JP6094797B2 - リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池 - Google Patents
リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池 Download PDFInfo
- Publication number
- JP6094797B2 JP6094797B2 JP2012282964A JP2012282964A JP6094797B2 JP 6094797 B2 JP6094797 B2 JP 6094797B2 JP 2012282964 A JP2012282964 A JP 2012282964A JP 2012282964 A JP2012282964 A JP 2012282964A JP 6094797 B2 JP6094797 B2 JP 6094797B2
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- positive electrode
- lithium
- active material
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/14—Pore volume
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
(1)組成式Li1+αMe1−αO2(MeはCo、Ni及びMnを含む遷移金属元素、1.2<(1+α)/(1−α)<1.6)で表されるリチウム遷移金属複合酸化物(但し、ホウ素を0.110質量%含有するものを除く。)を含有するリチウム二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、前記Me中のCoのモル比Co/Meが0.24〜0.36であり、エックス線回折パターンを元に空間群R3−mを結晶構造モデルに用いたときに(003)面に帰属される回折ピークの半値幅が0.204°〜0.303°の範囲であることを特徴とするリチウム二次電池用正極活物質。
(2)前記リチウム遷移金属複合酸化物が、組成式Li1+αMe1−αO2(MeはCo、Ni及びMnを含む遷移金属元素、1.25≦(1+α)/(1−α)≦1.5)で表されることを特徴とする前記(1)のリチウム二次電池用正極活物質。
(3)前記リチウム遷移金属複合酸化物は、800〜850℃で焼成されたものであることを特徴とする前記(1)又は(2)のリチウム二次電池用正極活物質。
(4)前記(3)のリチウム二次電池用正極活物質の製造方法であって、Co、Ni及びMnを含む遷移金属の炭酸塩前駆体にLi化合物を混合し、800〜850℃で焼成して前記リチウム遷移金属複合酸化物を製造することを特徴とするリチウム二次電池用正極活
物質の製造方法。
(5)前記(1)〜(3)のいずれか1項のリチウム二次電池用正極活物質を含有するリチウム二次電池用電極。
(6)前記(5)のリチウム二次電池用電極を備えたリチウム二次電池。
また、タップ密度は、高率放電性能が優れたリチウム二次電池を得るために、1.25g/cc以上が好ましく、1.7g/cc以上がより好ましい。
本発明のリチウム二次電池用活物質は、基本的に、活物質を構成する金属元素(Li,Mn,Co,Ni)を目的とする活物質(酸化物)の組成通りに含有する原料を調整し、これを焼成することによって得ることができる。但し、Li原料の量については、焼成中にLi原料の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。
目的とする組成の酸化物を作製するにあたり、Li,Co,Ni,Mnのそれぞれの塩を混合・焼成するいわゆる「固相法」や、あらかじめCo,Ni,Mnを一粒子中に存在させた共沈前駆体を作製しておき、これにLi塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはCo,Niに対して均一に固溶しにくいため、各元素が一粒子中に均一に分布した試料を得ることは困難である。これまで文献などにおいては固相法によってNiやCoの一部にMnを固溶(LiNi1−xMnxO2など)しようという試みが多数なされているが、「共沈法」を選択する方が原子レベルで均一相を得ることが容易である。そこで、後述する実施例においては、「共沈法」を採用した。
100℃乾燥品の色相は、標準色F05−20Bと比べて、赤色方向に標準色F05−40Dに至る範囲内にあり、また、標準色FN−10と比べて、白色方向に標準色FN−25に至る範囲内にあることがわかった。中でも、標準色F05−20Bが呈する色相との色差が最も小さいものと認められた。
一方、80℃乾燥品の色相は、標準色F19−50Fと比べて、白色方向に標準色F19−70Fに至る範囲内にあり、また、標準色F09−80Dと比べて、黒色方向に標準色F09−60Hに至る範囲内にあることがわかった。中でも、標準色F19−50Fが呈する色相との色差が最も小さいものと認められた。
以上の知見から、炭酸塩前駆体の色相は、標準色F05−20Bに比べて、dL,da及びdbの全てにおいて+方向であるものが好ましく、dLが+5以上、daが+2以上、dbが+5以上であることがより好ましいといえる。
焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って崩壊すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O2型に規定される相が、固溶相としてではなく、分相して観察される傾向がある。このような分相が多く含まれすぎると、活物質の可逆容量の減少を導くので好ましくない。このような材料では、X線回折図上35°付近及び45°付近に不純物ピークが観察される。従って、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが好ましい。活物質の酸素放出温度は、本発明に係る組成範囲においては、概ね1000℃以上であるが、活物質の組成によって酸素放出温度に若干の差があるので、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、共沈前駆体とリチウム化合物を混合したものを熱重量分析(DTA−TG測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を痛めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱重量分析に供するのが良い。
また、発明者らは、本発明活物質の回折ピークの半値幅を詳細に解析することで750℃までの温度で合成した試料においては格子内にひずみが残存しており、それ以上の温度で合成することでほとんどひずみを除去することができることを確認した。また、結晶子のサイズは合成温度が上昇するに比例して大きくなるものであった。よって、本発明活物質の組成においても、系内に格子のひずみがほとんどなく、かつ結晶子サイズが十分成長した粒子を志向することで良好な放電容量を得られるものであった。具体的には、格子定数に及ぼすひずみ量が2%以下、かつ結晶子サイズが50nm以上に成長しているような合成温度(焼成温度)及びLi/Me比組成を採用することが好ましいことがわかった。これらを電極として成型して充放電をおこなうことで膨張収縮による変化も見られるが、充放電過程においても結晶子サイズは30nm以上を保っていることが得られる効果として好ましい。
したがって、高率放電性能を向上させるために、1.2<モル比Li/Me<1.6、モル比Co/Me0.24〜0.36の本発明に係るリチウム遷移金属複合酸化物を正極活物質とする場合、焼成温度は800〜850℃とすることが好ましい。
硫酸コバルト7水和物13.49g、硫酸ニッケル6水和物10.51g及び硫酸マンガン5水和物27.00gを秤量し、これらの全量をイオン交換水100mlに溶解させ、Co:Ni:Mnのモル比が24:20:56となる2.0Mの硫酸塩水溶液を作製した。一方、2Lの反応槽に750mlのイオン交換水を注ぎ、CO2ガスを30minバブリングさせることにより、イオン交換水中にCO2を溶解させた。反応槽の温度を50℃(±2℃)に設定し、攪拌モーターを備えたパドル翼を用いて反応槽内を700rpmの回転速度で攪拌しながら、前記硫酸塩水溶液を3ml/minの速度で滴下した。ここで、滴下の開始から終了までの間、2.0Mの炭酸ナトリウム、および0.4Mのアンモニアを含有する水溶液を適宜滴下することにより、反応槽中のpHが常に7.9(±0.05)を保つように制御した。滴下終了後、反応槽内の攪拌をさらに3h継続した。攪拌の停止後、12h以上静置した。
次に、吸引ろ過装置を用いて、反応槽内に生成した共沈炭酸塩の粒子を分離し、さらにイオン交換水を用いて200mlによる洗浄を1回としたときに、5回の洗浄を行う条件で粒子に付着しているナトリウムイオンを洗浄除去し、電気炉を用いて、空気雰囲気中、常圧下、80℃にて20h乾燥させた。その後、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、共沈炭酸塩前駆体を作製した。
内部寸法は、縦10cm、幅20cm、奥行き30cmであり、幅方向20cm間隔に電熱線が入っている。焼成後、ヒーターのスイッチを切り、アルミナ製ボートを炉内に置いたまま自然放冷した。この結果、炉の温度は5時間後には約200℃程度にまで低下するが、その後の降温速度はやや緩やかである。一昼夜経過後、炉の温度が100℃以下となっていることを確認してから、ペレットを取り出し、粒径を揃えるために、瑪瑙製自動乳鉢で数分間粉砕した。このようにして、実施例1に係るリチウム遷移金属複合酸化物Li1.13Co0.21Ni0.17Mn0.49O2を作製した。ICP測定の結果より、含まれるNa量は2100ppmであった。
共沈炭酸塩前駆体を作製する場合のCo/Me比:0.24、Ni/Me比:0.20、Mn/Me比:0.56を、表1の実施例2〜8に記載されているように変更した他は、実施例1と同様にして、実施例2〜8に係るリチウム遷移金属複合酸化物を作製した。
実施例2に係るリチウム遷移金属複合酸化物において、BET比表面積は3.0m2/g、タップ密度は1.7g/ccであった。また、微分細孔容積が最大値を示す細孔径が30〜40nmの範囲であり、ピーク微分細孔容積は1.35mm3/(g・nm)であった。また、ICP測定の結果より、含まれるNa量は2100ppmであった。また、SEM観察の結果、2次粒子を構成する1次粒子の大きさは0.3μm以下であった。
焼成温度を850℃から800℃に変更した他は、実施例2と同様にして、実施例9に係るリチウム遷移金属複合酸化物を作製した。
