JP6111562B2 - ロボット - Google Patents
ロボット Download PDFInfo
- Publication number
- JP6111562B2 JP6111562B2 JP2012191449A JP2012191449A JP6111562B2 JP 6111562 B2 JP6111562 B2 JP 6111562B2 JP 2012191449 A JP2012191449 A JP 2012191449A JP 2012191449 A JP2012191449 A JP 2012191449A JP 6111562 B2 JP6111562 B2 JP 6111562B2
- Authority
- JP
- Japan
- Prior art keywords
- angular velocity
- arm
- drive source
- robot
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1638—Programme controls characterised by the control loop compensation for arm bending/inertia, pay load weight/inertia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1651—Programme controls characterised by the control loop acceleration, rate control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39195—Control, avoid oscillation, vibration due to low rigidity
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39335—Independent joint control, decentralised
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/40—Robotics, robotics mapping to robotics vision
- G05B2219/40597—Measure, calculate angular momentum, gyro of rotating body at end effector
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Description
特許文献1のロボットでは、最も先端側のアームリンク部の先端部に加速度センサーを設置しているので、その加速度センサーが検出する加速度を各関節部ごとに換算して補正することとなる。このときヤコビ変換と呼ばれる座標軸変換を行う必要があり、多数のsin、cosの積を係数に持つ行列演算が必要になるため演算量が膨大になる。しかも、刻一刻と変化する各関節部のモーターの回転角度に合わせて係数を計算する必要があるので、常にこの膨大な演算を実行する必要がある。これにより、応答速度が遅くなるという欠点がある。
また、前記座標軸変換の計算において、特異点と呼ばれる座標軸変換解がない領域(計算できない領域)があり、その領域では振動抑制能力が低下したり、かえって振動を拡大してしまうことがある。
本発明の目的は、複数のアームを備え、これらのアームの回転軸が互いに異なる多軸ロボットにおいて、容易かつ確実に、振動を抑制することができるロボットを提供することにある。
(適用例1)
本発明のロボットは、基台と、前記基台に連結され、第1回転軸を軸中心として回動する第1アームと、前記第1アームに連結され、前記第1回転軸と直交する第2回転軸を軸中心として回動する第2アームと、前記第1アームを第1角速度指令で回動させる第1駆動源と、前記第1アームに設置され、前記第1アームの前記第1回転軸の角速度または加速度を検出する第1慣性センサーと、前記第1駆動源の回転角度を検出する第1角度センサーと、前記第2アームを第2角速度指令で回動させる第2駆動源と、前記第2アームに設置され、前記第2アームの前記第2回転軸の角速度または加速度を検出する第2慣性センサーと、前記第2駆動源の回転角度を検出する第2角度センサーと、前記第1慣性センサーから得られる前記第1アームの前記第1回転軸の角速度ωA1と、前記第1角度センサーから得られる前記第1アームの前記第1回転軸の角速度ωA1mと、から導かれる第1補正成分をフィードバックして前記第1駆動源を制御する第1駆動源制御手段と、前記第2慣性センサーから得られる前記第2アームの前記第2回転軸の角速度ωA2と、前記第2角度センサーから得られる前記第2アームの前記第2回転軸の角速度ωA2mと、から導かれる第2補正成分をフィードバックして前記第2駆動源を制御する第2駆動源制御手段と、を備えることを特徴とする。
すなわち、膨大な演算が不要であり、これにより、ロボットの制御における応答速度を速くすることができる。また、特異点の存在する演算が不要であるので、確実に、ロボットの制御を行うことができ、振動を抑制することができる。
また、第1アームと第2アームにそれぞれ慣性センサーを設置するとともに、第1アームの回動の回転軸と第2アームの回動の回転軸とを互いに直交させたので、それぞれのアームの角速度が互いに混在しない単純な回転成分として検出できる。よってこれらを用いた演算による制御を行うので、より容易に、精度良く、確実に、ロボットの振動を抑制することができる。
本発明のロボットでは、前記角速度ωA1から前記角速度ωA1mを減算した値に対してフィードバックゲインを乗算した前記第1補正成分により前記第1角速度指令をフィードバックする前記第1駆動源制御手段と、前記角速度ωA2から前記角速度ωA2mを減算した値に対してフィードバックゲインを乗算した前記第2補正成分により前記第2角速度指令をフィードバックする前記第2駆動源制御手段と、を備えることが好ましい。
本発明のロボットは、基台と、前記基台に連結され、第1回転軸を軸中心として回動する第1アームと、前記第1アームに連結され、前記第1回転軸と直交する第2回転軸を軸中心として回動する第2アームと、前記第2回転軸と平行な第3回転軸を軸中心として回動する第3アームと、前記第1アームを第1角速度指令で回動させる第1駆動源と、前記第1アームに設置され、前記第1アームの前記第1回転軸の角速度または加速度を検出する第1慣性センサーと、前記第1駆動源の回転角度を検出する第1角度センサーと、前記第2アームを第2角速度指令で回動させる第2駆動源と、前記第2アームに設置され、前記第2アームの前記第2回転軸の角速度または加速度を検出する第2慣性センサーと、前記第2駆動源の回転角度を検出する第2角度センサーと、前記第3アームを第3角速度指令で回動させる第3駆動源と、前記第3アームに設置され、前記第3アームの前記第2回転軸の角速度または加速度を検出する第3慣性センサーと、前記第3駆動源の回転角度を検出する第3角度センサーと、前記第1慣性センサーから得られる前記第1アームの前記第1回転軸の角速度ωA1と、前記第1角度センサーから得られる前記第1アームの前記第1回転軸の角速度ωA1mと、から導かれる第1補正成分をフィードバックして前記第1駆動源を制御する第1駆動源制御手段と、前記第2慣性センサーから得られる前記第2アームの前記第2回転軸の角速度ωA2と、前記第2角度センサーから得られる前記第2アームの前記第2回転軸の角速度ωA2mと、から導かれる第2補正成分をフィードバックして前記第2駆動源を制御する第2駆動源制御手段と、前記角速度ωA2と、前記第3慣性センサーから得られる前記第3アームの前記第2回転軸の角速度ωA3と、前記第3角度センサーから得られる前記第3アームの前記第3回転軸の角速度ωA3mと、から導かれる第3補正成分をフィードバックして前記第3駆動源を制御する第3駆動源制御手段と、を備えることを特徴とする。
すなわち、膨大な演算が不要であり、これにより、ロボットの制御における応答速度を速くすることができる。また、特異点の存在する演算が不要であるので、確実に、ロボットの制御を行うことができ、振動を抑制することができる。
また、各アームに慣性センサーを設置し、各アームに対してその振動を抑える制御を行うので、より確実に、ロボットの振動を抑制することができる。
