Nothing Special   »   [go: up one dir, main page]

JP6049395B2 - 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム - Google Patents

半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム Download PDF

Info

Publication number
JP6049395B2
JP6049395B2 JP2012233851A JP2012233851A JP6049395B2 JP 6049395 B2 JP6049395 B2 JP 6049395B2 JP 2012233851 A JP2012233851 A JP 2012233851A JP 2012233851 A JP2012233851 A JP 2012233851A JP 6049395 B2 JP6049395 B2 JP 6049395B2
Authority
JP
Japan
Prior art keywords
gas
layer
processing chamber
supplying
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012233851A
Other languages
English (en)
Other versions
JP2013140945A (ja
Inventor
敦 佐野
敦 佐野
義朗 ▲ひろせ▼
義朗 ▲ひろせ▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2012233851A priority Critical patent/JP6049395B2/ja
Priority to KR1020120141818A priority patent/KR101402644B1/ko
Priority to US13/708,976 priority patent/US9053927B2/en
Publication of JP2013140945A publication Critical patent/JP2013140945A/ja
Priority to US14/706,223 priority patent/US9437422B2/en
Application granted granted Critical
Publication of JP6049395B2 publication Critical patent/JP6049395B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

この発明は、基板上に薄膜を形成する工程を含む半導体装置の製造方法、基板処理方法、基板処理装置およびプログラムに関するものである。
半導体装置(デバイス)の製造工程の中に、シリコンウエハ等の基板上にシリコン酸化膜(SiO)やシリコン窒化膜(Si)などのシリコン系絶縁膜、すなわち、所定元素としてのシリコンを含む絶縁膜を形成する工程がある。シリコン酸化膜は、絶縁性、低誘電性などに優れ、絶縁膜や層間膜として広く用いられている。また、シリコン窒化膜は、絶縁性、耐食性、誘電性、膜ストレス制御性などに優れ、絶縁膜やマスク膜、電荷蓄積膜、ストレス制御膜として広く用いられている。また、これらの絶縁膜にカーボン(C)を添加する技術も知られており、これにより、絶縁膜のエッチング耐性を向上させることが可能となる。
しかしながら、絶縁膜へのカーボン添加により、絶縁膜のエッチング耐性を向上させることが可能となる一方、誘電率が増加し、リーク耐性が劣化してしまうことがある。すなわち、それぞれの絶縁膜には一長一短があり、従来、低誘電率、高エッチング耐性、高リーク耐性の特性を備える薄膜はなかった。
従って本発明の目的は、低誘電率、高エッチング耐性、高リーク耐性の特性を備える薄膜を成膜することができ、さらに、成膜時の生産性を向上させることができる半導体装置の製造方法、基板処理方法、基板処理装置およびプログラムを提供することにある。
本発明の一態様によれば、
基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する工程と、前記基板に対して炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する工程と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する工程と、
前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する工程と、
前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する工程と、
を含むサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する工程を有する半導体装置の製造方法が提供される。
本発明の他の態様によれば、
基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する工程と、前記基板に対して炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する工程と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する工程と、
前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する工程と、
前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する工程と、
を含むサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する工程を有する基板処理方法が提供される。
本発明のさらに他の態様によれば、
基板を収容する処理室と、
前記処理室内へ所定元素とハロゲン元素とを含む原料ガスを供給する原料ガス供給系と、
前記処理室内へ炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する第1反応ガス供給系と、
前記処理室内へ前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給する第2反応ガス供給系と、
前記処理室内へ水素含有ガスを供給する水素含有ガス供給系と、
前記処理室内の基板に対して前記原料ガスを供給する処理と、前記処理室内の前記基板に対して前記第1の反応ガスを供給する処理と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する処理と、前記処理室内の前記基板に対して前記第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する処理と、前記処理室内の前記基板に対して前記水素含有ガスを供給することで、前記第2の層の表面を改質する処理と、を含むサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する処理を行うように、前記原料ガス供給系、前記第1反応ガス供給系、前記第2反応ガス供給系および前記水素含有ガス供給系を制御する制御部と、
を有する基板処理装置が提供される。
本発明のさらに他の態様によれば、
基板処理装置の処理室内の基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する手順と、前記処理室内の前記基板に対して炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する手順と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する手順と、
前記処理室内の前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する手順と、
前記処理室内の前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する手順と、
を含むサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する手順をコンピュータに実行させるプログラムが提供される。
本発明によれば、低誘電率、高エッチング耐性、高リーク耐性の特性を備える薄膜を形成することができ、さらに、成膜時の生産性を向上させることができる半導体装置の製造方法、基板処理方法、基板処理装置およびプログラムを提供できる。
本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA−A線断面図で示す図である。 本発明の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図である。 本発明の第1実施形態における成膜フローを示す図である。 本発明の第1実施形態の成膜シーケンスにおけるガス供給のタイミングを示す図である。 本発明の第1実施形態の成膜シーケンスにおけるガス供給のタイミングの変形例を示す図であり、(a)は変形例1を、(b)は変形例2を、(c)は変形例3をそれぞれ示している。 本発明の第2実施形態における成膜フローを示す図である。 本発明の第2実施形態の成膜シーケンスにおけるガス供給のタイミングを示す図である。 本発明の第2実施形態の成膜シーケンスにおけるガス供給のタイミングの変形例を示す図であり、(a)は変形例1を、(b)は変形例2を、(c)は変形例3をそれぞれ示している。 本発明の第3実施形態における成膜フローを示す図である。 本発明の第3実施形態の成膜シーケンスにおけるガス供給のタイミングを示す図である。 本発明の第3実施形態の成膜シーケンスにおけるガス供給のタイミングの変形例を示す図であり、(a)は変形例1を、(b)は変形例2を、(c)は変形例3をそれぞれ示している。 本発明の第3実施形態の成膜シーケンスにおけるガス供給のタイミングの変形例を示す図であり、(a)は変形例4を、(b)は変形例5を、(c)は変形例6をそれぞれ示している。 (a)及び(b)は、本発明の他の実施形態の成膜シーケンスにおけるガス供給のタイミングをそれぞれ示す図である。 (a)〜(d)は、本発明の他の実施形態の成膜シーケンスにおけるガス供給のタイミングをそれぞれ示す図である。
<本発明の第1実施形態>
以下に本発明の第1実施形態を図面に基づいて説明する。
(1)基板処理装置の構成
図1は、本実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉202部分を縦断面図で示している。図2は、本実施形態で好適に用いられる縦型処理炉の概略構成図であり、処理炉202部分を図1のA−A線断面図で示している。
図1に示されているように、処理炉202は加熱手段(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。なお、ヒータ207は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成する反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の筒中空部には処理室201が形成されており、基板としてのウエハ200を後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
処理室201内には、第1ノズル249a、第2ノズル249b、第3ノズル249cが反応管203の下部を貫通するように設けられている。第1ノズル249a、第2ノズル249b、第3ノズル249cには、第1ガス供給管232a、第2ガス供給管232b、第3ガス供給管232cが、それぞれ接続されている。また、第3ガス供給管232cには、第4ガス供給管232d、第5ガス供給管232eがそれぞれ接続されている。このように、反応管203には3本のノズル249a,249b,249cと、5本のガス供給管232a,232b,232c,232d,232eとが設けられており、処理室201内へ複数種類、ここでは5種類のガスを供給することができるように構成されている。
なお、反応管203の下方に、反応管203を支持する金属製のマニホールドを設け、各ノズルを、この金属製のマニホールドの側壁を貫通するように設けるようにしてもよい。この場合、この金属製のマニホールドに、さらに後述する排気管231を設けるようにしてもよい。なお、この場合であっても、排気管231を金属製のマニホールドではなく、反応管203の下部に設けるようにしてもよい。このように、処理炉の炉口部を金属製とし、この金属製の炉口部にノズル等を取り付けるようにしてもよい。
第1ガス供給管232aには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a、及び開閉弁であるバルブ243aが設けられている。また、第1ガス供給管232aのバルブ243aよりも下流側には、第1不活性ガス供給管232fが接続されている。この第1不活性ガス供給管232fには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ241f、及び開閉弁であるバルブ243fが設けられている。また、第1ガス供給管232aの先端部には、上述の第1ノズル249aが接続されている。第1ノズル249aは、反応管203の内壁とウエハ200との間における円弧状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、第1ノズル249aは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。第1ノズル249aはL字型のロングノズルとして構成されており、その水平部は反応管203の下部側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。第1ノズル249aの側面にはガスを供給するガス供給孔250aが設けられている。ガス供給孔250aは反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。このガス供給孔250aは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。
主に、第1ガス供給管232a、マスフローコントローラ241a、バルブ243aにより第1ガス供給系が構成される。なお、第1ノズル249aを第1ガス供給系に含めて考えてもよい。また、主に、第1不活性ガス供給管232f、マスフローコントローラ241f、バルブ243fにより第1不活性ガス供給系が構成される。第1不活性ガス供給系はパージガス供給系としても機能する。
第2ガス供給管232bには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241b、及び開閉弁であるバルブ243bが設けられている。また、第2ガス供給管232bのバルブ243bよりも下流側には、第2不活性ガス供給管232gが接続されている。この第2不活性ガス供給管232gには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ241g、及び開閉弁であるバルブ243gが設けられている。また、第2ガス供給管232bの先端部には、上述の第2ノズル249bが接続されている。第2ノズル249bは、反応管203の内壁とウエハ200との間における円弧状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、第2ノズル249bは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。第2ノズル249bはL字型のロングノズルとして構成されており、その水平部は反応管203の下部側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。第2ノズル249bの側面にはガスを供給するガス供給孔250bが設けられている。ガス供給孔250bは反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。このガス供給孔250bは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。
主に、第2ガス供給管232b、マスフローコントローラ241b、バルブ243bにより第2ガス供給系が構成される。なお、第2ノズル249bを第2ガス供給系に含めて考えてもよい。また、主に、第2不活性ガス供給管232g、マスフローコントローラ241g、バルブ243gにより第2不活性ガス供給系が構成される。第2不活性ガス供給系はパージガス供給系としても機能する。
第3ガス供給管232cには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241c、及び開閉弁であるバルブ243cが設けられている。また、第3ガス供給管232cのバルブ243cよりも下流側には、第4ガス供給管232d、第5ガス供給管232eが接続されている。第4ガス供給管232dには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ241d、及び開閉弁であるバルブ243dが設けられている。第5ガス供給管232eには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ241e、及び開閉弁であるバルブ243eが設けられている。また、第3ガス供給管232cにおける第4ガス供給管232d及び第5ガス供給管232eとの接続箇所よりも下流側には、第3不活性ガス供給管232hが接続されている。この第3不活性ガス供給管232hには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ241h、及び開閉弁であるバルブ243hが設けられている。また、第3ガス供給管232cの先端部には、上述の第3ノズル249cが接続されている。第3ノズル249cは、反応管203の内壁とウエハ200との間における円弧状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、第3ノズル249cは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。第3ノズル249cはL字型のロングノズルとして構成されており、その水平部は反応管203の下部側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。第3ノズル249cの側面にはガスを供給するガス供給孔250cが設けられている。ガス供給孔250cは反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。このガス供給孔250cは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。
主に、第3ガス供給管232c、マスフローコントローラ241c、バルブ243cにより第3ガス供給系が構成される。なお、第3ノズル249cを第3ガス供給系に含めて考えてもよい。また、主に、第4ガス供給管232d、マスフローコントローラ241d、バルブ243dにより、第4ガス供給系が構成される。なお、第3ガス供給管232cの第4ガス供給管232dとの接続部よりも下流側、第3ノズル249cを第4ガス供給系に含めて考えてもよい。また、主に、第5ガス供給管232e、マスフローコントローラ241e、バルブ243eにより、第5ガス供給系が構成される。なお、第3ガス供給管232cの第5ガス供給管232eとの接続部よりも下流側、第3ノズル249cを第5ガス供給系に含めて考えてもよい。また、主に、第3不活性ガス供給管232h、マスフローコントローラ241h、バルブ243hにより、第3不活性ガス供給系が構成される。第3不活性ガス供給系はパージガス供給系としても機能する。
このように、本実施形態におけるガス供給の方法は、反応管203の内壁と、積載された複数枚のウエハ200の端部とで定義される円弧状の縦長の空間内に配置したノズル249a、249b、249cを経由してガスを搬送し、ノズル249a,249b,249cにそれぞれ開口されたガス供給孔250a,250b,250cからウエハ200の近傍で初めて反応管203内にガスを噴出させており、反応管203内におけるガスの主たる流れをウエハ200の表面と平行な方向、すなわち水平方向としている。このような構成とすることで、各ウエハ200に対して均一にガスを供給でき、各ウエハ200に形成される薄膜の膜厚を均一にできる効果がある。なお、ウエハ200の表面上を流れたガス、すなわち、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れるが、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。
第1ガス供給管232aからは、所定元素とハロゲン元素とを含む原料ガスとして、例えば、少なくともシリコン(Si)と塩素(Cl)とを含む原料ガスであるクロロシラン系原料ガスが、マスフローコントローラ241a、バルブ243a、第1ノズル249aを介して処理室201内に供給される。ここで、クロロシラン系原料ガスとは、気体状態のクロロシラン系原料、例えば、常温常圧下で液体状態であるクロロシラン系原料を気化することで得られるガスや、常温常圧下で気体状態であるクロロシラン系原料等のことである。また、クロロシラン系原料とは、ハロゲン基としてのクロロ基を有するシラン系原料のことであり、少なくともシリコン(Si)及び塩素(Cl)を含む原料のことである。すなわち、ここでいうクロロシラン系原料は、ハロゲン化物の一種とも言える。なお、本明細書において「原料」という言葉を用いた場合は、「液体状態である液体原料」を意味する場合、「気体状態である原料ガス」を意味する場合、または、その両方を意味する場合がある。従って、本明細書において「クロロシラン系原料」という言葉を用いた場合は、「液体状態であるクロロシラン系原料」を意味する場合、「気体状態であるクロロシラン系原料ガス」を意味する場合、または、その両方を意味する場合がある。クロロシラン系原料ガスとしては、例えば、その組成式中(1分子中)におけるハロゲン基を含むリガンド(Cl)の数が6であるヘキサクロロジシラン(SiCl、略称:HCDS)ガスを用いることができる。なお、HCDSのように常温常圧下で液体状態である液体原料を用いる場合は、液体原料を気化器やバブラ等の気化システムにより気化して、原料ガス(HCDSガス)として供給することとなる。
第2ガス供給管232bからは、炭素(C)と窒素(N)とを含む第1の反応ガスとして、例えば、アミンを含むガス、すなわち、アミン系ガスが、マスフローコントローラ241b、バルブ243b、第2ノズル249bを介して処理室201内に供給される。ここで、アミン系ガスとは、気体状態のアミン、例えば、常温常圧下で液体状態であるアミンを気化することで得られるガスや、常温常圧下で気体状態であるアミン等のアミン基を含むガスのことである。アミン系ガスは、エチルアミン、メチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン等のアミンを含む。ここで、アミンとは、アンモニア(NH)の水素原子をアルキル基等の炭化水素基で置換した形の化合物の総称である。つまり、アミンは、炭素原子を含むリガンドとして、アルキル基等の炭化水素基を含む。アミン系ガスは、炭素(C)、窒素(N)及び水素(H)の3元素を含んでおり、シリコン(Si)を含んでいないことからシリコン非含有のガスとも言え、更には、シリコン及び金属を含んでいないことからシリコン及び金属非含有のガスとも言える。また、アミン系ガスは、窒素含有ガスでもあり、炭素含有ガスでもあり、水素含有ガスでもある。アミン系ガスは、炭素(C)、窒素(N)および水素(H)の3元素のみで構成される物質とも言える。なお、本明細書において「アミン」という言葉を用いた場合は、「液体状態であるアミン」を意味する場合、「気体状態であるアミン系ガス」を意味する場合、または、その両方を意味する場合がある。アミン系ガスとしては、例えば、その組成式中(1分子中)における炭素原子を含むリガンド(エチル基)の数が3であり、その組成式中において窒素原子の数よりも炭素原子の数の方が多いトリエチルアミン((CN、略称:TEA)ガスを用いることができる。なお、TEAのように常温常圧下で液体状態であるアミンを用いる場合は、液体状態のアミンを気化器やバブラ等の気化システムにより気化して、第1の反応ガス(TEAガス)として供給することとなる。
第3ガス供給管232cからは、原料ガスおよび第1の反応ガスとは異なる第2の反応ガスとして、例えば、酸素(O)を含むガス(酸素含有ガス)、すなわち、酸化ガスが、マスフローコントローラ241c、バルブ243c、第3ノズル249cを介して処理室201内に供給される。酸素含有ガス(酸化ガス)としては、例えば、酸素(O)ガスを用いることができる。
第4ガス供給管232dからは、原料ガスおよび第1の反応ガスとは異なる第2の反応ガスとして、例えば、窒素(N)を含むガス(窒素含有ガス)、すなわち、窒化ガスが、マスフローコントローラ241d、バルブ243d、第3ガス供給管232c、第3ノズル249cを介して処理室201内に供給される。窒素含有ガス(窒化ガス)としては、例えば、アンモニア(NH)ガスを用いることができる。
第5ガス供給管232eからは、水素含有ガス、すなわち、還元ガスとして、例えば水素(H)ガスが、マスフローコントローラ241e、バルブ243e、第3ガス供給管232c、第3ノズル249cを介して処理室201内に供給される。
不活性ガス供給管232f,232g,232hからは、不活性ガスとして、例えば窒素(N)ガスが、それぞれマスフローコントローラ241f,241g,241h、バルブ243f,243g,243h、ガス供給管232a,232b,232c、ノズル249a,249b,249cを介して処理室201内に供給される。