前記共沈炭酸塩前駆体0.938gに、炭酸リチウム2.302gを加え、よく混合し、Li:(Co,Ni,Mn)のモル比が125:100である混合粉体を調製した他は、実施例2と同様にして、実施例10に係るリチウム遷移金属複合酸化物を作製した。
前記共沈炭酸塩前駆体1.016gに、炭酸リチウム2.227gを加え、よく混合し、Li:(Co,Ni,Mn)のモル比が140:100である混合粉体を調製し、この混合粉体を成型したペレットの焼成温度を850℃から800℃に変更した他は、実施例2と同様にして、実施例11に係るリチウム遷移金属複合酸化物を作製した。
前記共沈炭酸塩前駆体1.041gに、炭酸リチウム2.203gを加え、よく混合し、Li:(Co,Ni,Mn)のモル比が145:100である混合粉体を調製し、この混合粉体を成型したペレットの焼成温度を850℃から800℃に変更した他は、実施例2と同様にして、実施例12に係るリチウム遷移金属複合酸化物を作製した。
前記共沈炭酸塩前駆体1.065gに、炭酸リチウム2.179gを加え、よく混合し、Li:(Co,Ni,Mn)のモル比が150:100である混合粉体を調製し、この混合粉体を成型したペレットの焼成温度を850℃から800℃に変更した他は、実施例2と同様にして、実施例13に係るリチウム遷移金属複合酸化物を作製した。
共沈炭酸塩前駆体を作製する場合のCo/Me比:0.24、Ni/Me比:0.20、Mn/Me比:0.56を、表1の比較例1〜8に記載されているように変更した他は、実施例1と同様にして、比較例1〜8に係るリチウム遷移金属複合酸化物を作製した。
焼成温度を850℃から750℃に変更した他は、実施例2と同様にして、比較例9に係るリチウム遷移金属複合酸化物を作製した。
焼成温度を850℃から900℃に変更した他は、実施例2と同様にして、比較例10に係るリチウム遷移金属複合酸化物を作製した。
リチウム遷移金属複合酸化物の代わりに、固相法による従来のLiCoO2を準備した。
Co/Me比:0.67、Ni/Me比:0.17、Mn/Me比:0.17に変更し、pHを11.5に変更して共沈水酸化物前駆体を作製したこと、共沈水酸化物前駆体に水酸化リチウムを加え、Li:(Co,Ni,Mn)のモル比が1:1である混合粉体を調製し、900℃で焼成した他は、実施例1と同様にして、比較例12に係るリチウム遷移金属複合酸化物Li(Co2/3Ni1/6Mn1/6)O2を作製した。
組成をLi(Co2/3Ni1/6Mn1/6)O2の代わりに、Li(Co1/3Ni1/3Mn1/3)O2に変更した他は、比較例12と同様にして、比較例13に係るリチウム遷移金属複合酸化物を作製した。
組成をLi(Co2/3Ni1/6Mn1/6)O2の代わりに、Li(Ni1/2Mn1/2)O2に変更した他は、比較例12と同様にして、比較例14に係るリチウム遷移金属複合酸化物を作製した。
実施例1〜13及び比較例1〜14に係るリチウム遷移金属複合酸化物は、次の条件及び手順に沿って半値幅の測定を行った。
エックス線回折装置(Rigaku社製、型名:MiniFlex II)を用いて粉末エックス線回折測定を行った。線源はCuKα、加速電圧及び電流はそれぞれ30kV及び15mAとした。得られたエックス線回折データについて、前記エックス線回折装置の付属ソフトである「PDXL」を用いて、エックス線回折図上2θ=18.6°±1°及び2θ=44.1°±1°に存在する回折ピークについて半値幅を決定した。
実施例2に係るリチウム遷移金属複合酸化物は、ユアサアイオニクス社製比表面積測定装置(商品名:MONOSORB)を用いて、一点法により、活物質に対する窒素吸着量[m2]を求めた。得られた吸着量(m2)を活物質質量(g)で除した値をBET比表面積とした。測定に当たって、液体窒素を用いた冷却によるガス吸着を行った。また、冷却前に120℃15minの予備加熱を行った。また、測定試料の投入量は、0.5g±0.01gとした。
実施例2に係るリチウム遷移金属複合酸化物は、REI ELECTRIC CO.LTD.社製のタッピング装置(1968年製)を用いて、300回カウント後の活物質の体積を質量で除した値をタップ密度とした。測定においては、10−2dm3のメスシリンダーに活物質を2g±0.2g投入することで行った。
実施例2に係るリチウム遷移金属複合酸化物は、次の条件及び手順に沿って細孔容積分布測定を行った。細孔容積分布の測定には、Quantachrome社製の「autosorb iQ」及び制御・解析ソフト「ASiQwin」を用いた。測定対象の試料であるリチウム遷移金属複合酸化物1.00gを測定用のサンプル管に入れ、120℃にて12h真空乾燥することで、測定試料中の水分を十分に除去した。次に、液体窒素を用いた窒素ガス吸着法により、相対圧力P/P0(P0=約770mmHg)が0から1の範囲内で吸着側および脱離側の等温線を測定した。そして、脱離側の等温線を用いてBJH法により計算することにより細孔分布を評価した。