本発明のロボットでは、前記角速度ωA1から前記角速度ωA1mを減算した値に対してフィードバックゲインを乗算した前記第1補正成分により前記第1角速度指令をフィードバックする前記第1駆動源制御手段と、前記角速度ωA2から前記角速度ωA2mを減算した値に対してフィードバックゲインを乗算した前記第2補正成分により前記第2角速度指令をフィードバックする前記第2駆動源制御手段と、前記角速度ωA3から前記角速度ωA2および前記角速度ωA3mを減算した値に対してフィードバックゲインを乗算した前記第3補正成分により前記第3角速度指令をフィードバックする前記第3駆動源制御手段と、を備えることが好ましい。
本発明のロボットは、基台と、前記基台に連結され、第1回転軸を軸中心として回動する第1アームと、前記第1アームに連結され、前記第1回転軸と直交する第2回転軸を軸中心として回動する第2アームと、前記第2回転軸とは平行な第3回転軸を軸中心として回動する第3アームと、前記第1アームを第1角速度指令で回動させる第1駆動源と、前記第1アームに設置され、前記第1アームの前記第1回転軸の角速度または加速度を検出する第1慣性センサーと、前記第1駆動源の回転角度を検出する第1角度センサーと、前記第2アームを第2角速度指令で回動させる第2駆動源と、前記第2アームに設置され、前記第2アームの前記第2回転軸の角速度または加速度を検出する第2慣性センサーと、前記第2駆動源の回転角度を検出する第2角度センサーと、前記第3アームを第3角速度指令で回動させる第3駆動源と、前記第3アームに設置され、前記第3アームの前記第2回転軸の角速度または加速度を検出する第3慣性センサーと、前記第3駆動源の回転角度を検出する第3角度センサーと、前記第1慣性センサーから得られる前記第1アームの前記第1回転軸の角速度ωA1と、前記第1角度センサーから得られる前記第1アームの前記第1回転軸の角速度ωA1mと、から導かれる第1の補正成分をフィードバックして前記第1駆動源を制御する第1駆動源制御手段と、前記第3慣性センサーから得られる前記第3アームの前記第2の回転軸の角速度ωA3と、前記第2角度センサーから得られる前記第2アームの前記第2回転軸の角速度ωA2mと、前記第3角度センサーから得られる前記第3アームの前記第3回転軸の角速度ωA3mと、から導かれる第2補正成分をフィードバックして前記第2駆動源を制御する第2駆動源制御手段と、前記第2慣性センサーから得られる前記第2アームの前記第2回転軸の角速度ωA2と、前記角速度ωA3と、前記角速度ωA3mと、から導かれる第3補正成分をフィードバックして前記第3駆動源を制御する第3駆動源制御手段と、を備えることを特徴とする。
すなわち、膨大な演算が不要であり、これにより、ロボットの制御における応答速度を速くすることができる。また、特異点の存在する演算が不要であるので、確実に、ロボットの制御を行うことができ、振動を抑制することができる。
また、各アームに慣性センサーを設置し、各アームに対してその振動を抑える制御を行うので、より確実に、ロボットの振動を抑制することができる。
本発明のロボットでは、前記角速度ωA1から前記角速度ωA1mを減算した値に対してフィードバックゲインを乗算した前記第1補正成分により前記第1角速度指令をフィードバックする前記第1駆動源制御手段と、前記角速度ωA3から前記角速度ωA2mおよび前記角速度ωA3mを減算した値に対してフィードバックゲインを乗算した前記第2補正成分により前記第2角速度指令をフィードバックする前記第2駆動源制御手段と、前記角速度ωA3から前記角速度ωA2および前記角速度ωA3mを減算した値に対してフィードバックゲインを乗算した前記第3補正成分により前記第3角速度指令をフィードバックする前記第3駆動源制御手段と、を備えることが好ましい。
本発明のロボットは、基台と、前記基台に連結され、第1回転軸を軸中心として回動する第1アームと、前記第1アームに連結され、前記第1回転軸とは直交する第2回転軸を軸中心として回動する第2アームと、前記第2回転軸とは平行な第3回転軸を軸中心として回動する第3アームと、前記第1アームを第1角速度指令で回動させる第1駆動源と、前記第1アームに設置され、前記第1アームの前記第1回転軸の角速度または加速度を検出する第1慣性センサーと、前記第1駆動源の回転角度を検出する第1角度センサーと、前記第2アームを第2角速度指令で回動させる第2駆動源と、前記第2アームに設置され、前記第2アームの前記第2回転軸の角速度または加速度を検出する第2慣性センサーと、前記第2駆動源の回転角度を検出する第2角度センサーと、前記第3アームを第3角速度指令で回動させる第3駆動源と、前記第3アームに設置され、前記第3アームの前記第2回転軸の角速度または加速度を検出する第3慣性センサーと、前記第3駆動源の回転角度を検出する第3角度センサーと、前記第2アームの軸線と前記第3アームの軸線とのなすアーム角度を検出する角度検出手段と、前記第1慣性センサーから得られる前記第1アームの前記第1回転軸の角速度ωA1と、前記第1角度センサーから得られる前記第1アームの前記第1回転軸の角速度ωA1mと、から導かれる第1補正成分をフィードバックして前記第1駆動源を制御する第1駆動源制御手段と、前記アーム角度によって、前記第3慣性センサーから得られる前記第3アームの前記第2回転軸の角速度ωA3と、前記第2角度センサーから得られる前記第2アームの前記第2回転軸の角速度ωA2mと、前記第3角度センサーから得られる前記第3アームの前記第3回転軸の角速度ωA3mと、から導かれる値、または前記第2慣性センサーから得られる前記第2アームの前記第2回転軸の角速度ωA2と、前記角速度ωA2mと、から導かれる値、のいずれかを第2補正成分としてフィードバックして前記第2駆動源を制御する第2駆動源制御手段と、前記角速度ωA2と、前記角速度ωA3と、前記角速度ωA3mと、から導かれる第3補正成分をフィードバックして前記第3駆動源を制御する第3駆動源制御手段と、を備えることを特徴とする。
すなわち、膨大な演算が不要であり、これにより、ロボットの制御における応答速度を速くすることができる。また、特異点の存在する演算が不要であるので、確実に、ロボットの制御を行うことができ、振動を抑制することができる。
また、各アームに慣性センサーを設置し、各アームに対してその振動を抑える制御を行うので、より確実に、ロボットの振動を抑制することができる。
そして、特に、第2駆動源制御手段では、前記角速度ωA3と前記角速度ωA2mと前記角速度ωA3mとから導かれる値、または前記角速度ωA2と前記角速度ωA2mとから導かれる値、のいずれか一方を、角度検出手段の検出結果に基づいて選択してフィードバックして、振動を抑制する効果と制御の安定性との両立を図ることができる。
本発明のロボットでは、前記角速度ωA1から前記角速度ωA1mを減算した値に対してフィードバックゲインを乗算した前記第1補正成分により前記第1角速度指令をフィードバックする前記第1駆動源制御手段と、前記角速度ωA3から前記角速度ωA2mおよび前記角速度ωA3mを減算した値に対してフィードバックゲインを乗算した値、または前記角速度ωA2から前記角速度ωA2mを減算した値に対してフィードバックゲインを乗算した値、のいずれかを前記第2補正成分として前記第2角速度指令をフィードバックする前記第2駆動源制御手段と、前記角速度ωA3から前記角速度ωA2および前記角速度ωA3mを減算した値に対してフィードバックゲインを乗算した前記第3補正成分により前記第3角速度指令をフィードバックする前記第3駆動源制御手段と、を備えることが好ましい。
これにより、より確実にロボットの振動を抑制することができる。
本発明のロボットにおいて、前記アーム角が第1の閾値以上、該第1の閾値よりも大きい第2の閾値以下では、前記角速度ωA3から前記角速度ωA2mおよび前記角速度ωA3mを減算した値に対してフィードバックゲインを乗算した前記第2補正成分により前記第2角速度指令をフィードバックし、前記アーム角が前記第1の閾値未満または前記第2の閾値よりも大きい場合は、前記角速度ωA2から前記角速度ωA2mを減算した値に対してフィードバックゲインを乗算した前記第2補正成分により前記第2角速度指令をフィードバックする前記第2駆動源制御手段を備えることが好ましい。
すなわち、第2アームの軸線と第3アームの軸線とのなす角θが第1の閾値以上、第2の閾値以下の場合(伸長姿勢)は、第2アームの軸線と第3アームの軸線とのなす角θが第1の閾値未満または第2の閾値よりも大きい場合(折り畳み姿勢)に比べて、ロボットの制御が安定しているが、ロボットの慣性モーメントが大きく、振動が大きいので、前記角速度ωA3から前記角速度ωA2mおよび前記角速度ωA3mを減算した値に対してフィードバックゲインを乗算した前記第2補正成分により前記第2角速度指令をフィードバックすることにより、振動を抑制する効果を高めることができる。
本発明のロボットにおいて、前記第1の閾値は、45°以上、135°以下の範囲内で設定され、前記第2の閾値は、225°以上、315°以下の範囲内で設定されることが好ましい。