なお、例えば各ガス供給管から上述のようなガスをそれぞれ流す場合、第1ガス供給系により、所定元素およびハロゲン基を含む原料ガスを供給する原料ガス供給系、すなわち、クロロシラン系原料ガス供給系が構成される。なお、クロロシラン系原料ガス供給系を、単に、クロロシラン系原料供給系とも称する。また、第2ガス供給系により、第1反応ガス供給系、すなわち、アミン系ガス供給系が構成される。なお、アミン系ガス供給系を、単に、アミン供給系とも称する。また、第3ガス供給系により第2反応ガス供給系、すなわち、酸化ガス供給系としての酸素含有ガス供給系が構成される。また、第4ガス供給系により、第2反応ガス供給系、すなわち、窒化ガス供給系としての窒素含有ガス供給系が構成される。また、第5ガス供給系により、還元ガス供給系としての水素含有ガス供給系が構成される。
反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。図2に示すように、横断面視において、排気管231は、反応管203の第1ノズル249aのガス供給孔250a、第2ノズル249bのガス供給孔250b、および、第3ノズル249cのガス供給孔250cが設けられる側と対向する側、すなわち、ウエハ200を挟んでガス供給孔250a,250b,250cとは反対側に設けられている。また、図1に示すように縦断面視において、排気管231は、ガス供給孔250a,250b,250cが設けられる箇所よりも下方に設けられている。この構成により、ガス供給孔250a,250b,250cから処理室201内のウエハ200の近傍に供給されたガスは、水平方向、すなわち、ウエハ200の表面と平行な方向に向かって流れた後、下方に向かって流れ、排気管231より排気されることとなる。処理室201内におけるガスの主たる流れが水平方向へ向かう流れとなるのは上述の通りである。
排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。なお、APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ244、圧力センサ245により排気系が構成される。なお、真空ポンプ246を排気系に含めて考えてもよい。排気系は、真空ポンプ246を作動させつつ、圧力センサ245により検出された圧力情報に基づいてAPCバルブ244の弁の開度を調節することにより、処理室201内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。
反応管203の下方には、反応管203の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は反応管203の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は例えばステンレス等の金属からなり、円盤状に形成されている。シールキャップ219の上面には反応管203の下端と当接するシール部材としてのOリング220が設けられている。シールキャップ219の処理室201と反対側には、後述する基板保持具としてのボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255はシールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。すなわち、ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成される。
基板支持具としてのボート217は、例えば石英や炭化シリコン等の耐熱性材料からなり、複数枚のウエハ200を水平姿勢で、かつ、互いに中心を揃えた状態で整列させて多段に支持するように構成されている。なお、ボート217の下部には、例えば石英や炭化シリコン等の耐熱性材料からなる断熱部材218が設けられており、ヒータ207からの熱がシールキャップ219側に伝わりにくくなるよう構成されている。なお、断熱部材218は、石英や炭化シリコン等の耐熱性材料からなる複数枚の断熱板と、これら断熱板を水平姿勢で多段に支持する断熱板ホルダとにより構成してもよい。
反応管203内には温度検出器としての温度センサ263が設置されており、温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル249a,249b,249cと同様にL字型に構成されており、反応管203の内壁に沿って設けられている。
図3に示されているように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
I/Oポート121dは、上述のマスフローコントローラ241a,241b,241c,241d,241e,241f,241g,241h、バルブ243a,243b,243c,243d,243e,243f,243g,243h、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。そして、CPU121aは、読み出したプロセスレシピの内容に沿うように、マスフローコントローラ241a,241b,241c,241d,241e,241f,241g,241hによる各種ガスの流量調整動作、バルブ243a,243b,243c,243d,243e,243f,243g,243hの開閉動作、APCバルブ244の開閉動作及び圧力センサ245に基づくAPCバルブ244による圧力調整動作、温度センサ263に基づくヒータ207の温度調整動作、真空ポンプ246の起動および停止、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
なお、コントローラ121は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123を用意し、係る外部記憶装置123を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ121を構成することができる。なお、コンピュータにプログラムを供給するための手段は、外部記憶装置123を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置123を介さずにプログラムを供給するようにしてもよい。なお、記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に、記録媒体ともいう。なお、本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。
(2)基板処理工程
次に、上述の基板処理装置の処理炉202を用いて、半導体装置(デバイス)の製造工程の一工程として、ウエハ200上に薄膜を成膜する例について説明する。尚、以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
本実施形態では、
処理室201内のウエハ200に対して所定元素とハロゲン元素とを含む原料ガスを供給する工程と、処理室201内のウエハ200に対して炭素、窒素および水素の3元素で構成され、組成式中(1分子中)において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する工程と、を交互に所定回数(1回以上)行うことで、ウエハ200上に所定元素、窒素および炭素を含む第1の層を形成する工程と、
処理室201内のウエハ200に対して原料ガスおよび第1の反応ガスとは異なる第2の反応ガスを供給することで、第1の層を改質して第2の層を形成する工程と、
処理室201内のウエハ200に対して水素含有ガスを供給することで、第2の層の表面を改質する工程と、
を含むサイクルを繰り返すことで、ウエハ200上に、所定元素を含む所定組成及び所定膜厚の薄膜を形成する。
なお、本実施形態では、形成する薄膜の組成比が化学量論組成、または、化学量論組成とは異なる所定の組成比となるようにすることを目的として、形成する薄膜を構成する複数の元素を含む複数種類のガスの供給条件を制御する。例えば、形成する薄膜を構成する複数の元素のうち少なくとも一つの元素が他の元素よりも化学量論組成に対し過剰となるようにすることを目的として、供給条件を制御する。以下、形成する薄膜を構成する複数の元素の比率、すなわち、薄膜の組成比を制御しつつ成膜を行う例について説明する。
以下、本実施形態の成膜シーケンスを、図4、図5を用いて具体的に説明する。図4は、本実施形態における成膜フローを示す図である。図5は、本実施形態の成膜シーケンスにおけるガス供給のタイミングを示す図である。
なお、ここでは、
処理室201内のウエハ200に対して原料ガスとしてクロロシラン系原料ガスであるHCDSガスを供給する工程と、処理室201内のウエハ200に対して炭素、窒素および水素の3元素で構成され、組成式中(1分子中)において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスとして、その組成式中において炭素原子を含むリガンド(エチル基)を複数(3つ)有するアミン系ガスであるTEAガスを供給する工程と、を交互に1回行うことで、ウエハ200上にシリコン、窒素および炭素を含む第1の層を形成する工程と、
処理室201内のウエハ200に対して原料ガスおよび第1の反応ガスとは異なる第2の反応ガスとして酸素含有ガス(酸化ガス)であるOガスを供給することで、第1の層を改質して第2の層としてシリコン酸炭窒化層(SiOCN層)またはシリコン酸炭化層(SiOC層)を形成する工程と、
処理室201内のウエハ200に対して水素含有ガス(還元ガス)としてHガスを供給することで、第2の層の表面を改質する工程と、
を含むサイクルを繰り返すことで、ウエハ200上に、所定組成及び所定膜厚のシリコン系絶縁膜であるシリコン酸炭窒化膜(SiOCN膜)またはシリコン酸炭化膜(SiOC膜)を形成する例について説明する。
なお、本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合(すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合)がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。
従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面(露出面)に対して所定のガスを直接供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等に対して、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(又は膜)を形成する」と記載した場合は、「ウエハそのものの表面(露出面)上に所定の層(又は膜)を直接形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(又は膜)を形成する」ことを意味する場合がある。
なお、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同様であり、その場合、上記説明において、「ウエハ」を「基板」に置き換えて考えればよい。
(ウエハチャージ及びボートロード)
複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されているように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端をシールした状態となる。
(圧力調整及び温度調整)
処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される(圧力調整)。なお、真空ポンプ246は、少なくともウエハ200に対する処理が終了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される(温度調整)。なお、ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。続いて、回転機構267によりボート217及びウエハ200の回転を開始する。なお、回転機構267によるボート217及びウエハ200の回転は、少なくとも、ウエハ200に対する処理が完了するまでの間は継続して行われる。
(シリコン酸炭窒化膜またはシリコン酸炭化膜形成工程)
その後、次の3つのステップ、すなわち、ステップ1〜3を順次実行する。
[ステップ1]
(HCDSガス供給)
第1ガス供給管232aのバルブ243aを開き、第1ガス供給管232a内にHCDSガスを流す。第1ガス供給管232a内を流れたHCDSガスは、マスフローコントローラ241aにより流量調整される。流量調整されたHCDSガスは、第1ノズル249aのガス供給孔250aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してHCDSガスが供給されることとなる。このとき同時にバルブ243fを開き、第1不活性ガス供給管232f内に不活性ガスとしてのNガスを流す。第1不活性ガス供給管232f内を流れたNガスは、マスフローコントローラ241fにより流量調整される。流量調整されたNガスは、HCDSガスと一緒に処理室201内に供給され、排気管231から排気される。
なお、このとき、第2ノズル249b、第3ノズル249c内へのHCDSガスの侵入を防止するため、バルブ243g,243hを開き、第2不活性ガス供給管232g、第3不活性ガス供給管232h内にNガスを流す。Nガスは、第2ガス供給管232b、第3ガス供給管232c、第2ノズル249b、第3ノズル249cを介して処理室201内に供給され、排気管231から排気される。
このときAPCバルブ244を適正に調整して、処理室201内の圧力を、例えば1〜13300Pa、好ましくは20〜1330Paの範囲内の圧力とする。マスフローコントローラ241aで制御するHCDSガスの供給流量は、例えば1〜1000sccmの範囲内の流量とする。マスフローコントローラ241f,241g,241hで制御するNガスの供給流量は、それぞれ例えば100〜10000sccmの範囲内の流量とする。HCDSガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。このときヒータ207の温度は、ウエハ200の温度が、例えば250〜700℃、好ましくは300〜650℃、より好ましくは350〜600℃の範囲内の温度となるような温度に設定する。なお、ウエハ200の温度が250℃未満となるとウエハ200上にHCDSが化学吸着しにくくなり、実用的な成膜速度が得られなくなることがある。ウエハ200の温度を250℃以上とすることで、これを解消することが可能となる。なお、ウエハ200の温度を300℃以上、さらには350℃以上とすることで、ウエハ200上にHCDSをより十分に吸着させることが可能となり、より十分な成膜速度が得られるようになる。また、ウエハ200の温度が700℃を超えるとCVD反応が強くなる(気相反応が支配的になる)ことで、膜厚均一性が悪化しやすくなり、その制御が困難となってしまう。ウエハ200の温度を700℃以下とすることで、膜厚均一性の悪化を抑制でき、その制御が可能となる。特にウエハ200の温度を650℃以下、さらには600℃以下とすることで、表面反応が支配的になり、膜厚均一性を確保しやすくなり、その制御が容易となる。よって、ウエハ200の温度は250〜700℃、好ましくは300〜650℃、より好ましくは350〜600℃の範囲内の温度とするのがよい。
上述の条件下でウエハ200に対してHCDSガスを供給することにより、ウエハ200(表面の下地膜)上に、所定元素(シリコン)とハロゲン元素(塩素)とを含む初期層として、例えば1原子層未満から数原子層程度の厚さの塩素(Cl)を含むシリコン含有層が形成される。Clを含むシリコン含有層はHCDSガスの吸着層であってもよいし、Clを含むシリコン層(Si層)であってもよいし、その両方を含んでいてもよい。
ここでClを含むシリコン層とは、シリコン(Si)により構成されClを含む連続的な層の他、不連続な層や、これらが重なってできるClを含むシリコン薄膜をも含む総称である。なお、Siにより構成されClを含む連続的な層をClを含むシリコン薄膜という場合もある。なお、Clを含むシリコン層を構成するSiは、Clとの結合が完全に切れていないものの他、Clとの結合が完全に切れているものも含む。
また、HCDSガスの吸着層は、HCDSガスのガス分子の連続的な化学吸着層の他、不連続な化学吸着層をも含む。すなわち、HCDSガスの吸着層は、HCDS分子で構成される1分子層もしくは1分子層未満の厚さの化学吸着層を含む。なお、HCDSガスの吸着層を構成するHCDS(SiCl)分子は、SiとClとの結合が一部切れたもの(SiCl分子)も含む。すなわち、HCDSの吸着層は、SiCl分子および/またはSiCl分子の連続的な化学吸着層や不連続な化学吸着層を含む。
なお、1原子層未満の厚さの層とは不連続に形成される原子層のことを意味しており、1原子層の厚さの層とは連続的に形成される原子層のことを意味している。また、1分子層未満の厚さの層とは不連続に形成される分子層のことを意味しており、1分子層の厚さの層とは連続的に形成される分子層のことを意味している。
HCDSガスが自己分解(熱分解)する条件下、すなわち、HCDSの熱分解反応が生じる条件下では、ウエハ200上にSiが堆積することでClを含むシリコン層が形成される。HCDSガスが自己分解(熱分解)しない条件下、すなわち、HCDSの熱分解反応が生じない条件下では、ウエハ200上にHCDSガスが吸着することでHCDSガスの吸着層が形成される。なお、ウエハ200上にHCDSガスの吸着層を形成するよりも、ウエハ200上にClを含むシリコン層を形成する方が、成膜レートを高くすることができ、好ましい。
ウエハ200上に形成されるClを含むシリコン含有層の厚さが数原子層を超えると、後述するステップ2及びステップ3での改質の作用がClを含むシリコン含有層の全体に届かなくなる。また、ウエハ200上に形成可能なClを含むシリコン含有層の厚さの最小値は1原子層未満である。よって、Clを含むシリコン含有層の厚さは1原子層未満から数原子層程度とするのが好ましい。なお、Clを含むシリコン含有層の厚さを1原子層以下、すなわち、1原子層または1原子層未満とすることで、後述するステップ2及びステップ3での改質反応の作用を相対的に高めることができ、ステップ2及びステップ3の改質反応に要する時間を短縮することができる。ステップ1のClを含むシリコン含有層形成に要する時間を短縮することもできる。結果として、1サイクルあたりの処理時間を短縮することができ、トータルでの処理時間を短縮することも可能となる。すなわち、成膜レートを高くすることも可能となる。また、Clを含むシリコン含有層の厚さを1原子層以下とすることで、膜厚均一性の制御性を高めることも可能となる。
(残留ガス除去)
初期層としてのClを含むシリコン含有層が形成された後、第1ガス供給管232aのバルブ243aを閉じ、HCDSガスの供給を停止する。このとき、排気管231のAPCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは初期層形成に寄与した後のHCDSガスを処理室201内から排除する。なお、このとき、バルブ243f,243g,243hは開いたままとして、不活性ガスとしてのNガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくは初期層形成に寄与した後のHCDSガスを処理室201内から排除する効果を高めることができる。
なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ2において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ2において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
クロロシラン系原料ガスとしては、ヘキサクロロジシラン(SiCl、略称:HCDS)ガスの他、テトラクロロシランすなわちシリコンテトラクロライド(SiCl、略称:STC)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、モノクロロシラン(SiHCl、略称:MCS)ガス等の無機原料ガスを用いてもよい。不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
[ステップ2]
(TEAガス供給)
ステップ1が終了し処理室201内の残留ガスを除去した後、第2ガス供給管232bのバルブ243bを開き、第2ガス供給管232b内にTEAガスを流す。第2ガス供給管232b内を流れたTEAガスは、マスフローコントローラ241bにより流量調整される。流量調整されたTEAガスは、第2ノズル249bのガス供給孔250bから処理室201内へ供給される。処理室201内に供給されたTEAガスは熱で活性化(励起)され、排気管231から排気される。このとき、ウエハ200に対して熱で活性化されたTEAガスが供給されることとなる。このとき同時にバルブ243gを開き、第2不活性ガス供給管232g内に不活性ガスとしてのNガスを流す。第2不活性ガス供給管232g内を流れたNガスは、マスフローコントローラ241gにより流量調整される。流量調整されたNガスは、TEAガスと一緒に処理室201内へ供給され、排気管231から排気される。
なお、このとき、第1ノズル249a、第3ノズル249c内へのTEAガスの侵入を防止するため、バルブ243f,243hを開き、第1不活性ガス供給管232f、第3不活性ガス供給管232h内にNガスを流す。Nガスは、第1ガス供給管232a、第3ガス供給管232c、第1ノズル249a、第3ノズル249cを介して処理室201内に供給され、排気管231から排気される。
このときAPCバルブ244を適正に調整して、処理室201内の圧力を、例えば1〜13300Pa、好ましくは399〜3990Paの範囲内の圧力とする。処理室201内の圧力をこのような比較的高い圧力帯とすることで、TEAガスをノンプラズマで熱的に活性化させることが可能となる。なお、TEAガスを熱で活性化させて供給することで、ソフトな反応を生じさせることができ、後述する改質をソフトに行うことが出来る。マスフローコントローラ241bで制御するTEAガスの供給流量は、例えば100〜2000sccmの範囲内の流量とする。マスフローコントローラ241g,241f,241hで制御するNガスの供給流量は、それぞれ例えば100〜10000sccmの範囲内の流量とする。このとき処理室201内におけるTEAガスの分圧は、0.01〜12667Paの範囲内の圧力とする。熱で活性化させたTEAガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ1と同様、ウエハ200の温度が、例えば250〜700℃、好ましくは300〜650℃、より好ましくは350〜600℃の範囲内の温度となるような温度に設定する。
上述の条件下でウエハ200に対してTEAガスを供給することにより、ステップ1でウエハ200上に形成された初期層としてのClを含むシリコン含有層と、TEAガスとを反応させることができる。すなわち、初期層としてのClを含むシリコン含有層に含まれるハロゲン元素(Cl)と、TEAガスに含まれるリガンド(エチル基)と、を反応させることができる。それにより、初期層に含まれるClのうち少なくとも一部のClを初期層から引き抜く(分離させる)とともに、TEAガスに含まれる複数のエチル基のうち少なくとも一部のエチル基をTEAガスから分離させることができる。そして、少なくとも一部のエチル基が分離したTEAガスのNと、初期層に含まれるSiと、を結合させることができる。すなわち、TEAガスを構成するNであって少なくとも一部のエチル基が外れ未結合手(ダングリングボンド)を有することとなったNと、初期層に含まれ未結合手を有することとなったSi、もしくは、未結合手を有していたSiと、を結合させて、Si−N結合を形成することが可能となる。またこのとき、TEAガスのリガンドであるエチル基に含まれるCやエチル基に含まれていたCと、初期層に含まれるSiと、を結合させて、Si−C結合を形成することも可能となる。その結果、初期層中からClが脱離すると共に、初期層中に、N成分が新たに取り込まれることとなる。またこのとき、初期層中に、C成分も新たに取り込まれることとなる。
TEAガスを上述の条件下で供給することで、初期層としてのClを含むシリコン含有層とTEAガスとを適正に反応させることができ、上述の一連の反応を生じさせることが可能となる。
この一連の反応により、初期層中からClが脱離すると共に、初期層中に、N成分とC成分とが新たに取り込まれ、初期層としてのClを含むシリコン含有層は、シリコン(Si)、窒素(N)及び炭素(C)を含む第1の層、すなわち、シリコン炭窒化層(SiCN層)へと変化する(改質される)。第1の層は、1原子層未満から数原子層程度の厚さのSi、NおよびCを含む層となる。なお、第1の層は、Si成分の割合とC成分との割合が比較的多い層、すなわち、Siリッチであり、かつ、Cリッチな層となる。
なお、第1の層としてのSi、NおよびCを含む層を形成する際、Clを含むシリコン含有層に含まれていた塩素(Cl)や、TEAガスに含まれていた水素(H)は、TEAガスによるClを含むシリコン含有層の改質反応の過程において、例えば塩素(Cl)ガスや水素(H)ガスや塩化水素(HCl)ガス等のガス状物質を構成し、排気管231を介して処理室201内から排出される。すなわち、初期層中のCl等の不純物は、初期層中から引き抜かれたり、脱離したりすることで、初期層から分離することとなる。これにより、第1の層は、初期層に比べてCl等の不純物が少ない層となる。
(残留ガス除去)
第1の層が形成された後、第2ガス供給管232bのバルブ243bを閉じ、TEAガスの供給を停止する。このとき、排気管231のAPCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第1の層形成に寄与した後のTEAガスや反応副生成物を処理室201内から排除する。なお、このとき、バルブ243g,243f,243hは開いたままとして、不活性ガスとしてのNガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくは第1の層形成に寄与した後のTEAガスや反応副生成物を処理室201内から排除する効果を高めることができる。
なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ3において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ3において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
アミン系ガスとしては、トリエチルアミン((CN、略称:TEA)の他、ジエチルアミン((CNH、略称:DEA)、モノエチルアミン(CNH、略称:MEA)等を気化したエチルアミン系ガス、トリメチルアミン((CHN、略称:TMA)、ジメチルアミン((CHNH、略称:DMA)、モノメチルアミン(CHNH、略称:MMA)等を気化したメチルアミン系ガス、トリプロピルアミン((CN、略称:TPA)、ジプロピルアミン((CNH、略称:DPA)、モノプロピルアミン(CNH、略称:MPA)等を気化したプロピルアミン系ガス、トリイソプロピルアミン([(CHCH]N、略称:TIPA)、ジイソプロピルアミン([(CHCH]NH、略称:DIPA)、モノイソプロピルアミン((CHCHNH、略称:MIPA)等を気化したイソプロピルアミン系ガス、トリブチルアミン((CN、略称:TBA)、ジブチルアミン((CNH、略称:DBA)、モノブチルアミン(CNH、略称:MBA)等を気化したブチルアミン系ガス、または、トリイソブチルアミン([(CHCHCHN、略称:TIBA)、ジイソブチルアミン([(CHCHCHNH、略称:DIBA)、モノイソブチルアミン((CHCHCHNH、略称:MIBA)等を気化したイソブチルアミン系ガスを好ましく用いることができる。すなわち、アミン系ガスとしては、例えば、(CNH3−x、(CHNH3−x、(CNH3−x、[(CHCH]NH3−x、(CNH3−x、[(CHCHCHNH3−x(式中、xは1〜3の整数)のうち少なくとも1種類のガスを好ましく用いることができる。
なお、アミン系ガスとしては、炭素、窒素および水素の3元素で構成され、その組成式中(1分子中)において窒素原子の数よりも炭素原子の数の方が多いガスを用いるのが好ましい。すなわち、アミン系ガスとしては、TEA、DEA、MEA、TMA、DMA、TPA、DPA、MPA、TIPA、DIPA、MIPA、TBA、DBA、MBA、TIBA、DIBAおよびMIBAからなる群より選択される少なくとも1つのアミンを含むガスを用いるのが好ましい。
原料ガスとして、HCDSガス等のような、所定元素(シリコン)とハロゲン元素(塩素)とを含むクロロシラン系原料ガスを用いる場合に、第1の反応ガスとして、TEAガスやDEAガス等のような、炭素、窒素および水素の3元素で構成され、その組成式中(1分子中)において窒素原子の数よりも炭素原子の数の方が多いアミン系ガスを用いることで、ステップ2で形成される第1の層中の炭素濃度、すなわち、後述する所定回数実施工程において形成されるSiOCN膜またはSiOC膜中の炭素濃度を高くすることができる。
これに対し、原料ガスとして、HCDSガス等のような、所定元素(シリコン)とハロゲン元素(塩素)とを含むクロロシラン系原料ガスを用いる場合に、第1の反応ガスとして、MMAガス等のアミン系ガスや、後述するMMHガスやDMHガス等の有機ヒドラジン系ガス等のような、炭素、窒素および水素の3元素で構成され、その組成式中(1分子中)において窒素原子の数よりも炭素原子の数の方が多くないガスを用いる場合、第1の層中の炭素濃度、すなわち、SiOCN膜またはSiOC膜中の炭素濃度を、第1の反応ガスとして、炭素、窒素および水素の3元素で構成され、その組成式中(1分子中)において窒素原子の数よりも炭素原子の数の方が多いアミン系ガスを用いる場合ほど高くすることができず、適正な炭素濃度を実現することは困難となる。
また、アミン系ガスとしては、その組成式中(1分子中)において炭素(C)原子を含むリガンドを複数有するガス、すなわち、その組成式中(1分子中)においてアルキル基等の炭化水素基を複数有するガスを用いるのが好ましい。具体的には、アミン系ガスとしては、その組成式中(1分子中)において炭素(C)原子を含むリガンド(アルキル基等の炭化水素基)を3つ、或いは2つ有するガスを用いるのが好ましく、例えば、TEA、DEA、TMA、DMA、TPA、DPA、TIPA、DIPA、TBA、DBA、TIBAおよびDIBAからなる群より選択される少なくとも1つのアミンを含むガスを用いるのが好ましい。
原料ガスとして、HCDSガスのような、所定元素(シリコン)とハロゲン元素(塩素)とを含むクロロシラン系原料ガスを用いる場合に、第1の反応ガスとして、TEAガスやDEAガス等のような、炭素、窒素および水素の3元素で構成され、その組成式中(1分子中)において炭素原子を含むリガンドを複数有するアミン系ガス、つまり、その組成式中(1分子中)においてアルキル基等の炭化水素基を複数有するアミン系ガスを用いることで、第1の層中の炭素濃度、すなわち、SiOCN膜またはSiOC膜中の炭素濃度をより高くすることができる。
これに対し、原料ガスとして、HCDSガス等のような、シリコンとハロゲン元素(塩素)とを含むクロロシラン系原料ガスを用いる場合に、第1の反応ガスとして、MMAガス等のアミン系ガスや、後述するMMHガス等の有機ヒドラジン系ガス等のような、その組成式中(1分子中)において炭素原子を含むリガンドを複数有していないガスを用いる場合、第1の層中の炭素濃度、すなわち、SiOCN膜またはSiOC膜中の炭素濃度を、第1の反応ガスとして、その組成式中(1分子中)において炭素原子を含むリガンドを複数有するアミン系ガスを用いる場合ほど高くすることができず、適正な炭素濃度を実現することは困難となる。
なお、第1の反応ガスとして、DEAガス等のような、その組成式中(1分子中)において炭素原子を含むリガンド(アルキル基等の炭化水素基)を2つ有するアミン系ガスを用いることで、TEAガス等のような、その組成式中(1分子中)において炭素原子を含むリガンド(アルキル基等の炭化水素基)を3つ有するアミン系ガスを用いる場合よりも、サイクルレート(単位サイクルあたりに形成されるSiOCN層またはSiOC層の厚さ)を向上させることが可能となり、また、第1の層中の炭素濃度に対する窒素濃度の比(窒素濃度/炭素濃度比)、すなわち、SiOCN膜またはSiOC膜中の炭素濃度に対する窒素濃度の比(窒素濃度/炭素濃度比)を高くすることが可能となる。
逆に、第1の反応ガスとして、TEAガス等のような、その組成式中(1分子中)において炭素原子を含むリガンド(アルキル基等の炭化水素基)を3つ有するアミン系ガスを用いることで、DEAガス等のような、その組成式中(1分子中)において炭素原子を含むリガンド(アルキル基等の炭化水素基)を2つ有するアミン系ガスを用いる場合よりも、第1の層中の窒素濃度に対する炭素濃度の比(炭素濃度/窒素濃度比)、すなわち、SiOCN膜またはSiOC膜中の窒素濃度に対する炭素濃度の比(炭素濃度/窒素濃度比)を高くすることが可能となる。
すなわち、第1の反応ガスに含まれる炭素原子を含むリガンドの数(アルキル基等の炭化水素基の数)により、つまり、第1の反応ガスのガス種を適宜変えることにより、サイクルレートや、形成するSiOCN膜またはSiOC膜中の窒素濃度や炭素濃度を微調整することが可能となる。
なお、第1の反応ガスとしてのアミン系ガスのガス種(組成)を適正に選択することによりSiOCN膜またはSiOC膜中の炭素濃度を高くすることができることは上述した通りだが、この炭素濃度をさらに高めるには、例えば、アミン系ガス(TEAガス)をウエハ200に対して供給する際の処理室201内の圧力を、ステップ1において、クロロシラン系原料ガス(HCDSガス)をウエハ200に対して供給する際の処理室201内の圧力よりも大きくするのが好ましく、更には、後述するステップ3において、酸素含有ガス(Oガス)をウエハ200に対して供給する際の処理室201内の圧力よりも大きくするのが好ましい。なお、この場合、ステップ3において、Oガスをウエハ200に対して供給する際の処理室201内の圧力は、ステップ1において、HCDSガスをウエハ200に対して供給する際の処理室201内の圧力よりも大きくするのが好ましい。つまり、HCDSガスをウエハ200に対して供給する際の処理室201内の圧力をP[Pa]とし、TEAガスをウエハ200に対して供給する際の処理室201内の圧力をP[Pa]とし、Oガスをウエハ200に対して供給する際の処理室201内の圧力をP[Pa]としたとき、圧力P〜Pを、P>P,Pの関係を満たすようにそれぞれ設定するのが好ましく、更には、P>P>Pの関係を満たすようにそれぞれ設定するのがより好ましい。すなわち、TEAガスをウエハ200に対して供給する際の処理室201内の圧力は、ステップ1〜3の中で、最も高くするのが好ましい。
逆に、SiOCN膜またはSiOC膜中の炭素濃度の増加量を適正に抑制するには、アミン系ガス(TEAガス)をウエハ200に対して供給する際の処理室201内の圧力を、後述するステップ3において、酸素含有ガス(Oガス)をウエハ200に対して供給する際の処理室201内の圧力以下の圧力に設定したり、ステップ1において、クロロシラン系原料ガス(HCDSガス)をウエハ200に対して供給する際の処理室201内の圧力以下の圧力に設定したりするのが好ましい。つまり、上述の圧力P〜Pを、P≧Pの関係を満たすように設定したり、更には、P,P≧Pの関係を満たすように設定したりするのが好ましい。
すなわち、アミン系ガスを供給する際の処理室201内の圧力を適正に制御することにより、形成するSiOCN膜またはSiOC膜中の炭素濃度を微調整することが可能となる。
不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
[ステップ3]
(Oガス供給)
ステップ2が終了し処理室201内の残留ガスを除去した後、第3ガス供給管232cのバルブ243cを開き、第3ガス供給管232c内にOガスを流す。第3ガス供給管232c内を流れたOガスは、マスフローコントローラ241cにより流量調整される。流量調整されたOガスは、第3ノズル249cのガス供給孔250cから処理室201内へ供給される。処理室201内に供給されたOガスは熱で活性化(励起)され、排気管231から排気される。このときウエハ200に対して、熱で活性化されたOガスが供給されることとなる。このとき同時にバルブ243hを開き、第3不活性ガス供給管232h内にNガスを流す。NガスはOガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、第1ノズル249a、第2ノズル249b内へのOガスの侵入を防止するため、バルブ243f,243gを開き、第1不活性ガス供給管232f、第2不活性ガス供給管232g内にNガスを流す。Nガスは、第1ガス供給管232a、第2ガス供給管232b、第1ノズル249a、第2ノズル249bを介して処理室201内に供給され、排気管231から排気される。
このとき、APCバルブ244を適正に調整して、処理室201内の圧力を、例えば1〜3000Paの範囲内の圧力とする。処理室201内の圧力をこのような比較的高い圧力帯とすることで、Oガスをノンプラズマで熱的に活性化させることが可能となる。なお、Oガスを熱で活性化させて供給することで、ソフトな反応を生じさせることができ、後述する酸化をソフトに行うことができる。マスフローコントローラ241cで制御するOガスの供給流量は、例えば100〜10000sccmの範囲内の流量とする。マスフローコントローラ241h,241f,241gで制御するNガスの供給流量は、それぞれ例えば100〜10000sccmの範囲内の流量とする。このとき処理室201内におけるOガスの分圧は、0.01〜2970Paの範囲内の圧力とする。熱で活性化させたOガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ1〜2と同様、ウエハ200の温度が、例えば250〜700℃、好ましくは300〜650℃、より好ましくは350〜600℃の範囲内の温度となるような温度に設定する。
このとき処理室201内に流しているガスは、処理室201内の圧力を高くすることで熱的に活性化されたOガスであり、処理室201内にはHCDSガスもTEAガスも流していない。したがって、Oガスは気相反応を起こすことはなく、活性化されたOガスは、ステップ2でウエハ200上に形成されたSi、NおよびCを含む第1の層の少なくとも一部と反応する。これにより第1の層は酸化されて、第2の層として、シリコン、酸素、炭素および窒素を含む層、すなわち、シリコン酸炭窒化層(SiOCN層)、または、シリコン、酸素および炭素を含む層、すなわち、シリコン酸炭化層(SiOC層)へと改質される。
なお、Oガスを熱で活性化させて処理室201内に流すことで、第1の層を熱酸化してSiOCN層またはSiOC層へと改質(変化)させることができる。このとき、第1の層にO成分を付加しつつ、第1の層をSiOCN層またはSiOC層へと改質させることとなる。なおこのとき、Oガスによる熱酸化の作用により、第1の層におけるSi−O結合が増加する一方、Si−N結合、Si−C結合およびSi−Si結合は減少し、第1の層におけるN成分の割合、C成分の割合およびSi成分の割合は減少することとなる。そしてこのとき、熱酸化時間を延ばしたり、熱酸化における酸化力を高めたりすることで、N成分の大部分を脱離させてN成分を不純物レベルにまで減少させるか、N成分を実質的に消滅させることが可能となる。すなわち、酸素濃度を増加させる方向に、また、窒素濃度、炭素濃度およびシリコン濃度を減少させる方向に組成比を変化させつつ第1の層をSiOCN層またはSiOC層へと改質させることができる。さらに、このとき処理室201内の圧力やガス供給時間等の処理条件を制御することで、SiOCN層またはSiOC層におけるO成分の割合、すなわち、酸素濃度を微調整することができ、SiOCN層またはSiOC層の組成比をより緻密に制御することができる。
なお、ステップ1,2により形成された第1の層におけるC成分は、N成分に比べてリッチな状態にあることが判明している。例えば、ある実験では、炭素濃度が窒素濃度の2倍以上となることもあった。すなわち、Oガスによる熱酸化の作用により、第1の層におけるN成分が完全に脱離する前に、すなわち、N成分が残留した状態で酸化を止めることで、第1の層にはC成分とN成分とが残ることとなり、第1の層はSiOCN層へと改質されることとなる。また、Oガスによる熱酸化の作用により、第1の層におけるN成分の大部分が脱離し終わった段階においても、第1の層にはC成分が残ることとなり、この状態で酸化を止めることで、第1の層はSiOC層へと改質されることとなる。つまり、ガス供給時間(酸化処理時間)や酸化力を制御することにより、C成分の割合、すなわち、炭素濃度を制御することができ、SiOCN層およびSiOC層のうちの何れかの層を、組成比を制御しつつ形成することができる。さらに、このとき処理室201内の圧力やガス供給時間等の処理条件を制御することで、SiOCN層またはSiOC層におけるO成分の割合、すなわち、酸素濃度を微調整することができ、SiOCN層またはSiOC層の組成比をより緻密に制御することができる。
なお、このとき、第1の層の酸化反応は飽和させないようにするのが好ましい。例えばステップ1,2で1原子層未満から数原子層程度の厚さの第1の層を形成した場合は、その第1の層の一部を酸化させるようにするのが好ましい。この場合、1原子層未満から数原子層程度の厚さの第1の層の全体を酸化させないように、第1の層の酸化反応が不飽和となる条件下で酸化を行う。
なお、第1の層の酸化反応を不飽和とするには、ステップ3における処理条件を上述の処理条件とすればよいが、さらにステップ3における処理条件を次の処理条件とすることで、第1の層の酸化反応を不飽和とすることが容易となる。
ウエハ温度:500〜650℃
処理室内圧力:133〜2666Pa
ガス分圧:33〜2515Pa
ガス供給流量:1000〜5000sccm
ガス供給流量:300〜3000sccm
ガス供給時間:6〜60秒
(残留ガス除去)
第2の層が形成された後、第3ガス供給管232cのバルブ243cを閉じ、Oガスの供給を停止する。このとき、排気管231のAPCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第2の層の形成に寄与した後のOガスや反応副生成物を処理室201内から排除する。なお、このとき、バルブ243h,243f,243gは開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくは第2の層の形成に寄与した後のOガスや反応副生成物を処理室201内から排除する効果を高めることができる。
なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ4において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ4において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
酸素含有ガスとしては、Oガスの他、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、オゾン(O)ガス、水素(H)ガス+酸素(O)ガス、Hガス+Oガス、水蒸気(HO)ガス、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等を用いてもよい。不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
[ステップ4]
(Hガス供給)
ステップ3が終了し処理室201内の残留ガスを除去した後、第5ガス供給管232eのバルブ243eを開き、第5ガス供給管232e内にHガスを流す。第5ガス供給管232e内を流れたHガスは、マスフローコントローラ241eにより流量調整される。流量調整されたHガスは、第3ノズル249cのガス供給孔250cから処理室201内へ供給される。処理室201内に供給されたHガスは熱で活性化(励起)され、排気管231から排気される。このときウエハ200に対して、熱で活性化されたHガスが供給されることとなる。このとき同時にバルブ243hを開き、第3不活性ガス供給管232h内にNガスを流す。NガスはHガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、第1ノズル249a、第2ノズル249b内へのHガスの侵入を防止するため、バルブ243f,243gを開き、第1不活性ガス供給管232f、第2不活性ガス供給管232g内にNガスを流す。Nガスは、第1ガス供給管232a、第2ガス供給管232b、第1ノズル249a、第2ノズル249bを介して処理室201内に供給され、排気管231から排気される。
このとき、APCバルブ244を適正に調整して、処理室201内の圧力を、例えば1〜3000Paの範囲内の圧力とする。処理室201内の圧力をこのような比較的高い圧力帯とすることで、Hガスをノンプラズマで熱的に活性化させることが可能となる。なお、Hガスを熱で活性化させて供給することで、ソフトな反応を生じさせることができ、後述する表面処理をソフトに行うことができる。マスフローコントローラ241eで制御するHガスの供給流量は、例えば100〜10000sccmの範囲内の流量とする。マスフローコントローラ241h,241f,241gで制御するNガスの供給流量は、それぞれ例えば100〜10000sccmの範囲内の流量とする。このとき処理室201内におけるHガスの分圧は、0.01〜2970Paの範囲内の圧力とする。熱で活性化させたHガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ1〜3と同様、ウエハ200の温度が、例えば250〜700℃、好ましくは300〜650℃、より好ましくは350〜600℃の範囲内の温度となるような温度に設定する。
このとき処理室201内に流しているガスは、処理室201内の圧力を高くすることで熱的に活性化されたHガスであり、処理室201内にはHCDSガスもTEAガスもOガスも流していない。したがって、Hガスは気相反応を起こすことはなく、活性化されたHガスは、ステップ3でウエハ200上に形成された第2の層の一部と反応する。これにより、第2の層の表面は、OH基(吸着サイト)を多く含む表面に改質される。第2の層の表面をこのように改質することにより、次のサイクルでステップ1を再び実施する際に、第2の層上へのClを含むシリコン含有層の形成、すなわち、第2の層上へのSiの堆積やHCDSガスの吸着を促進させることができる。そして、これにより、SiOCN膜またはSiOC膜の成膜速度を向上させることができることとなる。
(残留ガス除去)
第2の層の表面が改質された後、第5ガス供給管232eのバルブ243eを閉じ、Hガスの供給を停止する。このとき、排気管231のAPCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第2の層の表面の改質に寄与した後のHガスや反応副生成物を処理室201内から排除する。なお、このとき、バルブ243h,243f,243gは開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくは第2の層の表面の改質に寄与した後のHガスや反応副生成物を処理室201内から排除する効果を高めることができる。
なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ1において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ1において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
水素含有ガスとしては、Hガスの他、アンモニア(NH)ガス等を用いてもよい。不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
(所定回数実施)
上述したステップ1〜4を1サイクルとして、このサイクルを1回以上(所定回数)行うことにより、ウエハ200上に所定組成及び所定膜厚のシリコン、酸素、炭素および窒素を含む膜、すなわち、シリコン酸炭窒化膜(SiOCN膜)、または、シリコン、酸素および炭素を含む膜、すなわち、シリコン酸炭化膜(SiOC膜)を成膜することができる。なお、上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成するSiOCN層またはSiOC層の厚さを所望の膜厚よりも小さくして、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい。
なお、サイクルを複数回行う場合、少なくとも2サイクル目以降の各ステップにおいて、「ウエハ200に対して所定のガスを供給する」と記載した部分は、「ウエハ200上に形成されている層に対して、すなわち、積層体としてのウエハ200の最表面に対して所定のガスを供給する」ことを意味し、「ウエハ200上に所定の層を形成する」と記載した部分は、「ウエハ200上に形成されている層の上、すなわち、積層体としてのウエハ200の最表面の上に所定の層を形成する」ことを意味している。この点は、上述の通りである。なお、この点は、後述する各変形例、他の実施形態においても同様である。
(パージ及び大気圧復帰)
所定組成を有する所定膜厚のSiOCN膜またはSiOC膜を形成する成膜処理がなされると、バルブ243f,243g,243hを開き、第1不活性ガス供給管232f、第2不活性ガス供給管232g、第3不活性ガス供給管232hのそれぞれから不活性ガスとしてのNガスを処理室201内に供給し、排気管231から排気する。Nガスはパージガスとして作用し、これにより、処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロード及びウエハディスチャージ)
その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口されるとともに、処理済のウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200はボート217より取出される(ウエハディスチャージ)。
(3)本実施形態に係る効果
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
(a)本実施形態によれば、ステップ1〜3を実施して第2の層を形成した後、水素含有ガスであるHガスを供給し、第2の層の表面をOH基(吸着サイト)を多く含む表面に改質するステップ4を行うことにより、次のサイクルでステップ1を再び実施する際に、第2の層上へのClを含むシリコン含有層の形成、すなわち、第2の層上へのSiの堆積やHCDSガスの吸着を促進させることができる。その結果、SiOCN膜またはSiOC膜の成膜速度を向上させ、成膜時の生産性を向上させることができることとなる。
(b)本実施形態によれば、ステップ1,2を交互に1回行うことでSi、NおよびCを含む第1の層を形成した後、第2の反応ガスとして、酸素含有ガスであるOガスを供給して第1の層を酸化させ、第2の層としてのSiOCN層またはSiOC層へと改質させるステップ3を行うことにより、形成するSiOCN膜またはSiOC膜中の酸素と炭素と窒素との組成比を調整することが可能となる。なお、このとき、Oガスを熱で活性化させて供給することで、熱酸化の作用により、SiOCN膜またはSiOC膜中のSi−O結合を増加させる一方、Si−C結合、Si−N結合およびSi−Si結合を減少させることが可能となる。すなわち、酸素濃度を増加させる方向に、また、窒素濃度、炭素濃度およびシリコン濃度を減少させる方向に組成比を変化させることが可能となる。また、このとき、熱酸化時間を延ばしたり、熱酸化における酸化力を高めたりすることで、酸素濃度をさらに増加させる方向に、また、窒素濃度、炭素濃度およびシリコン濃度をさらに減少させる方向に組成比を変化させることが可能となる。さらに、このとき、処理室201内の圧力やガス供給時間等の処理条件を制御することで、SiOCN膜またはSiOC膜中のO成分の割合、すなわち、酸素濃度を微調整することができ、SiOCN膜またはSiOC膜の組成比をより緻密に制御することが可能となる。これらにより、形成するSiOCN膜またはSiOC膜の誘電率を調整したり、エッチング耐性を向上させたり、リーク耐性を向上させたりすることが可能となる。