実施例1〜13及び比較例1〜10に係るリチウム遷移金属複合酸化物は、次の条件及び手順に沿って粒度分布の測定を行った。測定装置には日機装社製Microtrac(型番:MT3000)を用いた。前記測定装置は、光学台、試料供給部及び制御ソフトを搭載したコンピューターを備えており、光学台にはレーザー光透過窓を有する湿式セルが設置される。測定原理は、測定対象試料が分散溶媒中に分散している分散液が循環している湿式セルにレーザー光を照射し、測定試料からの散乱光分布を粒度分布に変換する方式である。前記分散液は試料供給部に蓄えられ、ポンプによって湿式セルに循環供給される。前記試料供給部は、常に超音波振動が加えられている。今回の測定では、分散溶媒として水を用いた。又、測定制御ソフトにはMicrotrac DHS for Win98(MT3000)を使用した。前記測定装置に設定入力する「物質情報」については、溶媒の「屈折率」として1.33を設定し、「透明度」として「透過(TRANSPARENT)」を選択し、「球形粒子」として「非球形」を選択した。試料の測定に先立ち、「Set Zero」操作を行う。「Set zero」操作は、粒子からの散乱光以外の外乱要素(ガラス、ガラス壁面の汚れ、ガラス凹凸など)が後の測定に与える影響を差し引くための操作であり、試料供給部に分散溶媒である水のみを入れ、湿式セルに分散溶媒である水のみが循環している状態でバックグラウンド操作を行い、バックグラウンドデータをコンピューターに記憶させる。続いて「Sample LD (Sample Loading)」操作を行う。Sample LD操作は、測定時に湿式セルに循環供給される分散液中の試料濃度を最適化するための操作であり、測定制御ソフトの指示に従って試料供給部に測定対象試料を手動で最適量に達するまで投入する操作である。続いて、「測定」ボタンを押すことで測定操作が行われる。前記測定操作を2回繰り返し、その平均値として測定結果がコンピューターから出力される。測定結果は、粒度分布ヒストグラム、並びに、D10、D50及びD90の各値(D10、D50及びD90は、二次粒子の粒度分布における累積体積がそれぞれ10%、50%及び90%となる粒度)として取得される。リチウム遷移金属複合酸化物の測定されたD50の値は8μmであった。
実施例1〜13及び比較例1〜10に係るリチウム遷移金属複合酸化物について、その一部をカーボンテープに付着させ、走査型電子顕微鏡(SEM)観察に供するため、Ptスパッタリング処理を行った。
SEM観察により2次粒子を十分拡大させた状態で、2次粒子を構成する1次粒子の大きさについて表示スケールから判断した。測定結果は、実施例1〜13及び比較例1〜9において、すべて0.3μm以下であったのに対し、比較例10においては0.5μm以上に成長していた。
実施例1〜13及び比較例1〜14に係るリチウム遷移金属複合酸化物をそれぞれリチウム二次電池用正極活物質として用いて、以下の手順でリチウム二次電池を作製し、電池特性を評価した。
次に、充電電圧を変更して、1サイクルの充放電試験を行った。電圧制御は全て正極電位に対して行った。この充放電試験の条件は、充電電圧を4.3Vとしたことを除いては、前記初期充放電工程の条件と同一である。このときの放電電気量を「放電容量(0.1C)mAh/g」として記録した。
続いて、充電電圧を4.3Vとして電流0.1CmAでの充電を行い、30分の休止後、1CmAでの放電を終止電圧2.0Vとしておこなった。このときに得られた放電容量の、前記0.1CmA時に得られた「放電容量(mAh/g)」に対する百分率を「高率放電性能(1C/0.1C)」として記録した。
これに対して、Co/Me比が0.24より小さいか、又は0.36より大きく、850℃で焼成されたリチウム遷移金属複合酸化物(Li/Me比は1.3)を含有する正極活物質を用いた場合には、比較例1〜8に示されるように、リチウム二次電池の高率放電性能は低下する。
Claims (6)
- 組成式Li1+αMe1−αO2(MeはCo、Ni及びMnを含む遷移金属元素、1.2<(1+α)/(1−α)<1.6)で表されるリチウム遷移金属複合酸化物(但し、ホウ素を0.110質量%含有するものを除く。)を含有するリチウム二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、前記Me中のCoのモル比Co/Meが0.24〜0.36であり、エックス線回折パターンを元に空間群R3−mを結晶構造モデルに用いたときに(003)面に帰属される回折ピークの半値幅が0.204°〜0.303°の範囲であることを特徴とするリチウム二次電池用正極活物質。
- 請求項1記載の非水電解質二次電池用正極活物質を用いた非水電解質二次電池用正極。
- 請求項2記載の非水電解質二次電池用正極を備えた非水電解質二次電池。
- 請求項3に記載のリチウム二次電池用正極活物質の製造方法であって、Co、Ni及びMnを含む遷移金属の炭酸塩前駆体にLi化合物を混合し、800〜850℃で焼成して前記リチウム遷移金属複合酸化物を製造することを特徴とするリチウム二次電池用正極活物質の製造方法。
- 請求項1〜3のいずれか1項に記載のリチウム二次電池用正極活物質を含有するリチウム二次電池用電極。
- 請求項5に記載のリチウム二次電池用電極を備えたリチウム二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012282964A JP6094797B2 (ja) | 2012-08-03 | 2012-12-26 | リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池 |