これにより、より確実に、振動を抑制する効果を高めることと、制御の安定性との両立を図ることができる。
本発明のロボットにおいて、前記第1慣性センサーは、前記第1アームの回動における先端部に設置され、前記第2慣性センサーは、前記第2アームの回動における先端部に設置されていることが好ましい。
これにより、第1慣性センサーは、第1アームの振動が最大の部位において第1アームの角速度または加速度を検出し、第2慣性センサーは、第2アームの振動が最大の部位において第2アームの角速度または加速度を検出するので、より確実にロボットの振動を抑制することができる。
本発明のロボットにおいて、前記第1慣性センサーは、前記第1アームの回動における先端部に設置され、前記第2慣性センサーは、前記第2アームの回動における先端部に設置され、前記第3慣性センサーは、前記第3アームの回動における先端部に設置されていることが好ましい。
これにより、第1慣性センサーは、第1アームの振動が最大の部位において第1アームの角速度または加速度を検出し、第2慣性センサーは、第2アームの振動が最大の部位において第2アームの角速度または加速度を検出し、第3慣性センサーは、第3アームの振動が最大の部位において第3アームの角速度または加速度を検出するので、より確実にロボットの振動を抑制することができる。
(適用例13)
本発明のロボットにおいて、前記第1回転軸は、前記基台の設置面の法線と一致することが好ましい。
これにより、ロボットの制御を容易に行うことができる。
本発明のロボットは、基台と、前記基台に連結され、第1回転軸を軸中心として回動する第1アームと、前記第1回転軸と直交する第2回転軸を軸中心として回動する第2アームと、前記第1アームの角速度を検出する第1慣性センサーと、前記第1アームの駆動源の回転角度を検出する第1角度センサーと、前記第2アームの角速度を検出する第2慣性センサーと、前記第2アームの駆動源の回転角度を検出する第2角度センサーと、前記第1角度センサーの検出結果から導かれる角速度と前記第1慣性センサーから検出される角速度とをフィードバックする前記第1アームの駆動源の制御手段と、前記第2角度センサーの検出結果から導かれる角速度と前記第2慣性センサーから検出される角速度とをフィードバックする前記第2アームの駆動源の制御手段と、を備えることを特徴とする。
これにより、3次元空間を自在に作業できる多関節ロボットでありながら、容易かつ確実に、駆動による振動を抑制するロボットを提供することができる。
すなわち、膨大な情報に基づいて制御部へフィードバックする為の演算が不要であり、これにより、ロボットの制御における応答速度を速くすることができる。また、特異点の存在する演算が不要であるので、確実に、ロボットの制御を行うことができ、振動を抑制することができる。なお、第1アームの駆動源の制御手段と第2アームの駆動源の制御手段は演算上の回路は互いに独立しているが、同じIC回路上に構築することができる。
本発明のロボットは、複数の直交する回転軸を有し、前記直交する回転軸毎に対応して一つの慣性センサーと一つの角度センサーとが設けられ、前記角度センサーおよび前記慣性センサーから得られる角速度を当該角度センサーおよび当該慣性センサーに対応する回転軸毎にフィードバック制御することを特徴とする。
これにより、3次元空間を自在に作業できる多関節ロボットでありながら、容易かつ確実に、駆動による振動を抑制するロボットを提供することができる。
<第1実施形態>
図1は、本発明のロボットの第1実施形態を正面側から見た斜視図である。図2は、図1に示すロボットを背面側から見た斜視図である。図3および図4は、それぞれ、図1に示すロボットの概略図である。図5は、図1に示すロボットの主要部のブロック図である図6〜図11は、それぞれ、図1に示すロボットの主要部のブロック図である。
また、第1慣性センサー31、第2慣性センサー32としては、それぞれ、特に限定されず、本実施形態では、例えば、ジャイロセンサー、加速度センサー等を用いることができる。
そして、制御装置20は、アーム12〜15、リスト16をそれぞれ独立して作動させることができる、すなわち、モータードライバー301〜306を介して、駆動源401〜406をそれぞれ独立して制御することができる。この場合、制御装置20は、角度センサー411〜416、第1慣性センサー31、第2慣性センサー32により検出を行い、その検出結果に基づいて、駆動源401〜406の駆動、例えば、角速度や回転角度等をそれぞれ制御する。この制御プログラムは、制御装置20に内蔵された記録媒体に予め記憶されている。
基台11は、中空の基台本体(ハウジング)112を有している。基台本体112は、円筒状をなす円筒状部113と、当該円筒状部113の外周部に一体的に形成された、箱状をなす箱状部114とに分けることができる。そして、このような基台本体112には、例えば、モーター401Mやモータードライバー301〜306が収納されている。
第2アーム13は、第1アーム12の先端部に連結されている。この第2アーム13では、駆動機構3bがモーター403Mを有しており、アーム本体2b内に収納している。また、アーム本体2a内は、封止手段4bにより気密封止されている。
第3アーム14は、第2アーム13の先端部に連結されている。この第3アーム14では、駆動機構3cがモーター404Mを有しており、アーム本体2c内に収納している。また、アーム本体2c内は、封止手段4cにより気密封止されている。
第4アーム15の先端部(基台11と反対側の端部)には、リスト16が連結されている。このリスト16には、その先端部(第4アーム15と反対側の端部)に、例えば、腕時計等のような精密機器を把持するマニピュレーター(図示せず)が着脱自在に装着される。なお、マニピュレーターとしては、特に限定されず、例えば、複数本の指部(フィンガー)を有する構成のものが挙げられる。そして、このロボット1は、マニピュレーターで精密機器を把持したまま、アーム12〜15やリスト16等の動作を制御することにより、当該精密機器を搬送することができる。
リスト本体161の先端面163は、平坦な面となっており、マニピュレーターが装着される装着面となる。また、リスト本体161は、関節176を介して、第4アーム15の駆動機構3dに連結されており、当該駆動機構3dのモーター406Mの駆動により、回転軸O6回りに回動する。
支持リング162は、関節175を介して、第4アーム15の駆動機構3dに連結されており、当該駆動機構3dのモーター405Mの駆動により、リスト本体161ごと回転軸O5回りに回動する。
図5、図6〜図11に示すように、制御装置20は、第1駆動源401の作動を制御する第1駆動源制御部(第1駆動源制御手段)(第1角速度指令)201と、第2駆動源402の作動を制御する第2駆動源制御部(第2駆動源制御手段)(第2角速度指令)202と、第3駆動源403の作動を制御する第3駆動源制御部(第3駆動源制御手段)(第3角速度指令)203と、第4駆動源404の作動を制御する第4駆動源制御部(第4駆動源制御手段)(第4角速度指令)204と、第5駆動源405の作動を制御する第5駆動源制御部(第5駆動源制御手段)(第5角速度指令)205と、第6駆動源406の作動を制御する第6駆動源制御部(第6駆動源制御手段)(第6角速度指令)206と、を有している。
図7に示すように、第2駆動源制御部202は、減算器512と、位置制御部522と、減算器532と、角速度制御部542と、回転角度算出部552と、角速度算出部562と、減算器572と、変換部582と、補正値算出部592と、加算器602とを有している。
図9に示すように、第4駆動源制御部204は、減算器514と、位置制御部524と、減算器534と、角速度制御部544と、回転角度算出部554と、角速度算出部564とを有している。
図11に示すように、第6駆動源制御部206は、減算器516と、位置制御部526と、減算器536と、角速度制御部546と、回転角度算出部556と、角速度算出部566とを有している。
減算器531には、角速度指令ωcが入力され、また、後述する角速度フィードバック値ωfbが入力される。減算器531は、これら角速度指令ωcと角速度フィードバック値ωfbとの偏差(第1駆動源401の角速度の目標値から角速度フィードバック値ωfbを減算した値)を角速度制御部541に出力する。
このようにして、位置フィードバック値Pfbが位置指令Pcと可及的に等しくなり、かつ、角速度フィードバック値ωfbが角速度指令ωcと可及的に等しくなるように、フィードバック制御がなされ、第1駆動源401の駆動電流が制御される。
角速度算出部561では、第1角度センサー411から入力されるパルス信号の周波数に基づいて、第1駆動源401の角速度ωm1が算出され、その角速度ωm1は、加算器601に出力される。
