Nothing Special   »   [go: up one dir, main page]

JP6051459B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP6051459B2
JP6051459B2 JP2015518065A JP2015518065A JP6051459B2 JP 6051459 B2 JP6051459 B2 JP 6051459B2 JP 2015518065 A JP2015518065 A JP 2015518065A JP 2015518065 A JP2015518065 A JP 2015518065A JP 6051459 B2 JP6051459 B2 JP 6051459B2
Authority
JP
Japan
Prior art keywords
magnetic sensor
magnetic
current path
sensor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015518065A
Other languages
Japanese (ja)
Other versions
JPWO2014188669A1 (en
Inventor
健 末永
健 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Application granted granted Critical
Publication of JP6051459B2 publication Critical patent/JP6051459B2/en
Publication of JPWO2014188669A1 publication Critical patent/JPWO2014188669A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、電流が流れたときに発生する磁界を検出して被測定電流路に流れる電流を測定する電流センサに関し、特に、近隣電流路からの磁界の影響による精度低下を抑制できる電流センサに関する。   The present invention relates to a current sensor that detects a magnetic field generated when a current flows and measures a current flowing in a current path to be measured, and more particularly to a current sensor that can suppress a decrease in accuracy due to the influence of a magnetic field from a neighboring current path. .

近年、各種機器の制御や監視のために、各種機器に取り付けて各種機器に流れる被測定電流を測定する電流センサが一般に用いられている。この種の電流センサとして、被測定電流路に流れる被測定電流から生じる磁界を感知する、磁気抵抗効果素子やホール素子等の磁電変換素子を用いた磁気センサを備えた電流センサが良く知られている。   In recent years, in order to control and monitor various devices, current sensors that are attached to various devices and measure currents flowing through the various devices are generally used. As this type of current sensor, a current sensor including a magnetic sensor using a magnetoelectric conversion element such as a magnetoresistive effect element or a Hall element that senses a magnetic field generated from a current to be measured flowing in a current path to be measured is well known. Yes.

上述した電流センサとして、特許文献1(従来例)では、図14に示すような電流測定装置(電流センサ)900が提案されている。図14は、従来例による電流測定装置900の測定原理を示す図であって、図14Aは、電流測定装置900の構成を示す説明図であり、図14Bは、電流測定装置900が1つの導体904aに組み込まれた説明図である。   As the above-described current sensor, Patent Document 1 (conventional example) proposes a current measuring device (current sensor) 900 as shown in FIG. FIG. 14 is a diagram illustrating a measurement principle of a current measuring device 900 according to a conventional example, FIG. 14A is an explanatory diagram illustrating a configuration of the current measuring device 900, and FIG. 14B is a diagram illustrating a configuration in which the current measuring device 900 has one conductor. It is explanatory drawing integrated in 904a.

図14Aに示す電流測定装置900は、電流測定対象である導体904a(図14Bに示す)に流れる電流によって生じる磁場を検知するホール素子902a及びホール素子902b(以下、一対の磁気センサと総称して呼ぶ)と、この一対の磁気センサ(902a、902b)の検知出力を処理する信号処理集積回路903とを含み、これらがプリント基板901に実装された構成をしている。そして、ホール素子902aの感磁面902p及びホール素子902bの感磁面902p(図14Aに示すZ方向に延びる面)が平板状の導体904aの平面(図14Aに示すXY方向の面)に対して略垂直になるように、プリント基板901に設けられた凹部910を導体904aの一端に組み付けている。このため、導体904aを流れる電流(図14Bに示す矢印Xa)による磁場905aは、一対の磁気センサの感磁面(902p及び902p)にほぼ垂直に入り、この感磁面(902p及び902p)に垂直な法線方向(図14Aに示すY方向)である、ホール素子902aの感磁方向JD1(図14Aに示すY1方向)及びホール素子902bの感磁方向JD2(図14Aに示すY2方向)と一致する。これにより、導体904aに流れる電流によって生じる磁場を検知することができ、信号処理集積回路903が、一対の磁気センサ(902a、902b)の検知出力を処理して導体904aに流れる電流値を算出するようにしている。14A includes a Hall element 902a and a Hall element 902b (hereinafter collectively referred to as a pair of magnetic sensors) that detect a magnetic field generated by a current flowing through a conductor 904a (shown in FIG. 14B) that is a current measurement target. And a signal processing integrated circuit 903 that processes the detection output of the pair of magnetic sensors (902a, 902b), and these are mounted on a printed circuit board 901. Then, the magnetic sensitive surface 902p 1 of the Hall element 902a and the magnetic sensitive surface 902p 2 of the Hall element 902b (the surface extending in the Z direction shown in FIG. 14A) are the planes of the flat conductor 904a (the surfaces in the XY direction shown in FIG. 14A). A recess 910 provided in the printed circuit board 901 is assembled to one end of the conductor 904a so as to be substantially perpendicular to the conductor 904a. For this reason, the magnetic field 905a caused by the current flowing through the conductor 904a (arrow Xa shown in FIG. 14B) enters substantially perpendicular to the magnetic sensitive surfaces (902p 1 and 902p 2 ) of the pair of magnetic sensors, and this magnetic sensitive surface (902p 1 and 902p 1 and 902p 2 ) perpendicular to the normal direction (Y direction shown in FIG. 14A), the magnetic sensing direction JD1 of the Hall element 902a (Y1 direction shown in FIG. 14A) and the magnetic sensitive direction JD2 of the Hall element 902b (shown in FIG. 14A). Y2 direction). Thereby, the magnetic field generated by the current flowing through the conductor 904a can be detected, and the signal processing integrated circuit 903 processes the detection outputs of the pair of magnetic sensors (902a, 902b) to calculate the current value flowing through the conductor 904a. I am doing so.

また、上述のような位置関係に構成されているので、図14Bに示すように、導体904aに隣接する導体(近隣電流路)904bを流れる電流(図14Bに示す矢印Xb)による磁場905bは、感磁面(902p及び902p)に対してほぼ平行となるため、それによるホール起電力は極めて小さくなるとしている。Further, since the positional relationship is as described above, as shown in FIG. 14B, the magnetic field 905b by the current (arrow Xb shown in FIG. 14B) flowing through the conductor (neighboring current path) 904b adjacent to the conductor 904a is to become substantially parallel to the magnetic sensitive surface (902P 1 and 902P 2), Hall electromotive force caused thereby is an extremely small.

国際公開第2006/090769号International Publication No. 2006/090769

しかしながら、一対の磁気センサ(902a、902b)近傍の磁場905bを詳細に見ると、必ずしも感磁面(902p及び902p)に対して近傍の磁場905bが平行となっていない。図15は、従来例における、一対の磁気センサ(902a、902b)近傍を示した模式図であって、図15Aは、図14Bに示す一対の磁気センサ(902a、902b)近傍の磁場905bを示した拡大平面図であり、図15Bは、従来例の実施例8の構成で一対の磁気センサ(902a、902b)近傍の磁場905a及び磁場905bを示した図であり、図15Cは、従来例の実施例9の構成(導体(近隣電流路)904cが追加されている)で一対の磁気センサ(902a、902b)近傍の磁場905a、磁場905b及び磁場905cを示した図である。図15Aに示すように、一方の磁気センサ(ホール素子902a)に入る磁場905bは、感磁面902pに対して斜めに入っており、他方の磁気センサ(ホール素子902b)に入る磁場905bは、感磁面902pに対して逆向きの斜めに入っている。However, a pair of magnetic sensors (902a, 902b) when viewed in detail the magnetic field 905b in the vicinity of, not in the parallel magnetic field 905b in the vicinity with respect to necessarily sensitive surface (902P 1 and 902P 2). 15 is a schematic diagram showing the vicinity of a pair of magnetic sensors (902a, 902b) in a conventional example, and FIG. 15A shows a magnetic field 905b near the pair of magnetic sensors (902a, 902b) shown in FIG. 14B. FIG. 15B is a diagram showing a magnetic field 905a and a magnetic field 905b in the vicinity of the pair of magnetic sensors (902a, 902b) in the configuration of the eighth embodiment of the conventional example, and FIG. 15C is a diagram of the conventional example. It is the figure which showed the magnetic field 905a, the magnetic field 905b, and the magnetic field 905c near a pair of magnetic sensor (902a, 902b) by the structure (The conductor (neighboring current path) 904c is added) of Example 9. FIG. As shown in FIG. 15A, the magnetic field 905b entering the one magnetic sensor (Hall element 902a) is entered obliquely to the sensitive surface 902P 1, the magnetic field 905b enters the other magnetic sensor (Hall element 902b) , it has entered diagonally in the opposite direction with respect to the magnetic sensing surface 902p 2.

特に、ホール素子902aでは、ホール素子902aの感磁方向JD1と磁場905bのY方向成分の向きとが一致した状態となっているとともに、ホール素子902bでは、ホール素子902bの感磁方向JD2と磁場905bのY方向成分の向きとが、ホール素子902aと同様に一致した状態となっている。つまり、隣接の導体904bによる磁場905bの影響は、それぞれの磁気センサ(ホール素子902a及びホール素子902b)の感磁方向(JD1、JD2)に対して、同じように与えることになる。このため、一対の磁気センサから得られる検出情報を差動処理しても、この隣接の導体(近隣電流路)904bによる磁場905bの影響を排除できなかったという課題があった。   In particular, in the Hall element 902a, the magnetic sensing direction JD1 of the Hall element 902a and the direction of the Y direction component of the magnetic field 905b are in agreement with each other, and in the Hall element 902b, the magnetic sensing direction JD2 of the Hall element 902b and the magnetic field are aligned. The direction of the Y direction component of 905b is in the same state as the Hall element 902a. That is, the influence of the magnetic field 905b by the adjacent conductor 904b is similarly applied to the magnetic sensing directions (JD1, JD2) of the respective magnetic sensors (Hall element 902a and Hall element 902b). For this reason, even if the detection information obtained from the pair of magnetic sensors is differentially processed, there is a problem in that the influence of the magnetic field 905b due to the adjacent conductor (neighboring current path) 904b cannot be eliminated.

また、感磁面(902p及び902p)に対して近傍の磁場905b(磁場905c)が平行となっていないこの問題を解決するために、図15B及び15Cに示すような手段がとられている。しかしながら、自身の磁場905aと近傍の磁場905b(磁場905c)とに対応して、一対の磁気センサ(ホール素子902a及びホール素子902b)の角度をそれぞれ変更する手段では、手間を要し、実質的に持続可能なことではなかった。Further, in order to solve this problem in which the magnetic field 905b (magnetic field 905c) in the vicinity is not parallel to the magnetic sensitive surfaces (902p 1 and 902p 2 ), measures as shown in FIGS. 15B and 15C are taken. Yes. However, the means for changing the angle of each of the pair of magnetic sensors (Hall element 902a and Hall element 902b) corresponding to its own magnetic field 905a and the nearby magnetic field 905b (magnetic field 905c) is laborious and substantial. It was not sustainable.

本発明は、上述した課題を解決するもので、近隣電流路からの磁界の影響による測定精度の低下を抑制できる電流センサを提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a current sensor that can suppress a decrease in measurement accuracy due to the influence of a magnetic field from a neighboring current path.

この課題を解決するために、本発明の電流センサは、被測定電流が流れる被測定電流路と、前記被測定電流路と平行に配置された近隣側平行区間部を有する近隣電流路と、被測定電流路に前記被測定電流が流れたときに発生する磁界を検出する第1磁気センサ及び第2磁気センサと、外部磁界の影響を低減するための磁気部材と、を備えた電流センサであって、前記第1磁気センサ及び前記第2磁気センサが、前記近隣側平行区間部と平行に配置された前記被測定電流路の被測定側平行区間部を挟んで配設され、前記第1磁気センサと前記第2磁気センサとで挟まれる位置の前記被測定側平行区間部に流れる電流の方向をX1方向とし、前記被測定電流路と前記近隣電流路とを横切る方向をY方向とし、前記第2磁気センサから前記第1磁気センサへ向かう方向をZ1方向とすると、前記X1方向と前記Y方向と前記Z1方向とはそれぞれ直交し、前記第1磁気センサ及び前記第2磁気センサの近傍において、前記近隣電流路の一部が前記Z1方向側に曲がっており、前記磁気部材が、前記第1磁気センサよりもZ1方向側のみに設けられていることを特徴としている。 In order to solve this problem, a current sensor of the present invention includes a measured current path through which a measured current flows, a neighboring current path having a neighboring parallel section disposed in parallel with the measured current path, A current sensor comprising a first magnetic sensor and a second magnetic sensor for detecting a magnetic field generated when the current to be measured flows in a measurement current path, and a magnetic member for reducing the influence of an external magnetic field. The first magnetic sensor and the second magnetic sensor are disposed across a measured parallel segment section of the measured current path disposed in parallel with the neighboring parallel segment section, and the first magnetic sensor The direction of the current flowing in the measured side parallel section at the position sandwiched between the sensor and the second magnetic sensor is the X1 direction, the direction crossing the measured current path and the neighboring current path is the Y direction, From the second magnetic sensor to the first magnetism When the direction toward the sensor is the Z1 direction, the X1 direction, the Y direction, and the Z1 direction are orthogonal to each other, and a part of the neighboring current path is in the vicinity of the first magnetic sensor and the second magnetic sensor. It is bent to the Z1 direction side, and the magnetic member is provided only on the Z1 direction side from the first magnetic sensor.