US13/792,372 US20140038053A1 (en) | 2012-08-03 | 2013-03-11 | Positive active material for lithium secondary battery, manufacturing method thereof, lithium secondary battery electrode, and lithium secondary battery |
EP13158728.9A EP2692693B1 (en) | 2012-08-03 | 2013-03-12 | Positive active material for lithium secondary battery, manufacturing method thereof, lithium secondary battery electrode, and lithium secondary battery |
KR1020130030217A KR101998644B1 (ko) | 2012-08-03 | 2013-03-21 | 리튬 2차 전지용 양극 활물질, 그 제조 방법, 리튬 2차 전지용 전극, 및 리튬 2차 전지 |
CN201310147636.4A CN103579606B (zh) | 2012-08-03 | 2013-04-25 | 锂二次电池用正极活性物质、其制造方法、锂二次电池用电极及锂二次电池 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012172535 | 2012-08-03 | ||
JP2012172535 | 2012-08-03 | ||
JP2012282964A JP6094797B2 (ja) | 2012-08-03 | 2012-12-26 | リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2014044928A JP2014044928A (ja) | 2014-03-13 |
JP2014044928A5 JP2014044928A5 (ja) | 2014-08-14 |
JP6094797B2 true JP6094797B2 (ja) | 2017-03-15 |
Family
ID=47845831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012282964A Active JP6094797B2 (ja) | 2012-08-03 | 2012-12-26 | リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140038053A1 (ja) |
EP (1) | EP2692693B1 (ja) |
JP (1) | JP6094797B2 (ja) |
KR (1) | KR101998644B1 (ja) |
CN (1) | CN103579606B (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021153936A1 (ko) * | 2020-01-29 | 2021-08-05 | 주식회사 엘지에너지솔루션 | 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103765639B (zh) * | 2011-12-09 | 2016-03-02 | 株式会社杰士汤浅国际 | 非水电解质二次电池用活性物质、非水电解质二次电池用活性物质的制造方法、非水电解质二次电池用电极、及非水电解质二次电池 |
JP6090661B2 (ja) * | 2012-06-20 | 2017-03-08 | 株式会社Gsユアサ | リチウム二次電池用正極活物質、その正極活物質の前駆体、リチウム二次電池用電極、リチウム二次電池 |
JP6090662B2 (ja) * | 2012-06-29 | 2017-03-08 | 株式会社Gsユアサ | リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池 |
JP6131760B2 (ja) * | 2012-08-03 | 2017-05-24 | 株式会社Gsユアサ | リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池 |
WO2014126061A1 (ja) * | 2013-02-14 | 2014-08-21 | 旭硝子株式会社 | 炭酸塩化合物および正極活物質の製造方法 |
JP6471693B2 (ja) | 2013-12-02 | 2019-02-20 | 株式会社Gsユアサ | リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池 |
EP3208872B1 (en) * | 2014-10-15 | 2020-04-22 | Sumitomo Chemical Company, Ltd. | Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery |
US9887415B2 (en) | 2014-12-12 | 2018-02-06 | Pellion Technologies, Inc. | Electrochemical cell and method of making the same |