また、第1慣性センサー31により、第1アーム12の回転軸O1の回りの角速度が検出される。そして、その第1慣性センサー31の検出信号、すなわち、第1慣性センサー31により検出された第1アーム12の回転軸O1の回りの角速度ωA1は、減算器571に出力される。
補正値算出部591は、角速度ωm1sに予め定められた係数であるゲイン(フィードバックゲイン)Kaを乗算し、補正値(第1補正成分)Ka・ωm1sを求め、その補正値Ka・ωm1sを加算器601に出力する。
加算器601には、角速度ωm1が入力され、また、補正値Ka・ωm1sが入力される。加算器601は、角速度ωm1と補正値Ka・ωm1sとの加算値を角速度フィードバック値ωfbとして減算器531に出力する。なお、以降の動作は、前述した通りである。
角速度制御部542は、減算器532から入力された偏差と、予め定められた係数である比例ゲイン、積分ゲイン等を用い、積分を含む所定の演算処理を行うことで、その偏差に応じた第2駆動源402の駆動信号(駆動電流)を生成し、モータードライバー302を介してモーター402Mに供給する。なお、ここでは、本実施形態では、フィードバック制御として、PI制御がなされるが、これに限定されるものではない。
角速度算出部562では、第2角度センサー412から入力されるパルス信号の周波数に基づいて、第2駆動源402の角速度ωm2が算出され、その角速度ωm2は、加算器602に出力される。
補正値算出部592は、角速度ωm2sに予め定められた係数であるゲイン(フィードバックゲイン)Kaを乗算し、補正値(第2補正成分)Ka・ωm2sを求め、その補正値Ka・ωm2sを加算器602に出力する。なお、この第2駆動源制御部202におけるゲインKaと、第1駆動源制御部201におけるゲインKaとは、同一でもよく、また、異なっていてもよい。
加算器602には、角速度ωm2が入力され、また、補正値Ka・ωm2sが入力される。加算器602は、角速度ωm2と補正値Ka・ωm2sとの加算値を角速度フィードバック値ωfbとして減算器532に出力する。なお、以降の動作は、前述した通りである。
減算器533には、角速度指令ωcが入力され、また、角速度フィードバック値ωfbが入力される。減算器533は、これら角速度指令ωcと角速度フィードバック値ωfbとの偏差(第3駆動源403の角速度の目標値から角速度フィードバック値ωfbを減算した値)を角速度制御部543に出力する。
なお、駆動源制御部204〜206については、それぞれ、前記第3駆動源制御部203と同様であるので、その説明は省略する。
まず、ロボット1の制御において、膨大な演算が不要であり、これにより、ロボット1の制御における応答速度を速くすることができ、また、制御装置20の構成を簡素化することができる。
また、ロボット1の制御において、特異点の存在する演算が不要であるので、確実に、ロボット1の制御を行うことができ、これにより、確実に振動を抑制することができる。
加えて、第1アーム12の回動の第1回転軸O1と第2アームの回動の第2回転軸O2とを互いに直交させたので、それぞれのアームの角速度が互いに混在しない単純な回転成分として検出でき、これらの混在無き回転成分にそれぞれ、フィードバックゲインを乗算するので、それぞれが高い精度で補正できる。
図12は、本発明のロボットの第2実施形態を示す概略図である。図13は、図12に示すロボットの主要部のブロック図である。
なお、以下では、説明の都合上、図12中の上側を「上」または「上方」、下側を「下」または「下方」と言う。また、図12中の基台側を「基端」、その反対側を「先端」と言う。また、図12では、回転軸O2、O3は、それぞれ、誇張して図示されている。また、図12では、慣性センサー31、32、33は、それぞれ、その存在を明確にするため、アーム12、13、14の外部に図示されている。
図12に示すように、第2実施形態のロボット1では、第3アーム14には、第3慣性センサー33が設置されている。この第3慣性センサー33により第3アーム14の回転軸O2の回りの角速度を検出する。第3アーム14における第3慣性センサー33の設置位置は、特に限定されないが、第3アーム14の先端部が好ましい。本実施形態では、第3慣性センサー33は、第3アーム14の内部の先端部に設置されている。第3アーム14の振動は、その先端部において最大になるので、これにより、より確実にロボット1の振動を抑制することができる。なお、第3慣性センサー33が、第3アーム14の基端部に設置されていてもよいことは、言うまでもない。
また、第3慣性センサー33としては、特に限定されず、本実施形態では、例えば、ジャイロセンサーあるいは加速度センサー等を用いることができる。
また、このロボット1では、制御装置20の第3駆動源制御部203が第1実施形態と異なっている。以下、第3駆動源制御部203について説明する。
角速度制御部548は、減算器538から入力された偏差と、予め定められた係数である比例ゲイン、積分ゲイン等を用い、積分を含む所定の演算処理を行うことで、その偏差に応じた第3駆動源403の駆動信号(駆動電流)を生成し、モータードライバー303を介して第3駆動源403のモーターに供給する。なお、ここでは、本実施形態では、フィードバック制御として、PI制御がなされるが、これに限定されるものではない。
角速度算出部568では、第3角度センサー413から入力されるパルス信号の周波数に基づいて、第3駆動源403の角速度ωm3が算出され、その角速度ωm3は、加算器608に出力される。
加減算器618には、角速度ωA3、角速度ωA2および角速度ωA3mが入力され、加減算器618は、角速度ωA3から角速度ωA2および角速度ωA3mを減算した値ωA3s(=ωA3−ωA2−ωA3m)を変換部588に出力する。この値ωA3sは、第3アーム14の回転軸O3の回りの角速度の振動成分(振動角速度)に相当する。以下、ωA3sを振動角速度と言う。本実施形態では、この振動角速度ωA3s(詳細には、振動角速度ωA3sに基づいて生成した値であるモーター403Mにおける角速度ωm3s)が後述するゲインKa倍されて第3駆動源403の入力側に戻るフィードバック制御を行う。具体的には、振動角速度ωA3sが可及的に0になるように、第3駆動源403に対してフィードバック制御がなされる。これにより、ロボット1の振動を抑制することができる。なお、このフィードバック制御では、第3駆動源403の角速度が制御される。
補正値算出部598は、角速度ωm3sに予め定められた係数であるゲイン(フィードバックゲイン)Kaを乗算し、補正値(第3補正成分)Ka・ωm3sを求め、その補正値Ka・ωm3sを加算器608に出力する。なお、この第3駆動源制御部203におけるゲインKaと、第1駆動源制御部201におけるゲインKaと、第2駆動源制御部202におけるゲインKaとは、それぞれ、同一でもよく、また、異なっていてもよい。
加算器608には、角速度ωm3が入力され、また、補正値Ka・ωm3sが入力される。加算器608は、角速度ωm3と補正値Ka・ωm3sとの加算値を角速度フィードバック値ωfbとして減算器538に出力する。なお、以降の動作は、第1実施形態と同様である。
そして、このロボット1では、第3アーム14に対しても振動を抑える制御を行うので、より確実に、ロボット1の振動を抑制することができる。
また、第1アーム12と第2アーム13と第3アーム13にそれぞれ慣性センサー31、32、33を設置するとともに、第1アーム12の回動の第1回転軸O1と第2アーム13の回動の第2回転軸O2とを互いに直交させ、且つ第2アーム13の回動の第2回転軸O2と第3アーム14の回動の第3回転軸O3とを互いに平行にしたので、それぞれのアームの角速度が互いに混在しない単純な回転成分として検出できる。よってこれらを用いた演算による制御を行うので、より容易に、精度良く、確実に、ロボット1の振動を抑制することができる。
図14は、本発明のロボットの第3実施形態の主要部を示すブロック図である。
以下、第3実施形態について、前述した第2実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
図14に示すように、第3実施形態のロボット1では、制御装置20の第2駆動源制御部202が第2実施形態と異なっている。以下、第2駆動源制御部202について説明する。
角速度制御部549は、減算器539から入力された偏差と、予め定められた係数である比例ゲイン、積分ゲイン等を用い、積分を含む所定の演算処理を行うことで、その偏差に応じた第2駆動源402の駆動信号(駆動電流)を生成し、モータードライバー302を介してモーター402Mに供給する。なお、ここでは、本実施形態では、フィードバック制御として、PI制御がなされるが、これに限定されるものではない。