これによれば、本発明の電流センサは、近隣電流路の近隣側平行区間部と被測定電流路の被測定側平行区間部とがX1方向に平行に配置され、近隣電流路の一部をZ1方向側に折り曲げたので、被測定側平行区間部における第1磁気センサ及び第2磁気センサの位置において、近隣電流路を流れる電流が作る磁束のZ方向成分の向きを、第1磁気センサの位置及び第2磁気センサの位置で同じ方向にすることができる。このため、第1磁気センサ11及び第2磁気センサの感度軸方向がZ方向と直交するY方向なので、第1磁気センサ及び第2磁気センサが受ける磁束のY方向成分を限りなく小さくでき、しかも磁束のY方向成分を均等にできる。このことにより、第1磁気センサ及び第2磁気センサによる差動処理を行い易くすることができる。しかも、磁気部材を第1磁気センサよりもZ1方向側に設けているので、曲げられた部分の近隣電流路の磁界の影響を強く受ける第1磁気センサに対して、この影響を低減することができる。このため、第1磁気センサ及び第2磁気センサが受ける磁界の強さを同じようにすることができる。これらのことにより、同じ向きで同じ強さの近隣電流路からの磁界は、差動処理で容易に相殺されるため、近隣電流路からの磁界の影響による測定精度の低下を抑制することができる。   According to this, in the current sensor of the present invention, the neighboring parallel section of the neighboring current path and the measured parallel section of the measured current path are arranged in parallel in the X1 direction, and a part of the neighboring current path is arranged. Since the first magnetic sensor is bent in the Z1 direction side, the direction of the Z direction component of the magnetic flux generated by the current flowing in the neighboring current path at the position of the first magnetic sensor and the second magnetic sensor in the parallel side section to be measured is The position and the position of the second magnetic sensor can be in the same direction. For this reason, since the sensitivity axis directions of the first magnetic sensor 11 and the second magnetic sensor are the Y direction orthogonal to the Z direction, the Y direction component of the magnetic flux received by the first magnetic sensor and the second magnetic sensor can be reduced as much as possible. The Y direction component of the magnetic flux can be made uniform. As a result, differential processing by the first magnetic sensor and the second magnetic sensor can be facilitated. In addition, since the magnetic member is provided on the Z1 direction side of the first magnetic sensor, this influence can be reduced with respect to the first magnetic sensor that is strongly influenced by the magnetic field of the neighboring current path in the bent portion. it can. For this reason, the strength of the magnetic field received by the first magnetic sensor and the second magnetic sensor can be made the same. As a result, the magnetic field from the neighboring current path having the same direction and the same strength can be easily canceled by the differential processing, so that a decrease in measurement accuracy due to the influence of the magnetic field from the neighboring current path can be suppressed. .

また、本発明の電流センサは、前記第1磁気センサ及び前記第2磁気センサが受ける磁束のY方向成分が均等であることを特徴としてい。 The current sensor of the present invention is characterized in that the Y direction component of the magnetic flux received by the first magnetic sensor and the second magnetic sensor is uniform .

また、本発明の電流センサは、前記第1磁気センサ及び前記第2磁気センサの近傍において、前記被測定電流路の一部が前記Z1方向側に曲がっていることを特徴としている。   The current sensor of the present invention is characterized in that a part of the measured current path is bent toward the Z1 direction in the vicinity of the first magnetic sensor and the second magnetic sensor.

これによれば、被測定電流路の一部をZ1方向側に折り曲げたので、被測定側平行区間部における第1磁気センサ及び第2磁気センサの位置において、被測定電流路の折り曲げた部分に流れる電流が作る磁束のY方向成分の向きがY方向になる。このため、第1磁気センサの位置及び第2磁気センサの位置で磁束の向きを同じ方向にすることができ、第1磁気センサ及び第2磁気センサの感度軸方向であるY方向の磁束のY方向成分を同等にすることができる。このことにより、磁束のY方向成分を均等にでき、第1磁気センサ及び第2磁気センサの位置において、差動処理をより行い易くすることができる。以上により、同じ向きで同じ強さの被測定電流路の折り曲げた部分からの磁界は、差動処理で容易に相殺されるため、測定精度の低下をより抑制することができる。   According to this, since a part of the current path to be measured is bent in the Z1 direction side, at the position of the first magnetic sensor and the second magnetic sensor in the parallel side section to be measured, the portion of the current path to be measured is bent. The direction of the Y direction component of the magnetic flux generated by the flowing current is the Y direction. For this reason, the direction of magnetic flux can be made the same direction at the position of the first magnetic sensor and the position of the second magnetic sensor, and Y of the magnetic flux in the Y direction that is the sensitivity axis direction of the first magnetic sensor and the second magnetic sensor. Directional components can be made equal. Thereby, the Y-direction component of the magnetic flux can be made uniform, and the differential processing can be made easier at the positions of the first magnetic sensor and the second magnetic sensor. As described above, since the magnetic field from the bent portion of the current path to be measured having the same direction and the same strength is easily canceled by the differential processing, it is possible to further suppress a decrease in measurement accuracy.

本発明の電流センサは、被測定側平行区間部における第1磁気センサ及び第2磁気センサの位置において、近隣電流路を流れる電流が作る磁束のZ方向成分の向きを、第1磁気センサの位置及び第2磁気センサの位置で同じ方向にすることができる。このため、第1磁気センサ11及び第2磁気センサの感度軸方向がZ方向と直交するY方向なので、第1磁気センサ及び第2磁気センサが受ける磁束のY方向成分を限りなく小さくでき、しかも磁束のY方向成分を均等にできる。このことにより、第1磁気センサ及び第2磁気センサによる差動処理を行い易くすることができる。しかも、曲げられた部分の近隣電流路の磁界の影響を強く受ける第1磁気センサに対して、磁気部材により、この影響を低減することができる。このため、第1磁気センサ及び第2磁気センサが受ける磁界の強さを同じようにすることができる。これらのことにより、同じ向きで同じ強さの近隣電流路からの磁界は、差動処理で容易に相殺されるため、近隣電流路からの磁界の影響による測定精度の低下を抑制することができる。   In the current sensor of the present invention, the direction of the Z-direction component of the magnetic flux generated by the current flowing in the neighboring current path at the position of the first magnetic sensor and the second magnetic sensor in the parallel section to be measured is determined by the position of the first magnetic sensor. And in the same direction at the position of the second magnetic sensor. For this reason, since the sensitivity axis directions of the first magnetic sensor 11 and the second magnetic sensor are the Y direction orthogonal to the Z direction, the Y direction component of the magnetic flux received by the first magnetic sensor and the second magnetic sensor can be reduced as much as possible. The Y direction component of the magnetic flux can be made uniform. As a result, differential processing by the first magnetic sensor and the second magnetic sensor can be facilitated. Moreover, this influence can be reduced by the magnetic member with respect to the first magnetic sensor that is strongly influenced by the magnetic field of the neighboring current path of the bent portion. For this reason, the strength of the magnetic field received by the first magnetic sensor and the second magnetic sensor can be made the same. As a result, the magnetic field from the neighboring current path having the same direction and the same strength can be easily canceled by the differential processing, so that a decrease in measurement accuracy due to the influence of the magnetic field from the neighboring current path can be suppressed. .

本発明の第1実施形態の電流センサを説明する斜視図である。It is a perspective view explaining the current sensor of a 1st embodiment of the present invention. 本発明の第1実施形態の電流センサを説明する構成図であって、図1に示すZ1側から見た正面図である。It is a block diagram explaining the current sensor of 1st Embodiment of this invention, Comprising: It is the front view seen from the Z1 side shown in FIG. 本発明の第1実施形態の電流センサを説明する構成図であって、図1に示すX1側から見た側面図である。It is a block diagram explaining the current sensor of 1st Embodiment of this invention, Comprising: It is the side view seen from the X1 side shown in FIG. 本発明の第1実施形態の電流センサを説明する図であって、シミュレーションに用いたモデル図である。It is a figure explaining the current sensor of a 1st embodiment of the present invention, and is a model figure used for simulation. 本発明の第1実施形態の電流センサを説明する模式図であって、図5Aは、第1実施形態のモデルのシミュレーション結果を示した図であり、図5Bは、比較例のモデルのシミュレーション結果を示した図である。FIG. 5A is a schematic diagram illustrating the current sensor according to the first embodiment of the present invention, and FIG. 5A is a diagram illustrating a simulation result of the model of the first embodiment, and FIG. 5B is a simulation result of the model of the comparative example. FIG. 本発明の第2実施形態の電流センサを説明する斜視図である。It is a perspective view explaining the current sensor of a 2nd embodiment of the present invention. 本発明の第2実施形態の電流センサを説明する構成図であって、図6に示すZ1側から見た正面図である。It is a block diagram explaining the current sensor of 2nd Embodiment of this invention, Comprising: It is the front view seen from the Z1 side shown in FIG. 本発明の第2実施形態の電流センサを説明する構成図であって、図6に示すX1側から見た側面図である。It is a block diagram explaining the current sensor of 2nd Embodiment of this invention, Comprising: It is the side view seen from the X1 side shown in FIG. 本発明の第3実施形態の電流センサを説明する斜視図である。It is a perspective view explaining the current sensor of a 3rd embodiment of the present invention. 本発明の第3実施形態の電流センサを説明する構成図であって、図10Aは、図9に示すZ1側から見た正面図であり、図10Bは、図9に示すZ2側から見た背面図である。It is a block diagram explaining the current sensor of 3rd Embodiment of this invention, Comprising: FIG. 10A is the front view seen from the Z1 side shown in FIG. 9, FIG. 10B was seen from the Z2 side shown in FIG. It is a rear view. 本発明の第3実施形態の電流センサを説明する構成図であって、図9に示すX1側から見た側面図である。It is a block diagram explaining the current sensor of 3rd Embodiment of this invention, Comprising: It is the side view seen from the X1 side shown in FIG. 本発明の電流センサの変形例を説明する構成図であって、図12Aは、第1実施形態の電流センサを変えた変形例1の正面図であり、図12Bは、第1実施形態の電流センサを変えた変形例2の側面図である。It is a block diagram explaining the modification of the current sensor of this invention, Comprising: FIG. 12A is a front view of the modification 1 which changed the current sensor of 1st Embodiment, FIG. 12B is the electric current of 1st Embodiment. It is a side view of the modification 2 which changed the sensor. 本発明の電流センサの変形例を説明する構成図であって、図13Aは、第2実施形態を変えた変形例3の斜視図であり、図13Bは、第2実施形態を変えた変形例4の斜視図である。FIG. 13A is a configuration diagram illustrating a modified example of the current sensor of the present invention, FIG. 13A is a perspective view of Modified Example 3 in which the second embodiment is modified, and FIG. 13B is a modified example in which the second embodiment is modified. 4 is a perspective view of FIG. 従来例による電流測定装置の測定原理を示す図であって、図14Aは、電流測定装置の構成を示す説明図であり、図14Bは、電流測定装置が1つの導体に組み込まれた説明図である。FIG. 14A is a diagram illustrating a measurement principle of a current measuring device according to a conventional example, FIG. 14A is an explanatory diagram illustrating a configuration of the current measuring device, and FIG. 14B is an explanatory diagram in which the current measuring device is incorporated into one conductor. is there. 従来例における、一対の磁気センサ近傍を示した模式図であって、図15Aは、図14Bに示す一対の磁気センサ近傍の磁場を示した拡大平面図であり、図15Bは、従来例の実施例8の構成図であり、図15Cは、従来例の実施例9の構成図である。15A is a schematic diagram showing the vicinity of a pair of magnetic sensors in a conventional example, FIG. 15A is an enlarged plan view showing a magnetic field in the vicinity of the pair of magnetic sensors shown in FIG. 14B, and FIG. It is a block diagram of Example 8, FIG. 15C is a block diagram of Example 9 of a prior art example.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1実施形態]
図1は、本発明の第1実施形態の電流センサ101を説明する斜視図である。図2は、本発明の第1実施形態の電流センサ101を説明する構成図であって、図1に示すZ1側から見た正面図である。図3は、本発明の第1実施形態の電流センサ101を説明する構成図であって、図1に示すX1側から見た側面図である。なお、図1ないし図3に示す被測定電流路CB1及び近隣電流路NBは、その一部をだけを示している。
[First Embodiment]
FIG. 1 is a perspective view illustrating a current sensor 101 according to the first embodiment of the present invention. FIG. 2 is a configuration diagram illustrating the current sensor 101 according to the first embodiment of the present invention, and is a front view seen from the Z1 side shown in FIG. FIG. 3 is a configuration diagram illustrating the current sensor 101 according to the first embodiment of the present invention, and is a side view seen from the X1 side shown in FIG. Note that only part of the measured current path CB1 and the neighboring current path NB shown in FIGS. 1 to 3 is shown.