US10693183B2 (en) * | 2015-04-09 | 2020-06-23 | Battelle Memorial Institute | Ether-based electrolyte for Na-ion battery anode |
JP6583662B2 (ja) * | 2015-05-21 | 2019-10-02 | 株式会社Gsユアサ | 非水電解質二次電池用正極活物質及び非水電解質二次電池 |
JP6825559B2 (ja) | 2015-05-28 | 2021-02-03 | 株式会社Gsユアサ | 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用電極及び非水電解質二次電池 |
JP6692632B2 (ja) * | 2015-11-30 | 2020-05-13 | 住友化学株式会社 | 正極活物質の製造方法 |
JP6737586B2 (ja) * | 2015-11-30 | 2020-08-12 | トヨタ自動車株式会社 | 正極活物質とそれを用いたリチウムイオン二次電池 |
WO2017104688A1 (ja) | 2015-12-15 | 2017-06-22 | 株式会社Gsユアサ | リチウム二次電池用正極活物質、正極活物質の前駆体の製造方法、正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池 |
US10693136B2 (en) * | 2016-07-11 | 2020-06-23 | Ecopro Bm Co., Ltd. | Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same |
FI3486980T3 (fi) * | 2016-07-13 | 2023-12-14 | Gs Yuasa Int Ltd | Positiivinen aktiivimateriaali sekundääristä litiumakkua varten, menetelmä sen tuottamiseksi ja sekundäärinen litiumakku |
US11152616B2 (en) | 2016-07-14 | 2021-10-19 | Gs Yuasa International Ltd. | Lithium transition metal composite oxide, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing lithium transition metal composite oxide, positive active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and energy storage apparatus |
US10903490B2 (en) * | 2016-08-02 | 2021-01-26 | Ecopro Bm Co., Ltd. | Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same |
EP3497738A4 (en) * | 2016-08-12 | 2020-05-06 | Viking Power Systems Pte. Ltd. | ELECTROLYTE CONTAINING ADDITIVE FOR HIGH-ENERGY RECHARGEABLE METAL ANODE BATTERIES |
WO2018105539A1 (ja) * | 2016-12-08 | 2018-06-14 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用負極及び非水電解質二次電池 |
US11545662B2 (en) | 2017-12-15 | 2023-01-03 | Gs Yuasa International Ltd. | Positive active material for nonaqueous electrolyte secondary battery, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
EP3757065A4 (en) * | 2018-02-22 | 2021-11-17 | Sumitomo Metal Mining Co., Ltd. | HYDROXIDE COMPOSITE OF METAL AND ITS PRODUCTION PROCESS, ACTIVE SUBSTANCE OF POSITIVE ELECTRODE FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND ITS MANUFACTURING PROCESS, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY |
JP6523508B1 (ja) | 2018-03-30 | 2019-06-05 | 住友化学株式会社 | リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池、及びリチウム複合金属化合物の製造方法 |
KR102123274B1 (ko) * | 2018-04-25 | 2020-06-17 | 주식회사 에코프로비엠 | 리튬 복합 산화물 |