(c)本実施形態によれば、第1の反応ガスとして、炭素、窒素及び水素の3元素で構成され、組成式中(1分子中)において窒素原子の数よりも炭素原子の数の方が多いアミン系ガスを用いることにより、SiOCN膜またはSiOC膜中の炭素濃度を高くすることができる。
特に、第1の反応ガスとして、その組成式中(1分子中)において炭素(C)原子を含むリガンドを複数有するアミン系ガス、すなわち、その組成式中(1分子中)においてアルキル基等の炭化水素基を複数有するアミン系ガスを用いることにより、SiOCN膜またはSiOC膜中の炭素濃度を高くすることができる。具体的には、第1の反応ガスとして、その組成式中(1分子中)において炭素(C)原子を含むリガンド(アルキル基等の炭化水素基)を3つ有するTEAガス、TMAガス、TPAガス、TIPAガス、TBAガス、TIBAガスや、その組成式中(1分子中)において炭素(C)原子を含むリガンド(アルキル基等の炭化水素基)を2つ有するDEAガス、DMAガス、DPAガス、DIPAガス、DBAガス、DIBAガス等を用いることにより、SiOCN膜またはSiOC膜中の炭素濃度を高くすることができる。
(d)本実施形態によれば、第1の反応ガスに含まれる炭素原子を含むリガンドの数(アルキル基等の炭化水素基の数)により、つまり、第1の反応ガスのガス種を適宜変えることにより、サイクルレート(単位サイクルあたりに形成されるSiOCN層またはSiOC層の厚さ)や、SiOCN膜またはSiOC膜中の窒素濃度や炭素濃度を微調整することが可能となる。
例えば、第1の反応ガスとして、DEAガス等のような、その組成式中(1分子中)において炭素原子を含むリガンド(アルキル基等の炭化水素基)を2つ有するアミン系ガスを用いることで、TEAガス等のような、その組成式中(1分子中)において炭素原子を含むリガンド(アルキル基等の炭化水素基)を3つ有するアミン系ガスを用いる場合よりも、サイクルレートを向上させることが可能となり、また、SiOCN膜またはSiOC膜中の炭素濃度に対する窒素濃度の比(窒素濃度/炭素濃度比)を高くすることが可能となる。
また例えば、第1の反応ガスとして、TEAガス等のような、その組成式中(1分子中)において炭素原子を含むリガンド(アルキル基等の炭化水素基)を3つ有するアミン系ガスを用いることで、DEAガス等のような、その組成式中(1分子中)において炭素原子を含むリガンド(アルキル基等の炭化水素基)を2つ有するアミン系ガスを用いる場合よりも、SiOCN膜またはSiOC膜中の窒素濃度に対する炭素濃度の比(炭素濃度/窒素濃度比)を高くすることが可能となる。
(e)本実施形態によれば、第1の反応ガスを供給する際の処理室201内の圧力を制御することにより、SiOCN膜またはSiOC膜中の炭素濃度を微調整することが可能となる。
例えば、ステップ2において、TEAガスをウエハ200に対して供給する際の処理室201内の圧力を、ステップ1において、HCDSガスをウエハ200に対して供給する際の処理室201内の圧力よりも大きくすることで、SiOCN膜またはSiOC膜中の炭素濃度をさらに高くすることができる。さらに、TEAガスをウエハ200に対して供給する際の処理室201内の圧力を、ステップ3において、Oガスをウエハ200に対して供給する際の処理室201内の圧力よりも大きくすることで、SiOCN膜またはSiOC膜中の炭素濃度をより一層高くすることができる。
また例えば、ステップ2において、TEAガスをウエハ200に対して供給する際の処理室201内の圧力を、ステップ3において、Oガスをウエハ200に対して供給する際の処理室201内の圧力以下の圧力に設定したり、ステップ1において、HCDSガスをウエハ200に対して供給する際の処理室201内の圧力以下の圧力に設定したりすることで、SiOCN膜またはSiOC膜中の炭素濃度の増加量を適正に抑制することができる。
(f)本実施形態によれば、第1の反応ガスとして、炭素、窒素及び水素の3元素で構成され、シリコン及び金属非含有のアミン系ガスであるTEAガスを用いることにより、SiOCN膜またはSiOC膜を形成する際の反応制御性、特に組成制御性を向上させることが可能となる。すなわち、第1の反応ガスとして、TEAガスを用いる本実施形態の成膜シーケンスでは、第1の反応ガスとして、例えばハフニウム、炭素、窒素及び水素の4元素で構成されるテトラキスエチルメチルアミノハフニウム(Hf[N(C)(CH)]、略称:TEMAH)ガス等を用いる成膜シーケンスと比較して、第1の反応ガスとClを含むシリコン含有層とを反応させて第1の層を形成する際の反応制御性、特に組成制御性を向上させることができるようになる。これにより、SiOCN膜またはSiOC膜の組成制御を容易に行えるようになる。
(g)本実施形態によれば、第1の反応ガスとして、炭素、窒素及び水素の3元素で構成され、シリコン及び金属非含有のアミン系ガスであるTEAガスを用いることにより、形成するSiOCN膜またはSiOC膜中の不純物濃度を低減させることが可能となる。すなわち、第1の反応ガスとして、TEAガスを用いる本実施形態の成膜シーケンスでは、第1の反応ガスとして、例えばハフニウム、炭素、窒素及び水素の4元素で構成されるTEMAHガス等を用いる成膜シーケンスと比較して、第1の反応ガスとClを含むシリコン含有層との反応により形成される第1の層中への不純物元素の混入確率を低減させることができ、形成するSiOCN膜またはSiOC膜中の不純物濃度を低減させることが可能となる。
(h)本実施形態によれば、第1の反応ガスとして、炭素、窒素及び水素の3元素で構成され、シリコン及び金属非含有のアミン系ガスであるTEAガスを用いることにより、SiOCN膜またはSiOC膜のウエハ200面内およびウエハ200面間における膜厚均一性をそれぞれ向上させることができる。すなわち、炭素、窒素及び水素の3元素で構成されるTEAガスは、例えばハフニウム、炭素、窒素及び水素の4元素で構成されるTEMAHガス等と比較して、Clを含むシリコン含有層に対し高い反応性を有することから、第1の反応ガスとしてTEAガスを用いる本実施形態の成膜シーケンスは、第1の反応ガスとClを含むシリコン含有層との反応をウエハ200面内およびウエハ200面間にわたり確実かつ均一に行うことができるようになる。その結果、SiOCN膜またはSiOC膜のウエハ200面内およびウエハ200面間における膜厚均一性をそれぞれ向上させることが可能となる。
(4)変形例
図4、図5に示した上述の成膜シーケンスでは、ステップ1〜4を1サイクルとしてこのサイクルを繰り返す例について説明したが、本実施形態に係る成膜シーケンスは係る態様に限定されず、以下のように変更してもよい。
例えば、図6(a)に示す変形例1のように、ステップ1,2,4を1セットとしてこのセットを所定回数(m回)行った後、ステップ3,4を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。図6(a)は、ステップ1,2,4のセットを1サイクルあたりに2回行う例、すなわち、ステップ1,2,4のセットを2回行う工程と、ステップ3,4を行う工程と、を1サイクルとしてこのサイクルを所定回数(n回)行う例を示している。本変形例が図4、図5に示した上述の成膜シーケンスと異なるのは、ステップ1,2,4のセットを所定回数(m回)行ってからステップ3,4を行い、これを1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、このセットにおけるステップ4を省略し、ステップ1,2を1セットとしてこのセットを所定回数(m回)行った後、ステップ3,4を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ4を、サイクルの終わりに1回だけ行うようにしてもよい。
また例えば、図6(b)に示す変形例2のように、ステップ1,2,4,1,3,4をこの順に行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。なお、本変形例が図4、図5に示した上述の成膜シーケンスと異なるのは、ステップ1,2,4,1,3,4を1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、このサイクルにおける1回目のステップ4を省略し、ステップ1,2,1,3,4を1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ4を、サイクルの終わりに1回だけ行うようにしてもよい。
また例えば、図6(c)に示す変形例3のように、ステップ1,2,4を1セットとしてこのセットを所定回数(m回)行った後、ステップ1,3,4を1セットとしてこのセットを所定回数(m’回)行い、これらの組み合わせを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。図6(c)は、ステップ1,2,4のセット及びステップ1,3,4のセットを1サイクルあたりにそれぞれ2回行う例、すなわち、ステップ1,2,4のセットを2回行う工程と、ステップ1,3,4のセットを2回を行う工程と、を1サイクルとしてこのサイクルを所定回数(n回)行う例を示している。本変形例が図4、図5に示した上述の成膜シーケンスと異なるのは、ステップ1,2,4のセットを所定回数(m回)行った後、ステップ1,3,4のセットを所定回数(m’回)行い、これを1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、本変形例におけるステップ1,2,4のセットの実施回数(m)を1回とし、ステップ1,3,4のセットの実施回数(m’)を1回とするケースが、図6(b)に示した変形例2の成膜シーケンスに相当する。なお、各セットにおけるステップ4を省略し、ステップ1,2を1セットとしてこのセットを所定回数(m回)行った後、ステップ1,3を1セットとしてこのセットを所定回数(m’回)行い、その後、ステップ4を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ4を、サイクルの終わりに1回だけ行うようにしてもよい。
これらの変形例においても、図4、図5に示した上述の成膜シーケンスと同様の効果を奏することができる。また、これらの変形例によれば、SiOCN膜またはSiOC膜におけるシリコン成分、窒素成分、炭素成分、酸素成分の割合をより緻密に制御できることとなり、SiOCN膜またはSiOC膜の組成比の制御性を向上させることができるようになる。
例えば、変形例1において、ステップ1,2,4を含むセットのセット数(m)を増やすことで、第1の層のシリコン成分、窒素成分、炭素成分の絶対量を増加させることができ、このようにして各成分の絶対量を増加させた第1の層をステップ3において酸化することで、SiOCN層またはSiOC層の酸素成分に対するシリコン成分、窒素成分、炭素成分の割合をリッチな方向に制御でき、最終的に形成するSiOCN膜またはSiOC膜の酸素成分に対するシリコン成分、窒素成分、炭素成分の割合をリッチな方向に制御できることとなる。
また例えば、変形例1において、ステップ1,2,4を含むセットのセット数(m)を減らすことで、第1の層のシリコン成分、窒素成分、炭素成分の絶対量を減少させることができ、このようにして各成分の絶対量を減少させた第1の層をステップ3において酸化することで、SiOCN層またはSiOC層の酸素成分に対するシリコン成分、窒素成分、炭素成分の割合をプアな方向に制御でき、最終的に形成するSiOCN膜またはSiOC膜の酸素成分に対するシリコン成分、窒素成分、炭素成分の割合をプアな方向に制御できることとなる。
変形例2,3においても同様な原理により、SiOCN膜またはSiOC膜におけるシリコン成分、窒素成分、炭素成分、酸素成分の割合をより緻密に制御することができる。
また、これらの変形例によれば、1サイクルあたりに形成する層の厚さを増加させることができ、サイクルレート(単位サイクルあたりに形成されるSiOCN層またはSiOC層の厚さ)を向上させることが可能となる。そしてこれにより、成膜レートを向上させることも可能となる。
例えば、変形例1,3において、ステップ1,2,4を含むセットのセット数(m)を増やすことで、1サイクルあたりに形成する第1の層の層数、すなわち、1サイクルあたりに形成する第1の層の厚さをセット数(m)の数だけ増加させることができ、サイクルレートを向上させることが可能となる。また、変形例3において、ステップ1,3,4を含むセットのセット数(m’)を増やすことで、1サイクルあたりに形成する第2の層としてのSiO層の層数、すなわち、1サイクルあたりに形成する第2の層の厚さをセット数(m’)の数だけ増加させることができ、これによってもサイクルレートを向上させることが可能となる。なお、変形例2では、1サイクルあたりにステップ1を2回行うので、変形例2においてもサイクルレートを向上させることが可能となる。そして、これらにより、成膜レートを向上させることも可能となる。
なお、変形例2,3においては、Si、NおよびCを含む第1の層を形成する工程と、第2の層としてSiO層を形成する工程と、の順序を替えて、第2の層(SiO層)を形成する工程を行った後に、第1の層を形成する工程を行い、これを1サイクルとしてもよい。また、これらの変形例は、任意に組み合わせて用いることができる。
<本発明の第2実施形態>
次に、本発明の第2実施形態について説明する。
上述の第1実施形態では、第2の反応ガスとして酸素含有ガス(Oガス)を用い、ウエハ200上に、所定組成及び所定膜厚のシリコン酸炭窒化膜またはシリコン酸炭化膜を形成する例について説明したが、本実施形態では、第2の反応ガスとして窒素含有ガス(NHガス)を用い、ウエハ200上に、所定組成及び所定膜厚のシリコン炭窒化膜を形成する例について説明する。
すなわち、本実施形態では、
処理室201内のウエハ200に対して原料ガスとしてクロロシラン系原料ガスであるHCDSガスを供給する工程と、処理室201内のウエハ200に対して炭素、窒素および水素の3元素で構成され、組成式中(1分子中)において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスとして、その組成式中において炭素原子を含むリガンド(エチル基)を複数(3つ)有するアミン系ガスであるTEAガスを供給する工程と、を交互に1回行うことで、ウエハ200上にシリコン、窒素および炭素を含む第1の層を形成する工程と、
処理室201内のウエハ200に対して原料ガスおよび第1の反応ガスとは異なる第2の反応ガスとして窒素含有ガス(窒化ガス)であるNHガスを供給することで、第1の層を改質して第2の層としてシリコン炭窒化層(SiCN層)を形成する工程と、
処理室201内のウエハ200に対して水素含有ガス(還元ガス)としてHガスを供給することで、第2の層の表面を改質する工程と、
を含むサイクルを繰り返すことで、ウエハ200上に、所定組成及び所定膜厚のシリコン炭窒化膜(SiCN膜)を形成する例について説明する。
図7は、本実施形態における成膜フローを示す図である。図8は、本実施形態の成膜シーケンスにおけるガス供給のタイミングを示す図である。なお、本実施形態が第1実施形態と異なるのは、ステップ3において、第2の反応ガスとして、熱で活性化させたNHガスを用いる点だけであり、その他は第1実施形態と同様である。以下、本実施形態のステップ3について説明する。
[ステップ3]
(NHガス供給)
ステップ2が終了し処理室201内の残留ガスを除去した後、第4ガス供給管232dのバルブ243dを開き、第4ガス供給管232d内にNHガスを流す。第4ガス供給管232d内を流れたNHガスは、マスフローコントローラ241dにより流量調整される。流量調整されたNHガスは、第3ノズル249cのガス供給孔250cから処理室201内へ供給される。処理室201内に供給されたNHガスは熱で活性化(励起)され、排気管231から排気される。このときウエハ200に対して、熱で活性化されたNHガスが供給されることとなる。このとき同時にバルブ243hを開き、第3不活性ガス供給管232h内にNガスを流す。NガスはNHガスと一緒に処理室201内に供給され、排気管231から排気される。なお、このとき、第1ノズル249a、第2ノズル249b内へのNHガスの侵入を防止するため、バルブ243f,243gを開き、第1不活性ガス供給管232f、第2不活性ガス供給管232g内にNガスを流す。Nガスは、第1ガス供給管232a、第2ガス供給管232b、第1ノズル249a、第2ノズル249bを介して処理室201内に供給され、排気管231から排気される。
このとき、APCバルブ244を適正に調整して、処理室201内の圧力を、例えば1〜3000Paの範囲内の圧力とする。処理室201内の圧力をこのような比較的高い圧力帯とすることで、NHガスをノンプラズマで熱的に活性化させることが可能となる。なお、NHガスを熱で活性化させて供給することで、ソフトな反応を生じさせることができ、後述する窒化をソフトに行うことができる。マスフローコントローラ241dで制御するNHガスの供給流量は、例えば100〜10000sccmの範囲内の流量とする。マスフローコントローラ241h,241f,241gで制御するNガスの供給流量は、それぞれ例えば100〜10000sccmの範囲内の流量とする。このとき処理室201内におけるNHガスの分圧は、0.01〜2970Paの範囲内の圧力とする。熱で活性化させたNHガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。このときのヒータ207の温度は、ステップ1〜2と同様、ウエハ200の温度が、例えば250〜700℃、好ましくは300〜650℃、より好ましくは350〜600℃の範囲内の温度となるような温度に設定する。
このとき処理室201内に流しているガスは、処理室201内の圧力を高くすることで熱的に活性化されたNHガスであり、処理室201内にはHCDSガスもTEAガスも流していない。したがって、NHガスは気相反応を起こすことはなく、活性化されたNHガスは、ステップ2でウエハ200上に形成されたSi、NおよびCを含む第1の層の少なくとも一部と反応する。これにより第1の層は窒化されて、第2の層として、シリコン、炭素および窒素を含む層、すなわち、シリコン炭窒化層(SiCN層)へと改質される。
なお、NHガスを熱で活性化させて処理室201内に流すことで、第1の層を熱窒化してSiCN層へと改質(変化)させることができる。このとき、第1の層におけるN成分の割合を増加させつつ、第1の層をSiCN層へと改質させることとなる。なおこのとき、NHガスによる熱窒化の作用により、第1の層におけるSi−N結合が増加する一方、Si−C結合およびSi−Si結合は減少し、第1の層におけるC成分の割合およびSi成分の割合は減少することとなる。すなわち、窒素濃度を増加させる方向に、また、炭素濃度およびシリコン濃度を減少させる方向に組成比を変化させつつ第1の層をSiCN層へと改質させることができる。さらに、このとき処理室201内の圧力やガス供給時間等の処理条件を制御することで、SiCN層におけるN成分の割合、すなわち、窒素濃度を微調整することができ、SiCN層の組成比をより緻密に制御することができる。
なお、このとき、第1の層の窒化反応は飽和させないようにするのが好ましい。例えばステップ1,2で1原子層未満から数原子層程度の厚さの第1の層を形成した場合は、その第1の層の一部を窒化させるようにするのが好ましい。この場合、1原子層未満から数原子層程度の厚さの第1の層の全体を窒化させないように、第1の層の窒化反応が不飽和となる条件下で窒化を行う。
なお、第1の層の窒化反応を不飽和とするには、ステップ3における処理条件を上述の処理条件とすればよいが、さらにステップ3における処理条件を次の処理条件とすることで、第1の層の窒化反応を不飽和とすることが容易となる。
ウエハ温度:500〜650℃
処理室内圧力:133〜2666Pa
NHガス分圧:33〜2515Pa
NHガス供給流量:1000〜5000sccm
ガス供給流量:300〜3000sccm
NHガス供給時間:6〜60秒
(残留ガス除去)
第2の層が形成された後、第4ガス供給管232dのバルブ243dを閉じ、NHガスの供給を停止する。このとき、排気管231のAPCバルブ244は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第2の層形成に寄与した後のNHガスや反応副生成物を処理室201内から排除する。なお、このとき、バルブ243h,243f,243gは開いたままとして、Nガスの処理室201内への供給を維持する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくは第2の層形成に寄与した後のNHガスや反応副生成物を処理室201内から排除する効果を高めることができる。
なお、このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ4において悪影響が生じることはない。このとき処理室201内に供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量を供給することで、ステップ4において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。また、Nガスの消費も必要最小限に抑えることが可能となる。
窒素含有ガスとしては、NHガスの他、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス、これらの化合物を含むガス等を用いてもよい。不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いてもよい。
(所定回数実施)
上述したステップ1〜4を1サイクルとして、このサイクルを1回以上(所定回数)行うことにより、ウエハ200上に所定組成及び所定膜厚のシリコン、炭素および窒素を含む膜、すなわち、シリコン炭窒化膜(SiCN膜)を成膜することができる。なお、上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成するSiCN層の厚さを所望の膜厚よりも小さくして、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい。
本実施形態によれば、ステップ1〜3を実施して第2の層を形成した後、水素含有ガスであるHガスを供給し、第2の層の表面をOH基(吸着サイト)を多く含む表面に改質するステップ4を行うことにより、次のサイクルでステップ1を再び実施する際に、第2の層上へのClを含むシリコン含有層の形成、すなわち、第2の層上へのSiの堆積やHCDSガスの吸着を促進させることができる。その結果、SiCN膜の成膜速度を向上させ、成膜時の生産性を向上させることができることとなる。
また、本実施形態によれば、ステップ1,2を交互に1回行うことでSi、NおよびCを含む第1の層を形成した後、第2の反応ガスとして、窒素含有ガスであるNHガスを供給して第1の層を窒化させ、第2の層としてのSiCN層へと改質させるステップ3を行うことにより、形成するSiCN膜中の炭素と窒素との組成比を調整することが可能となる。なお、このとき、NHガスを熱で活性化させて供給することで、熱窒化の作用により、SiCN膜中のSi−N結合を増加させる一方、Si−C結合およびSi−Si結合を減少させることが可能となる。すなわち、窒素濃度を増加させる方向に、また、炭素濃度およびシリコン濃度を減少させる方向に組成比を変化させることが可能となる。また、このとき、熱窒化時間を延ばしたり、熱窒化における窒化力を高めたりすることで、窒素濃度をさらに増加させる方向に、また、炭素濃度およびシリコン濃度をさらに減少させる方向に組成比を変化させることが可能となる。さらに、このとき、処理室201内の圧力やガス供給時間等の処理条件を制御することで、SiCN膜中のN成分の割合、すなわち、窒素濃度を微調整することができ、SiCN膜の組成比をより緻密に制御することが可能となる。これらにより、形成するSiCN膜の誘電率を調整したり、エッチング耐性を向上させたり、リーク耐性を向上させたりすることが可能となる。
その他、本実施形態によれば、上述の第1実施形態と同様の効果を奏する。すなわち、第1の反応ガスとして、炭素、窒素及び水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多く、シリコン及び金属非含有のアミン系ガスであるTEAガスを用いることにより、SiCN膜中の炭素濃度を高くしたり、SiCN膜を形成する際の反応制御性、特に組成制御性を向上させたり、膜中の不純物濃度を低減させたり、ウエハ200面内およびウエハ200面間における膜厚均一性をそれぞれ向上させたりすることが可能となる。
(変形例)
図7、図8に示した上述の成膜シーケンスでは、ステップ1〜4を1サイクルとしてこのサイクルを繰り返す例について説明したが、本実施形態に係る成膜シーケンスは係る態様に限定されず、以下のように変更してもよい。
例えば、図9(a)に示す変形例1のように、ステップ1,2,4を1セットとしてこのセットを所定回数(m回)行った後、ステップ3,4を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。図9(a)は、ステップ1,2,4のセットを1サイクルあたりに2回行う例、すなわち、ステップ1,2,4のセットを2回行う工程と、ステップ3,4を行う工程と、を1サイクルとしてこのサイクルを所定回数(n回)行う例を示している。本変形例が図7、図8に示した上述の成膜シーケンスと異なるのは、ステップ1,2,4のセットを所定回数(m回)行ってからステップ3,4を行い、これを1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、このセットにおけるステップ4を省略し、ステップ1,2を1セットとしてこのセットを所定回数(m回)行った後、ステップ3,4を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ4を、サイクルの終わりに1回だけ行うようにしてもよい。
また例えば、図9(b)に示す変形例2のように、ステップ1,2,4,1,3,4をこの順に行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。なお、本変形例が図7、図8に示した上述の成膜シーケンスと異なるのは、ステップ1,2,4,1,3,4を1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、このサイクルにおける1回目のステップ4を省略し、ステップ1,2,1,3,4を1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ4を、サイクルの終わりに1回だけ行うようにしてもよい。
また例えば、図9(c)に示す変形例3のように、ステップ1,2,4を1セットとしてこのセットを所定回数(m回)行った後、ステップ1,3,4を1セットとしてこのセットを所定回数(m’回)行い、これらの組み合わせを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。図9(c)は、ステップ1,2,4のセット及びステップ1,3,4のセットを1サイクルあたりにそれぞれ2回行う例、すなわち、ステップ1,2,4のセットを2回行う工程と、ステップ1,3,4のセットを2回を行う工程と、を1サイクルとしてこのサイクルを所定回数(n回)行う例を示している。本変形例が図7、図8に示した上述の成膜シーケンスと異なるのは、ステップ1,2,4のセットを所定回数(m回)行った後、ステップ1,3,4のセットを所定回数(m’回)行い、これを1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、本変形例におけるステップ1,2,4のセットの実施回数(m)を1回とし、ステップ1,3,4のセットの実施回数(m’)を1回とするケースが、図9(b)に示した変形例2の成膜シーケンスに相当する。なお、各セットにおけるステップ4を省略し、ステップ1,2を1セットとしてこのセットを所定回数(m回)行った後、ステップ1,3を1セットとしてこのセットを所定回数(m’回)行い、その後、ステップ4を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ4を、サイクルの終わりに1回だけ行うようにしてもよい。
これらの変形例においても、図7、図8に示した上述の成膜シーケンスと同様の効果を奏することができる。また、これらの変形例によれば、SiCN膜におけるシリコン成分、窒素成分、炭素成分の割合をより緻密に制御できることとなり、SiCN膜の組成比の制御性を向上させることができるようになる。
例えば、変形例1において、ステップ1,2,4を含むセットのセット数(m)を増やすことで、第1の層のシリコン成分、窒素成分、炭素成分の絶対量を増加させることができ、このようにして各成分の絶対量を増加させた第1の層をステップ3において窒化することで、SiCN層の窒素成分に対するシリコン成分、炭素成分の割合をリッチな方向に制御でき、最終的に形成するSiCN膜の窒素成分に対するシリコン成分、炭素成分の割合をリッチな方向に制御できることとなる。
また例えば、変形例1において、ステップ1,2,4を含むセットのセット数(m)を減らすことで、第1の層のシリコン成分、窒素成分、炭素成分の絶対量を減少させることができ、このようにして各成分の絶対量を減少させた第1の層をステップ3において窒化することで、SiCN層の窒素成分に対するシリコン成分、炭素成分の割合をプアな方向に制御でき、最終的に形成するSiCN膜の窒素成分に対するシリコン成分、炭素成分の割合をプアな方向に制御できることとなる。
変形例2,3においても同様な原理により、SiCN膜におけるシリコン成分、窒素成分、炭素成分の割合をより緻密に制御することができる。
また、これらの変形例によれば、1サイクルあたりに形成する層の厚さを増加させることができ、サイクルレート(単位サイクルあたりに形成されるSiCN層の厚さ)を向上させることが可能となる。そしてこれにより、成膜レートを向上させることも可能となる。
例えば、変形例1,3において、ステップ1,2,4を含むセットのセット数(m)を増やすことで、1サイクルあたりに形成する第1の層の層数、すなわち、1サイクルあたりに形成する第1の層の厚さをセット数(m)の数だけ増加させることができ、サイクルレートを向上させることが可能となる。また、変形例3において、ステップ1,3,4を含むセットのセット数(m’)を増やすことで、1サイクルあたりに形成する第2の層としてのSiN層の層数、すなわち、1サイクルあたりに形成する第2の層の厚さをセット数(m’)の数だけ増加させることができ、これによってもサイクルレートを向上させることが可能となる。なお、変形例2では、1サイクルあたりにステップ1を2回行うので、変形例2においてもサイクルレートを向上させることが可能となる。そして、これらにより、成膜レートを向上させることも可能となる。
なお、変形例2,3においては、Si、NおよびCを含む第1の層を形成する工程と、第2の層としてSiN層を形成する工程と、の順序を替えて、第2の層(SiN層)を形成する工程を行った後に、第1の層を形成する工程を行い、これを1サイクルとしてもよい。また、これらの変形例は、任意に組み合わせて用いることができる。
<本発明の第3実施形態>
次に、本発明の第3実施形態について説明する。
上述の第1実施形態では、第2の反応ガスとして酸素含有ガス(Oガス)を用い、ウエハ200上に、所定組成及び所定膜厚のシリコン酸炭窒化膜またはシリコン酸炭化膜を形成する例について説明したが、本実施形態では、第2の反応ガスとして窒素含有ガス(NHガス)と酸素含有ガス(Oガス)とを用い、ウエハ200上に、所定組成及び所定膜厚のシリコン酸炭窒化膜を形成する例について説明する。
すなわち、本実施形態では、
処理室201内のウエハ200に対して原料ガスとしてクロロシラン系原料ガスであるHCDSガスを供給する工程と、処理室201内のウエハ200に対して炭素、窒素および水素の3元素で構成され、組成式中(1分子中)において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスとして、その組成式中において炭素原子を含むリガンド(エチル基)を複数(3つ)有するアミン系ガスであるTEAガスを供給する工程と、を交互に1回行うことで、ウエハ200上にシリコン、窒素および炭素を含む第1の層を形成する工程と、
処理室201内のウエハ200に対して原料ガスおよび第1の反応ガスとは異なる第2の反応ガスとして窒素含有ガス(窒化ガス)であるNHガスと酸素含有ガス(酸化ガス)であるOガスとを供給することで、第1の層を改質して第2の層としてシリコン酸炭窒化層(SiOCN層)を形成する工程と、
処理室201内のウエハ200に対して水素含有ガス(還元ガス)としてHガスを供給することで、第2の層の表面を改質する工程と、
を含むサイクルを繰り返すことで、ウエハ200上に、所定組成及び所定膜厚のシリコン酸炭窒化膜(SiOCN膜)を形成する例について説明する。
図10は、本実施形態における成膜フローを示す図である。図11は、本実施形態の成膜シーケンスにおけるガス供給のタイミングを示す図である。なお、本実施形態が第1実施形態と異なるのは、ステップ1,2を行うことで第1の層を形成した後、第2の反応ガスとして窒素含有ガスであるNHガスを供給して第1の層を窒化させるステップ3と、第2の反応ガスとして酸素含有ガスであるOガスを供給して窒化後の第1の層を酸化させ、第2の層としてのSiOCN層へと改質させるステップ4と、処理室201内のウエハ200に対して水素含有ガスとしてHガスを供給することで第2の層の表面を改質するステップ5と、を行い、ステップ1〜5を1サイクルとしてこのサイクルを繰り返す点だけであり、その他は第1実施形態と同様である。また、本実施形態のステップ3の手順及び処理条件や、これにより生じる反応は、第2実施形態のステップ3の手順及び処理条件や、これにより生じる反応と同様である。また、本実施形態のステップ4の手順及び処理条件や、これにより生じる反応は、第1実施形態のステップ3の手順及び処理条件や、これにより生じる反応と同様である。また、本実施形態のステップ5の手順及び処理条件や、これにより生じる反応は、第1実施形態や第2実施形態のステップ4の手順及び処理条件や、これにより生じる反応と同様である。
本実施形態によれば、ステップ1〜4を実施して第2の層を形成した後、水素含有ガスであるHガスを供給し、第2の層の表面をOH基(吸着サイト)を多く含む表面に改質するステップ5を行うことにより、次のサイクルでステップ1を再び実施する際に、第2の層上へのClを含むシリコン含有層の形成、すなわち、第2の層上へのSiの堆積やHCDSガスの吸着を促進させることができる。その結果、SiOCN膜の成膜速度を向上させ、成膜時の生産性を向上させることができることとなる。
また、本実施形態によれば、ステップ1,2を交互に1回行うことでSi、NおよびCを含む第1の層を形成した後、第2の反応ガスとして、窒素含有ガスであるNHガスを供給して第1の層を窒化させ、SiCN層へと改質させるステップ3と、第2の反応ガスとして、酸素含有ガスであるOガスを供給して窒化後の第1の層(SiCN層)を酸化させ、第2の層としてのSiOCN層へと改質させるステップ4と、を行うことにより、形成するSiOCN膜中の酸素と炭素と窒素との組成比を調整することが可能となる。これらにより、形成するSiOCN膜の誘電率を調整したり、エッチング耐性を向上させたり、リーク耐性を向上させたりすることが可能となる。
その他、本実施形態によれば、上述の第1及び2実施形態と同様の効果を奏する。すなわち、第1の反応ガスとして、炭素、窒素及び水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多く、シリコン及び金属非含有のアミン系ガスであるTEAガスを用いることにより、SiOCN膜中の炭素濃度を高くしたり、SiOCN膜を形成する際の反応制御性、特に組成制御性を向上させたり、膜中の不純物濃度を低減させたり、ウエハ200面内およびウエハ200面間における膜厚均一性をそれぞれ向上させたりすることが可能となる。また、第2の反応ガスとして、NHガスやOガスを熱で活性化(励起)させて供給することにより、SiOCN膜の組成比を適正に調整することが可能となる。また、Hガスを用いて第2の層の表面を改質することにより、成膜速度を向上させ、成膜の際の生産性を向上させたりすることが可能となる。
(変形例)
図10、図11に示した上述の成膜シーケンスでは、ステップ1〜5を1サイクルとしてこのサイクルを繰り返す例について説明したが、本実施形態に係る成膜シーケンスは係る態様に限定されず、以下のように変更してもよい。
例えば、図12(a)に示す変形例1のように、ステップ1,2,5を1セットとしてこのセットを所定回数(m回)行った後、ステップ3,4,5を順に行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。図12(a)は、ステップ1,2,5のセットを1サイクルあたりに2回行う例、すなわち、ステップ1,2,5のセットを2回行う工程と、ステップ3,4,5を行う工程と、を1サイクルとしてこのサイクルを所定回数(n回)行う例を示している。なお、本変形例が図10、図11に示した上述の成膜シーケンスと異なるのは、ステップ1,2,5のセットを所定回数(m回)行ってからステップ3,4,5を順に行い、これを1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、このセットにおけるステップ5を省略し、ステップ1,2を1セットとしてこのセットを所定回数(m回)行った後、ステップ3,4,5を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ5を、サイクルの終わりに1回だけ行うようにしてもよい。
また例えば、図12(b)に示す変形例2のように、ステップ1〜3,5を1セットとしてこのセットを所定回数(m回)行った後、ステップ4,5を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。図12(b)は、ステップ1〜3,5のセットを1サイクルあたりに2回行う例、すなわち、ステップ1〜3,5のセットを2回行う工程と、ステップ4,5を行う工程と、を1サイクルとしてこのサイクルを所定回数(n回)行う例を示している。なお、本変形例が図10、図11に示した上述の成膜シーケンスと異なるのは、ステップ1〜3,5のセットを所定回数(m回)行ってからステップ4,5を行い、これを1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、このセットにおけるステップ5を省略し、ステップ1〜3を1セットとしてこのセットを所定回数(m回)行った後、ステップ4,5を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ5を、サイクルの終わりに1回だけ行うようにしてもよい。
また例えば、図12(c)に示す変形例3のように、ステップ1,2,3,5,1,4,5をこの順に行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。なお、本変形例が図10、図11に示した上述の成膜シーケンスと異なるのは、ステップ1,2,3,5,1,4,5を1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、このサイクルにおける1回目のステップ5を省略し、ステップ1,2,3,1,4,5を1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ5を、サイクルの終わりに1回だけ行うようにしてもよい。
また例えば、図13(a)に示す変形例4のように、ステップ1〜3,5を1セットとしてこのセットを所定回数(m回)行った後、ステップ1,4,5を1セットとしてこのセットを所定回数(m’回)行い、これらの組み合わせを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。図13(a)は、ステップ1〜3,5のセット及びステップ1,4,5のセットを1サイクルあたりにそれぞれ2回行う例、すなわち、ステップ1〜3,5のセットを2回行う工程と、ステップ1,4,5のセットを2回行う工程と、を1サイクルとしてこのサイクルを所定回数(n回)行う例を示している。本変形例が図10、図11に示した上述の成膜シーケンスと異なるのは、ステップ1〜3,5のセットを所定回数(m回)行った後、ステップ1,4,5のセットを所定回数(m’回)行い、これを1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、本変形例におけるステップ1〜3,5のセットの実施回数(m)を1回とし、ステップ1,4,5のセットの実施回数(m’)を1回とするケースが、図12(c)に示した変形例3の成膜シーケンスに相当する。なお、各セットにおけるステップ5を省略し、ステップ1〜3を1セットとしてこのセットを所定回数(m回)行った後、ステップ1,4を1セットとしてこのセットを所定回数(m’回)行い、その後、ステップ5を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ5を、サイクルの終わりに1回だけ行うようにしてもよい。
また例えば、図13(b)に示す変形例5のように、ステップ1,2,5,1,3,4,5をこの順に行い、これを1サイクルとしてこのサイクルを所定回数行うようにしてもよい。本変形例が図10、図11に示した上述の成膜シーケンスと異なるのは、ステップ1,2,5,1,3,4,5を1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、このサイクルにおける1回目のステップ5を省略し、ステップ1,2,1,3,4,5を1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ5を、サイクルの終わりに1回だけ行うようにしてもよい。
また例えば、図13(c)に示す変形例6のように、ステップ1,2,5を1セットとしてこのセットを所定回数(m回)行った後、ステップ1,3,4,5を1セットとしてこのセットを所定回数(m’回)行い、これらの組み合わせを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。本変形例が図10、図11に示した上述の成膜シーケンスと異なるのは、ステップ1,2,5のセットを所定回数(m回)行った後、ステップ1,3,4,5のセットを所定回数(m’回)行い、これを1サイクルとする点だけであり、その他は上述の成膜シーケンスと同様である。なお、各セットにおけるステップ5を省略し、ステップ1,2を1セットとしてこのセットを所定回数(m回)行った後、ステップ1,3,4を1セットとしてこのセットを所定回数(m’回)行い、その後、ステップ5を行い、これを1サイクルとしてこのサイクルを所定回数(n回)行うようにしてもよい。すなわち、ステップ5を、サイクルの終わりに1回だけ行うようにしてもよい。
これらの変形例においても、図10、図11に示した上述の成膜シーケンスと同様の効果を奏することができる。また、これらの変形例によれば、SiOCN膜におけるシリコン成分、窒素成分、炭素成分、酸素成分の割合をより緻密に制御できることとなり、SiOCN膜の組成比の制御性を向上させることができるようになる。また、これらの変形例によれば、1サイクルあたりに形成する層の厚さを増加させることができ、サイクルレート(単位サイクルあたりに形成されるSiOCN層の厚さ)を向上させることが可能となる。そしてこれにより、成膜レートを向上させることも可能となる。
なお、変形例3,4においては、第1の層としてSiCN層を形成する工程と、第2の層としてSiO層を形成する工程と、の順序を替えて、SiO層を形成する工程を行った後にSiCN層を形成する工程を行い、これを1サイクルとしてもよい。また、変形例5,6においては、Si、NおよびCを含む第1の層を形成する工程と、第2の層としてSiON層を形成する工程と、の順序を替えて、SiON層を形成する工程を行った後に第1の層を形成する工程を行い、これを1サイクルとしてもよい。また、これらの変形例は、任意に組み合わせて用いることができる。
<本発明の他の実施形態>
以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
例えば、上述の実施形態では、Si、NおよびCを含む第1の層を形成する際に、処理室201内のウエハ200に対して、クロロシラン系原料ガスを供給し、その後、アミン系ガスを供給する例について説明したが、これらのガスの供給順序は逆でもよい。すなわち、アミン系ガスを供給し、その後、クロロシラン系原料ガスを供給するようにしてもよい。つまり、クロロシラン系原料ガスおよびアミン系ガスのうちの一方のガスを供給し、その後、他方のガスを供給するようにすればよい。このように、ガスの供給順序を変えることにより、形成される薄膜の膜質や組成比を変化させることも可能である。
また例えば、上述の実施形態では、ステップ1で所定元素(シリコン)とハロゲン元素(塩素)とを含む初期層を形成する際に、原料ガスとして、クロロシラン系原料ガスを用いる例について説明したが、クロロシラン系原料ガスの代わりに、クロロ基以外のハロゲン系のリガンドを持つシラン系原料ガスを用いてもよい。例えば、クロロシラン系原料ガスの代わりに、フルオロシラン系原料ガスを用いてもよい。ここで、フルオロシラン系原料ガスとは、気体状態のフルオロシラン系原料、例えば、常温常圧下で液体状態であるフルオロシラン系原料を気化することで得られるガスや、常温常圧下で気体状態であるフルオロシラン系原料等のことである。また、フルオロシラン系原料とは、ハロゲン基としてのフルオロ基を有するシラン系原料のことであり、少なくともシリコン(Si)及びフッ素(F)を含む原料のことである。すなわち、ここでいうフルオロシラン系原料は、ハロゲン化物の一種とも言える。フルオロシラン系原料ガスとしては、例えば、テトラフルオロシランすなわちシリコンテトラフルオライド(SiF)ガスや、ヘキサフルオロジシラン(Si)ガス等のフッ化シリコンガスを用いることができる。この場合、所定元素とハロゲン元素とを含む初期層を形成する際に、処理室201内のウエハ200に対して、フルオロシラン系原料ガスを供給することとなる。この場合、初期層は、SiおよびFを含む層、すなわち、Fを含むシリコン含有層となる。
また例えば、上述の実施形態では、初期層としてのClを含むシリコン含有層をSi、NおよびCを含む第1の層に変化(改質)させる際に、第1の反応ガスとしてアミン系ガスを用いる例について説明したが、アミン系ガスの代わりに、第1の反応ガスとして、例えば、有機ヒドラジン化合物を含むガス、すなわち、有機ヒドラジン系ガスを用いてもよい。なお、有機ヒドラジン化合物を含むガスを、単に、有機ヒドラジン化合物ガス、または、有機ヒドラジンガスと呼ぶこともできる。ここで、有機ヒドラジン系ガスとは、気体状態の有機ヒドラジン、例えば、常温常圧下で液体状態である有機ヒドラジンを気化することで得られるガスや、常温常圧下で気体状態である有機ヒドラジン等のヒドラジン基を含むガスのことである。有機ヒドラジン系ガスは、炭素(C)、窒素(N)及び水素(H)の3元素で構成されるシリコン非含有のガスであり、更には、シリコン及び金属非含有のガスである。有機ヒドラジン系ガスとしては、例えば、モノメチルヒドラジン((CH)HN、略称:MMH)、ジメチルヒドラジン((CH、略称:DMH)、トリメチルヒドラジン((CH(CH)H、略称:TMH)等を気化したメチルヒドラジン系ガスや、エチルヒドラジン((C)HN、略称:EH)等を気化したエチルヒドラジン系ガスを好ましく用いることができる。この場合、初期層としてのClを含むシリコン含有層をSi、NおよびCを含む第1の層に変化(改質)させる際に、処理室201内のウエハ200に対して、有機ヒドラジン系ガスを供給することとなる。なお、有機ヒドラジン系ガスとしては、炭素、窒素および水素の3元素で構成され、その組成式中(1分子中)において窒素原子の数よりも炭素原子の数の方が多いガスを用いるのが好ましい。また、有機ヒドラジン系ガスとしては、その組成式中(1分子中)において炭素(C)原子を含むリガンドを複数有するガス、すなわち、その組成式中(1分子中)においてアルキル基等の炭化水素基を複数有するガスを用いるのが好ましい。具体的には、有機ヒドラジン系ガスとしては、その組成式中(1分子中)において炭素(C)原子を含むリガンド(アルキル基等の炭化水素基)を3つ、或いは2つ有するガスを用いるのが好ましい。
また例えば、上述の実施形態では、Si、NおよびCを含む第1の層を形成する際に、処理室201内のウエハ200に対してクロロシラン系原料ガスを供給し、その後、アミン系ガスを供給する例について説明したが、図14(a)のようにクロロシラン系原料ガスとアミン系ガスとを同時に処理室201内のウエハ200に対して供給してCVD反応を生じさせるようにしてもよい。
図14(a)及び(b)のシーケンスは、処理室201内のウエハ200に対して、クロロシラン系原料ガス(HCDSガス)と、炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多いアミン系ガス(TEAガス)とを同時に供給することで、ウエハ200上にシリコン、窒素および炭素を含む第1の層を形成する工程と、処理室201内のウエハ200に対して、第2の反応ガスとして酸素含有ガス(Oガス)を供給することで、第1の層を改質して第2の層としてSiOCN層またはSiOC層を形成する工程と、処理室201内のウエハ200に対して水素含有ガスとしてHガスを供給することで、第2の層の表面を改質する工程と、を含むサイクルを繰り返すことで、ウエハ200上に、所定組成及び所定膜厚のSiOCN膜またはSiOC膜を形成する例である。なお、図14(a)は、HCDSガスとTEAガスとを同時に供給する工程を1サイクルあたりに1回行うケースを示しており、図14(b)は、HCDSガスとTEAガスとを同時に供給する工程を1サイクルあたりに複数回(2回)行うケースを示している。なお、この場合における処理条件も、上述の実施形態における処理条件と同様な処理条件とすればよい。
このように、処理室201内のウエハ200に対して、クロロシラン系原料ガスとアミン系ガスとを順次供給するのではなく、同時に供給するようにしても上述の実施形態と同様な作用効果が得られる。ただし、上述の実施形態のように、クロロシラン系原料ガスとアミン系ガスとを、それらの間に処理室201内のパージを挟んで交互に供給する方が、クロロシラン系原料ガスとアミン系ガスとを、表面反応が支配的な条件下で適正に反応させることができ、膜厚制御の制御性を向上させることができることとなる。
また例えば、上述の実施形態では、第1の層を形成する際に、処理室201内のウエハ200に対してクロロシラン系原料ガスとアミン系ガスとを供給する例について説明したが、図15(a)〜(d)のように、アミン系ガスを供給せずに第1の層を形成するようにしてもよい。
なお、図15(a)のシーケンスは、処理室201内のウエハ200に対してクロロシラン系原料ガス(HCDSガス)を供給する工程と、処理室201内のウエハ200に対して窒素含有ガス(NHガス)を供給する工程と、を交互に所定回数行うことで、ウエハ200上にシリコン、窒素を含む第1の層を形成する工程と、処理室201内のウエハ200に対して水素含有ガスとしてHガスを供給することで、第1の層の表面を改質する工程と、を交互に所定回数行うことで、所定組成及び所定膜厚のSiN膜を形成する例である。なお、図15(a)は、第1の層を形成する工程において、HCDSガスとNHガスとを交互に1回供給するケースを示している。
また、図15(b)のシーケンスは、処理室201内のウエハ200に対してクロロシラン系原料ガス(HCDSガス)を供給する工程と、処理室201内のウエハ200に対して窒素含有ガス(NHガス)を供給する工程と、を交互に所定回数行うことで、ウエハ200上にシリコン、窒素を含む第1の層を形成する工程と、処理室201内のウエハ200に対して酸素含有ガス(Oガス)を供給することで、第1の層を改質して第2の層としてSiON層を形成する工程と、処理室201内のウエハ200に対して水素含有ガスとしてHガスを供給することで、第2の層の表面を改質する工程と、を交互に所定回数行うことで、所定組成及び所定膜厚のSiON膜を形成する例である。なお、図15(b)は、第1の層を形成する工程において、HCDSガスとNHガスとを交互に1回供給するケースを示している。
また、図15(c)のシーケンスは、処理室201内のウエハ200に対して、クロロシラン系原料ガス(HCDSガス)を供給する工程と、処理室201内のウエハ200に対して酸素含有ガス(Oガス)を供給する工程と、処理室201内のウエハ200に対して水素含有ガス(Hガス)を供給する工程と、を交互に所定回数行うことで、ウエハ200上にシリコン、酸素を含む第1の層を形成する工程と、処理室201内のウエハ200に対して、クロロシラン系原料ガス(HCDSガス)を供給する工程と、処理室201内のウエハ200に対して窒素含有ガス(NHガス)を供給する工程と、処理室201内のウエハ200に対して水素含有ガス(Hガス)を供給する工程と、を交互に所定回数行うことで、第1の層の上に第2の層としてSiN層を形成する工程と、を交互に所定回数行うことで、第1の層と第2の層とが交互に積層されてなる所定組成及び所定膜厚のSiON膜を形成する例である。なお、図15(c)は、第1の層を形成する工程において、HCDSガスとOガスとHガスとを交互に1回供給し、また、第2の層を形成する工程において、HCDSガスとNHガスとHガスとを交互に1回供給するケースを示している。
また、図15(d)のシーケンスは、処理室201内のウエハ200に対してクロロシラン系原料ガス(HCDSガス)を供給する工程と、処理室201内のウエハ200に対して炭素含有ガス(プロピレン(C)ガス)を供給する工程と、処理室201内のウエハ200に対して窒素含有ガス(NHガス)を供給する工程と、を交互に所定回数行うことで、ウエハ200上にシリコン、炭素および窒素を含む第1の層を形成する工程と、処理室201内のウエハ200に対して酸素含有ガス(Oガス)を供給することで、第1の層を改質して第2の層としてSiOCN層を形成する工程と、処理室201内のウエハ200に対して水素含有ガスとしてHガスを供給することで、第2の層の表面を改質する工程と、を交互に所定回数行うことで、所定組成及び所定膜厚のSiOCN膜を形成する例である。なお、図15(d)は、第1の層を形成する工程において、HCDSガスとCガスとNHガスとを交互に1回供給するケースを示している。
上述の各実施形態や各変形例の手法により形成したシリコン絶縁膜を、サイドウォールスペーサとして使用することにより、リーク電流が少なく、加工性に優れたデバイス形成技術を提供することが可能となる。
また、上述の各実施形態や各変形例の手法により形成したシリコン絶縁膜を、エッチストッパーとして使用することにより、加工性に優れたデバイス形成技術を提供することが可能となる。
上述の各実施形態や各変形例によれば、低温領域においてもプラズマを用いず、理想的量論比のシリコン絶縁膜を形成することができる。また、プラズマを用いずシリコン絶縁膜を形成できることから、例えばDPTのSADP膜等、プラズマダメージを懸念する工程への適応も可能となる。
また、上述の実施形態では、酸炭窒化膜、酸炭化膜、炭窒化膜として、半導体元素であるシリコンを含むシリコン系絶縁膜(SiOCN膜、SiOC膜、SiCN膜)を形成する例について説明したが、本発明は、例えばチタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、アルミニウム(Al)、モリブデン(Mo)等の金属元素を含む金属系薄膜を形成する場合にも適用することができる。
すなわち、本発明は、例えば、チタン酸炭窒化膜(TiOCN膜)、ジルコニウム酸炭窒化膜(ZrOCN膜)、ハフニウム酸炭窒化膜(HfOCN膜)、タンタル酸炭窒化膜(TaOCN膜)、アルミニウム酸炭窒化膜(AlOCN膜)、モリブデン酸炭窒化膜(MoOCN膜)等の金属酸炭窒化膜を形成する場合にも好適に適用することができる。
また例えば、本発明は、チタン酸炭化膜(TiOC膜)、ジルコニウム酸炭化膜(ZrOC膜)、ハフニウム酸炭化膜(HfOC膜)、タンタル酸炭化膜(TaOC膜)、アルミニウム酸炭化膜(AlOC膜)、モリブデン酸炭化膜(MoOC膜)等の金属酸炭化膜を形成する場合にも好適に適用することができる。
また例えば、本発明は、チタン炭窒化膜(TiCN膜)、ジルコニウム炭窒化膜(ZrCN膜)、ハフニウム炭窒化膜(HfCN膜)、タンタル炭窒化膜(TaCN膜)、アルミニウム炭窒化膜(AlCN膜)、モリブデン炭窒化膜(MoCN膜)等の金属炭窒化膜を形成する場合にも好適に適用することができる。
この場合、上述の実施形態におけるクロロシラン系原料ガスの代わりに、金属元素とハロゲン元素とを含む原料ガスを用い、上述の実施形態と同様なシーケンスにより成膜を行うことができる。すなわち、処理室201内のウエハ200に対して金属元素とハロゲン元素とを含む原料ガスを供給する工程と、処理室201内のウエハ200に対して炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する工程と、を交互に所定回数行うことで、ウエハ200上に金属元素、窒素および炭素を含む第1の層を形成する工程と、処理室201内のウエハ200に対して原料ガスおよび第1の反応ガスとは異なる第2の反応ガスを供給することで、第1の層を改質して第2の層を形成する工程と、を含むサイクルを繰り返すことで、ウエハ200上に、所定組成及び所定膜厚の金属系薄膜(金属酸炭窒化膜、金属酸炭化膜、金属炭窒化膜)を形成することができる。
例えば、Tiを含む金属系薄膜(TiOCN膜、TiOC膜、TiCN膜)を形成する場合は、原料ガスとして、チタニウムテトラクロライド(TiCl)等のTiおよびクロロ基を含むガスや、チタニウムテトラフルオライド(TiF)等のTiおよびフルオロ基を含むガスを用いることができる。第1の反応ガス、第2の反応ガス、水素含有ガスとしては、それぞれ上述の実施形態と同様なガスを用いることができる。なお、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
また例えば、Zrを含む金属系薄膜(ZrOCN膜、ZrOC膜、ZrCN膜)を形成する場合は、原料ガスとして、ジルコニウムテトラクロライド(ZrCl)等のZrおよびクロロ基を含むガスや、ジルコニウムテトラフルオライド(ZrF)等のZrおよびフルオロ基を含むガスを用いることができる。第1の反応ガス、第2の反応ガス、水素含有ガスとしては、それぞれ上述の実施形態と同様なガスを用いることができる。なお、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
また例えば、Hfを含む金属系薄膜(HfOCN膜、HfOC膜、HfCN膜)を形成する場合は、原料ガスとして、ハフニウムテトラクロライド(HfCl)等のHfおよびクロロ基を含むガスや、ハフニウムテトラフルオライド(HfF)等のHfおよびフルオロ基を含むガスを用いることができる。第1の反応ガス、第2の反応ガス、水素含有ガスとしては、それぞれ上述の実施形態と同様なガスを用いることができる。なお、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
また例えば、Taを含む金属系薄膜(TaOCN膜、TaOC膜、TaCN膜)を形成する場合は、原料ガスとして、タンタルペンタクロライド(TaCl)等のTaおよびクロロ基を含むガスや、タンタルペンタフルオライド(TaF)等のTaおよびフルオロ基を含むガスを用いることができる。第1の反応ガス、第2の反応ガス、水素含有ガスとしては、それぞれ上述の実施形態と同様なガスを用いることができる。なお、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
また例えば、Alを含む金属系薄膜(AlOCN膜、AlOC膜、AlCN膜)を形成する場合は、原料ガスとして、アルミニウムトリクロライド(AlCl)等のAlおよびクロロ基を含むガスや、アルミニウムトリフルオライド(AlF)等のAlおよびフルオロ基を含むガスを用いることができる。第1の反応ガス、第2の反応ガス、水素含有ガスとしては、それぞれ上述の実施形態と同様なガスを用いることができる。なお、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
また例えば、Moを含む金属系薄膜(MoOCN膜、MoOC膜、MoCN膜)を形成する場合は、原料ガスとして、モリブデンペンタクロライド(MoCl)等のMoおよびクロロ基を含むガスや、モリブデンペンタフルオライド(MoF)等のMoおよびフルオロ基を含むガスを用いることができる。第1の反応ガス、第2の反応ガス、水素含有ガスとしては、それぞれ上述の実施形態と同様なガスを用いることができる。なお、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
すなわち、本発明は、半導体元素や金属元素等の所定元素を含む薄膜を形成する場合に好適に適用することができる。
また、上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて薄膜を成膜する例について説明したが、本発明はこれに限定されず、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて薄膜を成膜する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて薄膜を成膜する例について説明したが、本発明はこれに限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて薄膜を成膜する場合にも、好適に適用できる。
また、上述の各実施形態や各変形例や各応用例等は、適宜組み合わせて用いることができる。
また、本発明は、例えば、既存の基板処理装置のプロセスレシピを変更することでも実現できる。プロセスレシピを変更する場合は、本発明に係るプロセスレシピを電気通信回線や当該プロセスレシピを記録した記録媒体を介して既存の基板処理装置にインストールしたり、また、既存の基板処理装置の入出力装置を操作し、そのプロセスレシピ自体を本発明に係るプロセスレシピに変更することも可能である。
<本発明の好ましい態様>
以下、本発明の好ましい態様について付記する。
(付記1)
本発明の一態様によれば、
基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する工程と、前記基板に対して炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する工程と、を交互に所定回数行うことで、記所定元素、窒素および炭素を含む第1の層を形成する工程と、
前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する工程と、
前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する工程と、
を含むサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する工程を有する半導体装置の製造方法が提供される。
ここで、「原料ガスを供給する工程と、第1の反応ガスを供給する工程と、を交互に所定回数行う」とは、原料ガスおよび第1の反応ガスのうちの一方のガスを供給する工程と、その後、原料ガスおよび第1の反応ガスのうちの前記一方のガスとは異なる他方のガスを供給する工程と、を1セットとした場合、このセットを1回行う場合と、このセットを複数回繰り返す場合の両方を含む。すなわち、このセットを1回以上(所定回数)行うことを意味する。
また、「第1の層を形成する工程と、第2の層を形成する工程と、第2の層の表面を改質する工程とを含むサイクルを繰り返す」とは、第1の層を形成する工程と、第2の層を形成する工程と、第2の層の表面を改質する工程と、を1サイクルとした場合、このサイクルを複数回繰り返すことを意味する。すなわち、このサイクルを2回以上(複数回)行うことを意味する。
なお、本明細書において、これらと同様な表現は、これらと同様な意味として用いられている。
(付記2)
付記1の半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスは、その組成式中において炭素原子を含むリガンドを複数有する。
(付記3)
付記1または2の半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスは、その組成式中において炭素原子を含むリガンドを3つ有する。
(付記4)
付記1または2の半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスは、その組成式中において炭素原子を含むリガンドを2つ有する。
(付記5)
付記1乃至4のいずれかの半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスはアミンおよび有機ヒドラジンのうち少なくともいずれかを含む。
(付記6)
付記1乃至4のいずれかの半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスは、エチルアミン、メチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミンおよびイソブチルアミンからなる群より選択される少なくとも1つのアミンを含む。
(付記7)
付記1または2の半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスは、トリエチルアミン、ジエチルアミン、トリメチルアミン、ジメチルアミン、トリプロピルアミン、ジプロピルアミン、トリイソプロピルアミン、ジイソプロピルアミン、トリブチルアミン、ジブチルアミン、トリイソブチルアミンおよびジイソブチルアミンからなる群より選択される少なくとも1つのアミンを含む。
(付記8)
付記1または2の半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスは、ジエチルアミン、ジメチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミンおよびジイソブチルアミンからなる群より選択される少なくとも1つのアミンを含む。
(付記9)
付記1乃至8のいずれかの半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスはシリコン非含有のガスである。
(付記10)
付記1乃至8のいずれかの半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスはシリコンおよび金属非含有のガスである。
(付記11)
付記1乃至10のいずれかの半導体装置の製造方法であって、好ましくは、
前記所定元素はシリコンまたは金属を含み、前記ハロゲン元素は塩素またはフッ素を含む。
(付記12)
付記1乃至11のいずれかの半導体装置の製造方法であって、好ましくは、
前記第1の層を形成する工程では、前記原料ガスに含まれる前記ハロゲン元素と前記第1の反応ガスに含まれる水素とをガスとして排出しつつ、前記基板上に前記第1の層を形成する。
(付記13)
付記1乃至12のいずれかの半導体装置の製造方法であって、好ましくは、
前記原料ガスを供給する工程では、前記所定元素と前記ハロゲン元素とを含む初期層を形成し、
前記第1の反応ガスを供給する工程では、前記初期層と前記第1の反応ガスとを反応させて前記第1の層を形成する。
(付記14)
付記13の半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスを供給する工程では、前記初期層と前記第1の反応ガスとを反応させて、前記初期層に含まれる前記ハロゲン元素のうち少なくとも一部を前記初期層から引き抜くとともに、前記第1の反応ガスに含まれるリガンドのうち少なくとも一部を前記第1の反応ガスから分離させる。
(付記15)
付記14の半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスを供給する工程では、前記初期層と前記第1の反応ガスとを反応させて、前記初期層に含まれる前記ハロゲン元素のうち少なくとも一部を前記初期層から引き抜くとともに、前記第1の反応ガスに含まれるリガンドのうち少なくとも一部を前記第1の反応ガスから分離させ、前記リガンドのうち少なくとも一部が分離した前記第1の反応ガスの窒素と前記初期層に含まれる前記所定元素とを結合させる。
(付記16)
付記15の半導体装置の製造方法であって、好ましくは、
前記第1の反応ガスを供給する工程では、前記初期層と前記第1の反応ガスとを反応させて、前記初期層に含まれる前記ハロゲン元素のうち少なくとも一部を前記初期層から引き抜くとともに、前記第1の反応ガスに含まれるリガンドのうち少なくとも一部を前記第1の反応ガスから分離させ、前記リガンドのうち少なくとも一部が分離した前記第1の反応ガスの窒素と前記初期層に含まれる前記所定元素とを結合させ、さらに、前記リガンドに含まれる炭素と前記初期層に含まれる前記所定元素とを結合させる。
(付記17)
付記1乃至16のいずれかの半導体装置の製造方法であって、好ましくは、
前記薄膜を形成する工程は、前記基板を処理室内に収容した状態で行われ、
前記第1の反応ガスを供給する工程における前記処理室内の圧力を、前記第2の反応ガスを供給する工程における前記処理室内の圧力よりも大きくし、前記第2の反応ガスを供給する工程における前記処理室内の圧力を、前記原料ガスを供給する工程における前記処理室内の圧力よりも大きくする。
(付記18)
付記1乃至17のいずれかの半導体装置の製造方法であって、好ましくは、
前記第2の層を形成する工程では、前記基板に対して、前記第2の反応ガスとして酸素含有ガスを供給することで、前記第2の層として、前記所定元素、酸素、炭素および窒素を含む層(前記所定元素を含む酸炭窒化層)、または、前記所定元素、酸素および炭素を含む層(前記所定元素を含む酸炭化層)を形成し、
前記薄膜を形成する工程では、前記薄膜として、前記所定元素、酸素、炭素および窒素を含む膜(前記所定元素を含む酸炭窒化膜)、または、前記所定元素、酸素および炭素を含む膜(前記所定元素を含む酸炭化膜)を形成する。
(付記19)
付記1乃至17のいずれかの半導体装置の製造方法であって、好ましくは、
前記第2の層を形成する工程では、前記基板に対して、前記第2の反応ガスとして窒素含有ガスを供給することで、前記第2の層として前記所定元素、炭素および窒素を含む層(前記所定元素を含む炭窒化層)を形成し、
前記薄膜を形成する工程では、前記薄膜として前記所定元素、炭素および窒素を含む膜(前記所定元素を含む炭窒化膜)を形成する。
(付記20)
付記1乃至17のいずれかの半導体装置の製造方法であって、好ましくは、
前記第2の層を形成する工程では、前記基板に対して、前記第2の反応ガスとして窒素含有ガスと酸素含有ガスとを供給することで、前記第2の層として前記所定元素、酸素、炭素および窒素を含む層(前記所定元素を含む酸炭窒化層)を形成し、
前記薄膜を形成する工程では、前記薄膜として前記所定元素、酸素、炭素および窒素を含む膜(前記所定元素を含む酸炭窒化膜)を形成する。
(付記21)
付記1乃至17のいずれかの半導体装置の製造方法であって、好ましくは
前記第2の層を形成する工程では、前記基板に対して、前記第2の反応ガスとして窒素含有ガスを供給し、その後、前記第2の反応ガスとして酸素含有ガスを供給することで、前記第2の層として前記所定元素、酸素、炭素および窒素を含む層(前記所定元素を含む酸炭窒化層)を形成し、
前記薄膜を形成する工程では、前記薄膜として前記所定元素、酸素、炭素および窒素を含む膜(前記所定元素を含む酸炭窒化膜)を形成する。
(付記22)
本発明の他の態様によれば、
基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する工程と、前記基板に対して炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い反応ガスを供給する工程と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む層を形成する工程と、
前記基板に対して水素含有ガスを供給することで、前記層の表面を改質する工程と、
を含むサイクルを繰り返すことで、前記基板上に、前記所定元素、窒素および炭素を含む膜を形成する工程を有する半導体装置の製造方法が提供される。
(付記23)
本発明のさらに他の態様によれば、
基板に対して、所定元素とハロゲン元素とを含む原料ガスと、炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスと、を供給することで、前記所定元素、窒素および炭素を含む第1の層を形成する工程と、
前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する工程と、
前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する工程と、
を含むサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する工程を有する半導体装置の製造方法が提供される。
(付記24)
本発明の他の態様によれば、
基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する工程と、前記基板に対して炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する工程と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する工程と、
前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する工程と、
前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する工程と、
を含むサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する工程を有する基板処理方法が提供される。
(付記25)
本発明のさらに他の態様によれば、
基板を収容する処理室と、
前記処理室内へ所定元素とハロゲン元素とを含む原料ガスを供給する原料ガス供給系と、
前記処理室内へ炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する第1反応ガス供給系と、
前記処理室内へ前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給する第2反応ガス供給系と、
前記処理室内へ水素含有ガスを供給する水素含有ガス供給系と、
前記処理室内の基板に対して前記原料ガスを供給する処理と、前記処理室内の前記基板に対して前記第1の反応ガスを供給する処理と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する処理と、前記処理室内の前記基板に対して前記第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する処理と、前記処理室内の前記基板に対して前記水素含有ガスを供給することで、前記第2の層の表面を改質する処理と、を含むサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する処理を行うように、前記原料ガス供給系、前記第1反応ガス供給系、前記第2反応ガス供給系および前記水素含有ガス供給系を制御する制御部と、
を有する基板処理装置が提供される。
(付記26)
本発明のさらに他の態様によれば、
基板処理装置の処理室内の基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する手順と、前記処理室内の前記基板に対して炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する手順と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する手順と、
前記処理室内の前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する手順と、
前記処理室内の前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する手順と、
を含むサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する手順をコンピュータに実行させるプログラムが提供される。
(付記27)
本発明のさらに他の態様によれば、
基板処理装置の処理室内の基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する手順と、前記処理室内の前記基板に対して炭素、窒素および水素の3元素で構成され、組成式中において窒素原子の数よりも炭素原子の数の方が多い第1の反応ガスを供給する手順と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する手順と、
前記処理室内の前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する手順と、
前記処理室内の前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する手順と、
を含むサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する手順をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
121 コントローラ(制御部)
200 ウエハ(基板)
201 処理室
202 処理炉
203 反応管
207 ヒータ
231 排気管
232a 第1ガス供給管
232b 第2ガス供給管
232c 第3ガス供給管
232d 第4ガス供給管
232e 第5ガス供給管

Claims (12)

  1. 処理室内の基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する工程と、前記処理室内の前記基板に対して炭素、窒素および水素の3元素で構成され、1分子中において窒素原子の数よりも炭素原子の数の方が多く、前記所定元素非含有の第1の反応ガスを供給する工程と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する工程と、
    前記処理室内の前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する工程と、
    前記処理室内の前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する工程と、
    を非同時に行うサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する工程を有し、
    前記第1の反応ガスを供給する工程における前記処理室内の圧力を、前記原料ガスを供給する工程における前記処理室内の圧力よりも大きくする半導体装置の製造方法。
  2. 前記第1の反応ガスを供給する工程における前記処理室内の圧力を、前記原料ガスを供給する工程における前記処理室内の圧力よりも大きくし、前記第2の反応ガスを供給する工程における前記処理室内の圧力を、前記原料ガスを供給する工程における前記処理室内の圧力よりも大きくする請求項1に記載の半導体装置の製造方法。
  3. 前記第1の反応ガスを供給する工程における前記処理室内の圧力を、前記第2の反応ガスを供給する工程における前記処理室内の圧力よりも大きくし、前記第2の反応ガスを供給する工程における前記処理室内の圧力を、前記原料ガスを供給する工程における前記処理室内の圧力よりも大きくする請求項1または2に記載の半導体装置の製造方法。
  4. 前記第1の反応ガスはアミンおよび有機ヒドラジンのうち少なくともいずれかを含む請求項1〜のいずれか1項に記載の半導体装置の製造方法。
  5. 前記所定元素はシリコンまたは金属を含む請求項1〜のいずれか1項に記載の半導体装置の製造方法。
  6. 前記ハロゲン元素は塩素またはフッ素を含む請求項1〜のいずれか1項に記載の半導体装置の製造方法。
  7. 前記第1の反応ガスはノンプラズマで熱的に活性化されて前記基板に対して供給され、前記第2の反応ガスはノンプラズマで熱的に活性化されて前記基板に対して供給され、前記水素含有ガスはノンプラズマで熱的に活性化されて前記基板に対して供給される請求項1〜のいずれか1項に記載の半導体装置の製造方法。
  8. 前記第2の反応ガスは酸素含有ガスを含む請求項1〜のいずれか1項に記載の半導体装置の製造方法。
  9. 前記薄膜はSiOC膜またはSiOCN膜を含む請求項に記載の半導体装置の製造方法。
  10. 処理室内の基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する工程と、前記処理室内の前記基板に対して炭素、窒素および水素の3元素で構成され、1分子中において窒素原子の数よりも炭素原子の数の方が多く、前記所定元素非含有の第1の反応ガスを供給する工程と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する工程と、
    前記処理室内の前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する工程と、
    前記処理室内の前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する工程と、
    を非同時に行うサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する工程を有し、
    前記第1の反応ガスを供給する工程における前記処理室内の圧力を、前記原料ガスを供給する工程における前記処理室内の圧力よりも大きくする基板処理方法。
  11. 基板を収容する処理室と、
    前記処理室内へ所定元素とハロゲン元素とを含む原料ガスを供給する原料ガス供給系と、
    前記処理室内へ炭素、窒素および水素の3元素で構成され、1分子中において窒素原子の数よりも炭素原子の数の方が多く、前記所定元素非含有の第1の反応ガスを供給する第1反応ガス供給系と、
    前記処理室内へ前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給する第2反応ガス供給系と、
    前記処理室内へ水素含有ガスを供給する水素含有ガス供給系と、
    前記処理室内の圧力を調整する圧力調整部と、
    前記処理室内の基板に対して前記原料ガスを供給する処理と、前記処理室内の前記基板に対して前記第1の反応ガスを供給する処理と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する処理と、前記処理室内の前記基板に対して前記第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する処理と、前記処理室内の前記基板に対して前記水素含有ガスを供給することで、前記第2の層の表面を改質する処理と、を非同時に行うサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する処理を行わせ、前記第1の反応ガスを供給する処理における前記処理室内の圧力を、前記原料ガスを供給する処理における前記処理室内の圧力よりも大きくするように、前記原料ガス供給系、前記第1反応ガス供給系、前記第2反応ガス供給系、前記水素含有ガス供給系および前記圧力調整部を制御する制御部と、
    を有する基板処理装置。
  12. 基板処理装置の処理室内の基板に対して所定元素とハロゲン元素とを含む原料ガスを供給する手順と、前記処理室内の前記基板に対して炭素、窒素および水素の3元素で構成され、1分子中において窒素原子の数よりも炭素原子の数の方が多く、前記所定元素非含有の第1の反応ガスを供給する手順と、を交互に所定回数行うことで、前記所定元素、窒素および炭素を含む第1の層を形成する手順と、
    前記処理室内の前記基板に対して前記原料ガスおよび前記第1の反応ガスとは異なる第2の反応ガスを供給することで、前記第1の層を改質して第2の層を形成する手順と、
    前記処理室内の前記基板に対して水素含有ガスを供給することで、前記第2の層の表面を改質する手順と、
    を非同時に行うサイクルを繰り返すことで、前記基板上に、前記所定元素を含む薄膜を形成する手順と、
    前記第1の反応ガスを供給する手順における前記処理室内の圧力を、前記原料ガスを供給する手順における前記処理室内の圧力よりも大きくする手順と、
    をコンピュータによって前記基板処理装置に実行させるプログラム。
JP2012233851A 2011-12-09 2012-10-23 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム Active JP6049395B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012233851A JP6049395B2 (ja) 2011-12-09 2012-10-23 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
KR1020120141818A KR101402644B1 (ko) 2011-12-09 2012-12-07 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 기록 매체
US13/708,976 US9053927B2 (en) 2011-12-09 2012-12-08 Method of manufacturing semiconductor device and method of processing substrate
US14/706,223 US9437422B2 (en) 2011-12-09 2015-05-07 Method of manufacturing semiconductor device and substrate processing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011270724 2011-12-09
JP2011270724 2011-12-09
JP2012233851A JP6049395B2 (ja) 2011-12-09 2012-10-23 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム

Publications (2)

Publication Number Publication Date
JP2013140945A JP2013140945A (ja) 2013-07-18
JP6049395B2 true JP6049395B2 (ja) 2016-12-21

Family

ID=48572369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233851A Active JP6049395B2 (ja) 2011-12-09 2012-10-23 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム

Country Status (3)

Country Link
US (2) US9053927B2 (ja)
JP (1) JP6049395B2 (ja)
KR (1) KR101402644B1 (ja)

Families Citing this family (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
JP6049395B2 (ja) * 2011-12-09 2016-12-21 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6039996B2 (ja) * 2011-12-09 2016-12-07 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP5930416B2 (ja) * 2011-12-28 2016-06-08 国立大学法人東北大学 配線構造体、配線構造体を備えた半導体装置及びその半導体装置の製造方法
JP5869923B2 (ja) * 2012-03-09 2016-02-24 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6035161B2 (ja) * 2012-03-21 2016-11-30 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US9514932B2 (en) * 2012-08-08 2016-12-06 Applied Materials, Inc. Flowable carbon for semiconductor processing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
JP5788448B2 (ja) 2013-09-09 2015-09-30 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及びプログラム
WO2016038660A1 (ja) * 2014-09-08 2016-03-17 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
KR102396111B1 (ko) 2015-06-18 2022-05-10 삼성전자주식회사 반도체 소자 및 그 제조 방법
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
JP5957128B2 (ja) * 2015-07-29 2016-07-27 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
KR102454894B1 (ko) * 2015-11-06 2022-10-14 삼성전자주식회사 물질막, 이를 포함하는 반도체 소자, 및 이들의 제조 방법
KR102458309B1 (ko) * 2015-12-28 2022-10-24 삼성전자주식회사 SiOCN 물질막의 형성 방법 및 반도체 소자의 제조 방법
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
JP6594804B2 (ja) * 2016-03-11 2019-10-23 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP6529927B2 (ja) * 2016-04-15 2019-06-12 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
US10367080B2 (en) * 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
JP6602261B2 (ja) 2016-05-23 2019-11-06 東京エレクトロン株式会社 成膜方法
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
KR20180068582A (ko) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
JP6602332B2 (ja) * 2017-03-28 2019-11-06 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
CN109585267B (zh) 2017-09-29 2023-12-01 住友电气工业株式会社 氮化硅膜的形成方法
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
CN111316417B (zh) 2017-11-27 2023-12-22 阿斯莫Ip控股公司 与批式炉偕同使用的用于储存晶圆匣的储存装置
TWI791689B (zh) 2017-11-27 2023-02-11 荷蘭商Asm智慧財產控股私人有限公司 包括潔淨迷你環境之裝置
JP6946989B2 (ja) * 2017-12-06 2021-10-13 住友電気工業株式会社 窒化珪素パッシベーション膜の成膜方法及び半導体装置の製造方法
JP6965942B2 (ja) * 2017-12-22 2021-11-10 株式会社村田製作所 成膜装置
CN111433390B (zh) 2017-12-22 2022-09-27 株式会社村田制作所 成膜装置
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI852426B (zh) 2018-01-19 2024-08-11 荷蘭商Asm Ip私人控股有限公司 沈積方法
WO2019142055A2 (en) 2018-01-19 2019-07-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
JP2019145589A (ja) 2018-02-16 2019-08-29 東芝メモリ株式会社 半導体装置の製造方法
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102541454B1 (ko) * 2018-04-26 2023-06-09 삼성전자주식회사 저유전막의 형성 방법, 및 반도체 소자의 형성방법
TWI811348B (zh) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TWI840362B (zh) 2018-06-04 2024-05-01 荷蘭商Asm Ip私人控股有限公司 水氣降低的晶圓處置腔室
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
TW202405221A (zh) 2018-06-27 2024-02-01 荷蘭商Asm Ip私人控股有限公司 用於形成含金屬材料及包含含金屬材料的膜及結構之循環沉積方法
KR20210024462A (ko) 2018-06-27 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 금속 함유 재료를 형성하기 위한 주기적 증착 방법 및 금속 함유 재료를 포함하는 필름 및 구조체
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102707956B1 (ko) 2018-09-11 2024-09-19 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
CN110970344B (zh) 2018-10-01 2024-10-25 Asmip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP6905505B2 (ja) * 2018-12-13 2021-07-21 株式会社Kokusai Electric 半導体装置の製造方法、表面処理方法、基板処理装置、およびプログラム
JP7504584B2 (ja) 2018-12-14 2024-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム
US11322347B2 (en) * 2018-12-14 2022-05-03 Applied Materials, Inc. Conformal oxidation processes for 3D NAND
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
TWI756590B (zh) 2019-01-22 2022-03-01 荷蘭商Asm Ip私人控股有限公司 基板處理裝置
JP7509548B2 (ja) 2019-02-20 2024-07-02 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための周期的堆積方法および装置
JP2020136678A (ja) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための方法および装置
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
TWI842826B (zh) 2019-02-22 2024-05-21 荷蘭商Asm Ip私人控股有限公司 基材處理設備及處理基材之方法
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
JP2020167398A (ja) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー ドアオープナーおよびドアオープナーが提供される基材処理装置
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
KR20200123380A (ko) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. 층 형성 방법 및 장치
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
JP2020188254A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
KR20200141002A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP7499079B2 (ja) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
KR20210010817A (ko) 2019-07-19 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법
TWI839544B (zh) 2019-07-19 2024-04-21 荷蘭商Asm Ip私人控股有限公司 形成形貌受控的非晶碳聚合物膜之方法
TWI851767B (zh) 2019-07-29 2024-08-11 荷蘭商Asm Ip私人控股有限公司 用於利用n型摻雜物及/或替代摻雜物選擇性沉積以達成高摻雜物併入之方法
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (zh) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 用于化学源容器的液位传感器
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TWI846953B (zh) 2019-10-08 2024-07-01 荷蘭商Asm Ip私人控股有限公司 基板處理裝置
KR20210042810A (ko) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법
TWI846966B (zh) 2019-10-10 2024-07-01 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (zh) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 氧化矽之拓撲選擇性膜形成之方法
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
KR20210050453A (ko) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
JP7249930B2 (ja) 2019-11-20 2023-03-31 東京エレクトロン株式会社 成膜方法および成膜装置
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP7527928B2 (ja) 2019-12-02 2024-08-05 エーエスエム・アイピー・ホールディング・ベー・フェー 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210078405A (ko) 2019-12-17 2021-06-28 에이에스엠 아이피 홀딩 비.브이. 바나듐 나이트라이드 층을 형성하는 방법 및 바나듐 나이트라이드 층을 포함하는 구조
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
TW202142733A (zh) 2020-01-06 2021-11-16 荷蘭商Asm Ip私人控股有限公司 反應器系統、抬升銷、及處理方法
JP2021109175A (ja) 2020-01-06 2021-08-02 エーエスエム・アイピー・ホールディング・ベー・フェー ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR20210093163A (ko) 2020-01-16 2021-07-27 에이에스엠 아이피 홀딩 비.브이. 고 종횡비 피처를 형성하는 방법
KR102675856B1 (ko) 2020-01-20 2024-06-17 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
TW202146882A (zh) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (zh) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 專用於零件清潔的系統
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
CN113394086A (zh) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 用于制造具有目标拓扑轮廓的层结构的方法
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
KR20210127620A (ko) 2020-04-13 2021-10-22 에이에스엠 아이피 홀딩 비.브이. 질소 함유 탄소 막을 형성하는 방법 및 이를 수행하기 위한 시스템
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210128343A (ko) 2020-04-15 2021-10-26 에이에스엠 아이피 홀딩 비.브이. 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
KR20210132605A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 냉각 가스 공급부를 포함한 수직형 배치 퍼니스 어셈블리
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
JP2021177545A (ja) 2020-05-04 2021-11-11 エーエスエム・アイピー・ホールディング・ベー・フェー 基板を処理するための基板処理システム
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
TW202146699A (zh) 2020-05-15 2021-12-16 荷蘭商Asm Ip私人控股有限公司 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
TW202200837A (zh) 2020-05-22 2022-01-01 荷蘭商Asm Ip私人控股有限公司 用於在基材上形成薄膜之反應系統
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202212620A (zh) 2020-06-02 2022-04-01 荷蘭商Asm Ip私人控股有限公司 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202202649A (zh) 2020-07-08 2022-01-16 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220010438A (ko) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. 포토리소그래피에 사용하기 위한 구조체 및 방법
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
TW202212623A (zh) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 形成金屬氧化矽層及金屬氮氧化矽層的方法、半導體結構、及系統
TW202229601A (zh) 2020-08-27 2022-08-01 荷蘭商Asm Ip私人控股有限公司 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
KR20220045900A (ko) 2020-10-06 2022-04-13 에이에스엠 아이피 홀딩 비.브이. 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치
CN114293174A (zh) 2020-10-07 2022-04-08 Asm Ip私人控股有限公司 气体供应单元和包括气体供应单元的衬底处理设备
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
KR20220053482A (ko) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202235649A (zh) 2020-11-24 2022-09-16 荷蘭商Asm Ip私人控股有限公司 填充間隙之方法與相關之系統及裝置
TW202235675A (zh) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 注入器、及基板處理設備
CN114639631A (zh) 2020-12-16 2022-06-17 Asm Ip私人控股有限公司 跳动和摆动测量固定装置
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
TW202242184A (zh) 2020-12-22 2022-11-01 荷蘭商Asm Ip私人控股有限公司 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法
TW202226899A (zh) 2020-12-22 2022-07-01 荷蘭商Asm Ip私人控股有限公司 具匹配器的電漿處理裝置
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
JP7437362B2 (ja) * 2021-09-28 2024-02-22 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、基板処理方法及びプログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100505668B1 (ko) * 2002-07-08 2005-08-03 삼성전자주식회사 원자층 증착 방법에 의한 실리콘 산화막 형성 방법
US7171254B2 (en) 2003-03-21 2007-01-30 General Electric Company RF coil embedded with homogeneity enhancing material
KR100555552B1 (ko) * 2003-06-12 2006-03-03 삼성전자주식회사 원자층 증착법에 의한 이산화실리콘막 형성 방법 및이로부터 얻어지는 반도체 소자
JP2006024668A (ja) 2004-07-07 2006-01-26 Fujitsu Ltd 半導体装置の製造方法
US20060084283A1 (en) * 2004-10-20 2006-04-20 Paranjpe Ajit P Low temperature sin deposition methods
US20070116873A1 (en) * 2005-11-18 2007-05-24 Tokyo Electron Limited Apparatus for thermal and plasma enhanced vapor deposition and method of operating
JP4837370B2 (ja) * 2005-12-05 2011-12-14 東京エレクトロン株式会社 成膜方法
US7981815B2 (en) * 2006-07-20 2011-07-19 Hitachi Kokusai Electric Inc. Semiconductor device producing method and substrate processing apparatus
US7638170B2 (en) 2007-06-21 2009-12-29 Asm International N.V. Low resistivity metal carbonitride thin film deposition by atomic layer deposition
CN102047386B (zh) * 2008-06-03 2013-06-19 气体产品与化学公司 含硅薄膜的低温沉积
JP5665289B2 (ja) * 2008-10-29 2015-02-04 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
CN102471885A (zh) 2010-04-01 2012-05-23 乔治洛德方法研究和开发液化空气有限公司 使用氨基金属与卤化金属前体组合的含金属氮化物的薄膜沉积
JP5374638B2 (ja) * 2010-04-09 2013-12-25 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
US20110256734A1 (en) * 2010-04-15 2011-10-20 Hausmann Dennis M Silicon nitride films and methods
US9611544B2 (en) 2010-04-15 2017-04-04 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US8647993B2 (en) * 2011-04-11 2014-02-11 Novellus Systems, Inc. Methods for UV-assisted conformal film deposition
JP6039996B2 (ja) * 2011-12-09 2016-12-07 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6049395B2 (ja) * 2011-12-09 2016-12-21 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム

Also Published As

Publication number Publication date
US9437422B2 (en) 2016-09-06
KR20130065610A (ko) 2013-06-19
KR101402644B1 (ko) 2014-06-03
US20150235843A1 (en) 2015-08-20
US9053927B2 (en) 2015-06-09
JP2013140945A (ja) 2013-07-18
US20130149874A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP6049395B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6039996B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6105967B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6035166B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6154215B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP5847783B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
JP6035161B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP5951443B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US9478413B2 (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
JP6111097B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6111106B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6007031B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6239079B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP2014075491A (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP2016034043A (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161122

R150 Certificate of patent or registration of utility model

Ref document number: 6049395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250