本発明の第1実施形態の電流センサ101は、図1ないし図3に示すように、被測定電流が流れる被測定電流路CB1と、被測定電流路CB1と平行に配置された近隣電流路NBと、磁界を検出する第1磁気センサ11及び第2磁気センサ12と、外部磁界の影響を低減するための磁気部材15と、を備えて構成される。他に、電流センサ101には、第1磁気センサ11を搭載する第1基板19Aと、第2磁気センサ12を搭載する第2基板19Bと、が設けられている。なお、図示はしていないが、被測定電流路CB1、第1磁気センサ11及び第2磁気センサ12、磁気部材15、第1基板19A及び第2基板19Bを収容する筐体は、必要に応じて用いられる。   As shown in FIGS. 1 to 3, the current sensor 101 according to the first embodiment of the present invention includes a measured current path CB1 through which a measured current flows and a neighboring current path NB arranged in parallel with the measured current path CB1. A first magnetic sensor 11 and a second magnetic sensor 12 for detecting a magnetic field, and a magnetic member 15 for reducing the influence of an external magnetic field. In addition, the current sensor 101 is provided with a first substrate 19A on which the first magnetic sensor 11 is mounted and a second substrate 19B on which the second magnetic sensor 12 is mounted. Although not shown in the drawing, the housing for accommodating the current path CB1, the first magnetic sensor 11 and the second magnetic sensor 12, the magnetic member 15, the first substrate 19A and the second substrate 19B is provided as necessary. Used.

被測定電流路CB1は、銅(Cu)等の導電性の良い材質を用い、図1及び図3に示すように、被測定電流路CB1の一部がL字状に曲げられて形成されている。また、被測定電流路CB1には、第1磁気センサ11と第2磁気センサ12とで挟まれる位置に、被測定側平行区間部CB1pを有している。   The measured current path CB1 is made of a material having good conductivity such as copper (Cu), and as shown in FIGS. 1 and 3, a part of the measured current path CB1 is bent into an L shape. Yes. Further, the measured current path CB1 has a measured-side parallel section CB1p at a position sandwiched between the first magnetic sensor 11 and the second magnetic sensor 12.

ここで、被測定側平行区間部CB1pに流れる電流の方向をX1方向とすると、図1に示すように、被測定側平行区間部CB1pはX方向に延設されており、X方向と直交するZ方向には、第1磁気センサ11と第2磁気センサ12とが配設され、X方向及びZ方向とそれぞれ直交するY方向には、近隣電流路NBが配設されている。なお、第2磁気センサ12から第1磁気センサ11へ向かう方向をZ1方向としている。これにより、被測定電流路CB1の曲げられた方向は、Z1方向側になり、本発明の第1実施形態では、被測定側平行区間部CB1pに対して、直角に曲げられている。   Here, assuming that the direction of the current flowing in the measured side parallel section CB1p is the X1 direction, as shown in FIG. 1, the measured side parallel section CB1p extends in the X direction and is orthogonal to the X direction. A first magnetic sensor 11 and a second magnetic sensor 12 are disposed in the Z direction, and a neighboring current path NB is disposed in the Y direction orthogonal to the X direction and the Z direction. The direction from the second magnetic sensor 12 toward the first magnetic sensor 11 is the Z1 direction. As a result, the bent direction of the measured current path CB1 is the Z1 direction side, and in the first embodiment of the present invention, the measured current path CB1 is bent at a right angle with respect to the measured parallel section CB1p.

近隣電流路NBは、銅(Cu)等の導電性の良い材質を用い、図1及び図2に示すように、被測定電流路CB1と平行に配置され、更に、近隣電流路NBの一部もZ1方向側に向けてL字状に曲げられて形成されている。   The neighboring current path NB is made of a material having good conductivity such as copper (Cu), and is arranged in parallel with the measured current path CB1 as shown in FIGS. 1 and 2, and further, a part of the neighboring current path NB. Is also bent in an L shape toward the Z1 direction.

また、近隣電流路NBには、被測定側平行区間部CB1pと平行に配置された近隣側平行区間部NBpを有しており、近隣側平行区間部NBpに流れる電流の方向もX1方向である。また、被測定電流路CB1と近隣電流路NBとを横切る方向がY方向となっている。また、本発明の第1実施形態では、被測定電流路CB1と同様に、近隣側平行区間部NBpに対して、直角に曲げられている。なお、図1及び図2の構成図では、被測定電流路CB1のY2側に近隣電流路NBが平行に配設されているが、Y2側に限らず、Y1側でも良いし、Y1側及びY2側の両方に近隣電流路NBが平行に配設されていても良い。また、被測定電流路CB1及び近隣電流路NBの材質に銅(Cu)を用いたが、これに限定されるものではなく、導電性の良い材質であれば良く、例えばアルミニウム(Al)等でも良い。   Further, the neighboring current path NB has a neighboring parallel section NBp arranged in parallel with the measured side parallel section CB1p, and the direction of the current flowing through the neighboring parallel section NBp is also the X1 direction. . Further, the direction crossing the measured current path CB1 and the neighboring current path NB is the Y direction. Moreover, in 1st Embodiment of this invention, like the to-be-measured electric current path CB1, it is bent at right angle with respect to the near side parallel section part NBp. In the configuration diagrams of FIGS. 1 and 2, the neighboring current path NB is arranged in parallel on the Y2 side of the measured current path CB1, but the Y1 side may be used instead of the Y2 side, and the Y1 side and Neighboring current paths NB may be arranged in parallel on both sides of Y2. Further, although copper (Cu) is used as the material of the measured current path CB1 and the neighboring current path NB, the material is not limited to this, and any material having good conductivity, such as aluminum (Al), may be used. good.

第1磁気センサ11及び第2磁気センサ12は、被測定電流路CB1に被測定電流が流れたときに発生する磁界を検出するセンサであって、例えば、巨大磁気抵抗効果を用いた磁気検出素子(GMR(Giant Magneto Resistive)素子という)がパッケージングされている。また、前述したが、第1磁気センサ11及び第2磁気センサ12は、図1及び図3に示すように、近隣側平行区間部NBpと平行に配置された被測定電流路CB1の被測定側平行区間部CB1pを挟んで配設されている。更に、第1磁気センサ11及び第2磁気センサ12の近傍において、近隣電流路NBの一部がZ1方向側に曲がる位置になるように、第1磁気センサ11及び第2磁気センサ12を配設している。   The first magnetic sensor 11 and the second magnetic sensor 12 are sensors for detecting a magnetic field generated when a current to be measured flows through the current path CB1 to be measured. For example, a magnetic detection element using a giant magnetoresistance effect (Referred to as GMR (Giant Magneto Resistive) element) is packaged. Further, as described above, the first magnetic sensor 11 and the second magnetic sensor 12 are, as shown in FIGS. 1 and 3, the measured side of the measured current path CB1 arranged in parallel with the neighboring parallel section NBp. Arranged across the parallel section CB1p. Further, in the vicinity of the first magnetic sensor 11 and the second magnetic sensor 12, the first magnetic sensor 11 and the second magnetic sensor 12 are arranged so that a part of the neighboring current path NB is bent to the Z1 direction side. doing.

また、第1磁気センサ11及び第2磁気センサ12は、GMR素子をシリコン基板上に作製した後、GMR素子を切り出してチップを作り、切り出されたGMR素子のチップと信号の取り出しのためのリード端子(11r、12r)とを電気的に接続して、熱硬化性の合成樹脂でパッケージングしている。なお、このGMR素子が、磁界の変化に応じてGMR素子における抵抗値が変化する性質を有しているので、第1磁気センサ11及び第2磁気センサ12は、この抵抗値の変化から被測定電流路CB1に流れる電流を算出することにより、被測定電流路CB1に流れる電流を測定することができる。   In the first magnetic sensor 11 and the second magnetic sensor 12, after the GMR element is fabricated on the silicon substrate, the GMR element is cut out to form a chip, and the chip of the cut out GMR element and the lead for signal extraction are obtained. The terminals (11r, 12r) are electrically connected and packaged with a thermosetting synthetic resin. Since the GMR element has a property that the resistance value of the GMR element changes in accordance with the change of the magnetic field, the first magnetic sensor 11 and the second magnetic sensor 12 are measured from the change of the resistance value. By calculating the current flowing through the current path CB1, the current flowing through the measured current path CB1 can be measured.

また、第1磁気センサ11及び第2磁気センサ12は、リード端子(11r、12r)と回路パターン(図示していない)とがはんだ付けされ、図3に示すように、被測定電流路CB1の被測定側平行区間部CB1pを挟んで対向配設された第1基板19A及び第2基板19Bに搭載されている。そして、被測定電流路CB1に第1基板19A及び第2基板19Bが配設された際に、第1磁気センサ11の感度軸方向KD1は、図2に示すように、被測定電流路CB1の幅方向と平行な方向(図2では、Y2方向)を向いて配設されているとともに、第2磁気センサ12の感度軸方向KD2も、図1に示すように、被測定電流路CB1の幅方向と平行な方向(図1では、Y2方向)を向いて配設されている。   Further, the first magnetic sensor 11 and the second magnetic sensor 12 are soldered to lead terminals (11r, 12r) and a circuit pattern (not shown), and as shown in FIG. It is mounted on the first substrate 19A and the second substrate 19B that are arranged to face each other across the measured side parallel section CB1p. When the first substrate 19A and the second substrate 19B are disposed in the measured current path CB1, as shown in FIG. 2, the sensitivity axis direction KD1 of the first magnetic sensor 11 is the same as that of the measured current path CB1. As shown in FIG. 1, the sensitivity axis direction KD2 of the second magnetic sensor 12 is also arranged in the direction parallel to the width direction (Y2 direction in FIG. 2). It is arranged facing the direction parallel to the direction (Y2 direction in FIG. 1).

第1基板19A及び第2基板19Bは、一般に広く知られている片面のプリント配線板を用いており、ガラス入りのエポキシ樹脂のベース基板に、ベース基板上に設けられた銅(Cu)等の金属箔をパターニングして、回路を構成するための回路パターンを形成している。なお、第1基板19A及び第2基板19Bにガラス入りのエポキシ樹脂からなるプリント配線板を用いたが、これに限定されるものではなく、例えばセラミック配線板、フレキシブル配線板でも良い。   The first substrate 19A and the second substrate 19B use a generally well-known single-sided printed wiring board, such as copper (Cu) provided on the base substrate on an epoxy resin base substrate containing glass. The metal foil is patterned to form a circuit pattern for configuring a circuit. In addition, although the printed wiring board which consists of an epoxy resin containing glass was used for 19A of 1st substrates and the 2nd board | substrate 19B, it is not limited to this, For example, a ceramic wiring board and a flexible wiring board may be used.