CN111525120B (zh) * | 2019-02-02 | 2021-11-16 | 中国科学院物理研究所 | 一种含有Mg、Cu、Mn的氧化物材料及其制备方法和应用 |
JP6630864B1 (ja) * | 2019-04-12 | 2020-01-15 | 住友化学株式会社 | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、及びリチウム金属複合酸化物粉末の製造方法 |
KR20210097528A (ko) * | 2020-01-30 | 2021-08-09 | 주식회사 엘지화학 | 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질 |
JP6851529B2 (ja) * | 2020-04-14 | 2021-03-31 | 住友化学株式会社 | 遷移金属含有水酸化物 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3204358B2 (ja) * | 1995-02-13 | 2001-09-04 | 日本電池株式会社 | 非水電解液二次電池 |
US6680143B2 (en) | 2000-06-22 | 2004-01-20 | The University Of Chicago | Lithium metal oxide electrodes for lithium cells and batteries |
US6677082B2 (en) | 2000-06-22 | 2004-01-13 | The University Of Chicago | Lithium metal oxide electrodes for lithium cells and batteries |
JP4216669B2 (ja) * | 2003-08-07 | 2009-01-28 | 日鉱金属株式会社 | リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池 |
JP4877660B2 (ja) | 2008-09-30 | 2012-02-15 | 株式会社Gsユアサ | リチウム二次電池用活物質、その製造方法及びリチウム二次電池 |
KR100993010B1 (ko) | 2008-06-26 | 2010-11-09 | 한국과학기술연구원 | 저온소성용 저유전율 유전체 세라믹 조성물 |
WO2011040383A1 (ja) * | 2009-09-30 | 2011-04-07 | 戸田工業株式会社 | 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池 |
WO2011071094A1 (ja) * | 2009-12-07 | 2011-06-16 | 住友化学株式会社 | リチウム複合金属酸化物の製造方法、リチウム複合金属酸化物および非水電解質二次電池 |
JP5742192B2 (ja) * | 2009-12-07 | 2015-07-01 | 住友化学株式会社 | リチウム複合金属酸化物の製造方法 |
KR101858763B1 (ko) * | 2010-04-01 | 2018-05-16 | 미쯔비시 케미컬 주식회사 | 리튬 이차 전지용 정극 재료 및 그 제조 방법, 그리고 리튬 이차 전지용 정극 및 리튬 이차 전지 |
WO2012039413A1 (ja) * | 2010-09-22 | 2012-03-29 | 株式会社Gsユアサ | リチウム二次電池用活物質、リチウム二次電池用電極及びリチウム二次電池 |
EP2660907B1 (en) | 2010-12-27 | 2018-09-26 | GS Yuasa International Ltd. | Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor |
CN102332578A (zh) * | 2011-09-21 | 2012-01-25 | 广东达之邦新能源技术有限公司 | 一种高容量锂离子电池正极材料及其制备方法 |
-
2012
- 2012-12-26 JP JP2012282964A patent/JP6094797B2/ja active Active
-
2013
- 2013-03-11 US US13/792,372 patent/US20140038053A1/en not_active Abandoned
- 2013-03-12 EP EP13158728.9A patent/EP2692693B1/en active Active
- 2013-03-21 KR KR1020130030217A patent/KR101998644B1/ko active IP Right Grant
- 2013-04-25 CN CN201310147636.4A patent/CN103579606B/zh active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021153936A1 (ko) * | 2020-01-29 | 2021-08-05 | 주식회사 엘지에너지솔루션 | 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 |