このようにして、位置フィードバック値Pfbが位置指令Pcと可及的に等しくなり、かつ、角速度フィードバック値ωfbが角速度指令ωcと可及的に等しくなるように、フィードバック制御がなされ、第2駆動源402の駆動電流が制御される。
角速度算出部569では、第2角度センサー412から入力されるパルス信号の周波数に基づいて、第2駆動源402の角速度ωm2が算出され、その角速度ωm2は、加算器609に出力される。
また、前述した第3慣性センサー33の検出信号、すなわち、第3慣性センサー33により検出された第3アーム14の回転軸O2の回りの角速度ωA3は、加減算器629と加減算器6110に出力される。
補正値算出部599は、角速度ωm2sに予め定められた係数であるゲイン(フィードバックゲイン)Kaを乗算し、補正値(第2補正成分)Ka・ωm2sを求め、その補正値Ka・ωm2sを加算器609に出力する。なお、この第2駆動源制御部202におけるゲインKaと、第1駆動源制御部201におけるゲインKaと、第3駆動源制御部203におけるゲインKaとは、それぞれ、同一でもよく、また、異なっていてもよい。
加算器609には、角速度ωm2が入力され、また、補正値Ka・ωm2sが入力される。加算器609は、角速度ωm2と補正値Ka・ωm2sとの加算値を角速度フィードバック値ωfbとして減算器539に出力する。なお、以降の動作は、第2実施形態と同様である。
そして、このロボット1では、第2アーム13を駆動する第2駆動源402に対して、第2アーム13よりも大きな振動が生じる先端側の第3アーム14に設置されている第3慣性センサー33の検出結果を用いて、振動を抑える制御を行うので、ロボット1の振動を抑制する効果を高めることができる。
図15は、本発明のロボットの第4実施形態を示す概略図である。図16は、図15に示すロボットの主要部のブロック図である。
なお、以下では、説明の都合上、図15中の上側を「上」または「上方」、下側を「下」または「下方」と言う。また、図15中の基台側を「基端」、その反対側を「先端」と言う。また、図15では、回転軸O2、O3は、それぞれ、誇張して図示されている。また、図15では、慣性センサー31、32、33は、それぞれ、その存在を明確にするため、アーム12、13、14の外部に図示されている。
以下、第4実施形態について、前述した第2実施形態および第3実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
図16に示すように、第2駆動源制御部202は、切替部63、64を有している。切替部63は、角速度ωA2と角速度ωA3とのいずれか一方を選択し、加減算器6211に出力するものである。また、切替部64は、角速度ωA3mを加減算器6211に出力する場合と出力しない場合とを切り替えるものである。
これにより、振動を抑制する効果を高めることと、制御の安定性との両立を図ることができる。
角速度算出部5611では、第2角度センサー412から入力されるパルス信号の周波数に基づいて、第2駆動源402の角速度ωm2が算出され、その角速度ωm2は、加算器6011に出力される。
一方、角度θが第1の閾値未満または第2の閾値よりも大きい場合は、加減算器6211に、前記角速度ωA3m、角速度ωA3は、入力されず、前述した第3慣性センサー33の検出信号、すなわち、第3慣性センサー33により検出された第3アーム14の回転軸O2の回りの角速度ωA2が入力される。
補正値算出部5911は、角速度ωm2sに予め定められた係数であるゲイン(フィードバックゲイン)Kaを乗算し、補正値(第2補正成分)Ka・ωm2sを求め、その補正値Ka・ωm2sを加算器6011に出力する。なお、この第2駆動源制御部202におけるゲインKaと、第1駆動源制御部201におけるゲインKaと、第3駆動源制御部203におけるゲインKaとは、それぞれ、同一でもよく、また、異なっていてもよい。
加算器6011には、角速度ωm2が入力され、また、補正値Ka・ωm2sが入力される。加算器6011は、角速度ωm2と補正値Ka・ωm2sとの加算値を角速度フィードバック値ωfbとして減算器5311に出力する。なお、以降の動作は、第2、第3実施形態と同様である。
そして、このロボット1では、第2アーム13の軸線131と第3アーム14の軸線141とのなす角θに応じて適切な制御を行うことができる。
なお、本実施形態では、第3駆動源制御部203の構成は、第2、第3実施形態の第3駆動源制御部203と同様であるが、これに限らず、例えば、第1実施形態の第3駆動源制御部203と同様であってもよい。
また、本発明は、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
また、前記実施形態では、角度センサーとして、エンコーダ、レゾルバー、ポテンショメーター等、モーターのローターの回転角度を検出する他の各種のセンサーを用いることができ、また、タコジェネレーター等、モーターのローターの回転速度を検出する各種のセンサーを用いてもよい。なお、モーターとしてステッピングモーターを用いる場合は、例えば、ステッピングモーターへ入力する駆動パルスの数を計測することで、モーターのローターの回転角度や回転速度を検出してもよい。
また、前記実施形態では、ロボットの回転軸の数は、6つであるが、本発明では、これに限定されず、ロボットの回転軸の数は、2つ、3つ、4つ、5つまたは7つ以上でもよい。
また、前記実施形態では、ロボットは、複数のアームを回動自在に連結してなるアーム連結体を1つ有する単腕ロボットであるが、本発明では、これに限定されず、例えば、図17に示すように、複数のアームを回動自在に連結してなるアーム連結体18を2つ有する双腕ロボット1A等、前記アーム連結体を複数有するロボットであってもよい。
Claims (7)
- 基台と、
前記基台に連結され第1回転軸を軸中心として回動する第1アームと、前記第1回転軸の軸方向と異なる軸方向である第2回転軸を軸中心として回動する第2アームと、前記第2回転軸の軸方向と平行な軸方向である第3回転軸を軸中心として回動する第3アームと、前記第3回転軸の軸方向と異なる軸方向である第4回転軸を軸中心として回動する第4アームと、前記第4回転軸の軸方向と異なる軸方向である第5回転軸を軸中心として回動する第5アームと、前記第5回転軸の軸方向と異なる軸方向である第6回転軸を軸中心として回動する第6アームと、を含むアーム連結体と、
前記第1アーム、前記第2アームおよび前記第3アームのうち少なくとも一つに設けられた慣性センサーと、を備え、
前記アーム連結体は、前記慣性センサーからの出力に基づいて制御され、
前記第6アームには、前記アーム連結体の振動を抑制するための慣性センサーが設けられていない、
ことを特徴とするロボット。 - 前記第1アームを駆動する第1駆動源を備え、
前記慣性センサーは、前記第1アームに設けられた第1慣性センサーを含み、
前記第1駆動源は、前記第1慣性センサーからの出力に基づいて制御される、
ことを特徴とする請求項1に記載のロボット。 - 前記第2アームを駆動する第2駆動源と、
前記慣性センサーは、前記第2アームに設けられた第2慣性センサーを含み、
前記第2駆動源は、前記第2慣性センサーからの出力に基づいて制御される、
ことを特徴とする請求項1または2に記載のロボット。 - 前記第3アームを駆動する第3駆動源と、
前記慣性センサーは、前記第3アームに設けられた第3慣性センサーを含み、
前記第3駆動源は、前記第3慣性センサーからの出力に基づいて制御される、
ことを特徴とする請求項1ないし3のいずれか一項に記載のロボット。 - 前記第1慣性センサーは、前記第1アームの先端部に設けられている、
ことを特徴とする請求項2に記載のロボット。 - 前記第1回転軸は、前記基台の設置面の法線と一致する、
ことを特徴とする請求項1ないし5のいずれか一項に記載のロボット。 - 前記慣性センサーは、ジャイロセンサーである、
ことを特徴とする請求項1ないし6のいずれか一項に記載のロボット。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012191449A JP6111562B2 (ja) | 2012-08-31 | 2012-08-31 | ロボット |
CN201310384644.0A CN103659799B (zh) | 2012-08-31 | 2013-08-29 | 机器人 |
EP13182171.2A EP2703131B1 (en) | 2012-08-31 | 2013-08-29 | Robot |
US14/015,075 US9037293B2 (en) | 2012-08-31 | 2013-08-30 | Robot |
US14/691,013 US9409293B2 (en) | 2012-08-31 | 2015-04-20 | Robot |