磁気部材15は、透磁率の高い珪素鋼を用い、図1ないし図3に示すように、第1磁気センサ11よりもZ1方向側に設けられている。そして、Z1側からの外部磁界の影響を低減している。なお、磁気部材15の材料として珪素鋼を用いたが、磁気シールド効果を有する材質であれば、これに限るものではない。   The magnetic member 15 is made of silicon steel having a high magnetic permeability, and is provided closer to the Z1 direction than the first magnetic sensor 11 as shown in FIGS. And the influence of the external magnetic field from the Z1 side is reduced. In addition, although silicon steel was used as a material of the magnetic member 15, if it is a material which has a magnetic shielding effect, it will not restrict to this.

ここで、近隣電流路NBに流れる電流から発生する磁界の影響についてシミュレーションを行った。図4は、本発明の第1実施形態の電流センサ101を説明する図であって、シミュレーションに用いたモデルMD1の図である。   Here, a simulation was performed on the influence of the magnetic field generated from the current flowing in the neighboring current path NB. FIG. 4 is a diagram illustrating the current sensor 101 according to the first embodiment of the present invention, and is a diagram of the model MD1 used for the simulation.

このシミュレーションに用いたモデルMD1の数値は、図4に示すように、被測定電流路CB1及び近隣電流路NB(図示していない)の全体の長さを60(mm)、全体の幅W1を20(mm)、被測定側平行区間部CB1p及び近隣側平行区間部NBpの厚みT1を2(mm)とし、長さ30(mm)のところで直角に曲げられているようにした。また、被測定電流路CB1と近隣電流路NBとの間の距離を10(mm)とした。また、第1磁気センサ11及び第2磁気センサ12は、被測定電流路CB1の直角に曲げられた部分から13(mm)離れて幅W1の中央に対向する位置に配設し、第1磁気センサ11及び第2磁気センサ12の中心と被測定電流路CB1との距離D1をそれぞれ2(mm)とし、第1磁気センサ11の中心と磁気部材15との距離D2を5(mm)とした。また、磁気部材15のサイズは、被測定電流路CB1の幅W1と同じ幅の20(mm)とし、長さを10(mm)、厚みT2を0.3(mm)とした。そして、第1磁気センサ11が磁気部材15の中央になるように、磁気部材15を配設した。なお、図1ないし図3に示す電流センサ101は、このモデルMD1を具現化したものであるが、シミュレーションを行うにあたり、近隣電流路NBをY1側に配置した。また、図4に示すモデルMD1の図は、図2に示すX1側から見た図となっており、説明を容易にするため、紙面の奥側の被測定電流路CB1は図示していない。   As shown in FIG. 4, the numerical values of the model MD1 used in this simulation are the total length of the measured current path CB1 and the neighboring current path NB (not shown) being 60 (mm) and the total width W1. The thickness T1 of the measured side parallel section CB1p and the adjacent side parallel section NBp was 2 (mm) and was bent at a right angle at a length of 30 (mm). Further, the distance between the measured current path CB1 and the neighboring current path NB was set to 10 (mm). The first magnetic sensor 11 and the second magnetic sensor 12 are disposed at a position facing the center of the width W1 at a distance of 13 mm from the portion bent at a right angle of the measured current path CB1. The distance D1 between the center of the sensor 11 and the second magnetic sensor 12 and the measured current path CB1 is 2 (mm), respectively, and the distance D2 between the center of the first magnetic sensor 11 and the magnetic member 15 is 5 (mm). . The size of the magnetic member 15 was 20 (mm), the same width as the width W1 of the measured current path CB1, the length was 10 (mm), and the thickness T2 was 0.3 (mm). And the magnetic member 15 was arrange | positioned so that the 1st magnetic sensor 11 might become the center of the magnetic member 15. FIG. Although the current sensor 101 shown in FIGS. 1 to 3 is an embodiment of the model MD1, the neighboring current path NB is arranged on the Y1 side in performing the simulation. Further, the model MD1 shown in FIG. 4 is a view seen from the X1 side shown in FIG. 2, and the measured current path CB1 on the back side of the drawing is not shown for easy explanation.

また、比較例についてもシミュレーションを行っており、比較例のモデルは、被測定電流路CB1及び近隣電流路NBのサイズや第1磁気センサ11及び第2磁気センサ12の配置距離等を同じとし、磁気部材15を配設していない。更に、被測定電流路CB1及び近隣電流路NBは、Z1方向側に曲げられておらず、紙面を貫く方向に延設されている。   In addition, a simulation is performed for the comparative example, and the model of the comparative example is the same in the size of the measured current path CB1 and the neighboring current path NB, the arrangement distance of the first magnetic sensor 11 and the second magnetic sensor 12, and the like. The magnetic member 15 is not provided. Further, the measured current path CB1 and the neighboring current path NB are not bent in the Z1 direction side, but are extended in a direction penetrating the paper surface.

図5は、本発明の第1実施形態の電流センサを説明する模式図であって、図5Aは、第1実施形態のモデルMD1のシミュレーション結果AAを示した図であり、図5Bは、比較例のモデルのシミュレーション結果CCを示した図である。図5は、近隣電流路NBを流れる電流が作る磁束の流れを示している。   FIG. 5 is a schematic diagram for explaining the current sensor according to the first embodiment of the present invention. FIG. 5A is a diagram showing a simulation result AA of the model MD1 of the first embodiment, and FIG. 5B is a comparison. It is the figure which showed the simulation result CC of the model of an example. FIG. 5 shows the flow of magnetic flux generated by the current flowing through the neighboring current path NB.

図5Aのシミュレーション結果に示すように、第1磁気センサ11及び第2磁気センサ12の位置において、被測定側平行区間部CB1pにおける近隣電流路NBを流れる電流が作る磁束のZ方向成分の向きを、第1磁気センサ11の位置及び第2磁気センサ12の位置で同じ方向にすることができる。このため、第1磁気センサ11及び第2磁気センサ12の感度軸方向(KD1、KD2)がZ方向と直交するY方向なので、第1磁気センサ11及び第2磁気センサ12が受ける磁束のY方向成分を限りなく小さくでき、しかも磁束のY方向成分を均等にできる。   As shown in the simulation result of FIG. 5A, at the positions of the first magnetic sensor 11 and the second magnetic sensor 12, the direction of the Z direction component of the magnetic flux generated by the current flowing through the neighboring current path NB in the measured side parallel section CB1p is determined. The position of the first magnetic sensor 11 and the position of the second magnetic sensor 12 can be set in the same direction. For this reason, since the sensitivity axis directions (KD1, KD2) of the first magnetic sensor 11 and the second magnetic sensor 12 are the Y direction orthogonal to the Z direction, the Y direction of the magnetic flux received by the first magnetic sensor 11 and the second magnetic sensor 12 The component can be made as small as possible, and the Y direction component of the magnetic flux can be made uniform.

一方、図5Bのシミュレーション結果に示すように、被測定側平行区間部CB1Cにおける近隣電流路NBCを流れる電流が作る磁束のZ方向成分の向きが、第1磁気センサ11Cの位置及び第2磁気センサ12Cの位置で同じ方向を向いていない。このため、第1磁気センサ11C及び第2磁気センサ12Cの感度軸方向(KD1、KD2)であるY方向がZ方向と直交するので、第1磁気センサ11C及び第2磁気センサ12Cが受ける磁束のY方向成分が大きくなり、しかも磁束のY方向成分が第1磁気センサ11Cと第2磁気センサ12Cとで、異なった値となっている。これにより、第1磁気センサ11C及び第2磁気センサ12Cによる差動処理において、大きな誤差の要因となってしまう。   On the other hand, as shown in the simulation result of FIG. 5B, the direction of the Z-direction component of the magnetic flux generated by the current flowing through the neighboring current path NBC in the measured side parallel section CB1C depends on the position of the first magnetic sensor 11C and the second magnetic sensor. It is not facing the same direction at the position of 12C. For this reason, since the Y direction which is the sensitivity axis direction (KD1, KD2) of the first magnetic sensor 11C and the second magnetic sensor 12C is orthogonal to the Z direction, the magnetic flux received by the first magnetic sensor 11C and the second magnetic sensor 12C The Y direction component is large, and the Y direction component of the magnetic flux is different between the first magnetic sensor 11C and the second magnetic sensor 12C. This causes a large error in the differential processing by the first magnetic sensor 11C and the second magnetic sensor 12C.

また、図示していない曲げられた部分(紙面の奥側)の近隣電流路NBの磁界の影響を強く受ける第1磁気センサ11に対して、磁気部材15により、この影響を低減することができる。   In addition, the magnetic member 15 can reduce this influence on the first magnetic sensor 11 that is strongly influenced by the magnetic field of the neighboring current path NB in a bent portion (back side of the drawing) not shown. .

また、本発明の第1実施形態の電流センサ101では、被測定電流路CB1の一部をZ1方向側に折り曲げているので、被測定側平行区間部CB1pにおける第1磁気センサ11及び第2磁気センサ12の位置において、被測定電流路CB1の折り曲げた部分に流れる電流が作る磁束の向きがY方向になる。このため、第1磁気センサ11の位置及び第2磁気センサ12の位置で磁束の向きを同じ方向にすることができ、第1磁気センサ11及び第2磁気センサ12の感度軸方向(KD1、KD2)であるY方向の磁束のY方向成分を同等にすることができる。   Further, in the current sensor 101 according to the first embodiment of the present invention, a part of the current path CB1 to be measured is bent toward the Z1 direction, so the first magnetic sensor 11 and the second magnetic sensor in the measured side parallel section CB1p. At the position of the sensor 12, the direction of the magnetic flux generated by the current flowing in the bent portion of the measured current path CB1 is the Y direction. For this reason, the direction of magnetic flux can be made the same direction in the position of the 1st magnetic sensor 11 and the position of the 2nd magnetic sensor 12, and the sensitivity axis direction (KD1, KD2) of the 1st magnetic sensor 11 and the 2nd magnetic sensor 12 ), The Y direction component of the Y direction magnetic flux can be made equal.

以上のように構成された本発明の第1実施形態の電流センサ101における、効果について、以下に説明する。   The effects of the current sensor 101 according to the first embodiment of the present invention configured as described above will be described below.

本発明の電流センサ101は、近隣電流路NBの近隣側平行区間部NBpと被測定電流路CB1の被測定側平行区間部CB1pとがX1方向に平行に配置され、近隣電流路NBの一部をZ1方向側に折り曲げたので、第1磁気センサ11及び第2磁気センサ12の位置において、被測定側平行区間部CB1pにおける近隣電流路NBを流れる電流が作る磁束のZ方向成分の向きを、第1磁気センサ11の位置及び第2磁気センサ12の位置で同じ方向にすることができる。このため、第1磁気センサ11及び第2磁気センサ12の感度軸方向(KD1、KD2)がZ方向と直交するY方向なので、第1磁気センサ11及び第2磁気センサ12が受ける磁束のY方向成分を限りなく小さくでき、しかも磁束のY方向成分を均等にできる。このことにより、第1磁気センサ11及び第2磁気センサ12による差動処理を行い易くすることができる。しかも、磁気部材15を第1磁気センサ11よりもZ1方向側に設けているので、曲げられた部分の近隣電流路NBの磁界の影響を強く受ける第1磁気センサ11に対して、この影響を低減することができる。このため、第1磁気センサ11及び第2磁気センサ12が受ける磁界の強さを同じようにすることができる。これらのことにより、同じ向きで同じ強さの近隣電流路NBからの磁界は、差動処理で容易に相殺されるため、近隣電流路NBからの磁界の影響による測定精度の低下を抑制することができる。   In the current sensor 101 according to the present invention, a neighboring parallel section NBp of the neighboring current path NB and a measured parallel section CB1p of the measured current path CB1 are arranged in parallel to the X1 direction, and a part of the neighboring current path NB. Is bent in the Z1 direction side, so that at the positions of the first magnetic sensor 11 and the second magnetic sensor 12, the direction of the Z direction component of the magnetic flux generated by the current flowing in the adjacent current path NB in the measured side parallel section CB1p is The first magnetic sensor 11 and the second magnetic sensor 12 can be in the same direction. For this reason, since the sensitivity axis directions (KD1, KD2) of the first magnetic sensor 11 and the second magnetic sensor 12 are the Y direction orthogonal to the Z direction, the Y direction of the magnetic flux received by the first magnetic sensor 11 and the second magnetic sensor 12 The component can be made as small as possible, and the Y direction component of the magnetic flux can be made uniform. As a result, differential processing by the first magnetic sensor 11 and the second magnetic sensor 12 can be facilitated. In addition, since the magnetic member 15 is provided on the Z1 direction side of the first magnetic sensor 11, this influence is exerted on the first magnetic sensor 11 that is strongly influenced by the magnetic field of the neighboring current path NB in the bent portion. Can be reduced. For this reason, the strength of the magnetic field received by the first magnetic sensor 11 and the second magnetic sensor 12 can be made the same. As a result, the magnetic field from the neighboring current path NB of the same direction and the same strength can be easily canceled by the differential processing, so that a decrease in measurement accuracy due to the influence of the magnetic field from the neighboring current path NB is suppressed. Can do.