CN115004414A (zh) * | 2020-01-29 | 2022-09-02 | 株式会社Lg新能源 | 二次电池用正极活性材料及包含其的锂二次电池 |
Also Published As
Publication number | Publication date |
---|---|
US20140038053A1 (en) | 2014-02-06 |
EP2692693B1 (en) | 2018-07-04 |
EP2692693A1 (en) | 2014-02-05 |
KR101998644B1 (ko) | 2019-07-10 |
CN103579606A (zh) | 2014-02-12 |
KR20140018092A (ko) | 2014-02-12 |
JP2014044928A (ja) | 2014-03-13 |
CN103579606B (zh) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6094797B2 (ja) | リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池 | |
JP6428996B2 (ja) | リチウム二次電池用混合活物質、リチウム二次電池用電極、及びリチウム二次電池 | |
JP6197939B2 (ja) | 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池 | |
JP6066306B2 (ja) | 非水電解質二次電池及び非水電解質二次電池の製造方法 | |
JP6175763B2 (ja) | リチウム二次電池用正極活物質、その正極活物質の製造方法、リチウム二次電池用電極、及びリチウム二次電池 | |
JP6090661B2 (ja) | リチウム二次電池用正極活物質、その正極活物質の前駆体、リチウム二次電池用電極、リチウム二次電池 | |
JP6315404B2 (ja) | 非水電解質二次電池用正極活物質、その正極活物質の製造方法、非水電解質二次電池用電極、及び非水電解質二次電池 | |
JP6044809B2 (ja) | 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池 | |
JP6497537B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用電極、リチウム二次電池 | |
JP6090662B2 (ja) | リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池 | |
JP6083505B2 (ja) | リチウム二次電池用正極活物質、その正極活物質の製造方法、リチウム二次電池用電極、及びリチウム二次電池 | |
JP6471693B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池 | |
JP2015118892A (ja) | リチウム二次電池用正極活物質、その正極活物質の前駆体、リチウム二次電池用電極、リチウム二次電池及びバッテリーモジュール | |
JP5846446B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用電極、リチウム二次電池 | |
JP6274536B2 (ja) | リチウム二次電池用混合活物質の製造方法、リチウム二次電池用電極の製造方法及びリチウム二次電池の製造方法 | |
JP2016167446A (ja) | リチウム二次電池 | |
JP2012151083A (ja) | 非水電解質二次電池用正極活物質、リチウム遷移金属複合酸化物、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池 | |
JP6611074B2 (ja) | リチウム二次電池用混合活物質、リチウム二次電池用正極、及びリチウム二次電池 | |
JP6069632B2 (ja) | 正極ペースト、並びに、これを用いた非水電解質電池用正極及び非水電解質電池の製造方法 | |
JP6131760B2 (ja) | リチウム二次電池用正極活物質、その製造方法、リチウム二次電池用電極、リチウム二次電池 | |
JP6036168B2 (ja) | 非水電解質二次電池 | |
JP6354964B2 (ja) | 非水電解質二次電池 | |
JP6195010B2 (ja) | 正極ペースト、並びに、これを用いた非水電解質電池用正極及び非水電解質電池の製造方法 | |
JP6474033B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池 | |
JP6024869B2 (ja) | 非水電解質二次電池用正極活物質及びこれを用いた非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140701 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6094797 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |