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレンー1,2−ジカルボンジアルキルエステルなどが挙げられる。
芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’−ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’−ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4−ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4−ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4−ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4−ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6−ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7−ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。
<ポリアミック酸の製造方法>
ポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で−20℃〜150℃、好ましくは0℃〜50℃において、30分〜24時間、好ましくは1〜12時間反応させることによって合成できる。
上記の反応に用いる有機溶媒は、モノマーおよびポリマーの溶解性からN,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、γ−ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1〜30質量%が好ましく、5〜20質量%がより好ましい。
上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<ポリアミック酸エステルの製造方法>
ポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)〜(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で−20℃〜150℃、好ましくは0℃〜50℃において、30分〜24時間、好ましくは1〜4時間反応させることによって合成することができる。
エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N−ジメチルホルムアミドジメチルアセタール、N,N−ジメチルホルムアミドジエチルアセタール、N,N−ジメチルホルムアミドジプロピルアセタール、N,N−ジメチルホルムアミドジネオペンチルブチルアセタール、N,N−ジメチルホルムアミドジ−t−ブチルアセタール、1−メチル−3−p−トリルトリアゼン、1−エチル−3−p−トリルトリアゼン、1−プロピル−3−p−トリルトリアゼン、4−(4,6−ジメトキシー1,3,5−トリアジンー2−イル)−4−メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2〜6モル当量が好ましい。
上記の反応に用いる溶媒は、ポリマーの溶解性からN,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、又はγ−ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1〜30質量%が好ましく、5〜20質量%がより好ましい。
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で−20℃〜150℃、好ましくは0℃〜50℃において、30分〜24時間、好ましくは1〜4時間反応させることによって合成することができる。
前記塩基には、ピリジン、トリエチルアミン、4−ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2〜4倍モルであることが好ましい。
上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN−メチル−2−ピロリドン、γ−ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1〜30質量%が好ましく、5〜20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸を合成する場合
ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、有機溶剤の存在下で0℃〜150℃、好ましくは0℃〜100℃において、30分〜24時間、好ましくは3〜15時間反応させることによって合成することができる。
前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’−カルボニルジイミダゾール、ジメトキシ−1,3,5−トリアジニルメチルモルホリニウム、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウム テトラフルオロボラート、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスファート、(2,3−ジヒドロ−2−チオキソ−3−ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2〜3倍モルであることが好ましい。
前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2〜4倍モルが好ましい。
また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0〜1.0倍モルが好ましい。
上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<可溶性ポリイミドの製造方法>
上記ポリイミドは、上記ポリアミック酸又はポリアミック酸エステルをイミド化することにより製造できる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
イミド化反応を行うときの温度は、−20℃〜140℃、好ましくは0℃〜100℃であり、反応時間は1〜100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5〜30モル倍、好ましくは2〜20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、液晶配向剤とすることが好ましい。
ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
イミド化反応を行うときの温度は、−20℃〜140℃、好ましくは0℃〜100℃であり、反応時間は1〜100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5〜30モル倍、好ましくは2〜20モル倍であり、酸無水物の量はアミック酸基の1〜50モル倍、好ましくは3〜30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
<ポリシロキサンの製造方法>
本発明に用いるポリシロキサンを得る方法は特に限定されず、例えばアルコキシシランを有機溶媒中で縮合させて得られる。通常、ポリシロキサンは、上記アルコキシシランを重縮合して、有機溶媒に均一に溶解した溶液として得られる。
アルコキシシランを重縮合する方法としては、例えば、アルコキシシランをアルコール又はグリコールなどの溶媒中で加水分解・縮合する方法が挙げられる。
その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。
本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.5〜2.5倍モルであるのが好ましい。
また、通常、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、硝酸などの金属塩;などの触媒が用いられる。加えて、アルコキシシランが溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌する方法、還流下で1時間加熱・撹拌する方法などが挙げられる。
また、別法として、例えば、アルコキシシラン、溶媒及び蓚酸の混合物を加熱して重縮合する方法が挙げられる。具体的には、あらかじめアルコールに蓚酸を加えて蓚酸のアルコール溶液とした後、該溶液を加熱した状態で、アルコキシシランを混合する方法である。その際、用いる蓚酸の量は、アルコキシシランが有する全アルコキシ基の1モルに対して0.2〜2モルとすることが好ましい。この方法における加熱は、液温50〜180℃で行うことができる。好ましくは、液の蒸発、揮散などが起こらないように、還流下で数十分〜十数時間加熱する方法である。
ポリシロキサンを得る際に、アルコキシシランを複数種用いる場合は、アルコキシシランをあらかじめ混合した混合物として混合してもよいし、複数種のアルコキシシランを順次混合してもよい。
ポリシロキサンを得る為に用いられるアルコキシシランとしては、以下のような化合物が例示される。
光重合性基を側鎖に有するアルコキシシラン化合物としては、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、アクリロキシエチルトリエトキシシラン、スチリルエチルトリメトキシシラン、スチリルエチルトリエトキシシラン、3−(N−スチリルメチル−2−アミノエチルアミノ)プロピルトリメトキシシラン、ビニルフェニルエチルトリメトキシシラン、ビニルフェニルエチルトリエトキシシラン、ビニルトリメトキシシラン等が挙げられる。
その他のアルコキシシラン化合物としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、メチルトリプロポキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリエトキシシラン、2−アミノエチルアミノメチルトリメトキシシラン、2−(2−アミノエチルチオエチル)トリエトキシシラン、3−メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、ビニルトリエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3−アミノプロピルメチルジエトキシシラン、3―アミノプロピルジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリメトキシシラン及びγ−ウレイドプロピルトリプロポキシシラン等が挙げられる。
アルコキシシランを重縮合する際に用いられる溶媒(以下、重合溶媒ともいう)は、アルコキシシランを溶解するものであれば特に限定されない。また、アルコキシシランが溶解しない場合でも、アルコキシシランの重縮合反応の進行とともに溶解するものであればよい。一般的には、アルコキシシランの重縮合反応によりアルコールが生成するため、アルコール類、グリコール類、グリコールエーテル類、又はアルコール類と相溶性の良好な有機溶媒が用いられる。
上記重合溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノール,ジアセトンアルコール等のアルコール類:エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,2−ペンタンジオール、1,3−ペンタンジオール、1,4−ペンタンジオール、1,5−ペンタンジオール、2,4−ペンタンジオール、2,3−ペンタンジオール、1,6−ヘキサンジオール等のグリコール類:エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のグリコールエーテル類、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、γ−ブチロラクトン、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミド、m−クレゾール等が挙げられる。
本発明においては、上記の重合溶媒を複数種混合して用いてもよい。
<ポリ(メタ)アクリレートの製造方法>
本発明に用いるポリ(メタ)アクリレートを得る方法は特に限定されない。アクリル酸エステル化合物や、メタクリル酸エステル化合物等のモノマーと、所望により光重合性基や、光反応性基を有するモノマーと、所望により重合開始剤などとを、溶剤中において50℃〜110℃の温度下で重合反応させることにより得られる。その際に用いられる溶剤は、モノマーおよび得られる重合体を溶解するものであれば特に限定されない。
アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2−トリフルオロエチルアクリレート、tert−ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2−メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2−エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3−メトキシブチルアクリレート、2−メチル−2−アダマンチルアクリレート、2−プロピル−2−アダマンチルアクリレート、8−メチル−8−トリシクロデシルアクリレートおよび8−エチル−8−トリシクロデシルアクリレートなどが挙げられる。
メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2−トリフルオロエチルメタクリレート、tert−ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2−メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2−エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3−メトキシブチルメタクリレート、2−メチル−2−アダマンチルメタクリレート、2−プロピル−2−アダマンチルメタクリレート、8−メチル−8−トリシクロデシルメタクリレートおよび8−エチル−8−トリシクロデシルメタクリレートなどが挙げられる。
溶剤の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2−ヘプタノン、γ―ブチロラクトン、2−ヒドロキシプロピオン酸エチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2−ヒドロキシ−3−メチルブタン酸メチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドおよびN−メチルピロリドンなどが挙げられる。
上記のようにして得られた重合体の溶液を、メタノール、エタノール、水などの撹拌下に投入して再沈殿させ、生成した沈殿物を濾過・洗浄した後、常圧または減圧下で、常温あるいは加熱乾燥することで、求める重合体の粉体とすることができる。このような操作により、重合体と共存する重合開始剤や未反応モノマーを除去することができ、その結果、精製した重合体の粉体を得られる。一度の操作で充分に精製できない場合は、得られた粉体を溶剤に再溶解して、上記の操作を繰り返し行えばよい。
<液晶配向剤>
液晶配向剤が含有する重合体としてポリイミド前駆体やポリイミドを用いる場合、ポリイミド前駆体やポリイミドの分子量は、重量平均分子量で2,000〜500,000が好ましく、より好ましくは5,000〜300,000であり、さらに好ましくは、10,000〜100,000である。また、数平均分子量は、好ましくは、1,000〜250,000であり、より好ましくは、2,500〜150,000であり、さらに好ましくは、5,000〜50,000である。
液晶配向剤が含有する重合体としてポリシロキサンを用いる場合、ポリシロキサンの分子量は、重量平均分子量で2,000〜500,000が好ましく、より好ましくは5,000〜300,000であり、さらに好ましくは10,000〜100,000である。また、数平均分子量は、好ましくは、1,000〜250,000であり、より好ましくは、2,500〜150,000であり、さらに好ましくは5,000〜50,000である。
液晶配向剤が含有する重合体としてポリ(メタ)アクリレートを用いる場合、ポリ(メタ)アクリレートの分子量は、重量平均分子量で2,000〜500,000が好ましく、より好ましくは5,000〜300,000であり、さらに好ましくは10,000〜100,000である。また、数平均分子量は、好ましくは、1,000〜250,000であり、より好ましくは、2,500〜150,000であり、さらに好ましくは5,000〜50,000である。
本発明で用いる液晶配向剤に含有される有機溶媒は、液晶配向剤が含有する上記重合体や重合性化合物が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、重合体としてポリイミド前駆体やポリイミドを用いる場合は、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−メチルカプロラクタム、2−ピロリドン、N−ビニル−2−ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ−ブチロラクトン、1,3−ジメチル−イミダゾリジノン、3−メトキシ−N,N−ジメチルプロパンアミド等を挙げることができる。また、重合体として、ポリシロキサンを用いる場合は、例えば、エチレングリコール、1,2−プロピレングリコールなどの多価アルコール化合物、N−メチルホルムアミド、N,N−ジメチルホルムアミドなどのアミド化合物等を挙げることができる。また、重合体として、ポリ(メタ)アクリレートを用いる場合は、例えばアルコール化合物、ケトン化合物、アミド化合物もしくはエステル化合物またはその他の非プロトン性化合物等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体や重合性化合物を均一に溶解できない溶媒であっても、重合体や重合性化合物が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
本発明の液晶配向剤は、重合体や重合性化合物を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−ブトキシ−2−プロパノール、1−フェノキシ−2−プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール−1−モノメチルエーテル−2−アセテート、プロピレングリコール−1−モノエチルエーテル−2−アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2−(2−エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。
本発明で用いる液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、前述の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
<液晶配向膜の製造>
本発明の製造方法に用いられる液晶配向膜は、上記液晶配向剤を基板に塗布し、必要に応じて乾燥した後、焼成して得られた塗膜面に配向処理を行うことで得られる。
液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO(Indium Tin Oxide)電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。本発明に記載の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。