また、被測定電流路CB1の一部をZ1方向側に折り曲げたので、被測定側平行区間部CB1pにおける第1磁気センサ11及び第2磁気センサ12の位置において、被測定電流路CB1の折り曲げた部分に流れる電流が作る磁束のY方向成分の向きがY方向になる。このため、第1磁気センサ11の位置及び第2磁気センサ12の位置で磁束の向きを同じ方向にすることができ、第1磁気センサ11及び第2磁気センサ12の感度軸方向(KD1、KD2)であるY方向の磁束のY方向成分を同等にすることができる。このことにより、磁束のY方向成分を均等にでき、第1磁気センサ11及び第2磁気センサ12の位置において、第1磁気センサ11及び第2磁気センサ12による差動処理をより行い易くすることができる。以上により、同じ向きで同じ強さの被測定電流路CB1の折り曲げた部分からの磁界は、差動処理で容易に相殺されるため、測定精度の低下をより抑制することができる。   In addition, since a part of the measured current path CB1 is bent in the Z1 direction side, the measured current path CB1 is bent at the position of the first magnetic sensor 11 and the second magnetic sensor 12 in the measured side parallel section CB1p. The direction of the Y direction component of the magnetic flux generated by the current flowing through the portion is the Y direction. For this reason, the direction of magnetic flux can be made the same direction in the position of the 1st magnetic sensor 11 and the position of the 2nd magnetic sensor 12, and the sensitivity axis direction (KD1, KD2) of the 1st magnetic sensor 11 and the 2nd magnetic sensor 12 ), The Y direction component of the Y direction magnetic flux can be made equal. Thereby, the Y direction component of the magnetic flux can be made uniform, and the differential processing by the first magnetic sensor 11 and the second magnetic sensor 12 can be more easily performed at the positions of the first magnetic sensor 11 and the second magnetic sensor 12. Can do. As described above, since the magnetic field from the bent portion of the current path CB1 having the same strength in the same direction is easily canceled by the differential processing, it is possible to further suppress a decrease in measurement accuracy.

[第2実施形態]
図6は、本発明の第2実施形態の電流センサ102を説明する斜視図である。図7は、本発明の第2実施形態の電流センサ102を説明する構成図であって、図6に示すZ1側から見た正面図である。図8は、本発明の第2実施形態の電流センサ102を説明する構成図であって、図6に示すX1側から見た側面図である。また、第2実施形態の電流センサ102は、第1実施形態に対し、被測定電流路CB2の形状が異なる。なお、第1実施形態と同一構成については、同一符号を付して詳細な説明は省略する。また、図6ないし図8に示す被測定電流路CB2及び近隣電流路NBは、その一部をだけを示している。
[Second Embodiment]
FIG. 6 is a perspective view illustrating the current sensor 102 according to the second embodiment of the present invention. FIG. 7 is a configuration diagram illustrating the current sensor 102 according to the second embodiment of the present invention, and is a front view seen from the Z1 side shown in FIG. FIG. 8 is a configuration diagram illustrating the current sensor 102 according to the second embodiment of the present invention, and is a side view seen from the X1 side shown in FIG. The current sensor 102 of the second embodiment is different from the first embodiment in the shape of the current path CB2 to be measured. In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. Further, the measured current path CB2 and the neighboring current path NB shown in FIGS. 6 to 8 show only a part thereof.

本発明の第2実施形態の電流センサ102は、図6ないし図8に示すように、被測定電流が流れる被測定電流路CB2と、被測定電流路CB2と平行に配置された近隣電流路NBと、磁界を検出する第1磁気センサ21及び第2磁気センサ22と、外部磁界の影響を低減するための磁気部材25と、を備えて構成される。他に、電流センサ102には、第1磁気センサ11を搭載する第1基板19Aと、第2磁気センサ12を搭載する第2基板19Bと、が設けられている。なお、図示はしていないが、被測定電流路CB2、第1磁気センサ21及び第2磁気センサ22、磁気部材25、第1基板19A及び第2基板19Bを収容する筐体は、必要に応じて用いられる。   As shown in FIGS. 6 to 8, the current sensor 102 according to the second embodiment of the present invention includes a measured current path CB2 through which the measured current flows and a neighboring current path NB arranged in parallel with the measured current path CB2. A first magnetic sensor 21 and a second magnetic sensor 22 for detecting a magnetic field, and a magnetic member 25 for reducing the influence of an external magnetic field. In addition, the current sensor 102 is provided with a first substrate 19A on which the first magnetic sensor 11 is mounted and a second substrate 19B on which the second magnetic sensor 12 is mounted. Although not shown, the housing for accommodating the measured current path CB2, the first magnetic sensor 21 and the second magnetic sensor 22, the magnetic member 25, the first substrate 19A and the second substrate 19B is provided as necessary. Used.

被測定電流路CB2は、銅(Cu)等の導電性の良い材質を用い、図6ないし図8に示すように、X方向に延設して形成されている。また、被測定電流路CB2には、第1磁気センサ21と第2磁気センサ22とで挟まれる位置に、被測定側平行区間部CB2pを有している。そして、被測定側平行区間部CB2pに流れる電流の向きは、X2側からX1方向に向けた向きになっている。   The measured current path CB2 is formed using a material having good conductivity such as copper (Cu) and extending in the X direction as shown in FIGS. Further, the measured current path CB2 has a measured-side parallel section CB2p at a position sandwiched between the first magnetic sensor 21 and the second magnetic sensor 22. And the direction of the electric current which flows into to-be-measured side parallel area part CB2p is the direction which turned to X1 direction from the X2 side.

近隣電流路NBは、銅(Cu)等の導電性の良い材質を用い、図6ないし図8に示すように、被測定電流路CB2と平行に配置され、更に、近隣電流路NBの一部は、Z1方向側に向けてL字状に曲げられて形成されている。   The neighboring current path NB is made of a material having good conductivity such as copper (Cu), and is arranged in parallel with the measured current path CB2 as shown in FIGS. 6 to 8, and further, a part of the neighboring current path NB. Is bent in an L shape toward the Z1 direction.

また、近隣電流路NBには、被測定側平行区間部CB2pと平行に配置された近隣側平行区間部NBpを有しており、近隣側平行区間部NBpに流れる電流の方向もX1方向である。また、被測定電流路CB2と近隣電流路NBとを横切る方向がY方向となっている。また、本発明の第2実施形態では、近隣側平行区間部NBpに対して、直角に曲げられている。なお、図6及び図7の構成図では、被測定電流路CB2のY2側に近隣電流路NBが平行に配設されているが、Y2側に限らず、Y1側でも良いし、Y1側及びY2側の両方に近隣電流路NBが平行に配設されていても良い。また、被測定電流路CB2及び近隣電流路NBの材質に銅(Cu)を用いたが、これに限定されるものではなく、導電性の良い材質であれば良く、例えばアルミニウム(Al)等でも良い。   Further, the neighboring current path NB has a neighboring parallel section NBp arranged in parallel with the measured side parallel section CB2p, and the direction of the current flowing in the neighboring parallel section NBp is also the X1 direction. . Further, the direction crossing the measured current path CB2 and the neighboring current path NB is the Y direction. Moreover, in 2nd Embodiment of this invention, it is bent at right angle with respect to the neighborhood side parallel area part NBp. 6 and 7, the neighboring current path NB is arranged in parallel on the Y2 side of the current path CB2 to be measured. However, the neighboring current path NB is not limited to the Y2 side, and may be on the Y1 side, Neighboring current paths NB may be arranged in parallel on both sides of Y2. Further, although copper (Cu) is used as the material of the current path CB2 and the neighboring current path NB, the material is not limited to this, and any material having good conductivity may be used. For example, aluminum (Al) or the like may be used. good.

第1磁気センサ21及び第2磁気センサ22は、被測定電流路CB2に被測定電流が流れたときに発生する磁界を検出するセンサであって、例えば、磁気抵抗効果を用いた磁気検出素子(MR(Magneto Resistive)素子という)がパッケージングされている。   The first magnetic sensor 21 and the second magnetic sensor 22 are sensors that detect a magnetic field generated when a current to be measured flows through the current path CB2 to be measured. MR (Magneto Resistive) element) is packaged.

また、前述したが、第1磁気センサ21及び第2磁気センサ22は、図6及び図8に示すように、近隣側平行区間部NBpと平行に配置された被測定電流路CB2の被測定側平行区間部CB2pを挟んで配設されている。更に、第1磁気センサ21及び第2磁気センサ22の近傍において、近隣電流路NBの一部がZ1方向側に曲がる位置になるように、第1磁気センサ21及び第2磁気センサ22を配設している。第1磁気センサ21及び第2磁気センサ22の配設は、第1磁気センサ21及び第2磁気センサ22のそれぞれを第1基板19A及び第2基板19Bに搭載して、この第1基板19A及び第2基板19Bを被測定電流路CB2の被測定側平行区間部CB2pに当接させて配置することにより、容易に達成できる。   As described above, the first magnetic sensor 21 and the second magnetic sensor 22 are, as shown in FIGS. 6 and 8, the measured side of the measured current path CB2 arranged in parallel with the neighboring parallel section NBp. Arranged across the parallel section CB2p. Further, in the vicinity of the first magnetic sensor 21 and the second magnetic sensor 22, the first magnetic sensor 21 and the second magnetic sensor 22 are arranged so that a part of the neighboring current path NB is bent to the Z1 direction side. doing. The first magnetic sensor 21 and the second magnetic sensor 22 are arranged by mounting the first magnetic sensor 21 and the second magnetic sensor 22 on the first substrate 19A and the second substrate 19B, respectively. This can be easily achieved by placing the second substrate 19B in contact with the measured side parallel section CB2p of the measured current path CB2.

磁気部材25は、ABS(アクリロニトリルブタジエンスチレン)、PP(ポリプロピレン)等の合成樹脂に扁平状の磁性粉末を分散させて、射出成形等により成形した板状のものを用い、図6ないし図8に示すように、第1磁気センサ21よりもZ1方向側に設けられている。そして、Z1側からの外部磁界の影響を低減している。なお、磁気部材25の材料として合成樹脂に扁平状の磁性粉末を分散させたものを用いたが、磁気シールド効果を有する材質であれば、これに限るものではない。   As the magnetic member 25, a plate-shaped member obtained by dispersing a flat magnetic powder in a synthetic resin such as ABS (acrylonitrile butadiene styrene) or PP (polypropylene) and molded by injection molding or the like is shown in FIGS. As shown, the first magnetic sensor 21 is provided on the Z1 direction side. And the influence of the external magnetic field from the Z1 side is reduced. In addition, although the thing which disperse | distributed flat magnetic powder to the synthetic resin was used as a material of the magnetic member 25, if it is a material which has a magnetic shielding effect, it will not restrict to this.

以上のように構成された電流センサ102は、第1実施形態の電流センサ101の図5Aに示すシミュレーション結果AAと同様に、第1磁気センサ21及び第2磁気センサ22の位置において、被測定側平行区間部CB2pにおける近隣電流路NBを流れる電流が作る磁束のZ方向成分の向きを、第1磁気センサ21の位置及び第2磁気センサ22の位置で同じ方向にすることができる。このため、第1磁気センサ21及び第2磁気センサ22の感度軸方向(KD1、KD2)がZ方向と直交するY方向なので、第1磁気センサ21及び第2磁気センサ22が受ける磁束のY方向成分を限りなく小さくでき、しかも磁束のY方向成分を均等にできる。   The current sensor 102 configured as described above is similar to the simulation result AA shown in FIG. 5A of the current sensor 101 according to the first embodiment, at the positions of the first magnetic sensor 21 and the second magnetic sensor 22. The direction of the Z-direction component of the magnetic flux generated by the current flowing in the neighboring current path NB in the parallel section CB2p can be set to the same direction at the position of the first magnetic sensor 21 and the position of the second magnetic sensor 22. For this reason, since the sensitivity axis directions (KD1, KD2) of the first magnetic sensor 21 and the second magnetic sensor 22 are the Y direction orthogonal to the Z direction, the Y direction of the magnetic flux received by the first magnetic sensor 21 and the second magnetic sensor 22 The component can be made as small as possible, and the Y direction component of the magnetic flux can be made uniform.