US15/206,455 US20160318186A1 (en) | 2012-08-31 | 2016-07-11 | Robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012191449A JP6111562B2 (ja) | 2012-08-31 | 2012-08-31 | ロボット |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2014046401A JP2014046401A (ja) | 2014-03-17 |
JP2014046401A5 JP2014046401A5 (ja) | 2015-08-20 |
JP6111562B2 true JP6111562B2 (ja) | 2017-04-12 |
Family
ID=49054422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012191449A Active JP6111562B2 (ja) | 2012-08-31 | 2012-08-31 | ロボット |
Country Status (4)
Country | Link |
---|---|
US (3) | US9037293B2 (ja) |
EP (1) | EP2703131B1 (ja) |
JP (1) | JP6111562B2 (ja) |
CN (1) | CN103659799B (ja) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016190297A (ja) | 2015-03-31 | 2016-11-10 | セイコーエプソン株式会社 | ロボットシステム |
JP5949911B2 (ja) * | 2012-05-21 | 2016-07-13 | 株式会社安川電機 | ロボット |
JP6332900B2 (ja) | 2012-08-31 | 2018-05-30 | セイコーエプソン株式会社 | ロボットシステム及びロボット制御装置 |
JP6332899B2 (ja) * | 2012-08-31 | 2018-05-30 | セイコーエプソン株式会社 | ロボット |
JP6155780B2 (ja) | 2013-04-10 | 2017-07-05 | セイコーエプソン株式会社 | ロボット、ロボット制御装置およびロボットシステム |
JP2014205199A (ja) | 2013-04-10 | 2014-10-30 | セイコーエプソン株式会社 | ロボット、ロボット制御装置およびロボットシステム |
JP2014205198A (ja) * | 2013-04-10 | 2014-10-30 | セイコーエプソン株式会社 | ロボット、ロボット制御装置およびロボットシステム |
JP2014205197A (ja) | 2013-04-10 | 2014-10-30 | セイコーエプソン株式会社 | ロボット、ロボット制御装置およびロボットシステム |
JP6354122B2 (ja) | 2013-06-05 | 2018-07-11 | セイコーエプソン株式会社 | ロボット |
US9568075B2 (en) | 2013-10-28 | 2017-02-14 | Seiko Epson Corporation | Robot, robot control device, and robot system |
JP6255901B2 (ja) | 2013-10-30 | 2018-01-10 | セイコーエプソン株式会社 | ロボット制御装置、ロボットおよびロボットシステム |
US9868209B2 (en) | 2013-12-02 | 2018-01-16 | Seiko Epson Corporation | Robot |
JP2015182143A (ja) * | 2014-03-20 | 2015-10-22 | セイコーエプソン株式会社 | ロボットおよびロボットシステム |
CN107073707B (zh) | 2014-09-30 | 2021-06-04 | 精工爱普生株式会社 | 机器人 |
JP2016068202A (ja) * | 2014-09-30 | 2016-05-09 | セイコーエプソン株式会社 | ロボット |
JP2016068201A (ja) | 2014-09-30 | 2016-05-09 | セイコーエプソン株式会社 | ロボット |
US9873198B2 (en) * | 2014-10-06 | 2018-01-23 | The Johns Hopkins University | Active vibration damping device |
JP2016190298A (ja) | 2015-03-31 | 2016-11-10 | セイコーエプソン株式会社 | ロボットおよびロボットシステム |
JP6582491B2 (ja) | 2015-03-31 | 2019-10-02 | セイコーエプソン株式会社 | ロボット |
JP6582492B2 (ja) | 2015-03-31 | 2019-10-02 | セイコーエプソン株式会社 | ロボットシステム |
JP6528525B2 (ja) | 2015-04-27 | 2019-06-12 | セイコーエプソン株式会社 | ロボットおよびロボットシステム |
CN106078675A (zh) | 2015-04-28 | 2016-11-09 | 精工爱普生株式会社 | 机器人 |
JP6339534B2 (ja) * | 2015-07-17 | 2018-06-06 | ファナック株式会社 | 最大で二つのワークを把持するハンドを備えたロボットの制御方法およびロボット制御装置 |
JP6575200B2 (ja) | 2015-07-27 | 2019-09-18 | セイコーエプソン株式会社 | ロボット、制御装置およびロボットシステム |
CN107053252B (zh) | 2015-10-30 | 2021-07-16 | 精工爱普生株式会社 | 机器人 |
JP2017087301A (ja) * | 2015-11-02 | 2017-05-25 | セイコーエプソン株式会社 | ロボット、制御装置およびロボットシステム |
JP6686644B2 (ja) | 2016-04-06 | 2020-04-22 | セイコーエプソン株式会社 | ロボットおよびロボットシステム |
CN106003008A (zh) * | 2016-06-15 | 2016-10-12 | 上海未来伙伴机器人有限公司 | 类人机器人智能电机装置 |
JP6925794B2 (ja) * | 2016-09-02 | 2021-08-25 | 株式会社安川電機 | コントローラ、作業制御装置、多軸動作制御装置、及び駆動制御装置 |
CN107351078A (zh) * | 2017-06-20 | 2017-11-17 | 天津市青创空间科技企业孵化器有限公司 | 一种机器人驱动执行机构 |
JP7013766B2 (ja) * | 2017-09-22 | 2022-02-01 | セイコーエプソン株式会社 | ロボット制御装置、ロボットシステム、及び制御方法 |
JP7183601B2 (ja) * | 2018-07-20 | 2022-12-06 | セイコーエプソン株式会社 | ロボットシステムおよびロボットシステムの制御方法 |
JP7181055B2 (ja) * | 2018-11-02 | 2022-11-30 | ファナック株式会社 | ロボット装置 |
KR102597204B1 (ko) * | 2018-12-28 | 2023-11-02 | 카와사키 주코교 카부시키 카이샤 | 로봇 제어 장치, 로봇 시스템 및 로봇 제어 방법 |
DE102020105990A1 (de) | 2020-03-05 | 2021-09-09 | Framatome Gmbh | Erfassungsvorrichtung zum Erfassen einer Position eines beweglichen Objekts |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6020214A (ja) * | 1983-07-15 | 1985-02-01 | Hitachi Ltd | ロボツトのサ−ボ装置 |
US4937759A (en) * | 1986-02-18 | 1990-06-26 | Robotics Research Corporation | Industrial robot with controller |