液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために好ましくは50℃〜120℃で好ましくは1分〜10分乾燥させ、次いで、好ましくは150℃〜300℃で好ましくは5分〜120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5〜300nm、より好ましくは10〜200nmである。
<配向処理>
本発明の製造方法において用いられる配向処理には、ラビングによる配向処理と、偏光した紫外線を照射することによる、いわゆる光配向法による配向処理がある。
光配向法による配向処理の好ましい具体例としては、前記塗膜表面に、波長200nm以上400nm以下、好ましくは210nm以上380nm以下、例えば300nm以上350nm以下の紫外線を含む一定方向に偏光した紫外線を照射し、場合によっては、さらに150〜250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。また、液晶配向性を改善するために、塗膜基板を50〜250℃で加熱しつつ、紫外線を照射してもよい。前記紫外線の照射量は、1〜10,000mJ/cmの範囲にあることが好ましく、1〜2,000mJ/cmの範囲にあることが特に好ましい。
さらに、上記で偏光された紫外線を照射した膜は、次いで水、又は特定の有機溶媒を含む溶液で接触処理してもよい。上記の有機溶媒は、特に限定されるものではないが、水、メタノール、エタノール、2−プロパノール、アセトン、メチルエチルケトン、1−メトキシ−2−プロパノール、1−メトキシ−2−プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルなどが挙げられる。上記の溶媒のなかでも、異方性が高く、ムラのない液晶配向膜が得られ易いことから、1−メトキシ−2−プロパノール、1−メトキシ−2−プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルからなる群から選ばれる少なくとも1種が好ましい。特に、1−メトキシ−2−プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種が好ましい。
偏光された紫外線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒〜1時間、より好ましくは1分〜30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10〜80℃、より好ましくは20〜50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2−プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。乾燥する場合の温度としては、80〜250℃が好ましく、80〜150℃がより好ましい。
上記のようにして得られる液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
<横電界駆動用液晶表示素子の製造方法>
本発明の製造方法で製造する横電界駆動用液晶表示素子は、上記の液晶配向膜付きの基板を得た後、既知の方法で横電界駆動用の液晶セルを作製し、該横電界駆動用の液晶セルを使用して横電界駆動用液晶表示素子としたものである。なお、横電界駆動方式(IPS:In-Plane Switching)の液晶表示素子とは、基板に対して水平方向(横方向)に電界を印加し液晶分子をスイッチングする方式の液晶表示素子である。
横電界駆動用液晶表示素子の作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子を設けたアクティブマトリクス構造の横電界駆動用液晶表示素子であってもよい。
本発明で製造する横電界駆動用液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜の製造で記載した基板と同様のものを挙げることができる。
また、液晶配向膜は、この基板上に上記液晶配向剤を塗布した後焼成し、必要に応じてラビング処理や偏光紫外線等の放射線を照射することにより形成する。次に、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。液晶材料としては、例えば、液晶MLC−2041(メルク株式会社製)等が挙げられる。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。これにより、横電界駆動用の液晶セルが作成される。
次いで、この横電界駆動用の液晶セルに紫外線等の光を照射する。ここで、紫外線の照射量は、例えば1〜60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。照射する紫外線の波長は、例えば、200nm〜400nmである。
このように液晶セルに紫外線等の光を照射する、すなわち、液晶配向膜や液晶に紫外線等の光を照射すると、液晶配向膜と液晶とが接する面に位置する光重合性基が反応を起こし、液晶配向膜の表面に位置する液晶の配向が固定化される。これにより、後述する実施例に示すように、液晶の配向規制力が強化され、その結果、液晶の配向乱れが原因となって起こる残像現象などの電気特性が改善された横電界駆動用液晶表示素子となる。
次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、横電界駆動用液晶表示素子が得られる。
このような本発明の横電界駆動用液晶表示素子の製造方法で製造される横電界駆動用液晶表示素子は、液晶の配向規制力が強く残像の発生が抑制されたものであるので、大画面で高精細の液晶テレビなどに好適に利用可能である。
以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
<液晶配向剤の調製>
下記液晶配向剤の調製で用いた略号は以下のとおりである。
(テトラカルボン酸二無水物)
BODA:ビシクロ[3,3,0]オクタン−2, 4, 6, 8−テトラカルボン酸二無水物
CBDA:1,2,3,4−シクロブタンテトラカルボン酸二無水物
(ジアミン)
p−PDA:p−フェニレンジアミン
DA−1:下記式で表される(E)−2,4ジアミノフェネチル 3−(4−シクロヘキシルフェニル)アクリレート
Figure 0006274407
DA−2:下記式で表されるジアミン化合物
Figure 0006274407
DA−3:下記式で表されるジアミン化合物
Figure 0006274407
BEM−S:下記式で表される2−(メタクリロイロキシ)エチル3,5−ジアミノベンゾエート