また、図示していない曲げられた部分(紙面の奥側)の近隣電流路NBの磁界の影響を強く受ける第1磁気センサ21に対して、磁気部材25により、この影響を低減することができる。   In addition, the magnetic member 25 can reduce this influence on the first magnetic sensor 21 that is strongly influenced by the magnetic field of the neighboring current path NB in the bent portion (the back side of the drawing) (not shown). .

以上のように構成された本発明の第2実施形態の電流センサ102における、効果について、以下に説明する。   The effects of the current sensor 102 according to the second embodiment of the present invention configured as described above will be described below.

本発明の電流センサ102は、近隣電流路NBの近隣側平行区間部NBpと被測定電流路CB2の被測定側平行区間部CB2pとがX1方向に平行に配置され、近隣電流路NBの一部をZ1方向側に折り曲げたので、第1磁気センサ21及び第2磁気センサ22の位置において、被測定側平行区間部CB2pにおける近隣電流路NBを流れる電流が作る磁束のZ方向成分の向きを、第1磁気センサ21の位置及び第2磁気センサ22の位置で同じ方向にすることができる。このため、第1磁気センサ21及び第2磁気センサ22の感度軸方向(KD1、KD2)がZ方向と直交するY方向なので、第1磁気センサ21及び第2磁気センサ22が受ける磁束のY方向成分を限りなく小さくでき、しかも磁束のY方向成分を均等にできる。このことにより、第1磁気センサ21及び第2磁気センサ22による差動処理を行い易くすることができる。しかも、磁気部材25を第1磁気センサ21よりもZ1方向側に設けているので、曲げられた部分の近隣電流路NBの磁界の影響を強く受ける第1磁気センサ21に対して、この影響を低減することができる。このため、第1磁気センサ21及び第2磁気センサ22が受ける磁界の強さを同じようにすることができる。これらのことにより、同じ向きで同じ強さの近隣電流路NBからの磁界は、差動処理で容易に相殺されるため、近隣電流路NBからの磁界の影響による測定精度の低下を抑制することができる。   In the current sensor 102 of the present invention, the neighboring parallel section NBp of the neighboring current path NB and the measured side parallel section CB2p of the measured current path CB2 are arranged in parallel to the X1 direction, and a part of the neighboring current path NB. Is bent in the Z1 direction side, so that the direction of the Z direction component of the magnetic flux generated by the current flowing in the adjacent current path NB in the measured side parallel section CB2p at the position of the first magnetic sensor 21 and the second magnetic sensor 22 is The first magnetic sensor 21 and the second magnetic sensor 22 can be in the same direction. For this reason, since the sensitivity axis directions (KD1, KD2) of the first magnetic sensor 21 and the second magnetic sensor 22 are the Y direction orthogonal to the Z direction, the Y direction of the magnetic flux received by the first magnetic sensor 21 and the second magnetic sensor 22 The component can be made as small as possible, and the Y direction component of the magnetic flux can be made uniform. As a result, differential processing by the first magnetic sensor 21 and the second magnetic sensor 22 can be facilitated. In addition, since the magnetic member 25 is provided on the Z1 direction side of the first magnetic sensor 21, this influence is exerted on the first magnetic sensor 21 that is strongly influenced by the magnetic field of the neighboring current path NB in the bent portion. Can be reduced. For this reason, the strength of the magnetic field received by the first magnetic sensor 21 and the second magnetic sensor 22 can be made the same. As a result, the magnetic field from the neighboring current path NB of the same direction and the same strength can be easily canceled by the differential processing, so that a decrease in measurement accuracy due to the influence of the magnetic field from the neighboring current path NB is suppressed. Can do.

[第3実施形態]
図9は、本発明の第3実施形態の電流センサ103を説明する斜視図である。図10は、本発明の第3実施形態の電流センサ103を説明する構成図であって、図10Aは、図9に示すZ1側から見た正面図であり、図10Bは、図9に示すZ2側から見た背面図である。図11は、本発明の第3実施形態の電流センサ103を説明する構成図であって、図9に示すX1側から見た側面図である。また、第3実施形態の電流センサ103は、第1実施形態に対し、被測定電流路CB3の形状が異なることと、磁気部材35の構成が異なる。なお、第1実施形態と同一構成については、同一符号を付して詳細な説明は省略する。また、図9ないし図11に示す被測定電流路CB3及び近隣電流路NBは、その一部をだけを示している。
[Third Embodiment]
FIG. 9 is a perspective view illustrating the current sensor 103 according to the third embodiment of the present invention. FIG. 10 is a configuration diagram illustrating the current sensor 103 according to the third embodiment of the present invention, in which FIG. 10A is a front view seen from the Z1 side shown in FIG. 9, and FIG. 10B is shown in FIG. It is the rear view seen from the Z2 side. FIG. 11 is a configuration diagram illustrating the current sensor 103 according to the third embodiment of the present invention, and is a side view seen from the X1 side shown in FIG. Further, the current sensor 103 of the third embodiment differs from the first embodiment in the shape of the current path CB3 to be measured and the configuration of the magnetic member 35. In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. Further, only part of the measured current path CB3 and the neighboring current path NB shown in FIGS. 9 to 11 are shown.

本発明の第3実施形態の電流センサ103は、図9ないし図11に示すように、被測定電流が流れる被測定電流路CB3と、被測定電流路CB3と平行に配置された近隣電流路NBと、磁界を検出する第1磁気センサ31及び第2磁気センサ32と、外部磁界の影響を低減するための磁気部材35と、を備えて構成される。他に、電流センサ103には、第1磁気センサ31を搭載する第1基板19Aと、第2磁気センサ32を搭載する第2基板19Bと、が設けられている。なお、図示はしていないが、被測定電流路CB3、第1磁気センサ31及び第2磁気センサ32、磁気部材35、第1基板19A及び第2基板19Bを収容する筐体は、必要に応じて用いられる。   As shown in FIGS. 9 to 11, the current sensor 103 according to the third embodiment of the present invention includes a measured current path CB3 through which a measured current flows, and a neighboring current path NB arranged in parallel with the measured current path CB3. And a first magnetic sensor 31 and a second magnetic sensor 32 for detecting a magnetic field, and a magnetic member 35 for reducing the influence of an external magnetic field. In addition, the current sensor 103 is provided with a first substrate 19A on which the first magnetic sensor 31 is mounted and a second substrate 19B on which the second magnetic sensor 32 is mounted. Although not shown, the housing for accommodating the current path CB3 to be measured, the first magnetic sensor 31 and the second magnetic sensor 32, the magnetic member 35, the first substrate 19A and the second substrate 19B is provided as necessary. Used.

被測定電流路CB3は、銅(Cu)等の導電性の良い材質を用い、図9ないし図11に示すように、X方向に延設して形成されている。また、被測定電流路CB3には、第1磁気センサ31と第2磁気センサ32とで挟まれる位置に、被測定側平行区間部CB3pを有している。   The measured current path CB3 is formed using a material having good conductivity such as copper (Cu) and extending in the X direction as shown in FIGS. Further, the measured current path CB3 has a measured-side parallel section CB3p at a position sandwiched between the first magnetic sensor 31 and the second magnetic sensor 32.

ここで、被測定側平行区間部CB3pに流れる電流の方向をX1方向とすると、図9に示すように、被測定側平行区間部CB3pはX方向に延設されており、X方向と直交するZ方向に第1磁気センサ31と第2磁気センサ32とが配設されるようになる。また、X方向及びZ方向とそれぞれ直交するY方向には、近隣電流路NBが配設されるようになる。なお、第2磁気センサ32から第1磁気センサ31へ向かう方向をZ1方向としている。   Here, assuming that the direction of the current flowing in the measured side parallel section CB3p is the X1 direction, as shown in FIG. 9, the measured side parallel section CB3p extends in the X direction and is orthogonal to the X direction. The first magnetic sensor 31 and the second magnetic sensor 32 are arranged in the Z direction. In addition, the neighboring current path NB is disposed in the Y direction orthogonal to the X direction and the Z direction, respectively. The direction from the second magnetic sensor 32 toward the first magnetic sensor 31 is the Z1 direction.

近隣電流路NBは、銅(Cu)等の導電性の良い材質を用い、図9ないし図11に示すように、被測定電流路CB3と平行に配置され、更に、近隣電流路NBの一部は、Z1方向側に向けてL字状に曲げられて形成されている。   The neighboring current path NB is made of a material having good conductivity such as copper (Cu), and is arranged in parallel with the measured current path CB3 as shown in FIGS. 9 to 11, and further, a part of the neighboring current path NB. Is bent in an L shape toward the Z1 direction.

また、近隣電流路NBには、被測定側平行区間部CB3pと平行に配置された近隣側平行区間部NBpを有しており、近隣側平行区間部NBpに流れる電流の方向もX1方向である。また、被測定電流路CB3と近隣電流路NBとを横切る方向がY方向となっている。また、本発明の第3実施形態では、近隣側平行区間部NBpに対して、直角に曲げられている。なお、図9及び図10の構成図では、被測定電流路CB3のY2側に近隣電流路NBが平行に配設されているが、Y2側に限らず、Y1側でも良いし、Y1側及びY2側の両方に近隣電流路NBが平行に配設されていても良い。また、被測定電流路CB3及び近隣電流路NBの材質に銅(Cu)を用いたが、これに限定されるものではなく、導電性の良い材質であれば良く、例えばアルミニウム(Al)等でも良い。   Further, the neighboring current path NB has a neighboring side parallel section NBp arranged in parallel with the measured side parallel section CB3p, and the direction of the current flowing through the neighboring parallel section NBp is also the X1 direction. . Further, the direction crossing the measured current path CB3 and the neighboring current path NB is the Y direction. Moreover, in 3rd Embodiment of this invention, it is bent at right angle with respect to the neighborhood side parallel area part NBp. In the configuration diagrams of FIGS. 9 and 10, the neighboring current path NB is arranged in parallel on the Y2 side of the current path CB3 to be measured, but the Y1 side may be used instead of the Y2 side, and the Y1 side and Neighboring current paths NB may be arranged in parallel on both sides of Y2. In addition, although copper (Cu) is used as the material of the current path CB3 and the neighboring current path NB, the material is not limited to this, and any material having good conductivity may be used, such as aluminum (Al). good.

第1磁気センサ31及び第2磁気センサ32は、被測定電流路CB3に被測定電流が流れたときに発生する磁界を検出するセンサであって、例えば、磁気抵抗効果を用いた磁気検出素子(AMR(Anisotropic Magneto Resistive)素子という)がパッケージングされている。   The first magnetic sensor 31 and the second magnetic sensor 32 are sensors that detect a magnetic field generated when a current to be measured flows through the current path CB3 to be measured. AMR (Anisotropic Magneto Resistive) element) is packaged.

また、前述したが、第1磁気センサ31及び第2磁気センサ32は、図9ないし図11に示すように、近隣側平行区間部NBpと平行に配置された被測定電流路CB3の被測定側平行区間部CB3pを挟んで配設されている。更に、第1磁気センサ31及び第2磁気センサ32の近傍において、近隣電流路NBの一部がZ1方向側に曲がる位置になるように、第1磁気センサ31及び第2磁気センサ32を配設している。第1磁気センサ31及び第2磁気センサ32の配設は、第1磁気センサ31及び第2磁気センサ32のそれぞれを第1基板19A及び第2基板19Bに搭載して、この第1基板19A及び第2基板19Bを被測定電流路CB3の被測定側平行区間部CB3pに当接させて配置することにより、容易に達成できる。   As described above, the first magnetic sensor 31 and the second magnetic sensor 32 are, as shown in FIGS. 9 to 11, the measured side of the measured current path CB3 arranged in parallel with the neighboring parallel section NBp. Arranged across the parallel section CB3p. Further, in the vicinity of the first magnetic sensor 31 and the second magnetic sensor 32, the first magnetic sensor 31 and the second magnetic sensor 32 are arranged so that a part of the neighboring current path NB is bent to the Z1 direction side. doing. The first magnetic sensor 31 and the second magnetic sensor 32 are disposed by mounting the first magnetic sensor 31 and the second magnetic sensor 32 on the first substrate 19A and the second substrate 19B, respectively. This can be easily achieved by placing the second substrate 19B in contact with the measured side parallel section CB3p of the measured current path CB3.

磁気部材35は、図9ないし図11に示すように、第1磁気部材35Aと第2磁気部材35Bとを有して構成され、第1磁気部材35Aは、第1磁気センサ31よりもZ1方向側に設けられ、第2磁気部材35Bは、第2磁気センサ32よりもZ1方向側と反対のZ2方向側に設けられている。そして、第1磁気部材35AはZ1側からの外部磁界の影響を低減しており、第2磁気部材35BはZ2側からの外部磁界の影響を低減している。   As shown in FIGS. 9 to 11, the magnetic member 35 includes a first magnetic member 35 </ b> A and a second magnetic member 35 </ b> B, and the first magnetic member 35 </ b> A is in the Z <b> 1 direction more than the first magnetic sensor 31. The second magnetic member 35B is provided on the Z2 direction side opposite to the Z1 direction side with respect to the second magnetic sensor 32. The first magnetic member 35A reduces the influence of the external magnetic field from the Z1 side, and the second magnetic member 35B reduces the influence of the external magnetic field from the Z2 side.

また、第2磁気部材35Bの方が、第1磁気部材35Aよりも小さく構成されている。これにより、Z1側からの外部磁界の影響をより低減させる構成としている。   Further, the second magnetic member 35B is configured to be smaller than the first magnetic member 35A. Thereby, the influence of the external magnetic field from the Z1 side is further reduced.

磁気部材35の作製は、扁平状の磁性粉末を分散させたインクを絶縁基材35kの片面に塗布し、乾燥、硬化させることにより、磁気シールド層35rを形成させて行っている。なお、磁気部材35の材料として磁気シールド層35rを用いたが、磁気シールド効果を有する材質であれば、これに限るものではない。   The magnetic member 35 is manufactured by applying the ink in which the flat magnetic powder is dispersed to one surface of the insulating base 35k, and drying and curing the magnetic shield layer 35r. Although the magnetic shield layer 35r is used as the material of the magnetic member 35, the material is not limited to this as long as the material has a magnetic shield effect.

以上のように構成された電流センサ103は、第1実施形態の電流センサ101の図5Aに示すシミュレーション結果AAと同様に、第1磁気センサ31及び第2磁気センサ32の位置において、被測定側平行区間部CB3pにおける近隣電流路NBを流れる電流が作る磁束のZ方向成分の向きを、第1磁気センサ31の位置及び第2磁気センサ32の位置で同じ方向にすることができる。このため、第1磁気センサ31及び第2磁気センサ32の感度軸方向(KD1、KD2)がZ方向と直交するY方向なので、第1磁気センサ31及び第2磁気センサ32が受ける磁束のY方向成分を限りなく小さくでき、しかも磁束のY方向成分を均等にできる。   The current sensor 103 configured as described above is the same as the simulation result AA shown in FIG. 5A of the current sensor 101 of the first embodiment, at the positions of the first magnetic sensor 31 and the second magnetic sensor 32. The direction of the Z-direction component of the magnetic flux generated by the current flowing through the neighboring current path NB in the parallel section CB3p can be set to the same direction at the position of the first magnetic sensor 31 and the position of the second magnetic sensor 32. For this reason, since the sensitivity axis directions (KD1, KD2) of the first magnetic sensor 31 and the second magnetic sensor 32 are the Y direction orthogonal to the Z direction, the Y direction of the magnetic flux received by the first magnetic sensor 31 and the second magnetic sensor 32 The component can be made as small as possible, and the Y direction component of the magnetic flux can be made uniform.

また、図示していない曲げられた部分(紙面の奥側)の近隣電流路NBの磁界の影響を強く受ける第1磁気センサ31に対して、第1磁気部材35Aにより、この影響を低減することができる。   In addition, the first magnetic member 35A reduces this influence on the first magnetic sensor 31 that is strongly affected by the magnetic field of the neighboring current path NB in a bent portion (the back side of the drawing) that is not illustrated. Can do.

以上のように構成された本発明の第3実施形態の電流センサ103における、効果について、以下に説明する。   The effects of the current sensor 103 according to the third embodiment of the present invention configured as described above will be described below.

本発明の電流センサ103は、近隣電流路NBの近隣側平行区間部NBpと被測定電流路CB3の被測定側平行区間部CB3pとがX1方向に平行に配置され、近隣電流路NBの一部をZ1方向側に折り曲げたので、第1磁気センサ31及び第2磁気センサ32の位置において、被測定側平行区間部CB3pにおける近隣電流路NBを流れる電流が作る磁束のZ方向成分の向きを、第1磁気センサ31の位置及び第2磁気センサ32の位置で同じ方向にすることができる。このため、第1磁気センサ31及び第2磁気センサ32の感度軸方向(KD1、KD2)がZ方向と直交するY方向なので、第1磁気センサ31及び第2磁気センサ32が受ける磁束のY方向成分を限りなく小さくでき、しかも磁束のY方向成分を均等にできる。このことにより、第1磁気センサ31及び第2磁気センサ32による差動処理を行い易くすることができる。しかも、第1磁気部材35Aを第1磁気センサ31よりもZ1方向側に設け、第2磁気センサ32のZ2方向側に設けた第2磁気部材35Bが第1磁気部材35Aよりも小さいので、曲げられた部分の近隣電流路NBの磁界の影響を強く受ける第1磁気センサ31に対して、この影響を低減することができるとともに、第1磁気センサ31に受けるZ1側からの外部磁界の影響と第2磁気センサ32に受けるZ2側からの外部磁界の影響とをバランス良く低減することができる。このため、第1磁気センサ31及び第2磁気センサ32が受ける磁界の強さを同じようにすることができる。これらのことにより、同じ向きで同じ強さの近隣電流路NBからの磁界は、差動処理で容易に相殺されるため、近隣電流路NBからの磁界の影響による測定精度の低下を抑制することができる。更に、第1磁気センサ31及び第2磁気センサ32に対して、第1磁気部材35A及び第2磁気部材35Bをそれぞれ配設したので、第1磁気センサ31及び第2磁気センサ32を磁気シールドすることができ、近隣電流路NB以外からの外部磁界からの影響も小さくすることができる。   In the current sensor 103 of the present invention, the neighboring parallel section NBp of the neighboring current path NB and the measured side parallel section CB3p of the measured current path CB3 are arranged in parallel in the X1 direction, and a part of the neighboring current path NB. Is bent in the Z1 direction side, so that at the positions of the first magnetic sensor 31 and the second magnetic sensor 32, the direction of the Z direction component of the magnetic flux generated by the current flowing in the adjacent current path NB in the measured side parallel section CB3p is The first magnetic sensor 31 and the second magnetic sensor 32 can be in the same direction. For this reason, since the sensitivity axis directions (KD1, KD2) of the first magnetic sensor 31 and the second magnetic sensor 32 are the Y direction orthogonal to the Z direction, the Y direction of the magnetic flux received by the first magnetic sensor 31 and the second magnetic sensor 32 The component can be made as small as possible, and the Y direction component of the magnetic flux can be made uniform. As a result, differential processing by the first magnetic sensor 31 and the second magnetic sensor 32 can be facilitated. In addition, the first magnetic member 35A is provided on the Z1 direction side of the first magnetic sensor 31, and the second magnetic member 35B provided on the Z2 direction side of the second magnetic sensor 32 is smaller than the first magnetic member 35A. This effect can be reduced with respect to the first magnetic sensor 31 that is strongly influenced by the magnetic field of the adjacent current path NB in the portion that is provided, and the influence of the external magnetic field from the Z1 side that is received by the first magnetic sensor 31 The influence of the external magnetic field from the Z2 side received by the second magnetic sensor 32 can be reduced in a well-balanced manner. For this reason, the strength of the magnetic field received by the first magnetic sensor 31 and the second magnetic sensor 32 can be made the same. As a result, the magnetic field from the neighboring current path NB of the same direction and the same strength can be easily canceled by the differential processing, so that a decrease in measurement accuracy due to the influence of the magnetic field from the neighboring current path NB is suppressed. Can do. Furthermore, since the first magnetic member 35A and the second magnetic member 35B are provided for the first magnetic sensor 31 and the second magnetic sensor 32, respectively, the first magnetic sensor 31 and the second magnetic sensor 32 are magnetically shielded. The influence from the external magnetic field from other than the neighboring current path NB can be reduced.

なお、本発明は上記実施形態に限定されるものではなく、例えば次のように変形して実施することができ、これらの実施形態も本発明の技術的範囲に属する。   In addition, this invention is not limited to the said embodiment, For example, it can deform | transform and implement as follows, These embodiments also belong to the technical scope of this invention.

図12は、本発明の電流センサの変形例を説明する構成図であって、図12Aは、第1実施形態の電流センサ101を変えた変形例1の電流センサC111の正面図であり、図12Bは、第1実施形態の電流センサ101を変えた変形例2の電流センサC121の側面図である。なお、説明を容易にするため、図12Bに示す磁気部材C15と第1基板19Cは、破線で示している。図13は、本発明の電流センサの変形例を説明する構成図であって、図13Aは、第2実施形態の電流センサ102を変えた変形例3の電流センサC132の斜視図であり、図13Bは、第2実施形態の電流センサ102を変えた変形例4の電流センサC142の斜視図である。   FIG. 12 is a configuration diagram illustrating a modification of the current sensor of the present invention, and FIG. 12A is a front view of a current sensor C111 of Modification 1 in which the current sensor 101 of the first embodiment is changed. 12B is a side view of a current sensor C121 of Modification 2 in which the current sensor 101 of the first embodiment is changed. For ease of explanation, the magnetic member C15 and the first substrate 19C shown in FIG. 12B are indicated by broken lines. FIG. 13 is a configuration diagram illustrating a modification of the current sensor according to the present invention, and FIG. 13A is a perspective view of a current sensor C132 of Modification 3 in which the current sensor 102 of the second embodiment is changed. 13B is a perspective view of a current sensor C142 of Modification 4 in which the current sensor 102 of the second embodiment is changed.

<変形例1>
上記第1実施形態では、近隣電流路NBには、第1磁気センサ11及び第2磁気センサ12が配設されておらず、被測定電流路CB1の方のみに、第1磁気センサ11及び第2磁気センサ12を配設した構成にした。しかしながら、図12Aに示すように、隣り合う電流路(B11、B12、B13、B14、B15)にそれぞれ磁気センサ(M11、M12、M13、M14、M15)を配設する構成にしても良い。なお、図示はしていないが、磁気センサ(M11、M12、M13、M14、M15)と電流路(B11、B12、B13、B14、B15)を挟んで対向する位置にも磁気センサ(M21、M22、M23、M24、M25)が配設されている。
<Modification 1>
In the first embodiment, the first magnetic sensor 11 and the second magnetic sensor 12 are not disposed in the neighboring current path NB, and the first magnetic sensor 11 and the second magnetic sensor 12 are disposed only in the measured current path CB1. Two magnetic sensors 12 are provided. However, as shown in FIG. 12A, the magnetic sensors (M11, M12, M13, M14, M15) may be arranged in adjacent current paths (B11, B12, B13, B14, B15), respectively. Although not shown, the magnetic sensors (M21, M22, M22, M13, M14, M15) are also positioned at positions that oppose each other across the current path (B11, B12, B13, B14, B15). , M23, M24, M25).

これにより、電流路B11を被測定電流路、磁気センサM11を第1磁気センサ、磁気センサM21を第2磁気センサとし、電流路B12を近隣電流路と見なすようにする。また、電流路B12を被測定電流路、磁気センサM12を第1磁気センサ、磁気センサM22を第2磁気センサとし、電流路B11及び電流路B13を近隣電流路と見なすようにする。また、電流路B13を被測定電流路、磁気センサM13を第1磁気センサ、磁気センサM23を第2磁気センサとし、電流路B12及び電流路B14を近隣電流路と見なすようにする。以下、電流路B14、電流路B15についても同様にして見なすようにする。   Thus, the current path B11 is regarded as the current path to be measured, the magnetic sensor M11 is regarded as the first magnetic sensor, the magnetic sensor M21 is regarded as the second magnetic sensor, and the current path B12 is regarded as the neighboring current path. The current path B12 is regarded as a current path to be measured, the magnetic sensor M12 is regarded as a first magnetic sensor, the magnetic sensor M22 is regarded as a second magnetic sensor, and the current path B11 and the current path B13 are regarded as neighboring current paths. The current path B13 is regarded as a current path to be measured, the magnetic sensor M13 is regarded as a first magnetic sensor, the magnetic sensor M23 is regarded as a second magnetic sensor, and the current path B12 and the current path B14 are regarded as neighboring current paths. Hereinafter, the current path B14 and the current path B15 are regarded in the same manner.