US5014183A (en) * | 1988-10-31 | 1991-05-07 | Cincinnati Milacron, Inc. | Method and means for path offsets memorization and recall in a manipulator |
US5876325A (en) * | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US5767648A (en) * | 1996-04-19 | 1998-06-16 | Massachusetts Institute Of Technology | Base force/torque sensor apparatus for the precise control of manipulators with joint friction and a method of use thereof |
JP3442941B2 (ja) * | 1996-09-30 | 2003-09-02 | 株式会社東芝 | ロボットの振動抑制制御装置およびその制御方法 |
EP0849053B1 (en) * | 1996-12-16 | 2002-10-02 | Kabushiki Kaisha Sankyo Seiki Seisakusho | Method of controlling force assisting device and control apparatus using the same |
WO2000032360A1 (fr) * | 1998-11-30 | 2000-06-08 | Sony Corporation | Robot et son procede de commande |
JP2001009772A (ja) * | 1999-06-30 | 2001-01-16 | Canon Inc | ロボット装置 |
US6519860B1 (en) * | 2000-10-19 | 2003-02-18 | Sandia Corporation | Position feedback control system |
US6898484B2 (en) * | 2002-05-01 | 2005-05-24 | Dorothy Lemelson | Robotic manufacturing and assembly with relative radio positioning using radio based location determination |
JP2004264060A (ja) * | 2003-02-14 | 2004-09-24 | Akebono Brake Ind Co Ltd | 姿勢の検出装置における誤差補正方法及びそれを利用した動作計測装置 |
CA2522097C (en) * | 2003-04-28 | 2012-09-25 | Stephen James Crampton | Cmm arm with exoskeleton |
KR100507554B1 (ko) * | 2003-05-21 | 2005-08-17 | 한국과학기술연구원 | 병렬형 햅틱 조이스틱 시스템 |
US7411576B2 (en) * | 2003-10-30 | 2008-08-12 | Sensable Technologies, Inc. | Force reflecting haptic interface |
FR2864266B1 (fr) * | 2003-12-19 | 2006-02-17 | Staubli Sa Ets | Procede et dispositif de commande des deplacements d'une partie mobile d'un robot multi-axes |
JP4735795B2 (ja) * | 2003-12-26 | 2011-07-27 | 独立行政法人 宇宙航空研究開発機構 | 冗長マニピュレータの制御方法 |
CA2491101A1 (en) * | 2003-12-30 | 2005-06-30 | Canadian Space Agency | Zero-g emulating testbed for spacecraft control system |
JP3883544B2 (ja) * | 2004-02-27 | 2007-02-21 | 株式会社東芝 | ロボット制御装置およびロボットの制御方法 |
JPWO2006022201A1 (ja) | 2004-08-25 | 2008-05-08 | 株式会社安川電機 | ロボットの評価システム及び評価方法 |
JP5004020B2 (ja) * | 2005-09-27 | 2012-08-22 | 株式会社安川電機 | 多関節マニピュレータおよびロボットシステム |
JP2007168053A (ja) * | 2005-12-26 | 2007-07-05 | Denso Wave Inc | 垂直多関節型ロボットのティーチング方法および産業用ロボット装置 |
EP1815949A1 (en) * | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Medical robotic system with manipulator arm of the cylindrical coordinate type |
US20100243344A1 (en) * | 2006-09-25 | 2010-09-30 | Board Of Trustees Of Leland Stanford Junior University | Electromechanically counterbalanced humanoid robotic system |
EP1915963A1 (en) * | 2006-10-25 | 2008-04-30 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Force estimation for a minimally invasive robotic surgery system |
US7979160B2 (en) * | 2007-07-31 | 2011-07-12 | Spirit Aerosystems, Inc. | System and method for robotic accuracy improvement |
US8669938B2 (en) * | 2007-11-20 | 2014-03-11 | Naturalpoint, Inc. | Approach for offset motion-based control of a computer |
JP4552037B2 (ja) * | 2007-12-10 | 2010-09-29 | 本田技研工業株式会社 | ロボット |
JP5213023B2 (ja) * | 2008-01-15 | 2013-06-19 | 本田技研工業株式会社 | ロボット |
CN102202613A (zh) * | 2008-09-04 | 2011-09-28 | Iwalk股份有限公司 | 混合型地形自适应下肢系统 |
US20110082566A1 (en) * | 2008-09-04 | 2011-04-07 | Herr Hugh M | Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis |
US8450637B2 (en) * | 2008-10-23 | 2013-05-28 | Baker Hughes Incorporated | Apparatus for automated application of hardfacing material to drill bits |
US8428781B2 (en) * | 2008-11-17 | 2013-04-23 | Energid Technologies, Inc. | Systems and methods of coordination control for robot manipulation |
JP4568795B2 (ja) * | 2009-01-09 | 2010-10-27 | パナソニック株式会社 | ロボットアームの制御装置及び制御方法、ロボット、ロボットアームの制御プログラム、並びに、集積電子回路 |
CN101525944B (zh) * | 2009-03-31 | 2011-09-21 | 北京易斯路电子有限公司 | 混凝土泵车智能臂架控制系统及其控制方法 |