Figure 0006274407
(メタクリルモノマー)
MA1:下記式で表されるメタクリルモノマー
Figure 0006274407
MA1は特開2010−18807号公報に記載の合成法にて合成した。
(ラジカル重合開始剤)
AIBN:2,2’−アゾビスイソブチロニトリル
(有機溶媒)
NMP:N−メチル−2−ピロリドン
BCS:ブチルセロソルブ
(重合性化合物)
RM1:下記式で表される5,5’(4,4’−(ビスフェニル−4,4’−ジイルビス(オキシ))ビス(ブタン−4,1−ジイル))ビス(3−メチレンジヒドロフラン−2(3H)−オン)
Figure 0006274407
RM2:下記式で表される重合性化合物
Figure 0006274407
RM3:下記式で表される重合性化合物
Figure 0006274407
また、ポリマー(ポリアミック酸、ポリイミド)の分子量測定条件は、以下の通りである。
装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC−7200)、
カラム:Shodex社製カラム(KD−803、KD−805)
カラム温度:50℃
溶離液:N,N’−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約900,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
(合成例1)
DA−1(5.10g、14.0mmol)にNMP(22.0g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(2.66g、13.6mmol)とNMP(22.0g)を加え、室温で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(40g)にNMP(40.0g)、およびBCS(20.0g)を加え、室温にて5時間攪拌することにより液晶配向剤(A1)を得た。このポリアミック酸の数平均分子量は6500、重量平均分子量は26000であった。
また、上記の液晶配向剤(A1)10.0gに対して重合性化合物RM1を60mg(固形分に対して10質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(A2)を調製した。
(合成例2)
DA−1(3.57g、9.8mmol)およびBEM−S(1.11g、4.2mmol)にNMP(20.8g)を加え、室温で撹拌して完全に溶解させたのち、CBDA(2.66g、13.6mmol)とNMP(20.8g)を加え、室温で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(40g)にNMP(40.0g)、およびBCS(20.0g)を加え、室温にて5時間攪拌することにより液晶配向剤(B1)を得た。このポリアミック酸の数平均分子量は7500、重量平均分子量は25000であった。
また、上記の液晶配向剤(B1)10.0gに対して重合性化合物RM1を60mg(固形分に対して10質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(B2)を調製した。
<液晶セルの作製1>
(比較例1)
合成例1で得られた液晶配向剤(A2)を用いて下記に示すような手順で液晶セルの作製を行った。基板は、30mm×40mmの大きさで、厚さが0.7mmのガラス基板であり、ITO膜をパターニングして形成された櫛歯状の画素電極が配置されたものを用いた。画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の配向処理方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が−10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。合成例1で得られた液晶配向剤(A2)を、準備された上記電極付き基板にスピンコートした。次いで、90℃のホットプレートで60秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの紫外線を20mJ/cm照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、液晶配向剤(A2)を用いて同様に塗膜を形成させ、配向処理を施した。一方の基板の液晶配向膜上にシール剤(協立化学製XN−1500T)を印刷した。次いで、もう一方の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC−2041(メルク株式会社製)を注入し、注入口を封止して、IPS(In−Plane Switching)モード液晶表示素子(横電界駆動方式の液晶表示素子)の構成を備えた液晶セルを得た。
(実施例1)
比較例1と同様の操作を行って作製した液晶セルに、液晶セルの外側から365nmの紫外線を20J/cm照射して(2次照射)、実施例1の液晶セルを得た。
(比較例2)
液晶配向剤(A2)のかわりに液晶配向剤(B2)を用いた以外は比較例1と同様の操作を行って、比較例2の液晶セルを得た。
(実施例2)
比較例2と同様の操作を行って作製した液晶セルに、液晶セルの外側から365nmの紫外線を20J/cm照射して(2次照射)、実施例2の液晶セルを得た。
(比較例3)
液晶配向剤(A2)のかわりに液晶配向剤(A1)を用いた以外は比較例1と同様の操作を行って、比較例3の液晶セルを得た。
(残像評価1)
各実施例1〜2及び比較例1〜3で用意したIPSモード用液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を初期配向方位角として算出した。次いで、室温環境下、周波数30Hzで8VPPの交流電圧を24時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に1時間放置した。放置の後、同様にして配向方位角を測定し、交流駆動前後の配向方位角の差を角度Δ(deg.)として算出した。
Figure 0006274407
この結果、表1に示すように、重合性化合物を添加し、また、液晶セル作製後UVを照射した実施例1及び2は、重合性化合物を添加せず液晶セル作成後にUV照射(2次照射)しなかった比較例3や、液晶セル作成後にUV照射しなかった比較例1及び2と比べて、交流駆動前後の配向方位角の差が非常に小さかった。したがって、実施例1及び2は、配向規制力が強く残像特性に非常に優れていると言える。これは液晶セル作製後外部より行ったUVの照射によって、添加した光重合性化合物が配向膜表面で重合層を形成し、それによって配向が固定化されたことによると考えられる。なお、実施例1と実施例2は両者とも交流駆動前後の配向方位角の差が零であるため比較し難いが、光重合性を有するBEM−Sを導入した重合体を用いた比較例2が、比較例1よりも交流駆動前後の配向方位角の差が小さかったことから、光重合性を有するBEM−Sを導入した重合体を用いることにより更なる残像特性の向上が確認できる。
(合成例3)
CBDA(1.94g、10.0mmol)、DA−2(4.49g、10.0mmol)をNMP(25.7g)中で混合し、室温で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(32.1g)にNMP(32.1g)、およびBCS(42.9g)を加え6重量%に希釈したのち、室温にて10時間攪拌することにより液晶配向剤(C)を得た。このポリアミック酸の数平均分子量は13000、重量平均分子量は19000であった。
また、液晶配向剤(C)10.0gに重合性化合物RM1を30mg(固形分に対して5質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(C1)を調製した。
また、液晶配向剤(C)10.0gに重合性化合物RM2を30mg(固形分に対して5質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(C2)を調製した。
また、液晶配向剤(C)10.0gに重合性化合物RM3を30mg(固形分に対して5質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(C3)を調製した。
(合成例4)
BODA(2.50g、10.0mmol)、DA−3(9.65g、20.0mmol)、をNMP(42.3g)中で混合し、80℃で5時間反応させたのち、CBDA(1.92g、10.0mmol)とNMP(14.1g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(70.4g)にNMP(70.4g)、およびBCS(93.8g)を加え6重量%に希釈したのち、室温にて10時間攪拌することにより液晶配向剤(D)を得た。このポリアミック酸の数平均分子量は12000、重量平均分子量は21000であった。
また、液晶配向剤(D)10.0gに重合性化合物RM1を30mg(固形分に対して5質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(D1)を調製した。
(合成例5)
CBDA(1.92g、10.0mmol)、p−PDA(0.54g、5.0mmol)、DA−2(2.24g、5.0mmol)をNMP(18.9g)中で混合し、室温で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(23.6g)にNMP(23.6g)、およびBCS(31.5g)を加え6重量%に希釈したのち、室温にて10時間攪拌することにより液晶配向剤(E)を得た。このポリアミック酸の数平均分子量は19000、重量平均分子量は28000であった。
また、液晶配向剤(E)10.0gにRM1を30mg(固形分に対して5質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(E1)を調製した。
(合成例6)
MA1(5.54g、16.0mmol)をNMP(51.1g)中に溶解し、ダイアフラムポンプで6分間脱気を行なった後、AIBNを(0.131g、0.8mmol)を加え再び6分間脱気を行なった。この後65℃で20時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液にBCS(37.8g)を加え6質量%に希釈し、室温で5時間攪拌することにより液晶配向剤(F)を得た。このポリマーの数平均分子量は16000、重量平均分子量は39000であった。
また、液晶配向剤(F)10.0gにRM1を30mg(固形分に対して5質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(F1)を調製した。
<液晶セルの作製2>
(実施例3)
合成例3で得られた液晶配向剤(C1)を用いて下記に示すような手順で液晶セルの作製を行った。基板は、30mm×40mmの大きさで、厚さが0.7mmのガラス基板であり、ITO膜をパターニングして形成された櫛歯状の画素電極が配置されたものを用いた。画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は10μmであり、電極要素間の間隔は20μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の配向処理方向を基準とした場合、画素の第1領域では画素電極の電極要素が+15°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が−15°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。合成例3で得られた液晶配向剤(C1)を、準備された上記電極付き基板にスピンコートした。次いで、80℃のホットプレートで90秒間乾燥した後、160℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの偏光紫外線を50mJ/cm照射(1次照射)し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、液晶配向剤(C1)を用いて同様に塗膜を形成させ、配向処理を施した。一方の基板の液晶配向膜上にシール剤(協立化学製XN−1500T)を印刷した。次いで、もう一方の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC−2041(メルク株式会社製)を注入し、注入口を封止して、IPS(In−Plane Switching)モード液晶表示素子(横電界駆動方式の液晶表示素子)の構成を備えた液晶セルを得た。
液晶セルを作製後、120℃のオーブンで60分間再配向処理を行なった。その後、液晶セルの画素電極と対向電極との間をショートさせた状態で、液晶セルへ365nmのバンドパスフィルターを通した紫外線を20J/cm照射(2次照射)した。
(残像評価2)
実施例3で用意したIPSモード用液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を初期配向方位角として算出した。次いで、60℃のオーブン中で、周波数30Hzで16VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に1時間放置した。放置の後、同様にして配向方位角を測定し、交流駆動前後の配向方位角の差を角度Δ(deg.)として算出した。表2に残像評価の結果を示す。
(実施例4)
液晶配向剤(C1)のかわりに液晶配向剤(C2)を用いた以外は実施例3と同様の手順で液晶セルを作製後、残像評価を行なった。
(実施例5)
液晶配向剤(C1)のかわりに液晶配向剤(C3)を用いた以外は実施例3と同様の手順で液晶セルを作製後、残像評価を行なった。
(実施例6)
液晶配向剤(C1)のかわりに液晶配向剤(D1)を用い、偏光紫外線の照射量を500mJ/cmとした以外は実施例3と同様の手順で液晶セルを作製後、残像評価を行なった。
(実施例7)
液晶配向剤(C1)のかわりに液晶配向剤(E1)を用いた以外は実施例3と同様の手順で液晶セルを作製後、残像評価を行なった。
(実施例8)
液晶配向剤(C1)のかわりに液晶配向剤(F1)を用い、偏光紫外線の照射量を500mJ/cmとした以外は実施例3と同様の手順で液晶セルを作製後、残像評価を行なった。
(実施例9)
液晶配向剤(C1)のかわりに液晶配向剤(C)を用いた以外は実施例3と同様の手順で液晶セルを作製し、残像評価を行なった。
(比較例4)
液晶配向剤(C1)のかわりに液晶配向剤(C)を用い、2次照射を行なわない以外は実施例3と同様の手順で液晶セルを作製し、残像評価を行なった。
(比較例5)
液晶配向剤(C1)のかわりに液晶配向剤(D)を用い、偏光紫外線の照射量を500mJ/cmとし、2次照射を行なわない以外は実施例3と同様の手順で液晶セルを作製し、残像評価を行なった。
(比較例6)
液晶配向剤(C1)のかわりに液晶配向剤(E)を用い、2次照射を行なわない以外は実施例3と同様の手順で液晶セルを作製し、残像評価を行なった。
(比較例7)
液晶配向剤(C1)のかわりに液晶配向剤(F)を用い、偏光紫外線の照射量を500mJ/cmとし、2次照射を行なわない以外は実施例3と同様の手順で液晶セルを作製し、残像評価を行なった。
Figure 0006274407
表2の結果から重合性化合物が添加されていない比較例4〜7においてはいずれもAC駆動後に配向方位角が大きくずれているが、重合性化合物が添加され、また、液晶セル作製後UV照射(2次照射)されている実施例3〜8についてはAC駆動後も配向方位角が比較例4〜7と比較して、ほとんどずれていないことが確認された。そして、光重合性基を側鎖に有する重合体を含有し、また、液晶セル作製後UV照射(2次照射)されている実施例9については、2次照射されていない比較例4と比較して配向方位角のずれが小さくなっていることがわかる。これら実施例3〜9は、2次照射によって配向膜界面で重合性化合物や重合体の光重合性基が重合し、液晶配向膜表面を固定化しているため、配向方位角のずれが非常に小さいと推測される。

Claims (10)

  1. 液晶配向剤を基板に塗布して液晶配向膜を形成し配向処理を施した後に、この液晶配向
    膜を形成した一対の基板を、液晶を介して前記液晶配向膜が相対するように対向配置して
    液晶セルを作成後、該液晶セルに光照射し、液晶中及び/又は液晶配向膜中の光重合性基
    を反応させる工程を経て、
    前記光重合性基が、下記に示す光重合性基から選ばれる基である
    ことを特徴とする横電界駆動用液晶表示素子の製造方法。
    Figure 0006274407
  2. 前記液晶が、前記光重合性基を有する重合性化合物を含有することを特徴とする請求項1に記載の横電界駆動用液晶表示素子の製造方法。
  3. 前記液晶配向剤が、前記光重合性基を含有することを特徴とする請求項1または請求項2に記載の横電界駆動用液晶表示素子の製造方法。
  4. 前記液晶配向剤が、前記光重合性基を側鎖に有する重合体を含有することを特徴とする請求項1から請求項3のいずれか一項に記載の横電界駆動用液晶表示素子の製造方法。
  5. 前記液晶配向剤が、前記光重合性基を有する重合性化合物を含有することを特徴とする請求項1から請求項4のいずれか一項に記載の横電界駆動用液晶表示素子の製造方法。
  6. 前記配向処理が、偏光紫外線の照射によって行われることを特徴とする請求項1から請求項のいずれか一項に記載の横電界駆動用液晶表示素子の製造方法。
  7. 前記配向処理において、下記式(A−1)〜(A−7)から選ばれる構造を有する光反応性基が反応することを特徴とする請求項1から請求項のいずれか一項に記載の横電界駆動用液晶表示素子の製造方法。
    Figure 0006274407
  8. 前記液晶配向剤が含有する重合体が、ポリイミド前駆体及びそれをイミド化して得られるポリイミドから選ばれる少なくとも1つを含むことを特徴とする請求項1から請求項のいずれか一項に記載の横電界駆動用液晶表示素子の製造方法。
  9. 前記液晶配向剤が含有する重合体が、ポリシロキサンを含むことを特徴とする請求項1から請求項のいずれか一項に記載の横電界駆動用液晶表示素子の製造方法。
  10. 前記液晶配向剤が含有する重合体が、ポリ(メタ)アクリレートを含むことを特徴とする請求項1から請求項のいずれか一項に記載の横電界駆動用液晶表示素子の製造方法。

JP2013550354A 2011-12-22 2012-12-21 横電界駆動用液晶表示素子の製造方法 Active JP6274407B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011281552 2011-12-22
JP2011281552 2011-12-22
PCT/JP2012/083259 WO2013094734A1 (ja) 2011-12-22 2012-12-21 横電界駆動用液晶表示素子の製造方法

Publications (2)

Publication Number Publication Date
JPWO2013094734A1 JPWO2013094734A1 (ja) 2015-04-27
JP6274407B2 true JP6274407B2 (ja) 2018-02-07

Family

ID=48668611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013550354A Active JP6274407B2 (ja) 2011-12-22 2012-12-21 横電界駆動用液晶表示素子の製造方法

Country Status (4)

Country Link
JP (1) JP6274407B2 (ja)
KR (1) KR101998906B1 (ja)
TW (1) TWI476490B (ja)
WO (1) WO2013094734A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6744717B2 (ja) * 2013-06-05 2020-08-19 日産化学株式会社 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
CN105492965B (zh) * 2013-06-25 2019-04-09 日产化学工业株式会社 液晶取向剂、液晶取向膜、液晶表示元件
KR20160029234A (ko) 2014-09-04 2016-03-15 삼성디스플레이 주식회사 광배향제, 광배향막, 액정 표시 장치 및 그 제조 방법
KR102227960B1 (ko) 2014-10-21 2021-03-15 삼성디스플레이 주식회사 광배향제, 광배향막, 액정 표시 장치 및 그 제조 방법
KR102675351B1 (ko) * 2016-08-29 2024-06-13 엘지디스플레이 주식회사 기판, 이를 포함하는 액정표시장치 및 그 제조방법
WO2018052106A1 (ja) * 2016-09-16 2018-03-22 日産化学工業株式会社 液晶配向膜を有する基板の製造方法及び液晶表示素子
JP7492880B2 (ja) 2020-08-03 2024-05-30 日東電工株式会社 ポリイミド前駆体組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
JP4237977B2 (ja) * 2001-10-02 2009-03-11 シャープ株式会社 液晶表示装置
KR101212135B1 (ko) * 2005-06-14 2012-12-14 엘지디스플레이 주식회사 액정표시소자 및 그 제조방법
JP2009098619A (ja) * 2007-09-28 2009-05-07 Fujifilm Corp 光配向膜用組成物、位相差膜用組成物、光配向膜、位相差膜、それを用いた液晶セル及び液晶表示装置、ならびに光配向膜又は位相差膜の製造方法
JP4618321B2 (ja) * 2008-04-24 2011-01-26 ソニー株式会社 液晶表示素子
WO2010050523A1 (ja) * 2008-10-29 2010-05-06 日産化学工業株式会社 ジアミン、ポリイミド、液晶配向剤及び液晶配向膜
JP5668906B2 (ja) * 2009-02-19 2015-02-12 Jsr株式会社 液晶配向剤、液晶配向膜および液晶表示素子
WO2010116564A1 (ja) * 2009-04-06 2010-10-14 シャープ株式会社 液晶表示装置、液晶表示装置の製造方法、重合体層形成用組成物、及び、液晶層形成用組成物
US9733519B2 (en) * 2009-06-23 2017-08-15 Nissan Chemical Industries, Ltd. Composition for forming thermoset film having photo alignment properties
JP5028452B2 (ja) * 2009-07-06 2012-09-19 株式会社ジャパンディスプレイイースト 液晶表示装置
WO2011034118A1 (ja) * 2009-09-16 2011-03-24 日産化学工業株式会社 重合性液晶化合物、重合性液晶組成物および配向フィルム
CN102859427B (zh) * 2010-02-26 2015-09-02 日产化学工业株式会社 液晶显示元件和液晶取向剂
CN102472929B (zh) * 2010-03-25 2014-07-30 三井化学株式会社 液晶密封剂、使用其的液晶显示面板的制造方法及液晶显示面板

Also Published As

Publication number Publication date
WO2013094734A1 (ja) 2013-06-27
TWI476490B (zh) 2015-03-11
KR20140107521A (ko) 2014-09-04
TW201333604A (zh) 2013-08-16
JPWO2013094734A1 (ja) 2015-04-27
CN104136976A (zh) 2014-11-05
KR101998906B1 (ko) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6274407B2 (ja) 横電界駆動用液晶表示素子の製造方法
JP6056759B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JP6558245B2 (ja) 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP6187457B2 (ja) 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子
JP6102745B2 (ja) 液晶配向膜の製造方法
JP6460341B2 (ja) 液晶表示素子および液晶表示素子の製造方法
TWI643905B (zh) Liquid crystal alignment agent and liquid crystal alignment film using the same
KR20160074520A (ko) 열 탈리성기를 갖는 폴리이미드 전구체 및/또는 폴리이미드를 함유하는 액정 배향제
JP6202006B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JP6418401B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
WO2013018904A1 (ja) 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
JP6217648B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
CN104136976B (zh) 横向电场驱动用液晶显示元件的制造方法
WO2020162508A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP2018040979A (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R151 Written notification of patent or utility model registration

Ref document number: 6274407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350