<変形例2>
上記第1実施形態の電流センサ101の構成に、第2磁気センサ12のZ2側に第2磁気シールドC15Bを更に設けた電流センサC121であっても良い。
<Modification 2>
The configuration of the current sensor 101 of the first embodiment may be a current sensor C121 in which a second magnetic shield C15B is further provided on the Z2 side of the second magnetic sensor 12.

<変形例3>
上記第2実施形態では、1組の被測定電流路CB2及び近隣電流路NBで構成したが、これに限らず、図13Aに示すように、複数の被測定電流路(CB2、CB2)と複数の近隣電流路(NB、NB、NB)とを組み合わせた構成でも良い。
<Modification 3>
In the second embodiment, a set of the measured current path CB2 and the neighboring current path NB are configured. However, the present invention is not limited thereto, and as shown in FIG. 13A, a plurality of measured current paths (CB2 1 , CB2 1 ). And a plurality of neighboring current paths (NB 1 , NB 2 , NB 3 ) may be combined.

<変形例4>
上記第2実施形態では、1組の被測定電流路CB2a及び近隣電流路NBaに1組の第1磁気センサ21及び第2磁気センサ22を配設した構成としたが、これに限らず、図13Bに示すように、被測定電流路CB2aの一方を曲げて、その近傍の近隣電流路NBaに第1磁気センサ(図示していない)及び第2磁気センサ22aを配設した構成にしても良い。その際には、その部分の被測定電流路CB2aを近隣電流路と見なすようにし、その部分の近隣電流路NBaを被測定電流路と見なすようにする。
<Modification 4>
In the second embodiment, a set of the first magnetic sensor 21 and the second magnetic sensor 22 is arranged in one set of the current path CB2a and the neighboring current path NBa. However, the present invention is not limited to this. As shown in FIG. 13B, one of the current paths CB2a to be measured may be bent, and a first magnetic sensor (not shown) and a second magnetic sensor 22a may be disposed in the neighboring current path NBa in the vicinity thereof. . In that case, the current path CB2a in that portion is regarded as a neighboring current path, and the neighboring current path NBa in that portion is regarded as a current path to be measured.

また、この組合せは1組に限らず、図13Bに示すように、複数の被測定電流路(CB2a、CB2b)、複数の近隣電流路(NBa、NBb、NBc)、複数の第1磁気センサ(図示していない)及び第2磁気センサ(22a、22b、22c)を組み合わせた構成でも良い。   This combination is not limited to one set, and as shown in FIG. 13B, a plurality of current paths to be measured (CB2a, CB2b), a plurality of neighboring current paths (NBa, NBb, NBc), and a plurality of first magnetic sensors ( A structure in which the second magnetic sensor (22a, 22b, 22c) is combined may be used.

<変形例5>
上記実施形態では、第1基板19A及び第2基板19Bを被測定電流路(CB1、CB2、CB3)に当接させて配置したが、離して配置させても良い。また、第1磁気センサ(11、21、31)及び第2磁気センサ(12、22、32)が被測定電流路(CB1、CB2、CB3)に対向するように配置しても良い。
<Modification 5>
In the above embodiment, the first substrate 19A and the second substrate 19B are arranged in contact with the current path to be measured (CB1, CB2, CB3), but may be arranged separately. Moreover, you may arrange | position so that a 1st magnetic sensor (11, 21, 31) and a 2nd magnetic sensor (12, 22, 32) may oppose to a to-be-measured electric current path (CB1, CB2, CB3).

<変形例6>
上記実施形態では、第1磁気センサ(11、21、31)及び第2磁気センサ(12、22、32)を熱硬化性の合成樹脂でパッケージングして磁気センサパッケージ(14、24、34)とし、第1基板19A及び第2基板19Bに実装したが、GMR素子、MR素子及びAMR素子をそのまま第1基板19A及び第2基板19Bに実装、所謂ベアチップ実装しても良い。
<Modification 6>
In the said embodiment, a 1st magnetic sensor (11, 21, 31) and a 2nd magnetic sensor (12, 22, 32) are packaged with a thermosetting synthetic resin, and a magnetic sensor package (14, 24, 34). Although mounted on the first substrate 19A and the second substrate 19B, the GMR element, the MR element, and the AMR element may be mounted on the first substrate 19A and the second substrate 19B as they are, that is, so-called bare chip mounting.

<変形例7>
上記実施形態では、近隣電流路NB或いは被測定電流路CB1が直角に曲げて構成されていたが、直角に限るものではない。
<Modification 7>
In the above-described embodiment, the neighboring current path NB or the measured current path CB1 is bent at a right angle, but is not limited to a right angle.

本発明は上記実施の形態に限定されず、本発明の目的の範囲を逸脱しない限りにおいて適宜変更することが可能である。   The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the scope of the object of the present invention.

11、21、31 第1磁気センサ
12、22、32、22a、22b、22c 第2磁気センサ
15、25、35、C15 磁気部材
35A 第1磁気部材
35B、C15B 第2磁気部材
CB1、CB2、CB3、CB2、CB2、CB2a、CB2b 被測定電流路
CB1p、CB2p、CB3p 被測定側平行区間部
NB、NB、NB、NB、NBa、NBb、NBc 近隣電流路
NBp 近隣側平行区間部
101、102、103、C111、C121、C132、C142 電流センサ
11, 21, 31 First magnetic sensor 12, 22, 32, 22a, 22b, 22c Second magnetic sensor 15, 25, 35, C15 Magnetic member 35A First magnetic member 35B, C15B Second magnetic member CB1, CB2, CB3 , CB2 1, CB2 1, CB2a , CB2b measured current path CB1p, CB2p, CB3p measured side parallel section portion NB, NB 1, NB 2, NB 3, NBa, NBb, NBc close current paths NBp close side parallel section portion 101, 102, 103, C111, C121, C132, C142 Current sensor

Claims (3)

被測定電流が流れる被測定電流路と、
前記被測定電流路と平行に配置された近隣側平行区間部を有する近隣電流路と、
被測定電流路に前記被測定電流が流れたときに発生する磁界を検出する第1磁気センサ及び第2磁気センサと、
外部磁界の影響を低減するための磁気部材と、を備えた電流センサであって、
前記第1磁気センサ及び前記第2磁気センサは、前記近隣側平行区間部と平行に配置された前記被測定電流路の被測定側平行区間部を挟んで配設され、
前記第1磁気センサと前記第2磁気センサとで挟まれる位置の前記被測定側平行区間部に流れる電流の方向をX1方向とし、
前記被測定電流路と前記近隣電流路とを横切る方向をY方向とし、
前記第2磁気センサから前記第1磁気センサへ向かう方向をZ1方向とすると、
前記X1方向と前記Y方向と前記Z1方向とはそれぞれ直交し、
前記第1磁気センサ及び前記第2磁気センサの近傍において、前記近隣電流路の一部が前記Z1方向側に曲がっており、
前記磁気部材が、前記第1磁気センサよりもZ1方向側のみに設けられていることを特徴とする電流センサ。
A measured current path through which the measured current flows; and
A neighboring current path having a neighboring parallel section disposed in parallel with the measured current path;
A first magnetic sensor and a second magnetic sensor for detecting a magnetic field generated when the measured current flows through the measured current path;
A current sensor comprising a magnetic member for reducing the influence of an external magnetic field,
The first magnetic sensor and the second magnetic sensor are disposed across a measured-side parallel section of the measured current path disposed in parallel with the neighboring-side parallel section,
The direction of the current flowing through the measured side parallel section at the position sandwiched between the first magnetic sensor and the second magnetic sensor is the X1 direction,
A direction crossing the measured current path and the neighboring current path is a Y direction,
When the direction from the second magnetic sensor toward the first magnetic sensor is the Z1 direction,
The X1 direction, the Y direction, and the Z1 direction are orthogonal to each other,
In the vicinity of the first magnetic sensor and the second magnetic sensor, a part of the neighboring current path is bent toward the Z1 direction side,
The current sensor, wherein the magnetic member is provided only on the Z1 direction side of the first magnetic sensor.
前記第1磁気センサ及び前記第2磁気センサが受ける磁束のY方向成分が均等であることを特徴とする請求項1に記載の電流センサ。2. The current sensor according to claim 1, wherein Y-direction components of magnetic flux received by the first magnetic sensor and the second magnetic sensor are equal. 前記第1磁気センサ及び前記第2磁気センサの近傍において、前記被測定電流路の一部が前記Z1方向側に曲がっていることを特徴とする請求項1または請求項2に記載の電流センサ。   3. The current sensor according to claim 1, wherein a part of the current path to be measured is bent toward the Z <b> 1 direction in the vicinity of the first magnetic sensor and the second magnetic sensor.
JP2015518065A 2013-05-23 2014-05-02 Current sensor Active JP6051459B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013108801 2013-05-23
JP2013108801 2013-05-23
PCT/JP2014/002413 WO2014188669A1 (en) 2013-05-23 2014-05-02 Current sensor

Publications (2)

Publication Number Publication Date
JP6051459B2 true JP6051459B2 (en) 2016-12-27
JPWO2014188669A1 JPWO2014188669A1 (en) 2017-02-23

Family

ID=51933240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015518065A Active JP6051459B2 (en) 2013-05-23 2014-05-02 Current sensor

Country Status (2)

Country Link
JP (1) JP6051459B2 (en)
WO (1) WO2014188669A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003609B2 (en) * 2017-12-05 2022-01-20 日立金属株式会社 Current sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242559A (en) * 1990-02-19 1991-10-29 Furukawa Electric Co Ltd:The Method for measuring current by photo-magnetic field sensor
WO2003107018A1 (en) * 2002-06-18 2003-12-24 旭化成株式会社 Current measuring method and current measuring device
JP2005321206A (en) * 2004-05-06 2005-11-17 Mitsubishi Electric Corp Current detection device
JP2006112968A (en) * 2004-10-15 2006-04-27 Toyota Motor Corp Current detecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242559A (en) * 1990-02-19 1991-10-29 Furukawa Electric Co Ltd:The Method for measuring current by photo-magnetic field sensor
WO2003107018A1 (en) * 2002-06-18 2003-12-24 旭化成株式会社 Current measuring method and current measuring device
JP2005321206A (en) * 2004-05-06 2005-11-17 Mitsubishi Electric Corp Current detection device
JP2006112968A (en) * 2004-10-15 2006-04-27 Toyota Motor Corp Current detecting device

Also Published As

Publication number Publication date
WO2014188669A1 (en) 2014-11-27
JPWO2014188669A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5879595B2 (en) Current sensor
US9453890B2 (en) Magnetic sensor and magnetic detecting method of the same
CN107533089B (en) Current sensor
JP5482736B2 (en) Current sensor
US9964601B2 (en) Magnetic sensor
US9372240B2 (en) Current sensor
CN107250813B (en) Current sensor
JP6427588B2 (en) Magnetic sensor
JP6690433B2 (en) Current sensor
JP6597370B2 (en) Magnetic sensor
JP2014134458A (en) Current sensor
US9599642B2 (en) Current sensor
JP6007381B2 (en) Method for determining position of magnetoelectric transducer of current sensor
JP6051459B2 (en) Current sensor
JP2014055791A (en) Current sensor
JP2013142604A (en) Current sensor
JP5678285B2 (en) Current sensor
JP5504483B2 (en) Current sensor
JP6671986B2 (en) Current sensor and method of manufacturing the same
CN209927922U (en) Current detection device based on PCB
JP2014098634A (en) Current sensor
JP2016206006A (en) Magnetic sensor
JP6076860B2 (en) Current detector
US11899047B1 (en) Magnetic field shaping for magnetic field current sensor
JP5432082B2 (en) Semiconductor device with current detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161014

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161108

R150 Certificate of patent or registration of utility model

Ref document number: 6051459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350