EP2243585B1 (de) * | 2009-04-22 | 2018-08-08 | KUKA Deutschland GmbH | Verfahren und Vorrichtung zur Steuerung einer Positioniervorrichtung zum Schweißen |
DE102009019633B4 (de) * | 2009-04-30 | 2011-02-24 | Kuka Roboter Gmbh | Bewegung eines Menschen durch einen Manipulator |
JP5436930B2 (ja) * | 2009-05-20 | 2014-03-05 | 東芝機械株式会社 | S字加減速軌道生成方法および多関節型ロボットシステム |
JP5331614B2 (ja) | 2009-08-24 | 2013-10-30 | 川崎重工業株式会社 | 自動作業システムにおけるロボットの診断方法及び診断プログラム |
US8768580B2 (en) * | 2009-10-19 | 2014-07-01 | Hitachi Construction Machinery Co., Ltd. | Operation machine |
US20110190933A1 (en) * | 2010-01-29 | 2011-08-04 | Andrew Shein | Robotic Vehicle |
JP5652042B2 (ja) * | 2010-08-06 | 2015-01-14 | セイコーエプソン株式会社 | ロボット装置、ロボット装置の制御方法およびプログラム |
US8965571B2 (en) * | 2010-08-12 | 2015-02-24 | Construction Robotics, Llc | Brick laying system |
JP5682314B2 (ja) * | 2011-01-06 | 2015-03-11 | セイコーエプソン株式会社 | ロボット |
WO2012101955A1 (ja) * | 2011-01-27 | 2012-08-02 | パナソニック株式会社 | ロボットアームの制御装置及び制御方法、ロボット、ロボットアーム制御プログラム、並びに、集積電子回路 |
JP5821210B2 (ja) | 2011-02-22 | 2015-11-24 | セイコーエプソン株式会社 | 水平多関節ロボット及び水平多関節ロボットの制御方法 |
JP5817142B2 (ja) | 2011-02-22 | 2015-11-18 | セイコーエプソン株式会社 | 水平多関節ロボット |
US8977388B2 (en) * | 2011-04-29 | 2015-03-10 | Sarcos Lc | Platform perturbation compensation |
JP2013066954A (ja) * | 2011-09-21 | 2013-04-18 | Seiko Epson Corp | ロボット及びロボットの制御方法 |
KR20130049610A (ko) * | 2011-11-04 | 2013-05-14 | 삼성전자주식회사 | 이동 기기 및 보행 로봇 |
US8805584B2 (en) * | 2011-11-22 | 2014-08-12 | Disney Enterprises, Inc | Kinematic and dynamic calibration methods for legged robots with force-controlled joints |
JP6083145B2 (ja) * | 2012-07-31 | 2017-02-22 | セイコーエプソン株式会社 | ロボットの制御装置、およびロボット |
JP6111563B2 (ja) * | 2012-08-31 | 2017-04-12 | セイコーエプソン株式会社 | ロボット |
JP6332899B2 (ja) * | 2012-08-31 | 2018-05-30 | セイコーエプソン株式会社 | ロボット |
JP6008121B2 (ja) * | 2013-01-28 | 2016-10-19 | セイコーエプソン株式会社 | ロボットおよびロボット制御装置 |
-
2012
- 2012-08-31 JP JP2012191449A patent/JP6111562B2/ja active Active
-
2013
- 2013-08-29 EP EP13182171.2A patent/EP2703131B1/en active Active
- 2013-08-29 CN CN201310384644.0A patent/CN103659799B/zh active Active
- 2013-08-30 US US14/015,075 patent/US9037293B2/en active Active
-
2015
- 2015-04-20 US US14/691,013 patent/US9409293B2/en active Active
-
2016
- 2016-07-11 US US15/206,455 patent/US20160318186A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP2703131A2 (en) | 2014-03-05 |
CN103659799A (zh) | 2014-03-26 |
US9409293B2 (en) | 2016-08-09 |
EP2703131B1 (en) | 2020-07-01 |
US9037293B2 (en) | 2015-05-19 |
US20160318186A1 (en) | 2016-11-03 |
JP2014046401A (ja) | 2014-03-17 |
US20140067120A1 (en) | 2014-03-06 |
EP2703131A3 (en) | 2015-08-12 |
US20150224644A1 (en) | 2015-08-13 |
CN103659799B (zh) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6111562B2 (ja) | ロボット | |
JP6332899B2 (ja) | ロボット | |
JP5962340B2 (ja) | ロボット | |
US11090805B2 (en) | Robot | |
JP6332900B2 (ja) | ロボットシステム及びロボット制御装置 | |
JP6008121B2 (ja) | ロボットおよびロボット制御装置 | |
JP6155780B2 (ja) | ロボット、ロボット制御装置およびロボットシステム | |
JP6575200B2 (ja) | ロボット、制御装置およびロボットシステム | |
JP2014205198A (ja) | ロボット、ロボット制御装置およびロボットシステム | |
JP2014205199A (ja) | ロボット、ロボット制御装置およびロボットシステム | |
JP2015182143A (ja) | ロボットおよびロボットシステム | |
JP2014205197A (ja) | ロボット、ロボット制御装置およびロボットシステム | |
JP2014050935A (ja) | ロボット制御装置、ロボットおよびロボットシステム | |
JP2014124734A (ja) | ロボットおよび動作軌道制御システム | |
JP6036476B2 (ja) | ロボット | |
JP2017056558A (ja) | ロボット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150706 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160606 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20160610 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20160624 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161227 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6111562 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |